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Abstract. Numerical formulations of density functional theories for inhomogeneous fluids
(Fluid-DFTs) require the solution of large systems of equations with many degrees of freedom (DOFs)
per node on a computational grid. Historically solvers for these problems have used simple Picard
iterations across DOFs or, more recently, fully-coupled general algebraic techniques.

In this paper we look at Fluid-DFTs from a fresh perspective, retaining a fully-coupled formu-
lation but segregating variables for the purpose of introducing Schur complement formulations and
specialized preconditioners. By viewing Fluid-DFTs from this perspective, we develop a mathemati-
cal framework and a collection of solution algorithms that have a dramatic impact on the robustness,
performance and scalability of the implicit equations generated by Fluid-DFTs.
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1. Introduction. Multiple degrees of freedom (DOFs) per node properties are
common to many numerical applications. Segregated solvers, which attempt to view
each DOF across the grid as a sub-problem within the larger fully-coupled problem,
have been successfully used in many problem domains. Similarly Schur complement
methods, which formally eliminate variables by block Gaussian elimination can reduce
the complexity and cost of solution. In this paper we present a combination of these
two classes of algorithms applied to Density Functional Theories for inhomogeneous
fluids (Fluid-DFTs). We will show that viewing Fluid-DFTs from a segregated vari-
able perspective yields a rich structure that can be exploited in the development of
robust, scalable solution methods. Furthermore, the algorithms we develop can be
applied in a similar fashion to all types of problems generated by the target appli-
cation, showing that our basic approach is a useful general-purpose technique in this
problem domain.

Density functional theories (DFTs) have been used to treat a variety of systems at
many length scales. For interfacial systems, the fundamental problem is to predict the
structure of an inhomogeneous fluid as captured by a density distribution, ρ(r) [39].
At the smallest length scale the most well known application of DFT is to predict the
electronic structure of materials [26]. More specifically, quantum mechanical DFTs
(QM-DFTs) are used to predict the structure of an electron fluid in an external field
produced by fixed nuclei. Using a similar mathematical construct but with non-
exact density functionals [16], the structure of atomic [27, 28], molecular [21, 1], and
polymer fluids [3, 40, 41, 36] can be computed. Fluid inhomogeneities can result from
surfaces (e.g. planar interfaces, porous materials, or large geometrically complex
macromolecules [13, 38, 24, 12]) or from competing intramolecular and intermolecular
interactions that can lead to self-assembly [15, 9, 22]. Mesoscale-DFTs have also been
developed for colloidal fluids and biological macromolecules [5, 6]. These mesoscale-
DFTs are very similar to Fluid-DFTs, but are based on coarsened models or potentials
(e.g. the solvent averaged Yukawa potential).

Our previous efforts to develop numerical methods for Fluid-DFT began with the
development of a Newton’s method real space approach that could be solved using
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parallel iterative solvers optimized for large distributed memory parallel computers[10,
11, 13]. This code was robust, but expensive for 3-dimensional systems. Given those
limitations, we then developed a matrix free method with fast Fourier transforms
(FFTs) to compute certain convolutions in the theory[33]. This approach led to a
code that could be applied to 3-dimensional problems using very modest computer
resources (single processor workstations). However the FFTs limit the application
space of the DFTs to cases with periodic boundary conditions, and since no matrix is
stored, matrix based preconditioning methods cannot be applied to converge difficult
nonlinear problems.

In the remainder of this paper we present a new approach to solving Fluid-DFTs
using a real space method based on segregated Schur complement techniques and
demonstrate the impact of this approach on our ability to solve large, complex prob-
lems. Section 2 presents the general mathematical framework of fluid-DFTs. Sec-
tions 3 discusses the complexities of the discrete formulation of DFTs with a focus
on properties that can be exploited in the design of algorithms. Section 4 contains
a discussion of our new block equation framework, and Section 5 discusses the block
framework for two particular fluid-DFTs. Section 6 presents an analysis of our new
solver algorithms as compared to generic methods developed for PDEs, and demon-
strates considerable improvement in speed and robustness.

2. Mathematical Framework. In Fluid-DFTs an approximate free energy
functional, Ω[{ρi(r)}], depends on a set of density fields, {ρi(r)}. The minimiza-
tion of this free energy with respect to all fields {ρi(r)} results in a system of residual
equations to be solved for the equilibrium fluid distribution. The residual equations
to be solved are written,

δΩ
δρi(r)

= 0(2.1)

where δ is the Frechet (functional) derivative, leading to an Euler-Lagrange residual
equation.

In a perturbation theory, the free energy Ω is typically written as a sum of terms
starting with the contributions of a well known reference fluid (often a hard sphere
fluid). Many terms in these physics based expansions can be written as

Fphys =
∫

f [{ρi}]g[{nγ [{ρi}]}]dr(2.2)

where f is a functional of the critical density fields, and g is a functional of some
nonlocal variables, n. Taking the functional derivative of these terms to set up the
residual equations in Eq. 2.1 one must apply the chain rule

δ

δρi(r)

(∫
f [{ρi}]g[{n[{ρi}]}]dr

)
=

∂f

∂ρi
g[{n}] +

∫
f [{ρi}]

∂g

∂n

δn(r′)
δρi(r)

dr′.(2.3)

where for simplicity Eq.2.3 reflects a problem with only one nonlocal variable, n.
For local terms (e.g. ideal gas contributions), g[n] = 1 and the second term drops

out. Nonlocal terms can take on various forms. For strict mean field contributions,
g = ni where ni is a simple linear functional of the set {ρi},

ni(r) =
∑

j

∫
wij(r, r′, Rij)ρj(r′)dr′,(2.4)
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with a weight function,

wij(r, r′, Rij) = θ(|r− r′| −Rij)φij(|r− r′|)(2.5)

where θ is a heavyside step function, φij denotes a pairwise interaction (i.e. pair
potential, direct correlation function, pair correlation function, etc), and Rij is the
characteristic range of the pairwise interaction. On differentiation, ∂g/∂ni = 1 and
δni/δρj = wij(r, r′, Rij). When forming a matrix problem it is necessary to calculate
second dervatives of the free energy (the Hessian). One applies the chain rule in
Eq.2.3 a second time. For these strict mean field terms, ∂2g/∂n2 = 0 so the Jacobian
contribution from these terms is simply

Jij(r, r′) = wij(r, r′, Rij)(2.6)

While the number of nonzeros in the matrix is determined by the characteristic length,
Rij , these terms do not have an integral character at the level of the Hessian.

In contrast, consider a term, Fphys, in the free energy expansion with the form
f [{ρi}] = 1 and g[{nγ}] = Φ[n] where Φ is a nonlinear functional of a set of {nγ}. In
this case the first term in the chain rule drops out, and the first and second derivatives
of these terms will be

δFphys

δρi(r)
=

∫ ∑
γ

∂Φ
∂nγ

δnγ(r′)
δρi(r)

dr′.(2.7)

and

δ2Fphys

δρi(r)δρj(r′)
=

∫ ∑
γ

∑
ε

∂2Φ
∂nγ∂nε

δnγ(r′′)
δρi(r)

δnε(r′′)
δρj(r′)

dr′′.(2.8)

Often, nγ is again a linear functional of {ρi},

nγ(r) =
∑

i

∫
ωγi(r, r′, Ri)ρi(r′)dr′,(2.9)

and in this case the Hessian contribution may be written

δ2Fphys

δρi(r)δρj(r′)
=

∫ ∑
γ

∑
ε

∂2Φ
∂nγ∂nε

ωγi(r, r′′, Ri)ωεj(r′, r′′, Rj)dr′′.(2.10)

Note that the weight function, ω, is usually based either on a heavyside step function,
θ(|r− r′| −Ri) or a Dirac delta function, δ(|r− r′| −Ri) where Ri is often a particle
radius or diameter.

Computing matrix coefficients based on Eq.2.10 requires a second order (N2) op-
eration in order to locate the intersection of the weight functions ωγi(r, r′′, Ri) and
ωεj(r′, r′′, Rj). To reduce the complexity of the matrix fill, the nonlocal variables,
nγ can be included as explicit independent variables when taking the second Frechet
derivitives to form the matrix problem. We will refer to this method as a first order
formulation later in this paper, and note that this approach is akin to the transfor-
mation of a higher order PDE to a system of first order PDEs by introduction of
additional variables in the problem. In this case, the nonzero contributions to the
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Jacobian will be

Jγε(r, r′) = δγε(r, r′)(2.11)
Jγi(r, r′) = ωγ(r, r′)(2.12)

Jiε(r, r′) =
∑

γ

∂2Ψ
∂nγ∂nε

(r)ωγi(r′, r)(2.13)

where the first two contribution arise from the nonlocal variable residual equation
defined by Eq. 2.9, and the third contribution comes from the taking the functional
derivative of the Euler-Lagrange equation in Eq. 2.7 with respect to the nonlocal
variables, nε. Note that there is no contribution from the derivative of the Euler-
Lagrange contribution in Eq. 2.7 with respect to the density fields in this case (i.e.
Jij(r, r′) = 0).

Integral operator terms of the form discussed above are pervasive in DFTs con-
structed as perturbations to the hard sphere fluid. However, the general approach of
introducing variables to reduce the complexity of the matrix problem is a strategy
that can be applied to other classes of Fluid-DFTs as well. The polymer-DFT fluids
that we discuss later in this paper are based on a second order density expansion using
an ideal chain reference fluid. Although this DFT falls into a different class than hard
sphere perturbation DFTs, the strategy of introducing variables to reduce complexity
can also be applied there.

Including nonlocal variables, n in the systems of equations can significantly in-
crease the number of degrees of freedom (DOF) that must be solved at each mesh
point. As a result, no advantage was gained from this approach when coupled to a
generic PDE optimized solver applied to the full matrix problem [10]. In that case
the decrease in the complexity of the matrix fill operation was offset by the increase
in problem size for the linear solver. In the current work we demonstrate that when
generic PDE solvers are replaced with segregated modeling strategies, Fluid-DFTs
can be solved with significantly improved efficiency.

3. Discrete Formulations. As was mentioned in the introductory section, we
have previously developed a code for solving Fluid-DFTs on large distributed memory
computers. That code was based on a discretization using a uniform structured grid so
that the numerical integration stencils for all spatial integrals could be pre-computed
on a reference grid and then applied anywhere on the grid [7, 8]. Linear interpolation
was used for the critical fields between the mesh points, and the equations were
discretized using collocation at the mesh points.

The discretized equations were previously solved using a fully-coupled Newton
method with an analytic Jacobian and algebraic preconditioned Krylov methods.
Convergence with these methods is much improved over Picard iteration reducing
nonlinear iterations from O(100− 1000) to O(10). However, these linear solvers were
designed for PDE applications, and are far from optimal for Fluid-DFTs. They some-
times require very expensive preconditioners in order to converge.

The ineffectiveness of the generic methods to solve the Fluid-DFT equations effi-
ciently stems primarily from the fact that the systems of equations are very dissimilar
to PDEs. Key properties of the Fluid-DFTs systems of equations when compared to
PDEs that lead to failure of standard algorithms are:

1. Inter-physics vs. Inter-nodal Coupling: While PDEs have a strong spatial
coupling where the equation for a given variable at a given discrete mesh node
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Fig. 3.1. Stencil support for two mesh densities for integrating the area of the circle. As the
mesh is refined, the stencil density increases. This corresponds to more expensive computation of
the integrals and more nonzeroes per row of the Jacobian matrix.

involves interaction with the same variable at nearby nodes, Fluid-DFTs may
have remarkably little of this kind of coupling1.

2. Stencil Support as a Function of Physical Parameter: Unlike PDEs, whose
stencils are typically independent of mesh node spacing (e.g., 9 point FEM
stencil in 2D), the stencils in Fluid-DFTs are determined by some characteris-
tic physical parameter in the system (e.g bead size, bond length). As the mesh
is refined, more nodes fall within the range of the integral, and higher fidelity
simulations result in larger problem dimensions and many more nonzeroes
per matrix row (see Figure 3.1).

3. Large number of DOFs per Node: Most PDE problems have just a hand-
ful of degrees of freedom (DOFs) in the global system (with the exception
of reacting flow problems). First order formulations of Fluid-DFTs, on the
other hand, typically have more than 10 DOFs per node and may have 50 or
more. Furthermore, the stencils for each DOF can vary greatly in range and
complexity.

Since standard algebraic preconditioners, including multi-level methods, incom-
plete factorizations and relaxation methods all have a bias toward inter-nodal cou-
pling, these methods may all miss the mark. Similarly, load balancing tools largely
have the same bias, and will need to be revisited for Fluid-DFTs. The scaling of sten-
cils with mesh density in Fluid-DFTs suggests that standard preconditioners, sparse
matrix computations and communication patterns become increasingly inappropriate
as mesh fidelity increases. Thus it is critical that a general framework be developed
that is more suitable to Fluid-DFTs. Because there are a wide variety of Fluid-DFTs
in current use in the physics community (various methods for similar fluids, and a wide
range of fluids from atomistic neutral particles to polarizable polymers), the frame-
work must be quite flexible and general. We present our current efforts to develop
such a framework in Section 4.

4. A New Block Matrix Formulation and Solution Method. The basic
framework for all of our solver algorithms reflects the importance of inter-physics
coupling in the first order formulation of the Fluid-DFTs described in Section 2.
This physics coupling led us to a physics-based block matrix formulation in order to
partition critical and nonlocal ancillary variables. The idea is to partition the data
into blocks that can be optimally managed or solved. The general 2× 2 block matrix

1Exceptions to this property occur when differential operators are part of the system of Euler-
Lagrange equations as with charged fluids[34, 13] or diffusing fluids[14]
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is 

A11
11 · · · A1j

11 A1,j+1
12 · · · A1k

12
...

. . .
...

...
. . .

...
Aj1

11 · · · Ajj
11 Aj1

11 · · · Ajj
11

Aj+1,1
21 · · · Aj+1,j

21 Aj+1,j+1
22 · · · Aj+1,k

22
...

. . .
...

...
. . .

...
Ak1

21 · · · Akj
21 Ak,j+1

22 · · · Akk
22





x1
1
...

xj
1

xj+1
2
...

xk
2


=



b1
1
...
bj
1

bj+1
2
...
bk
2


(4.1)

where k is the number of DOFs tracked per node and j is the number of DOFs
associated with the first block equation. The superscript (p, q) denotes the block
of coefficients generated by DOF p interactions with DOF q. The subscripts and
partition lines impose a coarser partitioning of the matrix into a 2-by-2 block system
that will be used with a Schur complement approach. We denote by A11, A12, A21

and A22 the upper left, upper right, lower left and lower right submatrix of the coarse
2-by-2 block matrix, respectively. Similarly x1 and x2, and b1 and b2 are the upper
and lower parts of x and b, respectively.

Given this two-level structure, the basic strategy for solving each global linear
system generated by Newton’s method is as follows:

1. Identify and reorder DOFs 1 through j such that A−1
11 (the inverse of A11) is

easy to apply (in parallel). The details of this step are given in Section 5 for
two particular Fluid-DFTs.

2. Determine a preconditioner P for S = A22 − A21A
−1
11 A12, the Schur com-

plement of A with respect to A22. (See Saad [30] for an overview of Schur
complement methods.)

3. Solve Sx2 = (b2 −A21A
−1
11 b1) using a preconditioned Krylov method such as

GMRES, with preconditioner P . Note that S may or may not be explicitly
formed, depending on other problem details.

4. Finally, solve for x1 = A−1
11 (b1 −A12x2).

The attractive properties of this algorithm from a parallel computing perspective
are as follows:

1. The partitioning used to distribute grid nodes can also be effective for parti-
tioning each DOF of the linear system. Because DOFs are segregated, pro-
viding a fairly uniform nonzero pattern within each DOF block, this approach
typically gives a well-balance data and work distribution for the solver.

2. A−1
11 can often be applied as a matrix-vector multiplication, or sequence of

such. In other cases, A−1
11 can be explicitly computed. This means that

explicitly forming S, or applying it implicitly is very efficient in parallel.
3. The dimension of S is often a small fraction of the original matrix. Specifi-

cally, only the primitive densities, density functionals and a few scalar DOFs
are part of the A22 block. All other variables, sometimes more than 80% of
the total DOFs, are part of the A11 block. Thus, iterative methods such as
GMRES will typically converge much faster because of the reduced dimension,
independent of other factors such as preconditioning.

4. Assuming nodes of the mesh are equally partitioned on the parallel machine,
each matrix block Apq in Equation 4.1 is distributed evenly across the parallel
machine. Thus, parallel execution of this solver is well-balanced and produces
identical results, independent of number of processors, up to roundoff error.
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5. The new solver applied to two Fluid-DFTs. We now describe specifics
of this approach for two different Fluid-DFTs. The physics description for these two
models are included in Appendix A. Here we focus on the structure of the matrices,
implications for formulating the Schur complement, and suitable preconditioners. We
note that while there are other classes of Fluid-DFTs, the general strategy of extending
the system size to include convenient nonlocal variables and then designing efficient
segregated solvers will generalize quite easily to the broader problem space.

5.1. Hard-spheres. A hard-sphere fluid is the simplest type of fluid model that
is of practical interest (see Appendix A.1). In a first order numerical formulation,
these problems typically have one or more density unknowns (the critical fields), and
a set of linear auxiliary variables referred to as non-local densities (see Eq. 2.9). In
our block matrix formulation, the equations corresponding to the density unknowns
(i.e. the Euler-Lagrange equations) are collected in the lower portion of the matrix
(densities are the x2 variables). The non-local density equations are collected in the
top portion of the matrix (nonlocal densities are the x1 variables).

We will consider a case where there are Nnld = 4 + 2 ∗ D nonlocal densities per
node in the problem where D is the physical dimension (1, 2, or 3) of the problem of
interest. If all of the nonlocal density variables are independent, the A11 block (which
is composed of non-local density interactions only) is

A11 = I.(5.1)

In this case, the inverse of A11 is obviously trivial.
However, for the special case of a single component fluid, some of the non-local

densities may be trivially dependent on others with

nγ(r) = Cnε(r).(5.2)

where C is a constant. We generally encode the linear dependency in Eq.5.2. For the
case of Rosenfeld’s functionals presented in Appendix A.1 [27], this leaves Nnld = 2+D
variables that are described by integration stencils (nonzeros in the A12 block).

To address these dependencies, we further decompose the A11 block into a 2-by-2
block matrix as follows. The non-local density variables that have no dependence
on other non-local densities are put in the upper left block. The lower right block
contains all others, which have a dependence only on variables in the first block. The
A11 block is then

A11 =
(

−I 0
X −I

)
.(5.3)

where X contains the various proportionality constants, C, in the problem of interest.
It is immediately clear from this expression of A11 that the inverse is simply

A−1
11 =

(
−I 0
−X −I

)
.(5.4)

The simple form of A−1
11 allows it to be explicitly applied in a matrix-vector

multiply for an efficient calculation of S. Very simple preconditioners for S (e.g.
Jacobi scaling based on the diagonal of A22) work well to solve hard sphere systems.
Using this approach we have seen scalable results for 1, 2 and 3D problems. Section 6
provides the details.
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5.2. Polymer Problems. Polymer and molecular Fluids-DFTs that include a
deterministic treatment of chain conformations come in several varieties [3, 35, 23, 2]2.
However, they can all be characterized again as a combined system of equations
with critical field variables and nonlocal ancillary variables, with the chain structure
equations playing the role of the nonlocal ancillary variables. To be more specific
we consider the Chandler-McCoy-Singer DFT [3] (CMS-DFT) as it is enumerated in
Appendix A.2. In this case, the critical variables, ρ(r) and U(r) are the densities
and an unknown mean field respectively. The polymer conformation information
is described by the Green’s function propagator equations, G(r) and Ginv(r). The
structure of these equations is quite different from the nonlocal densities of the hard
sphere problem as they are significantly coupled to one another through a recursive
relationship (see Equations A.7 and A.8 in Appendix A.2).

In our new method, the A11 block is composed of these propagator equations,
and when properly ordered, A11 takes the block form

A11 =


A11

11 0 0 0
A21

11 A22
11 0 0

...
. . . . . .

...
Aj1

11 · · · Aj−1,j
11 Ajj

11

 .(5.5)

where j is two times the length of the polymer chain in the model and each Aii
11 is

diagonal. Because each Apq
11 is distributed across the parallel machine proportionally

to the nodes, and because each Aii
11 is diagonal, applying A−1

11 is a sequence of j
diagonal scalings and matrix multiplications. Although A−1

11 cannot be explicitly
formed for polymers, we still retain sufficient parallelism to get excellent performance
on distributed memory computers and application of A−1

11 is invariant under changes
in processor count up to round-off error.

The preconditioner P for polymer problems is more challenging than for hard-
spheres. The A22 block for polymers has the following form:

A22 =
(

D11 F
D21 D22

)
.(5.6)

The first block of equations in A22 is associated with the unknown fields, U(r)
(Eqn. A.6), and the second block with the primitive densities, ρ(r) (Eqn. A.5). Each
of the Dpq blocks is diagonal, whereas the F matrix describes the dependence of the
unknown field, U(r), on the primitive densities. The density of this block is dictated
by the range of the direct correlation function in Eqn. A.6. The F block is by far the
most dense submatrix in the global matrix. As mentioned in Section 3, the density of
F increases dramatically with mesh refinement. Also, for the purposes of communi-
cating off-processor values in a distributed memory implementation of the solver, F
will have a large overlap and will require the most attention to assure good parallel
communication complexity. It is worth noting that F is the only submatrix block
that has these unusual stencil characteristics. It is also worth noting that the values
in F do not change between nonlinear iterations.

One final observation is needed to motivate our preconditioner: All values in A22

are O(1) except the values in D21, which are O(10−10). In other words, the primitive

2Note that another approach takes chain conformations from a large number of samples generated
with molecular simulations [40, 25]
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densities have a very weak direct dependence on the unknown fields, U(r). We take
advantage of this by defining an approximation to A22 as:

A22 ≈ Ã22 =
(

D11 F
0 D22

)
.(5.7)

We then define a preconditioner P for S that consists of one block Gauss-Seidel (one
back-solve) using Ã22. Given that D22 and D11 are diagonal and well-distributed and
that F is also distributed, applying P involves two diagonal scalings, using D22 and
D11, and a matrix-vector multiplication using F . All of these steps are very efficient
in parallel. Thus, we once again have an effective parallel solver whose results are
invariant under changes to processor count, up to round-off error. This algorithm
for CMS-DFT for polymers has similar attractive features as the hard-sphere solver,
except that A−1

11 cannot easily be explicitly formed.
One additional benefit is that the solver can efficiently handle very long polymer

chains, since the chain length only increased the dimension of A11, which has a mod-
est impact on the performance and robustness of the solver. We note that previous
approaches to solving polymer problems typically required a fairly high level of fill
incomplete factorization to solve the linear system of equations. Our new solver re-
quires almost no additional memory for the preconditioner. This reduces the memory
requirement for the solver by at least a factor of two, often a factor of 4 or more.

6. Computational Results. In this section, we show results for several cases
where the numerical problem is either a 2-dimensional numerical problem (with a
third uniform dimension) or a full 3 dimensional problem. We compare a solution
via (i) a generic global solver that attempts to solve all equations simultaneously in
a single matrix via standard preconditioned Krylov methods and (ii) the new solvers
described in Sections 4 and 5. Each solver uses an unscaled residual tolerance of
10−4. Overall the improvements due to the new algorithmic framework are dramatic,
resulting in several to ten times improvement, as well as making some large problems
tractable. All results were generated on the Sandia system red squall, a 258-node,
dual processor Opteron-based system (2.2 GHz processors with 4 GB memory per
node) using a Quadrics Elan4 high-speed interconnect.

6.1. Solver Approaches. All of the results presented here are from the Fluid-
DFT application code Tramonto [10]. Tramonto is a parallel, distributed memory
application that solves Fluid-DFT problems using real-space techniques. Early ver-
sions of Tramonto used general-purpose preconditioned Krylov solvers from the solver
package Aztec [37]. Presently Tramonto has been redesigned to utilize the Trilinos
solver framework, a large collection of solver packages and parallel linear algebra
tools [17, 20].

In this section we use the term GenS to refer to a general-purpose preconditioned
Krylov solver applied to the full linear system of equations ordered as described in
Equation 4.1. We use an overlapping Schwarz preconditioner with ILUT [29] as the
local subdomain solver via the Trilinos package IFPACK [32]. We use non-restarted
GMRES [31] from the Trilinos package AztecOO [19] as the iterative method. Note
that the GenS solver already an improvement over previous work [10] because Trilinos
algorithms (an improvement over Aztec solvers) are used, and because the ordering
of equations has changed from a node-first ordering to a DOF-first ordering. The
DOF-first ordering results in very favorable ILUT fill and robustness properties for
the general-purpose solver.
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The segregated Schur solvers presented here will be denoted SSS and are based
on preconditioned Krylov methods that use our new segregated preconditioners and
apply GMRES to the Schur complement system. All preconditioners for the new
solvers are constructed and applied using the matrix and vector classes in the Trilinos
package Epetra [18]. Due to the number of DOFs and the sequencing requirements to
apply A−1

11 , the SSS solver preconditioners are composed of between several and more
than 100 Epetra distributed sparse matrices. The SSS solvers also use GMRES from
AztecOO.

6.2. Hard sphere fluids in 2-dimensions. This problem considers an inho-
mogeneous fluid where there are three cylindrical rod surfaces in the domain. This
problem is similar to systems studied extensively previously in a study on adsorption
in disordered porous media[12]. Since the solution is uniform perpendicular to the
rods, the numerical problem may be solved in 2-dimensions (with the third dimension
treated analytically). Figure 6.1 shows the density profile we compute for this case.
The computational domain is 10σ × 10σ in size where σ is the diameter of the fluid
particles. Periodic boundary conditions were applied in this calculation. The bulk
fluid density was ρσ3 = 0.75. The three rods were all quite small with diameters of
2R = 0.5σ and were located at (x/σ, y/σ) = (5, 5), (1, 9), (7, 6). Volume exclusion
interactions define the rod-fluid interactions, and the corresponding discontinuity in
the external field is found at a distance R + 0.5σ from the center of the cylinders.
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Fig. 6.1. Fluid density (ρσ3) distribution in the vicinity of 3 nanocylinders.

Table 6.1 compares the SSS and GenS approaches. GenS solutions were obtained
using an ILUT preconditioner with 2 levels of fill-in. Solves were first attempted with
no preconditioning and with an ILU preconditioner. Neither were able to solve the
linear problem in less than 100 iterations. As is apparent from the table the chosen
preconditioner is identical to the SSS algorithm in nonlinear updates, and is similar
in the linear solver iteration count. The table shows both parallel scaling and scaling
with mesh refinement at a fixed number of processors.

These results clearly demonstrate that the SSS method is quite powerful partic-
ularly for smaller numbers of processors. We achieve increased performance with the
new algorithms, and the decrease in solve time is on the order of one to two orders
of magnitude. Using the solve time data in the second part of the table (excluding
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#Procs <# Lin iters> Time/Niter T1Proc/T TGenS/TSSS

GenS SSS GenS SSS (SSS)
1 8 22 495.1 14.7 1 33.8
2 10 22 148.7 8.5 1.7 17.5
4 11 22 47.4 4.2 3.5 11.3
8 12 22 16.1 2.1 6.9 7.6
16 13 22 6.3 1.1 13.3 5.7
32 15 22 2.1 0.6 24.8 3.6
64 18 22 1.1 0.3 43.1 3.2
∆x <# Lin iters> Time/Niter T/T∆x=0.2 TGenS/TSSS

GenS SSS GenS SSS (SSS)
σ/5 12 17 0.1 0.07 1 1.4
σ/10 18 22 1.1 0.3 5 3.4
σ/20 18 24 32.1 4.7 69.4 6.8
σ/40 - 24 - 82.0 1206 -

Table 6.1
Results for a 2D Hard sphere test problem. Note that every run in the table solved with 10

nonlinear iterations. In the top part of the table, the columns are: the number of processors used
for the calculation, the average number of linear iterations per nonlinear iteration, the solve time
per nonlinear iteration, the speedup relative to the single processor time, and the ratio of solve times
from the GenS to the SSS algorithm. In the bottom part of the table we consider scaling with mesh
density. The first column contains the mesh spacing, and the 6th column contain timings relative
to the ∆x = σ/5 result. All data in the lower part of the table were generated on 64 processors. All
data in the upper part of the table were generated with a mesh spacing of ∆x = σ/10.

data at ∆x = 0.2σ) we find that the scaling of the GenS code with mesh refinement
is T ∝ N2.7. while the new code has T ∝ N2.0.

6.3. 3D Hard spheres. This problem considers a hard sphere fluid in a nan-
otube of finite length where the nanotube is located in a planar surface (or membrane).
This particular choice is the base case for studies on ion channel proteins [13]. Specif-
ically, the domain is of size 18σ× 6σ× 6σ with the long axis of the nanotube in the x
dimension. The diameter of the nanotube is 2.5σ. The length of the nanotube is 10σ.
The computational domain has bulk boundary conditions in the x dimension and
continuation boundary conditions in the y and z. In the latter case, when performing
integrals we assume that the density profile at the edge of the computational domain
persists and is constant beyond the boundary. The bulk fluid density is again set to
be ρbσ

3 = 0.75 for studies on parallel performance, but is reduced to ρbσ
3 = 0.6 for

the mesh refinement studies as the system of equations becomes difficult converge at
the higher density for the most refined mesh. Figure 6.2 shows the density profile for
one slice (at z = 3σ) in the computational domain.

Performance results are presented in Table 6.2. Overall the results are very sim-
ilar to the 2D problem of the previous section. The SSS algorithm improves on the
performance of the GenS algorithm (ILUT preconditioner with 2 levels of fill) by up
to 18 times for measurable cases. The problems are also amenable to much smaller
parallel platforms and a more refined mesh with the new algorithms. These improve-
ments can be attributed to reduced memory requirements of these algorithms. The
scaling with mesh density for this problem using the SSS algorithm is T ∝ N1.65. For
the GenS algorithm we find T ∝ N2.2.
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Fig. 6.2. Fluid density (ρσ3) distribution for a hard sphere fluid in a finite length nanopore.

#Procs Niter <# Lin iters> Time/Niter T4Proc/T TGenS/TSSS

GenS SSS GenS SSS (SSS)
4 11 - - - 117.4 1 -
8 11 - 76 - 61.0 1.9 -
16 11 53* 76 544*(6) 29.8 3.9 18.*
32 11 73 76 154.5 16.7 7.0 9.3
64 11 80 76 55.4 8.3 14.1 6.7
128 11 89 76 19.9 4.7 24.8 4.2
∆x Niter <# Lin iters> Time/Niter T/T∆x=0.2 TGenS/TSSS

GenS SSS GenS SSS (SSS)
σ/5 7 45 44 17.2 4.1 1 4.1
σ/7 8 51 49 150.5 18.9 4.6 8.0
σ/10 9 - 51 - 121.1 29.3 -

Table 6.2
Results for a 3D Hard sphere test problem. The second column now contains the number of

nonlinear iterations needed to solve the problem. For a description of all other columns see the table 1
caption. All data in the upper part of the table were generated with a mesh spacing of ∆x = σ/5,
and with a bulk density of ρσ3 = 0.75. All data in the lower part of the table were generated on 128
processors with a bulk density of ρσ3 = 0.6. The data with an * indicates that complete convergence
was not obtained and timings are extrapolated based on the number of completed nonlinear iterations
in the parenthesis.

6.4. 2D Polymer. Next we consider a 2-dimensional system based on the CMS
polymer DFT presented in Appendix A.2. We consider a homopolymer where there
are 10 identical beads on the chain and the size of each segment is σ. There are a
pair of infinite cylinders in the problem (diameter 2σ), and we solve for the poly-
mer distribution around these nanocylinders. Both polymer bead interactions and
polymer-surface interactions are purely repulsive as defined by volume exclusions. A
series of these calculations at different separations could be performed to compute
the force between the cylinders as a function of distance. Performance studies had a
computational domain of size 7σ × 9σ. The initial guess was a uniform solution at
the bulk site type density of ρσ3 = 0.85. Figure 6.3 shows the solution we obtain for
this problem.

Performance results for this 2D polymer test problem are shown in Table 6.3. We
find very similar behavior to the atomic fluids cases presented in the previous examples
with up to a 25 fold improvement in performance. Again the GenS method was solved
using an ILUT preconditioner with 2 levels of fill. While both methods become more
expensive as the polymer chain length increases, we find this to be approximately a
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Fig. 6.3. Density (ρσ3) distribution for a 10-mer homopolymer near two nanocylinders. The
computational domain was 1/4 of this image with reflective boundaries at x = 0 and y = 0.

linear effect for the SSS algorithms while a steeper performance penalty occurs for
the GenS method.

6.5. 3D Polymer. Finally we consider a 3-dimensional system where a self-
assembled lipid bilayer is sandwiched between two planar arrays of spheres of diameter
9σ separated by 10σ in a square lattice. The particular chemical model we consider
has two components. The first is a model lipid molecule with head group and tail
group beads. There are two head group beads on a chain, and 16 tail group beads on a
linear chain. The head groups are in the middle so we have an 8-2-8 morphology on the
chain. The head group beads are larger than the tail group beads with σh/σt = 1.44.
The second component in the system is a single site solvent of the same size as the
tail beads. The interactions between various species are chosen to favor self-assembly
of a lipid bilayer where the head groups form an interface between the tail beads and
the solvent beads. Lipid bilayers formed from this coarse grained model have been
shown to be in reasonable agreement with Molecular Dynamics simulation of the same
models, and to map reasonably well to fluid experimental bilayers[9].

Figure 6.4 shows one slice through the solution we obtain for this problem. Com-
puting interactions of nanoscale surfaces and colloidal particles with lipid bilayers are
needed to provide a molecular theory based analysis of surface forces experiments (e.g.
surface forces apparatus, atomic force microscope, optical tweezers, etc) for these sys-
tems. This type of calculation is also needed for studying the interactions of lipid
bilayers with proteins.

The computational domain for this problem was 11σ × 5σ × 5σ, and the initial
guess for the density distribution is a previously converged uniform bilayer result.
Note that this case had 37856 nodes in the computational domain and 44 unknowns
per node for a total of 1.66 × 106 unknowns in the problem. Algorithm performance
is presented as a function of number of processors only in Table 6.4. In this case, the
SSS algorithms provide the ability to solve this difficult problem as we were not able
to solve this problem with the GenS approach despite using 128 processors and trying
a variety of parameters for solver tolerances and ILUT fill factors. Finally, note that
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#Procs Niter <# Lin iters> Time/Niter T1Proc/T TGenS/TSSS

GenS SSS GenS SSS (SSS)
1 9 70 - 88 1 -
2 9 70 - 45 2.0 -
4 9 25 70 290*(8) 26.2 3.4 11.0
8 9 28 70 77 12 7.3 6.4
16 10 33 70 23 6.7 13.1 3.4
32 8 40 70 7.1 3.8 23.2 1.9
64 9 46 69 2.8 2.2 40.0 1.3
128 9 58 69 1.4 1.8 49.0 0.8
∆x Niter <# Lin iters> Time/Niter T/T∆x=σ/10 TGenS/TSSS

GenS SSS GenS SSS (SSS)
σ/10 9 58 69 1.4 1.8 1 0.8
σ/20 10 55 69 28.9 13.1 7.3 2.2
σ/30 9 57 70 1580* (7) 62.3 34.6 25
Nseg Niter <# Lin iters> Time/Niter T/TNseg=10 TGenS/TSSS

GenS SSS GenS SSS (SSS)
10 8 40 70 7.1 3.7 1 1.9
20 8 48 69 21.7 8.9 2.4 2.4
40 8 62 70 58.7 15.1 4.1 3.9
80 7 93 68 257.4 30.9 8.4 8.3

Table 6.3
Results for a 2D polymer problem. The top part of the table shows scaling with number of

processors. The middle part of the table shows scaling with mesh density. The bottom section of
the table shows scaling with polymer chain length. The column descriptions can be found in the
caption of Table 6.1. All data in the upper part of the table were generated with a mesh spacing
of ∆x = σ/10 and for polymer chains of length Nseg = 10 . All data in middle part of the table
were generated on 128 processors for polymer chains of length Nseg = 10. All data in the bottom
part of the table were generated on 32 processors with ∆x = σ/10. The data with an * indicates
that complete convergence was not obtained and timings are extrapolated based on the number of
completed nonlinear iterations in the parenthesis.

with the SSS approach we find a significant superlinear speed up for this case from
32 to 64 processors.

#Procs <# Lin iters> Time/Niter T32Proc/T

32 93 1510 1
64 93 414 3.6
128 93 190 7.9

Table 6.4
Results for a 3D polymer test problem. Each case required 10 nonlinear iterations for a solution.

For a description of all other columns see the table 1 caption. All data were generated with a mesh
spacing of ∆x = σ/5.

6.6. Results Summary. The results presented in this section are quite promis-
ing for the new solvers. In particular there are several observations worth noting.

6.6.1. Memory Use. The new solvers use almost no extra memory for the
preconditioners. Furthermore, the dimension of the implicit problem that GMRES
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Fig. 6.4. One slice (at y = 0) through a 3-dimensional computational volume. The color con-
tours show density (ρσ3) distributions for lipid tail beads (A), lipid head beads (B), and solvent (C)
for a lipid bilayer assembly sandwiched between planar arrays of large spheres. The computational
domain is 1/4 of the domain shown in the figure and utilized reflective boundary conditions on all
edges. The legend shows the contour scale for all three figures. Densities less than ρσ3 = 0.01 are
blanked to white for clarity.

must solve is ten to 100 times smaller. Since all solvers are using non-restarted
GMRES and performing 100 or more iterations, the GMRES storage cost is O(100n)
where n is the dimension of the GMRES problem. Letting k denote the nonzero
count of the global matrix, the memory use for GMRES vectors in the GenS solver is
comparable to the matrix: from 3k to 10k storage. The ILUT preconditioner for the
GenS solver requires from 2k to 10k storage. Thus the GenS solver requires minimally
6k storage, up to 20k or more. In contrast, the cost of GMRES storage for the new
solvers is 0.1k to 0.01k, and the overall storage is less than 2k with the storage cost of
the matrix being dominant. The overall reduction in memory use for the SSS solvers
over the GenS solver is therefore minimally a factor of 5 and sometimes more than a
factor of 20.

6.6.2. Tuning parameters. One difficulty common to preconditioned iterative
methods is the presence of tuning parameters. This is true for the GenS solver in
that ILUT requires ad hoc parameters to determine fill, and the user must prescribe
these parameter values. Furthermore, as is well-known, overlapping Schwarz methods
tend to lose robustness as the processor count increases, making the choice of ILUT
parameters and the maximum number of GMRES iterations a function of processor
count. In contrast, the SSS solvers have no tuning parameters and have identical
convergence behavior independent of processor count. This behavior may be the
most important feature to an application user.

6.6.3. Solver scalability in processor count. The processor scalability re-
sults for the GenS solver are quite remarkable. In all cases, once the number of
processors is large enough for the GenS solver to work at all, the performance im-
provement as a function of processor count is superlinear. This behavior is often
observed in practice and is a function of two factors: (i) increasing processor count
increases the amount of cache memory and, for a fixed size problem, reduces the
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working data set on a processor and (ii) as processor count increases, the subdomains
for overlapping Schwarz decrease in size, resulting in smaller ILUT factors and less
work per iteration, even though the number of iterations increases. Some of the SSS
solvers scalability results are also superlinear, due to factor (i) above. However, since
the SSS solvers are already very efficient in serial cost and apply GMRES to a much
smaller problem, there is much less work to distribute as processor counts increase. In
effect, the SSS solvers cannot benefit as much as the GenS solver from large processor
counts for the same global problem. However, the SSS solvers scale quite well and,
because of their low memory usage, can be effective using far fewer processors and
can solver much larger problems than the GenS solver.

6.6.4. Scalability in mesh density and chain length. The SSS solvers are
not invariant under mesh density changes, but nearly so. In fact, except for the
coarsest mesh, the number of solver iterations remains nearly constant as the mesh
density increases. The GenS solver iteration count also remains fixed as mesh density
increases. However, the overall cost of the GenS solver grows much faster than the
SSS solvers.

For polymer problems, the SSS solver has constant iteration count as the chain
size increases. Furthermore, the cost of the solver grows approximately linearly with
the length of the chain. Again, this is a marked improvement over the GenS solver.

7. Conclusions. In this article we have presented a general mathematical frame-
work for describing Fluid-DFT problems and solving them using a new family of seg-
regated Schur complement solvers. By viewing Fluid-DFTs from a segregated variable
perspective we obtain a rich structure that can be exploited in the development of
low-cost, robust, scalable solution methods. We have shown that this approach is
very effective for two major classes of Fluid-DFTs, and is very promising for other
classes as well. The improvement in solution time, robustness and memory use opens
the door to easy solution of previously intractable problems and broadens the scope
of applicability for real-space Fluid-DFT methods.

Although our new solvers are faster and require much less memory than the old
solver, perhaps most important is the fact that no tuning parameters are required.
This fact makes the routine use of Tramonto much easier for complex applications.
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Appendix A. Two specific Fluid-DFTs. In this section we present the par-
ticulars of the two distinctly different Fluids-DFTs that we consider explicitly in this
paper. The first is used to treat atomic fluids, and in particular hard sphere systems.
The second is a DFT used to treat polymer fluids. We note that many other kinds
of DFTs have been developed as well. In fact this field contains a whole collection
of disparate approaches that must be analyzed individually from the perspective of
optimizing solution algorithms.

A.1. An Atomistic Fluid Model. We first consider the Fundamental Mea-
sures Theory DFT (FMT-DFT) that was first developed by Rosenfeld, and that has
been modified by others [27, 28]. This theory specifically treats hard sphere fluids as
a reference system with other physical effects (e.g. attractions, Coulomb interactions,
and even bond constraints) being treated as a perturbations. The grand free energy
functional for a multicomponent hard-sphere fluid is

Ω[{ρi(r)}] =
∑

i

∫
ρi(r)[lnρi(r)− 1]dr+∫

Φ({nγ [{ρi}]})dr +
∑

i

∫
ρi(r)[Vi(r)− µi]dr.

(A.1)

where V is a one body external field, and µi is a constant chemical potential in the
case of an equilibrium-DFT, and the set of nonlocal variables nγ are linear as was
defined above in Eq. 2.9. The Euler-Lagrange equation to be solved is

lnρi(r)− Vi(r) + µi +
∫ ∑

γ

∂Φ
∂nγ

(r′)
δnγ(r′)
δρi(r)

dr′ = 0.(A.2)

The energy density, Φ depends on a set of nonlocal variables, {nγ}, where there are
four scalar variables, n0, n1, n2, n3 and two vector variables, nV 1, nV 2. In Rosenfeld’s
original theory [27], the free energy density is

Φ({n}) = −n0ln(1− n3) + n1n2
1−n3

− ~nV 1·~nV 2
1−n3

+

1
24π(1−n3)2

(
n2 − ~nV 2·~nV 2

n2

)3

.

(A.3)

The block matrix formulation is built on both the Euler-Lagrange equation (resid-
ual denoted REL) and the definition of the nonlocal density variables (residual denoted
RNL), and may be written and the 2× 2 block matrix is[

−I wγ(r, r′)∑
γ

∂2Φ
∂nγ∂nε

(r) D22(r)

] [
∆nγ

∆ρ

]
= −

[
RNL(r)
REL(r)

]
,(A.4)

where D22(r) is a diagonal block matrix, and each entry is 1/ρ(r).

A.2. A Polymer Fluid Model. The particular DFT for polymers we will con-
sider was developed by Chandler, McCoy, and Singer[3], and our formulation is similar
to that of Donely and McCoy[4, 15]. This particular theory is developed by minimiza-
tion of a free energy functional with respect to both the density and an effective field
variable, U . This effective field variable constrains a fluid of ideal chains to have the
same density profile as the interacting chains of interest in the real external field V ext.
The theory solves simultaneously for critical fields, ρ(r), and U(r) for each type of
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monomer segment, α in the system. The two residual equations for these critical fields
are

ρα(r) =
ρb,α

Nα

∑
s∈α

Gs(r)Ginv
s (r)

exp[−βUα(r)]
, α = 1..Nα,(A.5)

and

Uα(r) = Vα(r)−
∑

β

∫
cαβ(r− r′)(ρβ(r′)− ρbβ)dr′, α = 1..Nα.(A.6)

where Nα is the number of segments of type α, cαβ is the direct correlation function
taken from a liquid state theory for bulk fluids, the sum in Eq.A.5 is taken over all Ns

monomer segments in the fluid of interest, ρb denotes the homogeneous bulk density
far from the surface, s is a particular segment on the polymer chain of interest, and
the G and Ginv functions are propagator functions that describe chain connectivity.
Specifically,

Gs(r) = exp[−βUα(s)(r)]
∫

ωαβ(r− r′)Gs−1(r′)dr′, s = 1..Ns,(A.7)

and

Ginv
s (r) = exp[−βUα(s)(r)]

∫
ωαβ(r− r′)Ginv

s+1(r
′)dr′, s = 1..Ns.(A.8)

where ω is a delta function with a range equal to the bond length between segments
s and s − 1 of types α and β respectively. We note that for an end bead only the
initial field term is present.

To summarize we have 2Nα critical variables ({ρα} and {Uα}, and 2Ns nonlocal
ancillary variables ({G} and {Ginv}). The concrete example we discussed in this
paper is for an 18 bead polymer mixed with a single site solvent, where the polymer
chain has two types of beads on the chain. For this 3 component, 19 segment problem,
we have 6 critical field variables and 38 nonlocal ancillary variables.

This situation is quite extreme with respect to complexity in the integral equa-
tions. If the discrete matrix problem were formed only in terms of the critical variables,
the nested nonlocal variables would result in multidimensional integrals for each Ja-
cobian entry. Specifically, for a polymer with Ns segments, an Ns − 1 dimensional
integral would need to be performed. This is clearly out of the question. Thus we
form the matrix problem with each of the nonlocal propagator functions treated as
independent variables. The structure of the resulting 2× 2 block matrix is described
more fully in Section 4.


