
SAND REPORT
SAND2004-0154
Unlimited Release
Printed January 2004

Trilinos 3.1 Tutorial

Marzio Sala and Michael Heroux

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2004-0154
Unlimited Release

Printed January 2004

Trilinos 3.1 Tutorial

Marzio Sala and Michael Heroux
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract

This document introduces the use of Trilinos, version 3.1. Trilinos has been written
to support, in a rigorous manner, the solver needs of the engineering and scientific
applications at Sandia National Laboratories.

Aim of this manuscript is to present the basic features of some of the Trilinos
packages. The presented material includes the definition of distributed matrices and
vectors with Epetra, the iterative solution of linear system with AztecOO, incomplete
factorizations with IFPACK, multilevel methods with ML, direct solution of linear
system with Amesos, and iterative solution of nonlinear systems with NOX. With the
help of several examples, some of the most important classes and methods are detailed
to the unexperienced user. For the most majority, each example is largely commented
throughout the text. Other comments can be found in the source of each example.

This document is a companion to the Trilinos User’s Guide [10] and Trilinos De-
velopment Guides [11, 12]. Also, the documentation included in each of the Trilinos’
packages is of fundamental importance.

3

Acknowledgments

The authors would like to acknowledge the support of the ASCI and LDRD programs that
funded development of Trilinos.

4

Trilinos 3.1 Tutorial

Contents

1 Introduction . 7
1.1 Getting Started with Trilinos . 7
1.2 Installing Trilinos . 10
1.3 Compiling and Linking a program using Trilinos . 12
1.4 Copyright and Licensing of Trilinos . 13
1.5 Programming Language Used in this Tutorial . 13
1.6 Referencing Trilinos . 14
1.7 A Note on Directory Structure . 15
1.8 List of Trilinos Developers . 16

2 Working with Epetra Vectors . 17
2.1 Epetra Communicator Objects . 17
2.2 Defining a Map . 19
2.3 Creating and Assembling Serial Vectors . 21
2.4 Creating and Assembling a Distributed Vector . 22
2.5 Epetra Import and Epetra Export . 24

3 Working with Epetra Matrices . 29
3.1 Serial Dense Matrices . 29
3.2 Distributed Sparse Matrices . 31
3.3 Creating VBR Matrices . 38
3.4 Insert non-local Elements Using FE Matrices . 40

4 Other Epetra Classes . 41
4.1 Epetra Time . 41
4.2 Epetra Flops . 42
4.3 Epetra Operator and Epetra RowMatrix Classes . 43
4.4 Epetra LinearProblem . 47
4.5 Concluding Remarks . 47

5 Iterative Solution of Linear Systems with AztecOO . 48
5.1 Theoretical Background . 48
5.2 Basic Usage of AztecOO . 50
5.3 One-level Domain Decomposition Preconditioners with AztecOO 51
5.4 Use of AztecOO Problems as a Preconditioner for AztecOO 52

5

5.5 Concluding Remarks . 54

6 Incomplete Factorizations with IFPACK . 55
6.1 Theoretical Background . 55
6.2 Incomplete Cholesky Factorizations . 56
6.3 RILU Factorizations . 57
6.4 Concluding Remarks . 59

7 Multilevel Methods with ML. 60
7.1 Theoretical Background . 60
7.2 ML as a Preconditioner for AztecOO . 61
7.3 Two-level Domain Decomposition Preconditioners with ML 66
7.4 Concluding Remarks . 67

8 Interfacing Direct Solvers with Amesos . 68
8.1 Installation of Trilinos third-part Packages . 68
8.2 UMFPACK . 69
8.3 SuperLUdist . 70
8.4 A Generic Interface to Various Direct Solvers . 71

9 Solving Nonlinear Systems with NOX . 73
9.1 Theoretical Background . 73
9.2 Creating NOX Vectors and Group . 74
9.3 Introducing NOX in an Existing Code . 75
9.4 A Simple Nonlinear Problem . 77
9.5 A 2D Nonlinear PDE Problem . 79
9.6 Jacobian-free Methods . 80
9.7 Concluding Remarks . 80

10 TriUtils . 81
10.1 Reading a HB problem . 81
10.2 ShellOptions . 82

6

1 Introduction

The Trilinos Project is an effort to facilitate the design, development, integration and ongo-
ing support of mathematical software libraries. Goal of the Trilinos Project is develop par-
allel solver algorithms and libraries within an object-oriented software framework for the
solution of large-scale, complex multiphysics engineering and scientific applications. The
emphasis is on developing robust, scalable algorithm in a software framework, using ab-
stract interfaces for flexible interoperability of components while providing a full-featured
set of concrete classes that implement all abstract interfaces.

1.1 Getting Started with Trilinos

The Trilinos Project uses a two-level software structure designed around collections of
packages. A Trilinos package is an integral unit, usually developed to solve a specific task,
by a (relatively) small group of expert of the field. Packages exist underneath the Trilinos
top level, which provides a common look-and-feel. Each package has its own structure,
documentation and set of examples. In principle, Trilinos packages can live independently.
However, each package is even more valuable when combined with other Trilinos packages.

Trilinos is a large software project, and currently about twenty packages are included.
Fully understanding all the functionalities of the Trilinos packages requires time. The entire
set of packages covers a wide range of numerical methods for large scale computing. Some
packages are focused on the development of computational schemes, like for instance the
solution of linear and nonlinear systems, to the definition of parallel preconditioners for
Krylov methods, eigenvalue computation. Other packages are more focused on implemen-
tation issues (like definition of matrices and vectors, abstract classes for linear operators).
The first Chapters of this tutorial will be focused on implementation issues, while the last
Chapters will have a more “mathematical” taste.

Each package offers sophisticated features, that cannot be “unleashed” at a very first
usage. For each package, we will outline only the basic features, and we refer to the
documentation of each package for a more involved usage. Our goal is to present enough
material so that the reader can successfully use the described packages. In fact, for new
users, it is neither easy, nor necessary, to manage all the Trilinos functionalities. At the
beginning, it is more important for them to understand how to manage the basic classes,
such as vector, matrix and linear system classes. However, it is clear that for a fine-tuning,
the reader will have to look through each package’s documentation and examples.

7

Although all packages have the same importance in the Trilinos structure, a typical user
will probably — at least at the beginning — make use of the following packages:

• Epetra. This package defines the basic classes for distributed matrices and vectors,
linear operators and linear problems. Epetra classes are the common language spoken
by all the Trilinos packages (even if some of them can “speak” other languages).
Each Trilinos package is able to accept in input Epetra objects. This allows powerful
combinations among the various Trilinos functionalities.

• AztecOO. This is a linear solve package based on preconditioned Krylov methods. It
supports all the Aztec interfaces and functionality, but also provides significant new
functionality.

• IFPACK. This is a package to perform various incomplete factorizations, and it is
here used in conjunction with AztecOO.

• ML. This is an algebraic multilevel preconditioner package, which provided scal-
able preconditioning capabilities for a variety of problem classes. It is here used in
conjunction with AztecOO.

• Amesos. This package provides a common interface to various direct solvers (gen-
erally available outside the Trilinos framework), both sequential and parallel.

• NOX. This is a collection of nonlinear solvers, designed to be easily integrated into
an application and used with many different linear solvers.

• Triutils. This is a collection of various utilities, that can be extremely useful in some
phases of software development.

Table 1 gives a partial overview of what can be accomplished using Trilinos.

This tutorial is divided into 10 chapters:

• Chapter 2 describes the Epetra Vector class;

• Chapter 3 introduces the Epetra Matrix class;

• Chapter 4 briefly describes some other Epetra classes;

• Chapter 5 shows how to solve linear systems with AztecOO;

• Chapter 6 presents the basic usage of IFPACK;

8

Task Package
Light-weight interface to BLAS and LAPACK: Epetra, Teuchos�

Definition of serial dense or sparse matrices: Epetra
Definition of distributed sparse matrices: Epetra
solve a linear system with preconditioned Krylov accelera-
tors, like CG, GMRES, Bi-CGSTAB, TFQMR:

AztecOO, Belos�

Definition of incomplete factorizations: AztecOO,
IFPACK

Definition of a multilevel preconditioner: ML
Definition of a one-level Schwarz preconditioner (overlap-
ping domain decomposition):

AztecOO,
IFPACK

Definition a two-level Schwarz preconditioner, with coarse
grid based on aggregation:

AztecOO+ML

Solution of systems of nonlinear equations: NOX
interface with various direct solvers, as UMFPACK,
MUMPS, SuperLU and others :

Amesos

Computation of eigenvalue of large, sparse matrices: Anasazi�

Solution of complex linear equations (using equivalent real
formulation):

Komplex�

Definition of segregated preconditioners and block pre-
conditioners (for instance, for the incompressible Navier-
Stokes equations):

Meros�

Templated interface to BLAS and LAPACK, arbitrary-
precision arithmetic, parameter lists:

Teuchos�

Definition of abstract interfaces to vectors, linear operators,
and solvers:

TSF�, TSFCore�,
TSFExtended�

Table 1. Partial overview of what can be done with Trilinos. �:
not covered in this tutorial.

9

• Chapter 7 introduces multilevel preconditioners based on ML;

• Chapter 8 introduces the Amesos package;

• Chapter 9 outlines the main features of the Trilinos nonlinear solver package, NOX.

• Chapter 10 presents some tools provided with the Triutils package.

Remark 1. As already pointed out, Epetra objects are meant to be the “common language”
spoken by all the Trilinos packages, and therefore the new user must become familiar with
those objects. Therefore we suggest to read Chapters 2-4 before considering other Trilinos
packages. Also, Chapter 5 should be read before Chapters 6 and 7 (even if both IFPACK
and ML can be compiled and run without AztecOO).

This tutorial assume a basic background in numerical methods for PDEs, and in iterative
linear and nonlinear solvers. Although not strictly necessary, the reader is suppose to have
a certain familiarity with distributed memory computing and, to a minor extent, with MPI.

Note that this tutorial is not a substitute ofr individual packages documentation. Also,
for an overview of all the Trilinos packages, the Trilinos philosophy, and a description
of the packages provided by Trilinos, the reader is referred to [7]. Developers should
also consider the Trilinos Developers’ Guide, which addresses many topics, including the
development tools used by Trilinos’ developers, and how to include a new package1.

1.2 Installing Trilinos

To obtain Trilinos, please refers to the instructions reported at the following web site:

http://software.sandia.gov/Trilinos

Trilinos has been compiled on a variety of architectures, including Linux, Sun Solaris,
SGI Irix, DEC, and many others. Trilinos has been designed to support parallel applica-
tions. However, it can be compiled and run on serial computer. Detailed comments on the
installation, and an exhaustive list of FAQs, can be found at the web pages:

1Trilinos provides a variety of services to a developer wanting to integrate a package into Trilinos. They
include Autoconf [1], Automake [2] and Libtool [3]. Those tools provide a robust, full-featured set of tools
for building software across a broad set of platforms. Although these tools are not official standards, they are
widely used. All existing Trilinos packages use Autoconf and Automake. Libtool support will be added in
future releases.

10

http://software.sandia.gov/Trilinos/installing_manual.html
http://software.sandia.gov/Trilinos/faq.html

Before using Trilinos, users might decide to set the environmental variables TRILINOS_HOME,
indicating the full path of the Trilinos directory, TRILINOS_LIB, indicating the location
of the compiled Trilinos library, and TRILINOS_ARCH, containing the architecture and
the communicator currently used. For example, using the BASH shell, command lines of
the form

export TRILINOS_HOME=/home/msala/Trilinos
export TRILINOS_ARCH=LINUX.MPI
export TRILINOS_LIB=${TRILINOS_HOME}/${TRILINOS_ARCH}

can be places in the users’ .bashrc file.

Here, we briefly report the procedure one should follow in order to compile Trilinos as
required by the examples reported in the following chapters 2-102. Suppose we want to
compile under LINUX with MPI. The installation procedure can be are reported below. ($
indicates the shell prompt.)

$ cd ${TRILINOS_HOME}
$ mkdir ${TRILINOS_ARCH}
$ cd ${TRILINOS_ARCH}
$../configure --prefix="${TRILINOS_HOME}/${TRILINOS_ARCH}" \

--enable-mpi --with-mpi-compilers \
--enable-triutils --enable-aztecoo \
--enable-ifpack \
--enable-ml --enable-nox | tee configure_${TRILINOS_ARCH}.log

$ make | tee make_${TRILINOS_ARCH}.log
$ make install | tee make_install_${TRILINOS_ARCH}.log

Remark 2. All Trilinos packages can be build to run with or without MPI. If MPI is enabled
(using --enable-mpi), the users must know the procedure for beginning MPI jobs on
their computer system(s). In some cases, options must be set on the configure line to specify
the location of MPI include files and libraries.

2Amesos can be more difficult to compile for the unexperienced user, as it required some information
about the packages to interface. Suggestions about the configuration of Amesos are reported in Chapter 8.
More details about the installation of Trilinos can be found in [10].

11

1.3 Compiling and Linking a program using Trilinos

In order to compile and link (part of) the Trilinos library, the use can decide to use a
Makefile as reported below. This Makefile refers to one of the examples, reported in the
NOX subdirectory of this tutorial.

1: TRILINOS_HOME = /home/msala/Trilinos/
2: TRILINOS_ARCH - LINUX_MPI
3: TRILINOS_LIB = $(TRILINOS_HOME)$(TRILINOS_ARCH)
4:
5: include $(TRILINOS_HOME)/build/makefile.$(TRILINOS_ARCH)
6:
7: MY_COMPILER_FLAGS = -DHAVE_CONFIG_H $(CXXFLAGS) -c -g\
8: -I$(TRILINOS_LIB)/include/
9:

10: MY_LINKER_FLAGS = $(LDFLAGS) $(TEST_C_OBJ) \
11: -L$(TRILINOS_LIB)/lib/ \
12: -lnoxepetra -lnox -lifpack \
13: -laztecoo -lepetra -llapack -lblas $(ARCH_LIBS)
14:
15: ex1: ex1.cpp
16: $(CXX) ex1.cpp $(MY_COMPILER_FLAGS)
17: $(LINKER) ex1.o $(MY_LINKER_FLAGS) -o ex1.exe

Line number have been reported for reader’s convenience.

The lines 1-3 can be omitted, see Section 1.2. Line 5 includes basic definitions of
Trilinos. (Note that, on some architectures, one may need to use gmake instead of make.)
In line 7, the variable HAVE_CONFIG_H is defined. Linker flags of lines 10-13 defines the
library to link (location of BLAS and LAPACK can change on different platforms). The
variable ARCH_LIBS is defined in line 5.

To run the compiled example in a sequential environment, simply type

$./ex1.exe

In a MPI environment, the user might have to use an instruction of type

$ mpirun -np 2 ./ex1.exe

12

Please check the local MPI documentation for more details.

1.4 Copyright and Licensing of Trilinos

Trilinos is released under the Lesser GPL GNU Licence.

Trilinos is copyrighted by Sandia Corporation. Under the terms of Contract DE-AC04-
94AL85000, there is a non-exclusive license for use of this work by or on behalf of the
U.S. Government. Export of this program may require a license from the United States
Government.

NOTICE: The United States Government is granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable worldwide license in ths data to reproduce,
prepare derivative works, and perform publicly and display publicly. Beginning five (5)
years from July 25, 2001, the United States Government is granted for itself and others
acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this data to
reproduce, prepare derivative works, distribute copies to the public, perform publicly and
display publicly, and to permit others to do so.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES
DEPARTMENT OF ENERGY, NOR SANDIA CORPORATION, NOR ANY OF THEIR
EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES
ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETE-
NESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR
PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS.

Some parts of Trilinos are dependent on a third party code. Each third party code
comes with its own copyright and/or licensing requirements. It is responsibility of the user
to understand these requirements.

1.5 Programming Language Used in this Tutorial

Trilinos is written in C++ (for most packages), and in C. Some interfaces are provided
to FORTRAN code (mainly BLAS and LAPACK routines). Even if a limited support is
included for C programs (and a more limited for FORTRAN code), to unleashed the full
power of Trilinos we suggest to use C++. All the example programs contained in this
tutorial will be in C++; some packages contains examples in C.

13

1.6 Referencing Trilinos

The Trilinos project can be referenced by using the following BiBTeX citation information:

@techreport{Trilinos-Overview,
title = "{An Overview of Trilinos}",
author = "Michael Heroux and Roscoe Bartlett and Vicki Howle
Robert Hoekstra and Jonathan Hu and Tamara Kolda and
Richard Lehoucq and Kevin Long and Roger Pawlowski and
Eric Phipps and Andrew Salinger and Heidi Thornquist and
Ray Tuminaro and James Willenbring and Alan Williams ",
institution = "Sandia National Laboratories",
number = "SAND2003-2927",
year = 2003}

@techreport{Trilinos-Dev-Guide,
title = "{Trilinos Developers Guide}",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = "SAND2003-1898",
year = 2003}

@techreport{Trilinos-Dev-Guide-II,
title = "{Trilinos Developers Guide Part II: ASCI Software Quality
Engineering Practices Version 1.0}",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = "SAND2003-1899",
year = 2003}

@techreport{Trilinos-Users-Guide,
title = "{Trilinos Users Guide}",
author = "Michael A. Heroux and James M. Willenbring",
institution = "Sandia National Laboratories",
number = "SAND2003-2952",
year = 2003}

These BiBTeX information can be downloaded from the web page

http://software.sandia.gov/Trilinos/citing.html

14

1.7 A Note on Directory Structure

Each Trilinos package in contained in the subdirectory

${TRILINOS_HOME}/packages

The structure of all packages is quite similar (although not exactly equal). As a general
line, source files are in

${TRILINOS_HOME}/packages/<package-name>/src

Example files are reported in

${TRILINOS_HOME}/packages/<package-name>/examples

and test files in

${TRILINOS_HOME}/packages/<package-name>/test

The documentation is reported

${TRILINOS_HOME}/packages/<package-name>/doc

Often, Trilinos developers use Doxygen3. For instance, to create the documentation for
Epetra, we use can type

$ cd ${TRILINOS_HOME}/packages/epetra/doc
$ doxygen Doxyfile

and then browse it using an HTML reader, or compiling the LATEXfile using

$ cd ${TRILINOS_HOME}/packages/epetra/doc/latex
$ make

3Copyright c©1997-2003 by Dimitri van Heesch. More information can by found at the web address
http://www.stack.nl/ dimitri/doxygen/.

15

1.8 List of Trilinos Developers

A list of the Trilinos’ developers, updated to December 2003, would include the following
names (in alphabetical order):

Roscoe A. Bartlett, Jason A. Cross, David M. Day, Robert Heaphy, Michael A. Her-
oux (project leader), Russell Hooper, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu,
Tamara G. Kolda, Richard B. Lehoucq, Paul Lin, Kevin R. Long, Roger P. Pawlowski,
Michael N. Phenow, Eric T. Phipps, Andrew J. Rothfuss, Marzio Sala, Andrew G. Salinger,
Paul M. Sexton, Kendall S. Stanley, Heidi K. Thornquist, Ray S. Tuminaro, James M. Wil-
lenbring, Alan Williams.

16

2 Working with Epetra Vectors

Probably, the first mathematical entities defined by a numerical method is a vector. Within
the Trilinos framework, vectors are usually constructed starting from Epetra Classes.

Epetra vectors can be used to store double values (like the solution of a PDE problem,
the right-hand side of a linear system, or the nodal coordinates), as well as integer data
values (such as a set of indexes).

Epetra vectors can be serial or distributed. Serial vectors are usually small, so that it
is not convenient to distribute them across the processes. Possibly, serial vectors are repli-
cated across the processes. On the other hand, distributed vectors tend to be significantly
larger, and therefore their elements are distributed across the processors. In this latter case,
users must specify the partition they intend to use. In Epetra, this is done by specifying a
communicator (introduced in Section 2.1) and an Epetra object called map (introduced in
Section 2.2). A map is basically a partitioning of a list of global IDs.

This Chapter will show some of the Trilinos capabilities to work with vectors. Vector
classed can be used to perform common vector operations, as dot products, vector scalings
and norms, or fill with constant or random values.

During the Chapter, the user be introduced to:

• The Epetra Comm object (in Section 2.1);

• The Epetra Map object (in Section 2.2);

• Creating and assembling Epetra vectors (in Sections 2.3 and 2.4);

• Redistributing vectors (in Section 2.5).

2.1 Epetra Communicator Objects

The Epetra Comm class is an interface that encapsulates the general information and ser-
vices needed for the other Epetra classes to run on a parallel computer. An Epetra Comm
object is required for building all Epetra Map objects, which in turn are required for all
other Epetra classes.

Epetra Comm has two basic implementations:

17

• Epetra SerialComm (for serial executions);

• Epetra MpiComm (for MPI distributed memory executions).

For most basic applications, the user can create an Epetra Comm object using the fol-
lowing code:

#include "Epetra_config.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
// .. other include files and others ...
int main(int argv, char *argv[]) {
// .. some declarations here ...

#ifdef HAVE_MPI
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

#else
Epetra_SerialComm Comm;

#endif
// ... other code follows ...

Note that the MPI_Init() call and the

#ifdef HAVE_MPI
MPI_Finalize();

#endif

call, are likely to be the only MPI calls users have to explicitly introduce in their code.

Most of Epetra Comm methods are similar to MPI functions. The class provides meth-
ods as MyPID(), NumProc(), Barrier(), Broadcast(),SumAll(), GatherAll(),
MaxAll(), MinAll(), ScanSum(). For instance, the number of processes in the com-
municator, NumProc, and the ID of the calling process, MyPID, can be obtained as

int NumProc = Comm.NumProc();
int MyPID = Comm.MyPID();

18

File ${TRILINOS HOME}/doc/tutorial/epetra/ex1.cpp presents the use
of some of the above introduced functions. For a description of the syntax, please refer to
the Epetra Class Documentation.

2.2 Defining a Map

Very often, various distributed objects such as matrices or vectors, have identical distri-
bution of elements among the processes. This distribution of elements (or points) is here
called a map, and its actual implementation within the Trilinos project is given by the Epe-
tra Map class (or, more generally, by an Epetra BlockMap). Basically, the class handles
the definition of:

• global number of elements (called NumGlobalPoints);

• the local number of elements (called NumMyPoints);

• the global numbering of all local nodes (an integer vector of size NumMyPoints,
called MyGlobalElements).

There are essentially three ways to define an map. The easiest way is to specify the
global number of elements:

Epetra_Map Map(NumGlobalPoints,0,Comm);

In this case, the constructor takes the global dimension of the vector (here indicated as
NumGlobalPoints), the base index (0 for C or C++ arrays, 1 for FORTRAN arrays,
but it can be any number), and an Epetra_Comm object (introduced in Section 2.1). As a
result, each process will be assigned a contiguous list of elements.

Another way to build the Epetra Comm object is to furnish the local number of ele-
ments:

Epetra_Map Map(-1,NumMyPoints,0,Comm);

This will create a vector of size
∑NumProc−1

i=0 NumMyPoints. Each process will get a
contiguous set of elements. These two approached are coded in file
${TRILINOS HOME}/doc/tutorial/epetra/ex2.cpp.

19

Another, more involved way, to create an Epetra Map, is to specify on each process both
the number of local elements, and the global numbering of each local element. To better
explain this, let us consider the following code, in which a vector, of global dimension 5, is
split among 2 processes p0 and p1. p0 owns nodes 0 an 4, while p1 nodes 1, 2, and 3.

MyPID = Comm.MyPID();
switch(MyPID) {
case 0:

MyElements = 2;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 4;
break;

case 1:
MyElements = 3;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;
break;

}

Epetra_Map Map(-1,MyElements,MyGlobalElements,0,Comm);

The complete code is reported in ${TRILINOS HOME}/doc/tutorial/epetra/ex3.cpp.

A Map object can be queried for the global and local number of elements, using

int NumGlobalElements = Map.NumGlobalElements();
int NumMyElements = Map.NumMyElements();

and for the global ID of local elements, using

int * MyGlobalElements = Map.MyGlobalElements();

or, equivalently,

int MyGlobalElements[NumMyElements];
Map.MyGlobalElements(MyGlobalElements);

20

The class Epetra Map is derived from Epetra BlockMap. This class keeps information
that describes the distribution of objects that have block elements (for example, one or more
contiguous entries of a vector). This situation is common in applications like multiple-
unknown PDE problems. A variety of constructors are available for this class. An example
of use of block maps is reported in ${TRILINOS HOME}/doc/tutorial/epetra/ex23.cpp.

Note that different maps can coexist in the same part of the code. This allows the user
to easily define vectors with different distributions (even for vectors of the same size). Two
classes are provided to transfer data from one map to an other. Those classes (Epetra Import
and Epetra Export) are discussed in Section 2.5.

Remark 3. Most Epetra objects overload the << operator. For example, to visualize infor-
mation about the Map, one can simply write

cout << Map;

This Section has presented the construction of very basic map objects. However, map
objects of very general form can be constructed. First, element numbers are only labels, and
they do not have to be consecutive. This means that we can define a map with elements 1,
100 and 10000 on process 0, and elements 2, 200 and 20000 on process 1. This map, com-
posed by 6 elements, is perfectly legal. Second, each element can be assigned to more than
one process. Examples ${TRILINOS HOME}/doc/tutorial/epetra/ex20.cpp
and ${TRILINOS HOME}/doc/tutorial/epetra/ex21.cpp can be used to bet-
ter understand the potentiality of Epetra Maps.

Remark 4. The use of “distributed directory” technology facilitates arbitrary global ID
support.

2.3 Creating and Assembling Serial Vectors

Within Epetra, it is possible to define sequential vectors, for serial or for parallel runs.
A sequential vector is a vector which, in the opinion of the programmer, does not need
to be partitioned among the processes. Note that each process defines its own sequential
vectors, and that changing an element of this vector on this process will not directly affect
the vectors stored on other processes (if any have been defined).

To create a sequential vector containing Length elements, one can use the following
command:

21

Epetra_SerialDenseVector x(Length);

Other constructors are available; check the Epetra Class Documentation.

The class Epetra SerialDenseVector enables the construction and use of real-valued,
double-precision dense vectors. The Epetra SerialDenseVector class is intended to provide
convenient vector notation but derives all significant functionality from Epetra SerialDenseMatrix
class. The vector can be filled using the [] or () operators. Both methods return the spec-
ified element of the vector. However, using (), bounds, checking is enforced. Using using
[], no bounds checking is done unless Epetra is compiled with EPETRA_ARRAY_BOUNDS_CHECK.

Remark 5. To construct replicated Epetra objects on distributed memory machines, the
user may consider the class Epetra LocalMap. This class allows the constructions of those
replicated local objects and keeps information that describe the distribution.

File ${TRILINOS HOME}/doc/tutorial/epetra/ex4.cpp shows some ba-
sic operations on dense vectors.

2.4 Creating and Assembling a Distributed Vector

To create a distributed vector, the first step is to define a map. (Actually, this is true for all
distributed Epetra objects.) After that, an Epetra Vector object can be constructed with an
instruction of type

Epetra_Vector x(Map);

This constructor allocates space for the vector and set all the elements to zero. A copy
constructor can be used as well:

Epetra_Vector y(x);

Alternatively, the user can pass a pointer to an array of double precision values:

Epetra_Vector x(Copy,Map,LocalValues);

Note the word Copy is input to the constructor. Epetra allows two data access modes:

22

1. Copy mode: Allocates memory and makes a copy of the user-provided data. In this
case, the user data is not needed after construction;

2. View mode: Creates a “view” of the user’s data. In this case, the user data is re-
quired to remain untouched for the life of the vector (or modified carefully). It is
worth noting that the View mode is very dangerous from a data hiding perspective.
Therefore, users are strongly encouraged to develop code using Copy mode first and
only use View mode in a secondary optimization phase. To use the View mode, the
user has to define the vector entries using a double vector (of appropriate size), than
construct an Epetra Vector with an instruction of type

Epetra_Vector z(View,Map,double_vector);

where double_vector is a pointer to the vector of doubles.

Regardless of how a vector has been created, one can use the [] operator to access a
vector element:

x[i] = 1.0*i;

where i is in the local index space.

Epetra also defines some functions to set vector elements in local or global index space.
ReplaceMyValues or SumIntoMyValues will replace or sum values into a vector
with a given indexed list of values, with indexes in the local index space; ReplaceGlobalValues
or SumIntoGlobalValues will replace or sum values into a vector with a given in-
dexed list of values in the global index space. It is important to note that a process cannot
set a vector entries locally owner by another process. In other words, both global and local
insert and replace functions refers to the part of a vector assigned to the calling process.
Intra-process communications can be performed using Import and Export objects, covered
in Section 2.5.

Another way is to put vector values in a user-provided array. For instance, one may
have:

double *x_values;
x_values = new double[MyLength];
x.ExtractCopy(x_values);
for(int i=0 ; i<MyLength ; ++i) x_values[i] *= 10;
for(int i=0 ; i<MyLength ; ++i)

x.ReplaceMyValues(1, 0, x_values+i, &i);

23

(File ${TRILINOS HOME}/doc/tutorial/epetra/ex5.cpp reported the com-
plete source.) It is important to note that ExtractCopy does not give access to the
vector elements, but only copies them into the user-provided array. The user must commit
those changes to the vector object, using, for instance, ReplaceMyValues.

A further, computationally efficient way, is to extract a “view” of the (multi-)vector
internal data. To that aim, one has to call

double * pointer;
x.ExtractView(&pointer);

Now, modifying the values of pointerwill affect the internal data of the Epetra Vector x.
An example of the use of ExtractView is reported in file ${TRILINOS HOME}/doc/tutorial/epetra/

Remark 6. The class Epetra Vector is derived from Epetra MultiVector. Roughly speaking,
a multi-vector is a collection of one or more vectors, all having the same length and distri-
bution. The reader may look to the file ${TRILINOS HOME}/doc/tutorial/epetra/ex7.cpp
for an example of use of multi-vectors.

The user can also consider the function ResetView, which allows a (very) light-
weight replacement of multi-vector values, created using the Epetra DataMode View.
Note that no checking is performed to see if the values passed in contain valid data.
This method can be extremely useful in situation where a vector is needed for use with
an Epetra operator or matrix, and the user is not passing in a multi-vector. Use this
method with caution as it could be extremely dangerous. A simple example is reported
in ${TRILINOS HOME}/doc/tutorial/epetra/ex8.cpp

It is possible to perform a certain number of operations on vector objects. Some of them
are reported in Table 2. Example ${TRILINOS HOME}/doc/tutorial/epetra/ex18.cpp
works with some of the functions reported in the table.

2.5 Epetra Import and Epetra Export

Epetra Import and Epetra Export are two classes meant for efficient importing of off-
processors elements. Epetra Import and Epetra Export are used to construct a commu-
nication plan that can be called repeatedly by computational classes such the Epetra multi-
vectors of the Epetra matrices.

24

int NumMyELement()
returns the local vector length on the calling processor

int NumGlobalElements()
returns the global length

int Norm1(double *Result) const
returns the 1-norm (defined as

∑n
i |xi| (see also Norm2 and NormInf)

Normweigthed(double *Result) const

returns the 2-norm, defined as
√

1
n

∑n
j=1(wjxj)2)

int Dot(const Epetra MultiVector A, double *Result) const
computes the dot product of each corresponding pair of vectors

int Scale(double ScalarA, const Epetra MultiVector &A
Replace multi-vector values with scaled values of A, this=ScalarA*A

int MinValue(double *Result) const
compute minimum value of each vector in multi-vector (see also MaxValue and

MeanValue
int PutScalar(double Scalar)

Initialize all values in a multi-vector with constant value
int Random()

set multi-vector values to random numbers

Table 2. Some methods of the class Epetra Vector

25

Currently, those classes have one constructor, taking two Epetra Map or Epetra BlockMap
objects. The first map specifies the global IDs that are owned by the calling processor. The
second map specifies the global IDs of elements that we want to import later.

Using an Epetra Import object means that the calling process knows what it wants to
receive, while an Epetra Export object means that it knows what it wants to send. An
Epetra Import object can be used to do an Export as a reserve operation (and equivalently
an Epetra Export can be used to do an Import). In the particular case of bijective maps,
either Epetra Import or Epetra Export is appropriate.

To better illustrate the functionalities of these two classes, we consider the follow-
ing example. Suppose that vector x of global length 4, is distributed over two processes.
Process 0 own nodes 0,1,2, while process 1 owns nodes 1,2,3. This means that nodes
1 and 2 are replicated over the two processes. Suppose that we want to bring all the
components of x to process 0, summing up the contributions of node 1 and 2 from the
2 processes. This is done in the following example (the complete code is reported in
${TRILINOS HOME}/doc/tutorial/epetra/ex9.cpp).

int NumGlobalElements = 4; // global dimension of the problem

int NumMyElements; // local nodes
Epetra_IntSerialDenseVector MyGlobalElements;

if(Comm.MyPID() == 0) {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 1;
MyGlobalElements[2] = 2;

} else {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;

}

// create a map
Epetra_Map Map(-1,MyGlobalElements.Length(),

MyGlobalElements.Values(),0, Comm);

26

// create a vector based on map
Epetra_Vector x(Map);
for(int i=0 ; i<NumMyElements ; ++i)
x[i] = 10*(Comm.MyPID()+1);

cout << x;

// create a target map, in which all the elements are on proc 0
int NumMyElements_target;

if(Comm.MyPID() == 0)
NumMyElements_target = NumGlobalElements;

else
NumMyElements_target = 0;

Epetra_Map TargetMap(-1,NumMyElements_target,0,Comm);

Epetra_Export Exporter(Map,TargetMap);

// work on vectors
Epetra_Vector y(TargetMap);

y.Export(x,Exporter,Add);
cout << y;

Running this code with 2 processors, the output will be approximatively the following:

[msala:epetra]> mpirun -np 2 ./ex31.exe
Epetra::Vector

MyPID GID Value
0 0 10
0 1 10
0 2 10

Epetra::Vector
1 1 20
1 2 20
1 3 20

Epetra::Vector
Epetra::Vector

MyPID GID Value

27

0 0 10
0 1 30
0 2 30
0 3 20

28

3 Working with Epetra Matrices

Epetra contains several matrix classes. Epetra matrices can be defined to be serial or par-
allel:

• Examples of serial matrices are, for instance, the matrix corresponding to a given
element in a finite-element discretization, or the Hessemberg matrix in the GMRES
method. Those matrices are of small size, and therefore they are not distributed
among the processors (but they can be replicated).

• For distributed sparse matrices, the basic class is Epetra RowMatrix. This class is
meant for double-precision matrices with row access (as required in a matrix-vector
product), and it is a pure virtual class. Various classes are derived Epetra_RowMatrix.
Among them, here we recall:

– Epetra_CrsMatrix for point matrices;

– Epetra_VbrMatrix for block matrices (that is, for matrices which have a
block structure, for example the ones deriving from the discretization of a PDE
problem with multiple unknowns for node);

– Epetra_FECrsMatrix and Epetra_FEVbrMatrix for matrices arising
from FE discretizations.

This Chapter will show some of the Trilinos capabilities to work with matrices. During
the Chapter, the user be introduced to:

• Create (serial) dense matrices (in Section 3.1);

• Create sparse point matrices (in Section 3.2);

• Create sparse block matrices (in Section 3.3);

• Insert non-local elements using finite-element matrices (in Section 3.4).

3.1 Serial Dense Matrices

Epetra provides functionalities for sequential dense matrices with the class Epetra SerialDenseMatrix.
A possible way to create a serial dense matrix D of dimension n by m is

29

Epetra_SerialDenseMatrix D(n,m);

One could also create a zero-size object,

Epetra_SerialDenseMatrix D();

and then shape this object:

D.Shape(n,m);

(D could be reshaped using ReShape().)

Epetra SerialDenseMatrix are stored in a column-major order in the usual FORTRAN
style. This class is built on the top of the BLAS library, and is derived from Epetra Blas.
Epetra SerialDenseMatrix is intended to provide a very basic support for dense rectangular
matrices.

To access the matrix element at the i-th row and the j-th column, it is possible to use
the parenthesis operator (A(i,j)), or the bracket operator (A[j][i], note that i and j
are reversed). The bracket approach is in general faster, as the compiler can inline the
corresponding function. Instead, some compiler have problems to inline the parenthesis
operator.

As an example of the use of this class, in the following code we consider a matrix-
matrix product between two rectangular matrices A and B.

int NumRowsA = 2, NumColsA = 2;
int NumRowsB = 2, NumColsB = 1;
Epetra_SerialDenseMatrix A, B;
A.Shape(NumRowsA, NumColsA);
B.Shape(NumRowsB, NumColsB);
// ... here set the elements of A and B
Epetra_SerialDenseMatrix AtimesB;
AtimesB.Shape(NumRowsA,NumColsB);
AtimesB.Multiply(’N’,’N’,1.0, A, B, 0.0);
cout << AtimesB;

The complete code is reported in file ${TRILINOS HOME}/doc/tutorial/epetra/ex10.cpp.

30

To solve a linear system with a dense matrix, one has to create an Epetra SerialDenseSolver.
This class uses the most sophisticated techniques available in the LAPACK library. The
class is built on the top of BLAS and LAPACK, and thus has excellent performances and
numerical capabilities.

Given an Epetra SerialDenseMatrix and two Epetra DSerialDenseVectors x and b, the
general approach is as follows:

Epetra_SerialDenseSolver Solver();
Solver.SetMatrix(D);
Solver.SetVectors(x,b);

Then, it is possible to invert the matrix with Invert(), solve the linear system with
Solve(), apply iterative refinement with ApplyRefinement(). Other methods are
available; for instance,

double rcond=Solve.RCOND();

returns the reciprocal of the condition number of matrix D (or -1 if not computed).

File ${TRILINOS HOME}/doc/tutorial/epetra/ex11.cpp outlines some
of the capabilities of the Epetra SerialDenseSolver class.

The Epetra LAPACK class provides access to most of the same functionality as Epe-
tra SerialDenseSolver. The primary difference is that Epetra LAPACK is a “thin” layer on
the top of LAPACK, while Epetra SerialDenseSolver attempts to provide easy access to
the more sophisticated aspects of solving dense linear systems.

As a general rule, we can say that Epetra LAPACK should be preferred when the user
is looking for a convenient wrapper around the FORTRAN LAPACK routines, and the
problem at hand is well-conditioned. Instead, when the user wants (or potentially wants
to) solve ill-conditioned problems or want to work with a more object-oriented interface,
he/she will probably use Epetra SerialDenseMatrix.

3.2 Distributed Sparse Matrices

Epetra provided an extensive set of methods to create and fill distributed sparse matrices.
These classes allow row-by-row or element-by-element constructions. Support is provided

31

for common matrix operations, as scaling, norm, matrix-vector multiplication and matrix-
multivector multiplication4.

Application do not need to know about the particular storage format, and other imple-
mentation details such as data layout, number and location of ghost nodes. Epetra furnishes
two basic formats, one suited for point matrices, the other for block matrices. The former
is presented in this Section; the latter, generally much more efficient for problems with
multiple degree of freedom per node, is introduced in Section 3.3. If required, other matrix
formats can be supported via the Epetra Operator, described in Section 4.3.

Remark 7. Some numerical algorithms require the application of the linear operator only.
For this reason, some applications find convenient to not store a given matrix. Epetra can
handle this situation using with the Epetra Operator class; see Section 4.3.

The process of creating a sparse matrix is more involved with respect to that of dense
matrices. This is because, in order to obtain excellent numerical performances, one has to
provide an estimation of the nonzero elements on each row of the sparse matrix. (Recall
that dynamic allocation of new memory and copying the old storage into the new one is an
expensive operation.)

As a general rule, the process of constructing a (distributed) sparse matrix is as follows:

• allocate an integer array Nnz, whose length equals the number of local rows;

• loop over the local rows, and estimate the number of nonzero elements of that row;

• create the sparse matrix using Nnz;

• fill the sparse matrix.

As an example, in this Section we will present how to construct a distributed (sparse)
matrix, arising from a finite-difference solution of a one-dimensional Laplace problem.
This matrix looks like:

A =

⎛
⎜⎜⎝

2 −1
−1 2 −1

. −1
−1 2

⎞
⎟⎟⎠ .

4At the present stage of development, no functions are provided to perform a matrix-matrix product be-
tween to distributed objects. However, the interested user can convert the Epetra matrix into an ML matrix
(called ML Operator), perform the matrix-matrix multiplication with ML functions, and convert back the
resulting ML Operator into an Epetra matrix.

32

The example illustrates how to construct the matrix, and how to perform matrix-vector op-
erations. The code can be found in ${TRILINOS HOME}/doc/tutorial/epetra/ex12.cpp.

We start by specifying the global dimension (here is 5, but can be any number):

int NumGlobalElements = 5;

We create a map, and define the local number of rows and the global numbering for each
local row:

Epetra_Map Map(NumGlobalElements,0,Comm);
int NumMyElements = Map.NumMyElements();
int * MyGlobalElements = Map.MyGlobalElements();

In particular, we have that j=MyGlobalElements[i] is the global numbering for local
node i. Then, we have to specify the number of nonzeros per row. In general, this can be
done in two ways:

• Furnish an integer value, representing the number of nonzero element on each row
(the same value for all the rows);

• Furnish an integer vector NumNz, of length NumMyElements(), containing the
nonzero elements of each row.

The second approach can be coded as follows:

int * NumNz = new int[NumMyElements];
for(int i=0 ; i<NumMyElements ; i++)
if(MyGlobalElements[i]==0 ||

MyGlobalElements[i] == NumGlobalElements-1)
NumNz[i] = 2;

else
NumNz[i] = 3;

We are building a tridiagonal matrix where each row has (-1 2 -1). So we need 2 off-
diagonal terms (except for the first and last equation). Here NumNz[i] is the Number of
nonzero terms in the i-th global equation on this process.

Now, we create an Epetra CsrMatrix as

33

Epetra_CrsMatrix A(Copy,Map,NumNz);

and we add rows one-at-a-time. A has been created in Copy mode, and relies on the spec-
ified map. To fill its values, we need some additional variables: Indexes and Values.
Those will contain the global column number and the values of the nonzeros for each row.

double *Values = new double[2];
Values[0] = -1.0; Values[1] = -1.0;
int *Indices = new int[2];
double two = 2.0;
int NumEntries;

for(int i=0 ; i<NumMyElements; ++i) {
if (MyGlobalElements[i]==0) {

Indices[0] = 1;
NumEntries = 1;

} else if (MyGlobalElements[i] == NumGlobalElements-1) {
Indices[0] = NumGlobalElements-2;
NumEntries = 1;

} else {
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
NumEntries = 2;

}
A.InsertGlobalValues(MyGlobalElements[i], NumEntries, Values, Indices);
// Put in the diagonal entry
A.InsertGlobalValues(MyGlobalElements[i], 1, &two, MyGlobalElements+i);

}

Note that column indexes have been inserted using global indexes. As a final operation,
we can transform the matrix into local indexes. This phase in required in order to perform
efficient parallel matrix-vector products and other matrix operations.

A.FillComplete();

The above presentation refers to a rather common case: In a parallel matrix-vector
product

AX = B,

34

the map used to define the parallel distribution of the matrix, is the same of the (multi-
)vectors X and B. This means that the rows of A are distributed among the processes in
the same way of the elements of X and B. However, Epetra allows the user to handle the
more general case of a matrix defined using a Map, is different from that of X and that of
B. In fact, each Epetra matrix is defined by four maps:

• Two maps, called RowMap and ColumnMap, are used to determine the set of rows
and the columns of the elements assigned to a given processor. In general, one pro-
cessor cannot set elements assigned to other processors. (However, some classes,
derived from the Epetra RowMatrix, can perform data exchange; see for instance
Epetra FECrsMatrix or Epetra FEVbrMatrix.) RowMap and ColumnMap determine
the pattern of the matrix, as it is used during the construction. They can be obtained
using the methods RowMap() and ColMap() of the Epetra RowMatrix class. Usu-
ally, the user dos not specify a ColumnMap, which is automatically created by Epetra.
RowMap and ColumnMap can differ.

• DomainMap and RangeMap define, instead, the parallel data layout of X and B,
respectively. Note that those two maps can completely different from RowMap and
ColumnMap, meaning that a matrix can be constructed using a certain data distribu-
tion, then used on vectors with another data distribution. DomainMap and RangeMap
can differ. Those tow maps can be obtained using the methods DomainMap() and
RangeMap().

The potentialities of this approach are better explained using an example, reported in the
example file ${TRILINOS HOME}/doc/tutorial/epetra/ex24.cpp. In this ex-
ample, to be run using two processors, we build up two maps: MapA will be used to con-
struct the matrix, while MapB to define the parallel layout of the vectors X and B. For the
sake of simplicity, A is diagonal.

Epetra_CrsMatrix A(Copy,MapA,MapA,1);

As usual in this Tutorial, the integer vector MyGlobalElementsA contains the global
ID of local nodes. To assemble A, we cycle over all the local rows (defined by MapA):

for(int i=0 ; i<NumElementsA ; ++i) {
double one = 2.0;
int indices = MyGlobalElementsA[i];
A.InsertGlobalValues(MyGlobalElementsA[i], 1, &one, &indices);

}

35

Now, as both X and B are defined using MapB, instead of calling FillComplete(), we
do

A.FillComplete(MapB,MapB);

Now, we can create X and B as vectors based on MapB, and perform the matrix-vector
product:

Epetra_Vector VecB(MapB); Epetra_Vector VecB2(MapB);
A.Multiply(false,VecB,VecB2);

Remark 8. Although presented for Epetra CrsMatrix objects, the distinction between RowMap,
ColMap, DomainMap, and RangeMap is valid for all classed derived from Epetra RowMatrix.

Example ${TRILINOS HOME}/doc/tutorial/epetra/ex14.cpp shows the
use of some of the methods of the Epetra CrsMatrix class. The code prints out several
information about the structure of the matrix, and some of its properties. The output will
be approximatively as here reported:

[msala:epetra]> mpirun -np 2 ./ex14
*** general Information about the matrix
Number of Global Rows = 5
Number of Global Cols = 5
is the matrix square = yes
||A||_\infty = 4
||A||_1 = 4
||A||_F = 5.2915
Number of nonzero diagonal entries = 5(100 %)
Nonzero per row : min = 2 average = 2.6 max = 3
Maximum number of nonzero elements/row = 3
min(a_{i,j}) = -1
max(a_{i,j}) = 2
min(abs(a_{i,j})) = 1
max(abs(a_{i,j})) = 2
Number of diagonal dominant rows = 2 (40 % of total)
Number of weakly diagonal dominant rows = 3 (60 % of total)
*** Information about the Trilinos storage
Base Index = 0

36

is storage optimized = no
are indices global = no
is matrix lower triangular = no
is matrix upper triangular = no
are there diagonal entries = yes
is matrix sorted = yes

Other examples are reported for Epetra CrsMatrix:

• Example ${TRILINOS HOME}/doc/tutorial/epetra/ex13.cpp implements
a simple distributed finite-element solver. The code solves a 2D Laplace problem
with unstructured triangular grids. In this example, the information about the grid
are hardwired. The interested user can easily modify those lines in order to read the
grid information from a file.

• Example ${TRILINOS HOME}/doc/tutorial/epetra/ex15.cpp explains
how to export an Epetra CrsMatrix to file in a MATLAB format. The output of this
example will be as follows:

[msala:epetra]> mpirun -np 2 ./ex15
A = spalloc(5,5,13);
% On proc 0: 3 rows and 8 nonzeros
A(1,1) = 2;
A(1,2) = -1;
A(2,1) = -1;
A(2,2) = 2;
A(2,3) = -1;
A(3,2) = -1;
A(3,3) = 2;
A(3,4) = -1;
% On proc 1: 2 rows and 5 nonzeros
A(4,4) = 2;
A(4,5) = -1;
A(4,3) = -1;
A(5,4) = -1;
A(5,5) = 2;

A companion to this example is
${TRILINOS HOME}/doc/tutorial/epetra/ex16.cpp, which exports an
Epetra Vector to MATLAB format.

37

3.3 Creating VBR Matrices

The following code shows how to work with VBR matrices. This format has been designed
for PDE problems with more than one unknown per grid node. The resulting matrix has a
sparse block structure, and the size of each dense block equals the number of PDE equations
defined on that block. This format is quite general, and can handle matrices with variable
block size, as it is done is the following example.

First, we create a map, containing the distribution of the blocks:

Epetra_Map Map(NumGlobalElements,0,Comm);

Here, a linear decomposition is used for the sake of simplicity, but any map can be used as
well. Now, we obtain some information about the map:

// local number of elements
int NumMyElements = Map.NumMyElements();
// global numbering of local elements
int * MyGlobalElements = new int [NumMyElements];
Map.MyGlobalElements(MyGlobalElements);

A block matrix can have blocks of different size. Here, we suppose that the dimension of
diagonal block row i is i + 1. The integer vector ElementSizeList will contain the
block size of local element i.

Epetra_IntSerialDenseVector ElementSizeList(NumMyElements);
for(int i=0 ; i<NumMyElements ; ++i)
ElementSizeList[i] = 1+MyGlobalElements[i];

Here ElementSizeList is declared as Epetra IntSerialDenseVector, but an int array is
fine as well.

Now we can create a map for the block distribution:

Epetra_BlockMap BlockMap(NumGlobalElements,NumMyElements,
MyGlobalElements,
ElementSizeList.Values(),0,Comm);

38

and finally we can create the VBR matrix based on BlockMap. In this case, nonzero
elements are located in the diagonal and the sub-diagonal above the diagonal.

Epetra_VbrMatrix A(Copy, BlockMap, 2);

int Indices[2];
double Values[MaxBlockSize];

for(int i=0 ; i<NumMyElements ; ++i) {
int GlobalNode = MyGlobalElements[i];
Indices[0] = GlobalNode;
int NumEntries = 1;
if(GlobalNode != NumGlobalElements-1) {
Indices[1] = GlobalNode+1;
NumEntries++;

}
A.BeginInsertGlobalValues(GlobalNode, NumEntries, Indices);
// insert diagonal
int BlockRows = ElementSizeList[i];
for(int k=0 ; k<BlockRows * BlockRows ; ++k)
Values[k] = 1.0*i;

B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockRows);

// insert off diagonal if any
if(GlobalNode != NumGlobalElements-1) {
int BlockCols = ElementSizeList[i+1];
for(int k=0 ; k<BlockRows * BlockCols ; ++k)

Values[k] = 1.0*i;
B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockCols);

}
B.EndSubmitEntries();

}

Note that, with VBR matrices, we have to insert one block at time. This required two more
instructions, one to start this process (BeginInsertGlobalValues), and another one
to commit the end of submissions (EndSubmitEntries).

Please refer to ${TRILINOS HOME}/doc/tutorial/epetra/ex17.cpp for
the entire source.

39

3.4 Insert non-local Elements Using FE Matrices

The most important additional feature provided by the Epetra FECrsMatrix with respect to
Epetra CrsMatrix, is the capability of setting non-local matrix elements. We will illustrate
this using the following example, reported in ${TRILINOS HOME}/doc/tutorial/epetra/ex23.cpp.
In the example, we will set all the entries of a distributed matrix from process 0. For the
sake of simplicity, this matrix is diagonal, but more complex cases can be handled as well.

First, we define the Epetra FECrsMatrix in Copy mode as

Epetra_FECrsMatrix A(Copy,Map,1);

Now, we will set all the diagonal entries from process 0:

if(Comm.MyPID() == 0) {
for(int i=0 ; i<NumGlobalElements ; ++i) {
int indices[2];
indices[0] = i; indices[1] = i;
double value = 1.0*i;
A.SumIntoGlobalValues(1,indices,&value);

}
}

The Function SumIntoGlobalValues adds the coefficients specified in indices (as
pair row-column) to the matrix, adding them to any coefficient that may exist at the spec-
ified location. In a finite element code, the user will probably insert more than one coeffi-
cient at time (typically, all the matrix entries corresponding to an elemental matrix).

At this point, we need to exchange data, to that each matrix element not owned by
process 0 could be send to the owner, as specified by Map. This is accomplished by calling,
on all processes,

A.GlobalAssemble();

A simple

cout << A;

can be used to verify the data exchange.

40

4 Other Epetra Classes

Epetra includes a certain number of classes that can greatly help to develop parallel codes.
In this Chapter we will recall the main usage of some of those classes:

• Epetra Time (in Section 4.1);

• Epetra Flops (in Section 4.2).

• Epetra Operator and Epetra RowMatrix (in Section 4.3);

• Epetra LinearProblem (in Section 4.4).

4.1 Epetra Time

To retrieve elapsed and wall-clock time can be problematic because of several platform-
dependent and language-dependent issues. To avoid those problems, Epetra furnishes the
Epetra Time class. Epetra Time is meant to insulate the user from the specifics of timing
among a variety of platforms.

Using Epetra Time, it is possible to measure the elapsed time. This is the time elapsed
between two phases of a program.

A Epetra Time object is defined as

Epetra_Time time(Comm);

To compute the elapsed time required by a piece of code, then user should put the instruc-
tion

time.ResetStartTime();

before the code to the timed. Then, the methods ElapsedTime() and WallTime()
will return the elapsed time and wall-clock time, respectively. ElapsedTime() returns
the elapsed time from the creation of this object.

41

4.2 Epetra Flops

The Epetra Flops class provides basic support and consistent interfaces for counting and re-
porting floating point operations performed in the Epetra computational classes. All classes
based on the Epetra CompObject can count flops by the user creating an Epetra Flops ob-
ject and calling the SetFlopCounter() method for an Epetra CompObject.

As an example, suppose you are interested in counting the flops required by a vector-
vector product (between, say, x and y). The first step is to create an instance of the class:

Epetra_Flops counter();

Then, it is necessary to “hook” the counter object to the desired computational object, in
the following way:

x.SetFlopCounter(counter);
y.SetFlopCounter(counter);

Then, we perform the desired computations on Epetra objects (in this case, the vector-
vector problem):

x.Dot(y,&dotProduct);

Finally we can extract the number of performed operations ans stored it in the double
variable total_flops as

total_flops = counter.Flops();

which are the toal number of serial flops. This will also reset the flop counter.

Epetra Time objects can be used in conjunction with Epetra Flops objects to estimate
the number of floating point operations per second of a given code (or a part of it). One can
proceed as here reported:

Epetra_Flops counter;
x.SetFlopCounter(counter);
Epetra_Time timer(Comm);

42

x.Dot(y,&dotProduct);
double elapsed_time = timer.ElapsedTime();
double total_flops =counter.Flops();
cout << "Total ops: " << total_flops << endl;
double MFLOPs = total_flops/elapsed_time/1000000.0;
cout << "Total MFLOPs for mat-vec = " << MFLOPs << endl<< endl;

This code is reported in ${TRILINOS HOME}/doc/tutorial/epetra/ex20.cpp.
The output will be approximatively as follows:

[msala:epetra]> mpirun -np 2 ./ex20
Total ops: 734
Total MFLOPs for mat-vec = 6.92688

Total ops: 734
Total MFLOPs for mat-vec = 2.48021

Total ops: 246
Total MFLOPs for vec-vec = 0.500985

q dot z = 2
Total ops: 246
Total MFLOPs for vec-vec = 0.592825

q dot z = 2

Remark 9. Operation count are serial count, and therefore keep trace of local operations
only.

Remark 10. Each computational class has a Flops() method, that can queried for the
flop count of that object.

4.3 Epetra Operator and Epetra RowMatrix Classes

Matrix-free methods can be easily introduced in the Epetra framework using one of the
following two classes:

• Epetra Operator;

43

• Epetra RowMatrix.

Technically, both classes are pure virtual classes (that is, they specify interfaces only),
that enable the use of real-valued double-precision sparse matrices. Epetra RowMatrix,
derived from Epetra Operator, is meant for matrices where the matrix entries are intended
for row access, and it is currently implemented by Epetra CrsMatrix, Epetra VbrMatrix,
Epetra FECrsMatrix, and Epetra FEVbrMatrix.

In the following, we consider for instance how to apply a matrix to a vector without
explicitly constructing the matrix. The matrix is the classical finite-difference discretization
of a Laplace on a 1D grid with constant grid-size. For the sake of simplicity, we avoid the
issues related to intra-process communication (hence this code can be run with one process
only).

The first step is the definition of a class, here called TriDiagonalOperator, and
derived from the Epetra Operator class.

class TriDiagonalOperator : public Epetra_Operator {
public:
// .. definitions here, constructors and methods

private:
Epetra_Map Map_;
double diag_minus_one_; // value in the sub-diagonal
double diag_; // value in the diagonal
double diag_plus_one_; // value in the super-diagonal

}

As the class Epetra Operator implements several virtual methods, we have to specify all
those methods in our class. Among them, we are interested in the Apply method, which
may be coded as follows:

int Apply(const Epetra_MultiVector & X, Epetra_MultiVector & Y) const {
int Length = X.MyLength();

// need to handle multi-vectors and not only vectors
for(int vec=0 ; vec<X.NumVectors() ; ++vec) {

// one-dimensional problems here
if(Length == 1) {

44

Y[vec][0] = diag_ * X[vec][0];
break;

}

// more general case (Lenght >= 2)
// first row
Y[vec][0] = diag_ * X[vec][0] + diag_plus_one_ * X[vec][1];

// intermediate rows
for(int i=1 ; i<Length-1 ; ++i) {

Y[vec][i] = diag_ * X[vec][i] + diag_plus_one_ * X[vec][i+1]
+ diag_minus_one_ * X[vec][i-1];

}
// final row
Y[vec][Length-1] = diag_ * X[vec][Length-1]

+ diag_minus_one_ * X[vec][Length-2];
}
return true;

}

Now, in the main function, we can define a TriDiagonalOperatr object using the specified
constructor:

TriDiagonalOperator TriDiagOp(-1.0,2.0,-1.0,Map);

and we can apply this operator to a vector as:

DiagOp.Apply(x,y);

${TRILINOS HOME}/doc/tutorial/epetra/ex21.cpp reportes the entire source
code.

Remark 11. The clear disadvantage of deriving Epetra Operator or Epetra RowMatrix
with respect to use Epetra CrsMatrix or Epetra VbrMatrix, is that users must specify their
communication patterns for intra-process data exchange. For this purpose, Epetra Import
classes can be used. File ${TRILINOS HOME}/doc/tutorial/epetra/ex22.cpp
shows how to extend ex21.cpp to the multi-process case. This example makes use of the
Epetra Import class to exchange data.

45

Another use of Epetra Operator and Epetra RowMatrix is to allow support for user’s
defined matrix format. For instance, suppose that your code generates matrices in MSR
format (detailed in the Aztec documentation). You can easily create an Epetra Operator,
that applies the MSR format to Epetra MultiVectors. For the sake of simplicity, we will
limit ourselves to the monoprocess case. Extentions to multi-processes case requires to
handle ghost-nodes updates.

As a first step, we create a class, derived from the Epetra Operator class,

class MSRMatrix : public Epetra_Operator
{

public:
// constructor
MSRMatrix(Epetra_Map Map, int * bindx, double * val) :
Map_(Map), bindx_(bindx), val_(val)

{}

˜MSRMatrix() // destructor
{}

// Apply the RowMatrix to a MultiVector
int Apply(const Epetra_MultiVector & X, Epetra_MultiVector & Y) const
{

int Nrows = bindx_[0]-1;

for(int i=0 ; i<Nrows ; i++) {
// diagonal element
for(int vec=0 ; vec<X.NumVectors() ; ++vec) {
Y[vec][i] = val_[i]*X[vec][i];

}
// off-diagonal elements
for(int j=bindx_[i] ; j<bindx_[i+1] ; j++) {
for(int vec=0 ; vec<X.NumVectors() ; ++vec) {

Y[vec][bindx_[j]] += val_[j]*X[vec][bindx_[j]];
}

}
}
return 0;

46

} /* Apply */
... other functions ...

private:
int * bindx_; double * val_;

}

As stated by the fragment of code above, the constructor take the two MSR vectors, and an
Epetra Map. The complete code is reported in ${TRILINOS HOME}/doc/tutorial/epetra/ex25

4.4 Epetra LinearProblem

A linear problem of type AX = B is defined by an Epetra LinearProblem class. This class
required an Epetra RowMatrix or an Epetra Operator object (often an Epetra CrsMatrix or
Epetra VbrMatrix), and two (multi-)vectors X and B. X must have been defined using a
map equivalent to the DomainMap of A, while B using a map equivalent ot the RangeMap
of A (see Section 3.2).

Linear problems can be used to solve linear systems with iterative methods (typically,
using AztecOO, covered in Chapter 5), or with direct solvers (typically, using Amesos,
described in Chapter 8.

Once the linear problem has been defined, the user can:

• scale the problem, using LeftScale(D) or RightScale(D), D being am Epe-
tra Vector of compatible size;

• define a preconditioner for the iterative solution;

• change X and B, using SetRHS(&B) and SetLHS(&X);

• change A, using SetOperator(&A).

4.5 Concluding Remarks

More details about the Epetra project, and a technical description of classes and methods,
can be found in [5, 9].

47

5 Iterative Solution of Linear Systems with AztecOO

AztecOO is package which extends the Aztec library [20]. Aztec is the legacy iterative
solver at the Sandia National Laboratories. It has been extracted from the MPSalsa reacting
flow code [17, 15], and it is currently installed in dozens of Sandia’s applications. AztecOO
extends this package, using C++ classes to enable more sophisticated use.

AztecOO is intended for the iterative solution of linear systems of the form

A X = B, (1)

when A ∈ R
n×n is the linear system matrix, X the solution, and B the right-hand side.

Both X and B are Epetra Vector objects.

In this Chapter, we will:

• Outline the basic issued of the iterative solution of linear systems (in Section 5.1);

• Present the basic usage of AztecOO (in Section 5.2);

• Define one-level domain decomposition preconditioners (in Section 5.3);

• Use of AztecOO problems as preconditioners to other AztecOO problems (in Sec-
tion 5.4).

5.1 Theoretical Background

Aim of this Section is to briefly present some aspects of the iterative solution of linear
systems, to establish a notation. The Section is not supposed to be exhaustive, nor complete
on this subject. The reader is referred to the existing literature for a rigorous presentation.

One can distinguish between two different aspects of the iterative solution of a linear
system. The first one in the particular acceleration technique for a sequence of iterations
vectors, that is a technique used to construct a new approximation for the solution, with
information from previous approximations. This leads to specific iteration methods, like
conjugate gradient or GMRES. The second aspect is the transformation of the given system
to one that can be more efficiently solved by a particular iteration method. This is called
preconditioning. A good preconditioner improves the convergence of the iterative method,
sufficiently to overcome the extra cost of its construction and application. Indeed, without
a preconditioner the iterative method may even fail to converge in practice.

48

The convergence of iterative methods depends on the spectral properties of the linear
system matrix. The basic idea is to replace the original system (1) by

P−1AX = P−1B

(left-preconditioning), or by
AP−1PB = B

(right-preconditioning), using a linear transformation P −1, called preconditioner, in order
to improve the spectral properties of the linear system matrix. In general terms, a precon-
ditioner is any kind of transformation applied to the original system which makes it easier
to solve.

In a modern perspective, the general problem of finding an efficient preconditioner is
to identify a linear operator P with the following properties:

1. P is a good approximation of A is some sense. Although no general theory is avail-
able, we can say that P should act so that P −1A is near to being the identity matrix
and its eigenvalues are clustered within a sufficiently small region of the complex
plane;

2. P is efficient, in the sense that the iteration method converges much faster, in terms
of CPU time, for the preconditioned system. In other words, preconditioners must be
selected in such a way that the cost of constructing and using them is offset by the
improved convergence properties they permit to achieve;

3. P or P−1 can take advantage of the architecture of modern supercomputers, that is,
can be constructed and applied in parallel environments.

It should be stressed that computing the inverse of P is not mandatory; actually, the role
of P is to “preconditioning” the residual rm through the solution of the additional system
Pzm = rm. This system Pzm = rm should be much easier to solve than the original
system.

The choice of P varies from “black-box” algebraic techniques which can be applied
to general matrices to “problem dependent” preconditioners which exploit special features
of a particular class of problems. Although problem dependent preconditioners can be
very powerful, there is still a practical need for efficient preconditioning techniques for
large classes of problems. Between these two extrema, there is a class of preconditioners
which are “general-purpose” for a particular – although large – class of problems. These
preconditioners are sometimes called “gray-box” preconditioners, since the user has to
supply few information about the matrix and the problem to be solved.

49

AztecOO itself implements a variety of preconditioners, from “classical” methods such
as Jacobi and Gauss-Seidel, to polynomial and domain-decomposition based precondition-
ers. More preconditioners can be given to an AztecOO Krylov accelerator, by using the
Trilinos packages IFPACK and ML, covered in Chapter 6 and 7, respectively.

5.2 Basic Usage of AztecOO

To solve a linear system with AztecOO, one must create an Epetra_LinearProblem
object with the command

Epetra_LinearProblem Problem(&A,&x,&b);

where A is an Epetra matrix, and x,b two Epetra vectors5. Then, the user must create an
AztecOO object,

AztecOO Solver(Problem);

and specify how to solve the linear system. All AztecOO options are set using two vectors,
options (integer) and params (double), as detailed in the Aztec’s User Guide.

To choose among the different AztecOO parameters, the user can create two vectors,
usually called options and params, set them to the default values, and then override
with the desired parameters: Default values can be set by

int options[AZ_OPTIONS_SIZE];
double params[AZ_PARAMS_SIZE];
AZ_defaults(options, params);

followed by, for instance,

Solver.SetAllAztecOptions(options);
Solver.SetAllAztecParams(params);

5At the current stage of development, AztecOO does not handle Epetra MultiVectors. It accepts
Multi Vectors, but it will solve the linear system corresponding to the first multivector only.

50

Those two functions will copy the values of options and params in internal variables
of the AztecOO object.

Alternatively, it is possible to set specific parameters without creating options and
params, using the AztecOO methods SetAztecOption() and SetAztecParams().
For instance,

Solver.SetAztecOption(AZ_precond, AZ_Jacobi);
Solver.SetAztecParams(AZ_tol, 1e-12);

to specify a point Jacobi preconditioner, and a tolerance of 10−12. (We refer to the Aztec
documentation for more details about the various Aztec settings.)

To solve the linear system the user may call

Solver.Iterate(1000,1E-9);

The complete code is in ${TRILINOS HOME}/doc/tutorial/aztec/ex1.cpp.

Note that the matrix must be in local coordinates (that is, the commandA.FillComplete()
has been called before attempting to solve the linear system). Note also that the procedure
to solve a linear system with AztecOO is identical for sequential and parallel runs. How-
ever (for certain choices of the preconditioners), the convergence rate can change as the
number of processes used in the computation varies.

When this function returns, one can retrieve the number of iterations performed by the
linear solver using Solver.NumIters(), while Solver.TrueResidual() gives
the (nonscaled) norm the residual.

5.3 One-level Domain Decomposition Preconditioners with AztecOO

In this Section, we will consider preconditioners based on one-level overlapping domain
decomposition preconditioners, of the form

P−1 =
M∑
i=1

RT
i Ã−1

i Ri, (2)

where P is the preconditioning operator, M the number of subdomains. Ri is a rectangular
matrix, composed by 0’s and 1’s, which restricts a global vector to the subspace defined by

51

the interior of each subdomain, and Ãi is an approximation of

Ai = RiART
i . (3)

(Ãi can be equal to Ai). Typically, Ãi differs from Ai when incomplete factorizations are
used in (2) to apply Ã−1

i , or when a matrix different from A is used in (3).

In order to use a preconditioner of the form (3), the user has to specify

Solver.SetAztecOption(AZ_precond, AZ_dom_decomp);

followed by the choice of incomplete factorization (and possibly with that of corresponding
parameters, for instance the level-of-fill),

Solver.SetAztecOption(AZ_ilu, AZ_subdomain_solve);
Solver.SetAztecOption(AZ_graph_fill, 1);

By default, AztecOO will consider zero-overlap among the rows of A6. However, this value
of overlap can be changed by, for instance,

Solver.SetAztecOption(AZ_overlap, 1);

Remark 12. By using AztecOO in conjunction with ML, one can easily implement a two-
level domain decomposition schemes. The reader is referred to Section 7.3.

Remark 13. Another Trilinos package can be used to compute incomplete factorizations,
IFPACK. It is covered in Chapter 6.

5.4 Use of AztecOO Problems as a Preconditioner for AztecOO

One may wish to use an AztecOO solver in the preconditioning phase, as done in ${TRILINOS HOME}/doc/tu
The main steps are here reported.

First, we have to specify the linear problem to be solved (set the linear operator, the
solution and the right-hand side), and create an AztecOO object:

6For point matrices arising from the FE discretization of the PDE problem with local functions, this is
equivalent to one mesh element of overlap.

52

Epetra_LinearProblem A_Problem(&A, &x, &b);
AztecOO A_Solver(A_Problem);

Now, we have to define the preconditioner. For the sake of simplicity, we here suppose to
use the same Epetra Matrix A in the preconditioning phase. However, the two matrices can
in principle be different (although of the same size).

Epetra_CrsMatrix P(A);

(This operation is in general expensive as involves the copy constructor.) Then, we create
the linear problem which will be used as preconditioner. This requires several steps. (Note
that all the P prefix identifies preconditioner’ objects.)

1. We create the linear system solve at each prec step, and and we assign the linear
operator (in this case, the matrix A itself)

Epetra_LinearProblem P_Problem;
P_Problem.SetOperator(&P);

2. As we wish to use AztecOO to solve the prec step (in a recursive way), we have to
define an AztecOO object:

AztecOO P_Solver(P_Problem);

3. Now, we customize certain parameters:

P_Solver.SetAztecOption(AZ_precond, AZ_Jacobi);
P_Solver.SetAztecOption(AZ_output, AZ_none);
P_Solver.SetAztecOption(AZ_solver, AZ_cg);

4. The last step is to create an AztecOO Operator, so that we can set the Aztec’s pre-
conditioner with, and we set the user’s defined preconditioners:

AztecOO_Operator
P_Operator(&P_Solver, 10);
A_Solver.SetPrecOperator(&P_Operator);

(Here 10 is the maximum number of iterations of the AztecOO solver in the precon-
ditioning phase.)

53

5. Finally, we solve the linear system:

int Niters=100;
A_Solver.SetAztecOption(AZ_kspace, Niters);
A_Solver.SetAztecOption(AZ_solver, AZ_gmres);
A_Solver.Iterate(Niters, 1.0E-12);

5.5 Concluding Remarks

The following methods are often used:

• NumIters() returns the total number of iterations performed on this problem;

• TrueResidal() returns the true unscaled residual;

• ScaledResidual() returns the unscaled residual;

• SetAztecDefaults() can be used to restore default values in the options and
params vectors.

The official documentation of AztecOO can be found in [8].

54

6 Incomplete Factorizations with IFPACK

IFPACK provides a suite of object-oriented algebraic preconditioners for the solution of
preconditioned iterative solvers. IFPACK offers a variety of overlapping (one-level) Schwarz
preconditioners, The packages uses Epetra for basic matrix-vector calculations, and accepts
user matrices via abstract matrix interface. A concrete implementation for Epetra matrices
is provided. The package separates graph construction for factorization, improving perfor-
mances in a substantial manner with respect to other factorization packages.

In this Chapter we present how to use IFPACK objects as a preconditioner for an
AztecOO solver.

In this Chapter, we will

• Set the notation (in Section 6.1);

• Show how to compute incomplete Cholesky factorizations (in Section 6.2);

• Present IFPACK’s RILU-type factorizations (in Section 6.3).

6.1 Theoretical Background

Aim of this Section is to briefly present some aspects on incomplete factorization methods,
to establish a notation. The Section is not supposed to be exhaustive, nor complete on this
subject. The reader is referred to the existing literature for a rigorous presentation.

A broad class of effective preconditioners is based on incomplete factorization of the
linear system matrix, and it is usually indicated as ILU. The ILU-type preconditioning tech-
niques lie between direct and iterative methods and provide a balance between reliability
and numerical efficiency.

The preconditioner is given in the factored form P = L̃Ũ , with L̃ and Ũ being lower
and upper triangular matrices. Solving with P involves two triangular solutions.

The incomplete LU factorization of a matrix A can be described as follows. Let A0 =
A. Then, for k = 2, . . . , n, we have

Ak−1 =

(
Bk Fk

Ek Ck

)
.

55

Thus, we can write the k−step of the Gaussian elimination in a block form as

Ak−1 =

(
I 0

EkB
−1
k I

) (
Bk Fk

0 Ak

)
,

where Ak = Ck − EkB
−1
k Fk. If Bk is a scalar, then we have the typical point-wise fac-

torization, otherwise we have a block factorization. Pivoting, if it is necessary, can be
accomplished by reordering Ak at every step.

To make the factorization incomplete, entries as dropped in Ak, i.e. the factorization
proceeds with

Ãk = Ak − Rk

where Rk is the matrix of dropped entries.

Dropping can be performed by position, for example, dropping those entries in the up-
date matrix EkB

−1
k Fk that are not in the pattern of Ck. This simple ILU factorization is

known as ILU(0). Although effective, in some cases the accuracy of the ILU(0) may be
insufficient to yield an adequate rate of convergence. More accurate factorizations will dif-
fer from ILU(0) by allowing some fill-in. The resulting class of methods is called ILU(f),
where f is the level-of-fill. A level-of-fill is attributed to each element that is processed
by Gaussian elimination, and dropping will be based on the level-of-fill. The level-of-fill
should be indicative of the size of the element: the higher the level-of-fill, the smaller the
elements.

Other strategies consider dropping by value – for example, dropping entries smaller
than a prescribed threshold. Alternative dropping techniques can be based on the numeri-
cal size of the element to be discarded. Numerical dropping strategies generally yield more
accurate factorizations with the same amount of fill-in than level-of-fill methods. The gen-
eral strategy is to compute an entire row of the L̃ and Ũ matrices, and then keep only the
biggest entries in a certain number. In this way, the amount of fill-in is controlled; how-
ever, the structure of the resulting matrices is undefined. These factorizations are usually
referred to as ILUT, and a variant which performs pivoting is called ILUTP.

6.2 Incomplete Cholesky Factorizations

Ifpack CrsIct is a class for constructing and using incomplete Cholecky factorizations of
an Epetra CrsMatrix. The factorization is produced based on several parameters:

• Maximum number of entries per row/column. The factorization will contain at most
this number of nonzero elements in each row/column;

56

• Diagonal perturbation. By default, the factorization will be computed on the input
matrix. However, it is possible to modify the diagonal entries of the matrix to be fac-
torized, via functions SetAbsoluteThreshold() and SetRelativeThreshold().
Refer to the IFPACK’s documentation for more details.

It is very easy to compute the incomplete factorization. First, define an Ifpack CrsIct
object,

Ifpack_CrsIct * ICT = NULL;
ICT = Ifpack_CrsIct(A,DropTol,LevelFill);

where A is an Epetra CrsMatrix (already FillComplete’d), and DropTop and LevelFill
are the drop tolerance and the level-of-fill, respectively. Then, we can set the values and
compute the factors,

ICT->InitValues(A);
ICT->Factor();

IFPACK can compute the estimation of the condition number

cond(LiUi) ≈ ‖(LU)−1e‖∞,

where e = (1, 1, . . . , 1)T . (More details can be found in the IFPACK’s documentation.)
This estimation can be computed as follows:

double Condest;
ICT->Condest(false,Condest);

Please refer to file ${TRILINOS HOME}/doc/tutorial/ifpack/ex1.cpp for a
complete example of incomplete Cholesky factorization.

6.3 RILU Factorizations

IFPACK implements various incomplete factorization for non-symmetric matrices. In this
Section, we will consider the Epetra CrsRiluk class, that can be used to produce RILU
factorization of a Epetra CrsMatrix. The class required an Ifpack OverlapGraph in the
construction phase. This means that the factorization is split into two parts:

57

1. Definition of the level filled graph;

2. Computation of the factors.

This approach can significantly improve the performances of code, when an ILU precon-
ditioner has to be computed for several matrices, with different entries but with the same
sparsity pattern. An Ifpack IlukGraph object of an Epetra matrix A can be constructed as

Ifpack_IlukGraph Graph =
Ifpack_IlukGraph(A.Graph(),LevelFill,LevelOverlap);

Here, LevelOverlap is the required overlap among the subdomains.

A call to ConstructFilledGraph() completes the process.

Remark 14. An Ifpack IlukGraph object has two Epetra CrsGraph objects, containing the
Li and Ui graphs. Thus, it is possible to manually insert and delete graph entries in L i and
Ui via the Epetra CrsGraphInsertIndices and RemoveIndices functions. However, in this
cas FillComplete must be called before the graph is used for subsequent operations.

At this point, we can create an Ifpack CrsRiluk object,

ILUT = Ifpack_CrsRiluk(Graph);

This phase defined the graph for the incomplete factorization, without computing the actual
values of the Li and Ui factors. Instead, this operation is accomplished with

int initerr = ILUT->InitValues(A);

The ILUT object can be used with AztecOO simply setting

solver.SetPrecOperator(ILUK);

where solver is an AztecOO pbject. Example ${TRILINOS HOME}/doc/tutorial/ifpack/ex2.cpp
shows the use of Ifpack CrsRiluk class.

The application of the incomplete factors to a global vector, z = (LiU
−1
i)r, results

in redundant approximation for any element of z that correspond to rows that are part of

58

more than one local ILU factor. The OverlapMode defines how those redundant values are
managed. OverlapMode is an Epetra CombinedMode enum, that can assume the following
values: Add, Zero, Insert, Average, AbxMax. The default is to zero out all
the values of z for rows that were not part of the original matrix row distribution.

6.4 Concluding Remarks

More documentation on the IFPACK package can be found in [6, 4].

59

7 Multilevel Methods with ML

The ML package defines a class of preconditioners based on multilevel methods [18].
While technically any linear system can be considered, ML should be used on linear sys-
tems on linear systems, like elliptic PDEs, that are known to work well with multilevel
methods.

ML is a large package, that can be used to a variety of purposes. ML provides multi-
level solvers, as well as multilevel preconditioners, and it can handle geometric as well as
algebraic methods.

In this Chapter we present:

• Outline the basic issues of multilevel schemes (in Section 7.1);

• Present the use of ML objects as a preconditioner for an AztecOO solver objects (in
Section 7.2);

• Outline the steps required to implement two-level domain decomposition methods,
with a coarse grid defined using aggregation procedures (in Section 7.3).

As other Trilinos packages, ML can be compiled and run independently from Epe-
tra, that is, it can accept input matrix in formats different from the Epetra RowMatrix
or Epetra Operator. Should the reader be interested in running ML without Epetra, or
using a C code (and not a C++ code), then we refer to the ML guide, contained in the
${TRILINOS_HOME}/packages/ml/doc/.

7.1 Theoretical Background

Aim of this Section is to briefly present some aspects on multilevel methods. The Section
is not supposed to be exhaustive, nor complete on this subject. The reader is referred to the
existing literature for a rigorous presentation.

Multilevel methods require the operator to be defined on a sequence of coarser spaces,
an iterative method that evolves the solution (called a smoother) and interpolation opera-
tors that transfer information between the spaces. The principle behind the algorithm is
that the high-frequency errors can be efficiently solved on the fine space, while the low-
frequency are treated on the coarser one, where there frequencies manifest themselves as

60

high-frequencies. A very popular multilevel methods are multigrid methods. Geometric
multigrid (GMG) methods cannot be applied without the existence of an underlying grid
(this is their major limitation). This led to the development of algebraic multigrid method
(AMG), initiated by Ruge and Stüben. In AMG, both the matrix hierarchy and the pro-
longation operators are constructed just from the stiffness matrix. Since the automatic
generation of a grid-hierarchy for GMG and especially the proper assembly of all com-
ponents would be a very difficult task for unstructured problems, the automatic algebraic
construction of a virtual grid is a big advantage.

A function to solve (1) using a multilevel method can be defined as follows:

MGM(X, B, k)
{

if(k == 0) X = A_k \ B;
else {
X = S_kˆ1 (X, B);
D = R_{k-1,k} (B - A_k X);
V = 0;
MGM(V, D, k-1);
X = X + P_{k,k-1} V;
X = S_kˆ2(U, B);

}
}

In the above method, S1
k and S2

k are two smoothers, Rk−1,k is a restriction operator from
level k to k − 1, and Pk,k−1 is a prolongator from k − 1 to k.

In a variational setting, the matrices Ak can be constructed as

Ak = Rk−1,kAkPk,k−1.

Alternatively, when a grid is available at level k − 1, one can discretize the PDE operator
on grid k − 1.

Remark 15. In this tutorial, we will consider multilevel methods based on aggregation
schemes only.

7.2 ML as a Preconditioner for AztecOO

In order to use ML as a preconditioner, we need to define an AztecOO Solver, as outlined
in Chapter 5.

61

ML requires the user to define a structure, to store internal data. This structure is usually
called ml_handle:

ML *ml_handle;

We intend to use ML as a “black-box” (or gray-box) multilevel preconditioner, using
aggregation procedures to define the multilevel hierarchy. The variable

int N_levels = 10;

defines the maximum number of levels, while

ML_Set_PrintLevel(3);

toggle the output level (from 0 to 10, 10 being verbose mode and 0 silent mode).

The ML handle is created using

ML_Create(&ml_handle,N_levels);

ML can accept in input very general matrices. Basically, the user has to specify the number
of local rows, and provide a function to update the ghost nodes (that is, nodes requires in
the matrix-vector product, but assigned to another process). For Epetra matrices, this is
done by the following function

EpetraMatrix2MLMatrix(ml_handle, 0, &A);

Note that A is not converted to ML format. Instead, proper wrappers are defined. (Here, A
is the Epetra matrix for which we aim to construct a multilevel preconditioner.)

ML requires another structure, called ML Aggregate, to store the information about the
aggregates at various levels:

ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);

The multilevel hierarchy is constructed with the instruction

62

N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle, 0,
ML_INCREASING,
agg_object);

Here, 0 is the index of the finest level, and the index of coarser levels will be obtained
by incrementing this value. (We refer to the ML manual for more details about the input
parameters.)

We still need to define the smoother, for instance a symmetric Gauss-Seidel:

ML_Gen_Smoother_SymGaussSeidel(ml_handle, ML_ALL_LEVELS,
ML_BOTH, 1, ML_DEFAULT);

and to generate the solver as

ML_Gen_Solver (ml_handle, ML_MGV, 0, N_levels-1);

Finally, we can create an Epetra Operator, based on the previously defined ML hierar-
chy

Epetra_ML_Operator MLop(ml_handle,comm,map,map);

and set the preconditioning operator of our AztecOO solver,

solver.SetPrecOperator(&MLop);

At this point, we can call Iterate() as usual,

solver.Iterate(Niters, 1e-12);

The entire code is reported in ${TRILINOS HOME}/doc/tutorial/ml/ex1.cpp.
The output will be approximatively as reported below.

[msala:ml]> mpirun -np 2 ./ex1.exe
**
* ML Aggregation information *

63

==
ML_Aggregate : ordering = natural.
ML_Aggregate : min nodes/aggr = 2
ML_Aggregate : max neigh selected = 0
ML_Aggregate : attach scheme = MAXLINK
ML_Aggregate : coarsen scheme = UNCOUPLED
ML_Aggregate : strong threshold = 0.000000e+00
ML_Aggregate : P damping factor = 1.333333e+00
ML_Aggregate : number of PDEs = 1
ML_Aggregate : number of null vec = 1
ML_Aggregate : smoother drop tol = 0.000000e+00
ML_Aggregate : max coarse size = 1
ML_Aggregate : max no. of levels = 10
**
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
ML_Aggregate_CoarsenUncoupled : current level = 0
ML_Aggregate_CoarsenUncoupled : current eps = 0.000000e+00
Aggregation(UVB) : Total nonzeros = 128 (Nrows=30)
Aggregation(UC) : Phase 0 - no. of bdry pts = 0
Aggregation(UC) : Phase 1 - nodes aggregated = 28 (30)
Aggregation(UC) : Phase 1 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 1 - nodes aggregated = 28
Aggregation(UC_Phase2_3) : Phase 1 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 2a- additional aggregates = 0
Aggregation(UC_Phase2_3) : Phase 2 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 2 - boundary nodes = 0
Aggregation(UC_Phase2_3) : Phase 3 - leftovers = 0 and singletons = 0
Aggregation time = 1.854551e-03

Gen_Prolongator : max eigen = 1.883496e+00
ML_Gen_MGHierarchy : applying coarsening
ML_Gen_MGHierarchy : Gen_RAP
RAP time for level 0 = 5.319577e-04
ML_Gen_MGHierarchy : Gen_RAP done
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
ML_Aggregate_CoarsenUncoupled : current level = 1
ML_Aggregate_CoarsenUncoupled : current eps = 0.000000e+00
Aggregation(UVB) : Total nonzeros = 46 (Nrows=8)
Aggregation(UC) : Phase 0 - no. of bdry pts = 0

64

Aggregation(UC) : Phase 1 - nodes aggregated = 6 (8)
Aggregation(UC) : Phase 1 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 1 - nodes aggregated = 6
Aggregation(UC_Phase2_3) : Phase 1 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 2a- additional aggregates = 0
Aggregation(UC_Phase2_3) : Phase 2 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 2 - boundary nodes = 0
Aggregation(UC_Phase2_3) : Phase 3 - leftovers = 0 and singletons = 0
Aggregation time = 1.679042e-03

Gen_Prolongator : max eigen = 1.246751e+00
ML_Gen_MGHierarchy : applying coarsening
ML_Gen_MGHierarchy : Gen_RAP
RAP time for level 1 = 4.489557e-04
ML_Gen_MGHierarchy : Gen_RAP done
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
Aggregation total setup time = 8.903003e-02 seconds
Smoothed Aggregation : operator complexity = 1.390625e+00.

***** Preconditioned CG solution
***** Epetra ML_Operator
***** No scaling

iter: 0 residual = 1.000000e+00
iter: 1 residual = 1.289136e-01
iter: 2 residual = 4.710371e-03
iter: 3 residual = 7.119470e-05
iter: 4 residual = 1.386302e-06
iter: 5 residual = 2.477133e-08
iter: 6 residual = 6.141025e-10
iter: 7 residual = 6.222216e-12
iter: 8 residual = 1.277534e-13

Solution time: 0.005845 (sec.)
total iterations: 8

Residual = 6.99704e-13

65

7.3 Two-level Domain Decomposition Preconditioners with ML

In order to use the example reported in this Section, one should compile ML with the
configure flag --with-ml_metis. In this way, ML will use the graph decomposition
library METIS to create the coarse-level matrix7.

Two-level domain decomposition methods have been proved to be very effective for the
iterative solution of many different kind of linear systems. For some classes of problems,
a very convenient way to define the coarse grid operator is to use aggregation procedure.
This is very close to what presented in Section 7.2. The main difference is that only two
level methods are considered, and that the coarse grid remains of (relatively) small size.
The idea is to define a small number of aggregates on each process, using a graph decom-
position algorithm (as implemented in the library METIS, for instance)8. This can be done
as follows.

First, we need to define an AztecOO problem, an ML structure, and an ML Aggregate
structure. Then, we limit ourself to 2-level scheme.

int N_levels = 2;

Then, we specify the aggregation scheme as

ML_Aggregate_Set_CoarsenScheme_METIS(agg_object);

and define the number of aggregates (here, 4) to be defined on each process as

ML_Aggregate_Set_LocalNumber(ml_handle, agg_object, 0, 4);

As smoother, we can adopt a subdomain-based Gauss-Seidel smoother.

The creation of the multilevel hierarchy and the solution of the linear system will be as
reported in Section 7.2.

The entire code is reported in ${TRILINOS HOME}/doc/tutorial/ml/ex2.cpp.

7Note that ML has to be aware of the location of the METIS include files and the METIS library. The
user can use the configure flags --with-incdirs and --with-ldflags. Please type configure
--help for more information. If you don’t have METIS, or you don’t want to re-configure ML, you will be
able to run the example of this Section. However, you will be limited to use only one aggregate per process.

8Aggregation schemes based on ParMETIS as also available. Please refer to the help of the ML
configure for more details.

66

7.4 Concluding Remarks

More documentation about ML can be found in [21, 19, 19].

67

8 Interfacing Direct Solvers with Amesos

The Amesos package provides an object-oriented interface to several direct sparse solvers.
Amesos will solve (using a direct factorization method) the linear systems of equations

AX = B (4)

where A is stored as an Epetra RowMatrix object, and X and B are Epetra MultiVector
objects.

The Amesos package has been designed to face some of the challenges of direct solution
of linear systems. In fact, many solvers have been proposed in the last years, and often
each of them requires different input formats for the linear system matrix. Moreover, it is
not uncommon that the interface changes between revisions. Amesos aims to solve those
problems, furnishing a clean, consistent interface to many direct solvers.

Using Amesos, users can interface their codes with a (large) variety of direct linear
solvers, sequential or parallel, simply by a code instruction of type

AmesosProblem.Solver();

Amesos will take care of redistributing data among the processors, if necessary.

This Chapter starts with few notes on the installation of the third-part packages required
by Amesos. Then, the Chapter will present the use of Amesos objects, to interface with the
following packages:

• UMFPACK, version 4.1 (in Section 8.2);

• SuperLUdist, version 2.0 (in Section 8.3);

• A generic interface to various direct solvers is presented (in Section 8.4).

8.1 Installation of Trilinos third-part Packages

Amesos is an interface to other packages, mainly developed outside the Trilinos frame-
work9. In order to use those packages, the user should carefully check copyright and li-
censing of those third party codes. Please refer to the web page or the documentation of
each particular package for details.

9Currently, SuperLU is included in the Trilinos framework.

68

Amesos supports a variety of direct solvers for linear systems of equations, and you
are likely to use Amesos with only few of them. We suggest to define the shell variable
TRILINOS_3PL to define the directory used to stored third-part packages. For instance,
under BASH, you may have a line of type

export TRILINOS_3PL=/home/msala/Trilinos3PL

in your .bashrc file. Then, you may decide to create a directory to hold include files and
libraries. For instance, to compile under LINUX with MPI:

$ mkdir ${TRILINOS_3PL}/LINUX_MPI
$ mkdir ${TRILINOS_3PL}/LINUX_MPI/include
$ mkdir ${TRILINOS_3PL}/LINUX_MPI/lib

(Note that this will reflect the directory structure used by Trilinos, see Section 1.2.) While
installing a package, you can now copy all include files and libraries in these directories.

Using this setting, you can configure Amesos with a command of type

$ cd ${TRILINOS_HOME}/packages/amesos
$./configure --prefix=${TRILINOS_HOME}/LINUX_MPI \

--enable-mpi --with-mpi-compilers \
--enable-amesos-umfpack \
--enable-amesos-superludist \
--with-amesos-superludistlib=\
"${TRILINOS_3PL}/SuperLU_DIST_2.0/libsuperlu_LINUX.a"

(This command is followed by make and make install, as usual.) This will enable
UMFPACK and SuperLUdist, which are the two packages covered in this Chapter.

For more details about the configuration options of Amesos, please refer to Amesos
documentation.

8.2 UMFPACK

File ${TRILINOS HOME}/doc/tutorial/amesos/ex1.cpp shows how to use Ame-
sos to solve a linear system with UMFPACK10.

10UMFPACK is a set of routines solving sparse linear systems via LU factorization. It
is copyrighted by Timothy A. Davis. More information can be obtained at the web page

69

Suppose that A, x and b are an Epetra RowMatrix and two Epetra MultiVector, respec-
tively, or compatible dimensions. Amesos objects for the solution of linear systems requires
an Epetra LinearProblem object, plus another object, AMESOS::Parameter::List,
used to specify the parameters.

Epetra_LinearProblem Problem(&A,&x,&b);
AMESOS::Parameter::List params;

Then, only few lines are required: We can define an Amesos object and solve the problem,

Amesos_Umfpack UmfpackProblem(Problem,params);
UmfpackProblem.Solve();

or, alternatively, it is possible to specify when symbolical factorization, numerical factor-
ization and solution occur,

Amesos_Umfpack UmfpackProblem(Problem,params);
UmfpackProblem.SymbolicFactorization();
UmfpackProblem.NumericFactorization();
UmfpackProblem.Solve();

Note that exactly the same code can be run with more than one processor. In this case,
being UMFPACK a serial solver, Amesos will take care to gather all required data on a
processor, solve sequentially the linear system, and then broadcast the solution.

8.3 SuperLUdist

Solving using SuperLUdist11 is not much different from what presented in Section 8.2.
Instead of declaring an Amesos Umfpack object, one can proceed as follows:

Amesos_Superludist * SuperludistProblem =
new Amesos_Superludist(Problem,params);

http://www.cise.ufl.edu/research/sparse/umfpack.
11SuperLU DIST is a parallel extension to the serial SuperLU library. It is targeted for

the distributed memory parallel machines. Copyright (c) 2003, The Regents of the Univer-
sity of California, through Lawrence Berkeley National Laboratory. Please refer to the web site
http://www.nersc.gov/ xiaoye/SuperLU for more information.

70

followed by a call to Solve(), possibly preceded by SymbolicFactorization() and Numeric-
Factorization().

Remark 16. We have declared a pointer to and Amesos Superludist object because the
destructor of this object contains some MPI calls. As in example
${TRILINOS HOME}/doc/tutorial/amesos/ex2.cpp the destructor is called at
the end of the main function (after a call to MPI_Finalize(), we have to delete this
object using the C++ statement

delete SuperludisProblem;

before the call to MPI_Finalize().

8.4 A Generic Interface to Various Direct Solvers

All Amesos objects are derived from the Amesos BaseClass object. Using the capabilities
of C++, one may decide to code a generic interface to a direct solver as follows:

// parameter vector for Amesos
AMESOS::Parameter::List ParamList;

// prepare the linear solver
Amesos_BaseSolver * AmesosProblem;

switch(choice) {
case ML_SOLVE_WITH_AMESOS_UMFPACK:

AmesosProblem =
new Amesos_Umfpack(*LinearProblem, ParamList);

break;
case ML_SOLVE_WITH_AMESOS_SUPERLUDIST:
AmesosProblem =

new Amesos_Superludist(*LinearProblem, ParamList);
break;

default:
cerr << ‘‘Error’’ << endl;

}

Now, factorization and solution are the same for all the packages:

71

AmesosProblem->SymbolicFactorization();
AmesosProblem->NumericFactorization();
AmesosProblem = (void *) AmesosProblem ;

72

9 Solving Nonlinear Systems with NOX

NOX is a suite of solution methods for the solution of nonlinear systems of type

F (x) = 0, (5)

with

F (x) =

⎛
⎜⎝

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

⎞
⎟⎠

is a nonlinear vector function. The Jacobian matrix of F , J , is defined by

Ji,j =
∂Fi

∂xj
(x).

NOX aims to solver (5) using Newton-type methods. NOX uses an abstract vector and
“group” interface. Current implementation are provided for Epetra/AztecOO objects, but
also for LAPACK and PETSc. It provides various strategies for the solution of nonlinear
systems, and it has been designed to be easily integrated into existing applications.

In this Chapter, we will

• Outline the basic issued of the solution of nonlinear systems (in Section 9.1);

• Introduce the NOX package (in Section 9.2);

• Describe how to introduce a NOX solver in an existing code (in Section 9.3);

• Present Jacobian-free methods (in Section 9.6).

9.1 Theoretical Background

Aim of this Section is to briefly present some aspects of the solution of nonlinear systems,
to establish a notation. The Section is not supposed to be exhaustive, nor complete on this
subject. The reader is referred to the existing literature for a rigorous presentation.

To solve system of nonlinear equations, NOX makes use of Newton-like methods. The
Newton method defines a suite {xk} that, under some conditions, converges to x, solution

73

of (5). The algorithm is as follows: given x0, for k = 1, . . . until convergence, solve

Jk(xk−1) (xk − xk−1) = −F (xk−1), Jk(xk−1) =

[
∂F

∂x
(xk−1)

]
. (6)

Newton method introduces a local full linearizion of the equation. Solving a system of
linear equations at each Newton step can be very expensive if the number of unknowns is
large, and may not be justified if the current iterate is far from the solution. Therefore, a
departure from the Newton framework consists of considering inexact Newton methods,
which solve system (6) only approximatively.

In fact, in practical implementation of the Newton method, one or more of the following
approximations are used:

1. The Fréchet derivative Jk for the Newton step is not recomputed at every Newton
step;

2. The equation for the Newton step (6) is solved only inexactly;

3. Defect-correction methods are employed, that is, Jk is numerically computed using
low-order (in space) schemes, while the right-hand side is built up using high-order
methods.

For a given initial guess, “close enough” to the solution of (5), the Newton method with
exact linear solves converges quadratically. In practice, the radius of convergence is often
extended via various methods. NOX provides, among others, line search techniques and
trust region strategies.

9.2 Creating NOX Vectors and Group

NOX is not based on any particular linear algebra package. Users are required to supply
methods that derive from the abstract classes NOX::Abstract::Vector (which pro-
vides support for basic vector operations as dot products), and NOX::Abstract::Group
(which supports the linear algebra functionalities, evaluation of the function G and, option-
ally, of the Jacobian J).

In order to link their code with NOX, users have to write their own instantiation of
those two abstract classes. In this tutorial, we will consider the concrete implementations
provided for Epetra matrices and vectors. As this implementation is separate from the

74

NOX algorithms, the configure option --enable-nox-epetra has to be specified (see
Section 1.2)12.

9.3 Introducing NOX in an Existing Code

Two basic steps are required to implement a NOX::Epetra interface. First, a concrete
class derived from NOX::Epetra::Interface has to be written. This class must
define the following methods:

1. A method to compute y = F (X) for a given x. The syntax is

computeF(const Epetra_Vector & x, Epetra_Vector & y,
FillType flag)

with x and y two Epetra Vectors, and flag an enumerated type that tells why this
method was called. In fact, NOX has the ability to generate Jacobians based on
numerical differencing. In this case, users may want to compute an inexact (and
hopefully cheaper) F , since it is only used in the Jacobian (or preconditioner).

2. A function to compute the Jacobian, whose syntax is

computeJacobian(const Epetra_Vector & x,
Epetra_Operator * Jac)

This method is optional optional method. It should be implemented when users wish
to supply their own evaluation of the Jacobian. If the user does not wish to supply
their own Jacobian, they should implement this method so that it throws an error
if it is called. This method should update the Jac operator so that subsequent Epe-
tra Operator::Apply() calls on that operator correspond to the Jacobian at the current
solution vector x.

3. A method which fills a preconditioner matrix, whose syntax is

computePrecMatrix(const Epetra_Vector & x,
Epetra_RowMatrix & M)

12Other two concrete implementation are provided, for LAPACK and PETSc. The user may wish to
configure NOX with --enable-nox-lapack or --enable-nox-petsc. Examples can be com-
piled with the options --enable-nox-lapack-examples, --enable-nox-petsc-examples,
and -enable-nox-epetra-exemples.

75

It should only contain an estimate of the Jacobian. If users do not wish to supply their
own Preconditioning matrix, they should implement this method such that if called,
it will throw an error.

4. A method to apply the user’s defined preconditioner. The syntax is

computePreconditioner(const Epetra_Vector & x, Epetra_Operator & M)

The method should compute a preconditioner based upon the solution vector x and
store it in the Epetra Operator M. Subsequent calls to the Epetra Operator::Apply
method will apply this user supplied preconditioner to epetra vectors.

Then, the user can construct a NOX::Epetra::Group, which contains information
about the solution technique. All constructors require:

• A parameter list for printing output and for input options, defined as NOX::Parameter::List.

• An initial guess for the solution (stored in an Epetra Vector object);

• an operator for the Jacobian and (optionally) and operator for the preconditioning
phase. Users can write their own operators. In particular, the Jacobian can be defined
by the user as an Epetra Operator,

Epetra_Operator & J = UserProblem.getJacobian(),

created as a NOX matrix-free operator,

NOX::Epetra::MatrixFree & J = MatrixFree(userDefinedInterface,
solutionVec),

or created by NOX using a finite differencing,

NOX::Epetra::FiniteDifference & J = FIXME...

At this point, users have to create an instantiation of the NOX::Epetra::Interface
derived object,

UserInterface interface(...),

and finally construct the group,

NOX::Epetra::Group gourp(printParams, lsParams, interface, FIXME).

76

9.4 A Simple Nonlinear Problem

As an example. define F : R
2 → R

2 by

F (x) =

(
x2

1 + x2
2 − 1

x2 − x2
1

)
.

With this choice of F , the exact solutions of (5) are the intersections of the unity circle and
the parabola x2 − x2

1. Simple algebra shows that one solution lies in the first quadrant, and
has coordinates

α =

⎛
⎝

√√
5 − 1

2
,

√
5 − 1

2

⎞
⎠ ,

the other being the reflection of α among the x2 axis.

Code ${TRILINOS HOME}/doc/tutorial/nox/ex1.cpp applies the Newton
method to this problem, with x0 = (0.5, 0.5) as a starting solution. The output is approxi-
matively as follows:

[msala:nox]> mpirun -np 1 ./ex1.exe

-- Nonlinear Solver Step 0 --
f = 5.590e-01 step = 0.000e+00 dx = 0.000e+00

-- Nonlinear Solver Step 1 --
f = 2.102e-01 step = 1.000e+00 dx = 3.953e-01

-- Nonlinear Solver Step 2 --
f = 1.009e-02 step = 1.000e+00 dx = 8.461e-02

-- Nonlinear Solver Step 3 --
f = 2.877e-05 step = 1.000e+00 dx = 4.510e-03 (Converged!)

77

-- Final Status Test Results --
Converged....OR Combination ->

Converged....F-Norm = 2.034e-05 < 2.530e-04
(Length-Scaled Two-Norm, Relative Tolerance)

??...........Number of Iterations = -1 < 20

-- Parameter List From Solver --
Direction ->

Method = "Newton" [default]
Newton ->
Linear Solver ->

Max Iterations = 400 [default]
Output ->
Achieved Tolerance = 8.6e-17 [unused]
Number of Linear Iterations = 2 [unused]
Total Number of Linear Iterations = 6 [unused]

Tolerance = 1e-10 [default]
Rescue Bad Newton Solve = true [default]

Line Search ->
Method = "More’-Thuente"
More’-Thuente ->
Curvature Condition = 1 [default]
Default Step = 1 [default]
Interval Width = 1e-15 [default]
Max Iters = 20 [default]
Maximum Step = 1e+06 [default]
Minimum Step = 1e-12 [default]
Optimize Slope Calculation = false [default]
Recovery Step = 1 [default]
Recovery Step Type = "Constant" [default]
Sufficient Decrease = 0.0001 [default]
Sufficient Decrease Condition = "Armijo-Goldstein" [default]

Output ->
Total Number of Failed Line Searches = 0 [unused]
Total Number of Line Search Calls = 3 [unused]
Total Number of Line Search Inner Iterations = 0 [unused]
Total Number of Non-trivial Line Searches = 0 [unused]

Nonlinear Solver = "Line Search Based"

78

Output ->
2-Norm of Residual = 2.88e-05 [unused]
Nonlinear Iterations = 3 [unused]

Printing ->
MyPID = 0 [default]
Output Information = 2
Output Precision = 3 [default]
Output Processor = 0 [default]

Computed solution :
Epetra::Vector

MyPID GID Value
0 0 0.786
0 1 0.618

Exact solution :
Epetra::Vector

MyPID GID Value
0 0 0.786
0 1 0.618

9.5 A 2D Nonlinear PDE Problem

In this Section, we consider the solution of the following nonlinear PDE problem:{ −∆u + λeu = 0 in Ω = (0, 1) × (0, 1)
u = 0 on ∂Ω.

(7)

For the sake of simplicity, we use a finite difference scheme ona Cartesian gri, with constant
mesh sizes hx and hy. Using standard procedures, the discrete equation at node (i, j) reads

−ui−1,j + 2ui,j − ui+1,j

h2
x

+
−ui,j−1 + 2ui,j − ui,j+1

h2
y

− λeui,j = 0.

In example ${TRILINOS HOME}/doc/tutorial/nox/ex2.cpp, we build the
Jacobian matrix as an Epetra CrsMatrix, and we use NOX to solve problem (7) for a given
value of λ. The example shows how to use NOX for more complex cases. The code defines
a class, here called PDEProblem, which contains two main methods: One to compute F (x)
for a given x, and the other to update the entries of the Jacobian matrix. The class contains
all the problem definitions (here, the number of nodes along the x-axis and the y-axis and
the value of λ). In more complex cases, a similar class may have enough information to

79

compute, for instance, the entries of J using a finite-element approximation of the PDE
problem.

The interface to NOX, here called SimpleProblemInterface, accepts a PDEProblem as
a constructor,

SimpleProblemInterface Interface(&Problem);

Once a NOX::Epetra:Interface object has been defined, the procedure is almost identical to
that of the previous Section.

9.6 Jacobian-free Methods

In Section 9.5, the entries of the Jacobian matrix have been explicitly coded. FOr more
complex discretization schemes, it is not always possible nor convenient to compute the
exact entries of J . For those cases, NOX can automatically build Jacobian matrices based
on finite difference approximation, that is,

Ji,j =
Fi(u + hjej) − Fi(x)

hj
,

where ej is the j-unity vector. Sophisticated schemes are provided by NOX, to reduce the
number of function evaluations.

9.7 Concluding Remarks

The documentation of NOX can be found in [13].

A library of continuation classes, called LOCA [14, 16], is included in the NOX dis-
tribution. LOCA is a generic continuation and bifurcation analysis package, designed for
large-scalr applications.The algorithms are designed with minimal interface requirements
over that needed for a Newton method to read an equilibrium solution. LOCA is built upon
the NOX package. LOCA provided functionalities for single parameter continuation and
multiple continuation. Also, LOCA provides a stepper class that repeatedly class the NOX
nonlinear solver to compute points along a continuation curve. We will not cover LOCAL
in this tutorial. The interested reader is referred to the LOCA documentation.

80

10 TriUtils

Triutils is a collection of various utilities, that can help development and testing. Mainly,
triutils contains functions or classes to generate matrices in various formats (MSR, VBR,
Epetra), to read matrices (in HB or COO format), to convert matrices from one format to
another, and to process the command line. Programs using triutils should include the file
Trilinos_Util.h.

In this Chapter, we will present:

• How to read a matrix (and possibly right-hand side and solution vectors) from an
Harwell/Boeing file format (in Section 10.1);

• How to retrive a parameter specified on the command line (in Section 10.2).

10.1 Reading a HB problem

It is possible to read matrix, solution and right-hand side, from a file written in the Har-
well/Boeing format. This is done in
${TRILINOS HOME}/doc/tutorial/triutils/ex1.cpp. The key instructions
are the following.

First, we define pointers to Epetra Vector and Epetra Matrix objects:

// Pointers because of Trilinos_Util_ReadHb2Epetra
Epetra_Map * readMap;
Epetra_CrsMatrix * readA;
Epetra_Vector * readx;
Epetra_Vector * readb;
Epetra_Vector * readxexact;

The HB problem is read with the instruction

Trilinos_Util_ReadHb2Epetra(FileName, Comm, readMap, readA, readx,
readb, readxexact);

Here, Comm is an Epetra SerialComm or Epetra MpiComm object, and FileName an
array of character containing the name of the HB file.

81

This creates an Epetra Matrix and two Epetra Vectors, with all the elements assigned
to processor zero. This is because the HB file does not contain any information about the
distribution of the elements to the processors. Should the user need to solve the linear
problem in parallel, thus he has to redistributed readA. In this case, the first step is to
specify a map. For instance, we can use a linear map:

int NumGlobalElements = readMap->NumGlobalElements();
Epetra_Map map(NumGlobalElements,0,Comm);

and create and exporter to distribute read-in matrix and vectors:

Epetra_Export exporter(*readMap, map);
Epetra_CrsMatrix A(Copy, map, 0);
Epetra_Vector x(map);
Epetra_Vector b(map);
Epetra_Vector xexact(map);
// this is the data distribution phase
x.Export(*readx, exporter, Add);
b.Export(*readb, exporter, Add);
xexact.Export(*readxexact, exporter, Add);
A.Export(*readA, exporter, Add);

Finally, we can destroy the objects used to store the non-distributed HB problem:

delete readA;
delete readx;
delete readb;
delete readxexact;
delete readMap;

and solve the distributed linear system with the method of choice.

10.2 ShellOptions

ShellOptions is a class to manage the input arguments and shell variables. With this class,
it is easy to handle input line arguments and shell variables. For instance, the user can write

82

$./ex2.exe -nx 10 -tol 1e-6 -solver=cg

and then easily retrieve the value of nx, tol, and solver.

A simple code using this class is as follows:

int main(int argc, char *argv[])
{

ShellOptions Args(argc,argv);
int nx = Args.GetIntOption("-nx", 123);
int ny = Args.GetIntOption("-ny", 145);
double tol = Args.GetDoubleOption("-tol", 1e-12);
string solver = Args.GetIntOption("-solver");

cout << "nx = " << nx << endl;
cout << "ny = " << ny << " (default value)" << endl;
cout << "tol = " << tol << endl;
cout << "solver = " << solver << endl;

return 0;
}

Each line option can have a value or not. For options with a value, the user can specify
this values as follows. Let -tolerance be the name of the option and 1e-12 its value.
Both choices are valid:

• -tolerance 1e-12 (with one or more spaces)

• -tolerance=1e-12 (with = sign and no spaces)

Option names must begin with one or more dashes (‘-’). Each option cannot have more
than one value.

To use this class, the user has to build the database using the argc,argv input argu-
ments. Then, to retrieve the option value, the user has to use one of the following functions:
GetIntOption, GetDoubleOption, and GetStringOption.

If option name is not found in the database, a value of 0, 0.0 or an empty string is
returned. If needed, the user can also specify a default value to return when the option name

83

is not found in the database. Method HaveOption can be used to query the database for
an option.

File ${TRILINOS HOME}/doc/tutorial/triutils/ex2.cpp gives an ex-
ample of the usage of this class.

84

References

[1] Free Software Foundation. Autoconf Home Page.
http://www.gnu.org/software/autoconf.

[2] Free Software Foundation. Automake Home Page.
http://www.gnu.org/software/automake.

[3] Free Software Foundation. Libtool Home Page. http://www.gnu.org/software/libtool.

[4] M. A. Heroux. IFPACK User Guide, 1.0 edition, 2001.

[5] M. A. Heroux. Epetra Reference Manual, 2.0 edition, 2002.
http://software.sandia.gov/trilinos/packages/epetra/doxygen/latex/EpetraReferenceManual.pdf.

[6] M. A. Heroux. IFPACK Reference Manual, 2.0 edition, 2003.
http://software.sandia.gov/trilinos/packages/ifpack/doxygen/latex/IfpackReferenceManual.pdf.

[7] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, An-
drew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan
Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia Na-
tional Laboratories, 2003.

[8] Michael A. Heroux. AztecOO Users Guide. Technical Report SAND2003-XXXX,
Sandia National Laboratories, 2003.

[9] Michael A. Heroux, Robert J. Hoekstra, and Alan Williams. Epetra Users Guide.
Technical Report SAND2003-XXX, Sandia National Laboratories, 2003.

[10] Michael A. Heroux and James M. Willenbring. Trilinos Users Guide. Technical
Report SAND2003-2952, Sandia National Laboratories, 2003.

[11] Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers
Guide. Technical Report SAND2003-1898, Sandia National Laboratories, 2003.

[12] Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers
Guide Part II: ASCI Software Quality Engineering Practices Version 1.0. Technical
Report SAND2003-1899, Sandia National Laboratories, 2003.

[13] Tamara G. Kolda and Roger P. Pawlowski. Nox home page.
http://software.sandia.gov/nox.

85

[14] A. G. Salinger, N. M. Bou-Rabee, R. P. Pawlowski, E. D. Wilkes, E. A. Burroughs,
R. B. Lehoucq, and L. A. Romero. LOCA: A library of continuation algorithms -
Theroy and implementation manual. Technical report, Sandia National Laboratories,
Albuquerque, New Mexico 87185, 2001. SAND 2002-0396.

[15] A. G Salinger, K. D. Devine, G. L. Hennigan, H. K. Moffat, S. A Hutchinson, and
J. N. Shadid. MPSalsa: A finite element computer program for reacting flow problems
part 2 - user’s guide. Technical Report SAND96–2331, Sandia National Laboratories,
1996.

[16] A. G. Salinger, R. B. Lehoucq, R. P. Pawlowski, and J. N. Shadid. Computational
bifurcation and stability studies of the 8:1 thermal cavity problem. Internat. J. Numer.
Meth. Fluids, 40(8):1059–1073, 2002.

[17] John N. Shadid, Harry K. Moffat, Scott A. Hutchinson, Gary L. Hennigan, Karen D.
Devine, and Andrew G. Salinger. MPSalsa: A finite element computer program for
reacting flow problems part 1 - theoretical development. Technical Report SAND95–
2752, Sandia National Laboratories, 1995.

[18] C. Tong and R. Tuminaro. ML2.0 Smoothed Aggregation User’s Guide. Technical
Report SAND2001-8028, Sandia National Laboratories, Albq, NM, 2000.

[19] R. Tuminaro and C. Tong. Parallel smoothed aggregation multigrid: Aggregation
strategies on massively parallel machines. In J. Donnelley, editor, SuperComputing
2000 Proceedings, 2000.

[20] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Shadid. Official
Aztec User’s Guide, Version 2.1. Sandia National Laboratories, Albuquerque, NM
87185, 1999.

[21] Ray S. Tuminaro and Jonathan Hu. Ml home page. http://www.cs.sandia.gov/ tumi-
naro/ML Description.html.

86

Distribution list:

Internal Distribution:

1 MS 0316 G. L Hennigan, 9233
1 MS 0316 R. Hooper, 9233
1 MS 0316 R. J. Hoekstra, 9233
1 MS 0316 R. P. Pawlowski, 9233
1 MS 0316 S. A. Hutchinson, 9233
1 MS 0316 S. J. Plimpton, 9212
1 MS 0316 W. F. Spotz, 9233
1 MS 0819 A. C. Robinson, 9231
1 MS 0819 M. A. Christon, 9231
1 MS 0826 A. B. Williams, 8961
1 MS 0826 J. R. Stewart, 9143
1 MS 0827 H. C. Edwards, 9143
1 MS 0827 P. A. Sackinger, 9113
1 MS 0828 C. C. Ober, 9233
1 MS 0834 H. K. Moffat, 9114
1 MS 0834 M. M. Hopkins, 9114
1 MS 0834 R. P. Schunk, 9114
1 MS 0834 R. R. Rao, 9114
1 MS 0835 A. A. Lorber, 9141
1 MS 0835 K. H. Pierson, 9142
1 MS 0835 S. R. Subia, 9141
1 MS 0835 S. W. Bova, 9141
1 MS 0847 B. G. van Bloemen Waanders, 9211
1 MS 0847 C. R. Dohrmann, 9124
1 MS 0847 G. M. Reese, 9142
1 MS 0847 M. S. Eldred, 9211
1 MS 1110 D. E. Womble, 9214
1 MS 1110 D. M. Day, 9214
1 MS 1110 H. K. Thornquist, 9214
1 MS 1110 J. M. Willenbring, 9214
10 MS 1110 M. A. Heroux , 9214
10 MS 1110 M. Sala , 9214
1 MS 1110 R. A. Bartlett, 9214
1 MS 1110 R. B. Lehoucq, 9214
1 MS 1110 R. Heaphy, 9215
1 MS 1111 A. G. Salinger, 9233
1 MS 1111 C. A. Phillips, 9233
1 MS 1111 E. R. Keiter, 9233
1 MS 1111 E. T. Phipps, 9233
1 MS 1111 J. N. Shadid, 9233

1 MS 1111 K. D. Devine, 9215
1 MS 1152 J. D. Kotulski, 1642
1 MS 1166 C. R. Drumm, 15345
1 MS 9217 J. J. Hu, 9214
1 MS 9217 K. R. Long, 8962
1 MS 9217 P. T. Boggs, 8962
1 MS 9217 R. S. Tuminaro, 9214
1 MS 9217 T. Kolda, 8962
1 MS 9217 V. E. Howle, 8962
1 MS 9217 P. D. Hough, 8962
1 MS 9915 A. J. Rothfuss, 8961
1 MS 9915 N. M. Nachtigal, 8961

1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616

External distribution:

Ken Stanley
322 W. College St.
Oberlin OH 44074

Matthias Heinkenschloss
Department of Computational and Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Dan Sorenson
Department of Computational and Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Yousef Saad
Department of Computer Science and Engineering
University of Minnesota,
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455

Kris Kampshoff
Department of Computer Science and Engineering
University of Minnesota,
EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455

Eric de Sturler
2312 Digital Computer Laboratory, MC-258
University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, IL 61801-2987

Jason Cross
Box 429
St. John's University
Collegeville, MN 56321

Paul Sexton
Box 1560
St. John's University
Collegeville, MN 56321

Mike Phenow
PO Box 1392
St. John's University
Collegeville, MN 56321

Tim Davis, Assoc. Prof.
Room E338 CSE Building
P.O. Box 116120
University of Florida-6120
Gainesville, FL 32611-6120

Padma Raghavan
Department of Computer Science and Engineering
308 Pond Laboratory
The Pennsylvania State University
University Park, PA 16802-6106

Xiaoye Li
Lawrence Berkeley Lab
50F-1650
1 Cyclotron Rd
Berkeley, CA 94720

Richard Barrett
Los Alamos National Laboratory
Mail Stop B272
Los Alamos, NM 87545

Victor Eijkhout
Department of Computer Science,
203 Claxton Complex, 1122 Volunteer Boulevard,
University of Tennessee at Knoxville,
Knoxville TN 37996, USA

Jack Dongarra
Computer Science Department
1122 Volunteer Blvd
Knoxville, TN 37996-3450

David Keyes
Appl Phys & Appl Math
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY, 10027

Lois Curfman McInnes
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Barry Smith
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Paul Hovland
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Jeffrey J. Derby
CEMS Department, U. of MN
421 Washington Ave SE
Minneaplolis, MN 55455-0132

Carol Woodward
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Box 808, L-561
Livermore, CA 94551

Craig Douglas
325 McVey Hall - CCS
Lexington, KY 40506-0045

Juan Meza
Department Head, High Performance Computing Research
Lawrence Berkeley National Laboratory
Mail Stop 50B-2239
Berkeley, CA 9472

C.T. Kelley
Department of Mathematics, Box 8205
Center for Research in Scientific Computation
North Carolina State University
Raleigh, NC 27695-8205

Chuck Romine
Program Manager, Applied Mathematics
U.S. Department of Energy
1000 Independence Ave., SW
Washington, DC 20585-1290

Prof. Luca Formaggia
Mathematics Department
"F. Brioschi" Politecnico di Milano
Piazza L. da Vinci 32, 20133 MILANO, Italy

Prof. Alfio Quarteroni
IACS-CMCS
EPFL
CH-1015 Lausanne (VD) Switzerland

