
SIAM J. APPL. MATH. c© 2012 Society for Industrial and Applied Mathematics
Vol. 72, No. 1, pp. 464–487
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Abstract. We describe an approach to nonlocal, nonlinear advection in one dimension that
extends the usual pointwise concepts to account for nonlocal contributions to the flux. The spatially
nonlocal operators we consider do not involve derivatives. Instead, the spatial operator involves an
integral that, in a distributional sense, reduces to a conventional nonlinear advective operator. In
particular, we examine a nonlocal inviscid Burgers equation, which gives a basic form with which to
characterize properties associated with well-posedness, and to examine numerical results for specific
cases. We describe the connection to a nonlocal viscous regularization, which mimics the viscous
Burgers equation in an appropriate limit. We present numerical results that compare the behavior
of the nonlocal Burgers formulation to the standard local case. The developments presented in
this paper form the preliminary building blocks upon which to build a theory of nonlocal advection
phenomena consistent within the peridynamic theory of continuum mechanics.
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1. Introduction. This paper describes an approach to nonlocal, nonlinear ad-
vection in one dimension. This development extends the usual pointwise concepts
to account for nonlocal contributions to the flux. We postulate a scalar, nonlocal
nonlinear advection equation with conventional nonlinear advection div f(u) replaced
by

(1.1)

∫
R

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy ,

where the kernel φo is an odd translation invariant function and u, ψ are scalar-
valued mappings over R. A lemma presented in section 4 explains that the above
nonlocal, nonlinear advection is equivalent to conventional nonlinear advection in a
distributional sense. As a first step, ψ(u) ≡ u and ψ(u) ≡ u2/2 lead to nonlocal,
linear advection and an inviscid Burgers equation, respectively. We show in section
6 that the choice of kernel function φo can regularize the solution of the nonlocal
inviscid Burgers equation such that a shock will not develop.
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Our nonlocal approach to advection is motivated by the nonlocal interaction pos-
tulated by Silling [34]. Peridynamics is a nonlocal continuum theory that has been
developed and successfully applied to critical phenomena such as material failure; see
[36] for a recent review. As an illustration of the relevancy of our nonlocal approach,
a linear peridynamic model for an infinite one-dimensional bar [37] can be written as

(1.2) utt(x, t) =

∫
R

(
u(y, t)− u(x, t)

)
φε(y − x) dy + b(x, t) ,

where u = u(x, t) denotes the displacement and φε = φε(z) is an even kernel function
reflecting the material properties. In peridynamics, φε is taken to be a function
supported in a spherical neighborhood with a radius ε (the peridynamic horizon) to
account for the nonlocal interactions. We will demonstrate in section 4.5 that (1.2)
can be rewritten as a system of two first-order in time nonlocal equations—in direct
analogy to the system of first-order advection equations associated with the second-
order linear wave equation.

The model (1.1) serves as a fundamental building block for the future study of
more general second-order nonlocal nonlinear systems. Thus, instead of the usual
second-order in time peridynamic equation corresponding to, say, elastic waves, we
consider a first-order in time, nonlocal, nonlinear advection equation in this paper.
Our ultimate goal is to develop a consistent approach to nonlocal conservation laws
that is congruent with the existing peridynamics framework.

This paper is structured as follows. We review the local one-dimensional advection
equation in section 2. Section 3 contains a brief review of previous approaches to
nonlocal advection, which are to be contrasted to the new approach presented in
section 4. This section also discusses the notion of a nonlocal flux and its relation to
the conventional flux; regularization of the nonlocal, nonlinear conservation law (4.1);
the special case of linear advection; and a derivation that the linear one-dimensional
peridynamic equation can be written as two linear advection equations. A basic,
conservative, numerical method (and corresponding linear stability analysis) for (4.1)
is developed in section 5. A discussion of a new nonlocal Burgers equation in given in
section 6, including results explaining when the nonlocal, nonlinear advection equation
is well-posed, and numerical results for specific cases. We summarize our contribution
in section 7.

2. The local advection equation. The concept of advection and the use of
advection equations are pervasive in applied mathematics and computational physics.
The fundamental representation of this concept is contained in a balance equation
between the time rate-of-change of some quantity u and the corresponding spatial
divergence of some function f—the flux function—of that same quantity:

(2.1) ut + div f(u) = 0 .

This equation follows from standard balance arguments over a fixed domain for dif-
ferentiable fields. We assume that there is no external source or sink, so that the
right-hand side of (2.1) is identically zero. While this concept extends to higher di-
mensions, we consider exclusively the one-dimensional case, for which this equation
reduces to

(2.2) ut + fx(u) = 0 or ut + f ′(u)ux = 0 ,

where the second equality holds for f differentiable in u and u differentiable in x. We
restrict our attention to convex flux functions so that f ′′ ≥ 0.



466 Q. DU, J. R. KAMM, R. B. LEHOUCQ, AND M. L. PARKS

In the simplest case, the flux function is proportional to the field itself, f(u) = c u,
for some c ∈ R, which leads to the linear one-way wave equation,

(2.3) ut + c ux = 0 .

This equation possesses the traveling wave solution, u(x, t) = g(x− ct), where g(x) =
u(x, t = 0) is the initial condition; for c > 0, this represents uniform translation of the
initial wave profile to the right at constant speed c. The simplest nonlinear case is
given by a flux function quadratic in u, f(u) = u2/2, yielding the well-known inviscid
Burgers equation,

(2.4) ut +
(
u2/2

)
x
= 0 or ut + u ux = 0 ,

where, again, the second form holds for u differentiable in x. This equation is an
elementary yet powerful model for many shock phenomena, as it has a nonlinear
convex flux function, leads to the development of shocks in finite time for smooth-
but-nontrivial initial conditions, and forms a basis for exploring fundamental concepts
such as entropy solutions. Moreover, both the linear advection equation and Burg-
ers equation are valuable test cases with which to evaluate numerical schemes for
hyperbolic conservation laws.

3. Previous approaches to nonlocal advection. Implicit in the discussion
so far has been the notion of locality, i.e., that all expressions depend exclusively
on the point under evaluation. Specifically, these equations describe behavior that
is governed by point-values of the state u, its derivatives ut and ux, and the flux
function f .

In contrast, there exist physical theories in which values of some quantity at a
point are influenced by values of the field in a neighborhood of that point. Such
theories are generically referred to as “nonlocal.” A noteworthy example is the field
of nonlocal continuum mechanics, which has a significant history; see, e.g., the work
of Eringen [15] and references therein. Intrinsic to these nonlocal theories is the
concept that the state at a particular point is related to values in some set of points
whose extent is bounded away from zero. This influence is represented as an integral
over the appropriate domain of some function of state values, modulated by a kernel
function. One instance of such a nonlocal continuum theory is the peridynamic theory
introduced by Silling [34]. Peridynamic theory is based on a uniform description
encompassing both smooth and discontinuous (e.g., fracture) behavior.

Examination of nonlocal continuum theories leads one to consider the implica-
tions of such nonlocality for advection. The literature contains several instances of
what can be broadly termed “nonlocal advection” (also referred to as “nonlocal con-
vection”). Below is a limited discussion of some of the published models related to
nonlocal advection, many of which examine nonlocal forms of the Burgers equation.
For consistency, we denote the independent variable as u = u(x, t), with time t and
single spatial variable x.

Nonlocal advection through nonlocal wave speed. Logan [28] considers a
straightforward extension of (2.3) on a finite domain in which the local wave speed c
is generalized to a nonlocal wave speed, related to the value of u over a fixed domain
Ω, so that the governing equation becomes ut +

( ∫
ΩG(u) dy

)
ux = 0, where G is a

known (specified) function of u. Logan analyzes this initial-boundary-value problem
by the method of characteristics for various functions G.
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Nonlocalization through integral operators. This corresponds to a nonlo-
cality introduced for the flux function in the conventional advection equation (2.1).
For example, for the purpose of modeling sedimentation, Betancourt et al. [7] postu-
late a nonlinear, nonlocal flux function given by an integral operator with a radial,
nonnegative kernel of compact support.

Several papers introduce nonlocality through the Hilbert transform of the flux
function, defined as H[u] := (1/π)−

∫∞
−∞ dy u(y)/(x − y) , where the integral is inter-

preted in the principal value sense. Baker, Li, and Morlet [5] consider the following
locally regularized forms for nonlocal advection, motivated as models for vortex sheet
dynamics:

ut +
(
H (u)

)
x
= ε uxx ,(3.1a)

ut −H(u)ux = ε uxx .(3.1b)

The expression (3.1a) uses the (local) divergence operator on the (nonlocal) flux func-
tion H[u]; alternatively, (3.1b) is closer to Logan’s approach, with a nonlocal effective
wave speed given by H[u], but with nonzero right-hand side. An equation similar to
the inviscid form of these equations was considered by Castro and Córdoba [9], who
examine existence, finite time blow-up, and ill-posedness issues. Parker [32] considers
similar equations with an integral-based flux, leading naturally to a discussion of the
local versus a nonlocal form of Burgers equation.

Nonlocalization through fractional differential operators. In some stud-
ies, the local advection operator is maintained, and nonlocality is introduced through
a fractional derivative operator that modifies the diffusive term in the viscous Burg-
ers equation; see, e.g., Droniou [12] and Alibaud and coworkers [2, 3]. Alternatively,
others introduce nonlocality through the advective flux and retain or generalize the
diffusive term of the viscous Burgers equation; see, e.g., Ervin, Heuer, and Roop [16],
Biler and Woyczyński [8], Woyczyński [38], and Mǐskinis [29].

Standard, local flux, nonlocalized regularization. Although this approach
differs from the manner in which we introduce nonlocality, there is a significant lit-
erature for equations with a nonlocal regularization term. For example, Fellner and
Schmeiser [17] consider the equation ut + u ux = φx[u], where φ[u] is expressed as the
nonlocal operator φ[u] =

∫
R
G(x−y)u(y) dy; this approach is generalized and analyzed

in different ways by Liu [27], Chmaj [10], Duan, Fellner, and Zhu [14], Rohde [33],
Kissling and Rohde [22], and Kissling, LeFloch, and Rohde [21].

Nonlocalization through generalized flux, no regularization. Focusing on
an equation more evocative of the approach we pursue, Benzoni-Gavage [6] considers
questions of existence and stability for the generalized Burgers equation, ut+Fx[u] =
0, where the Fourier transform of the operator F is given by F̂ [u](k) =

∫∞
−∞ Λ(k −

l)û(k − l)û(l) dl. Al̀ı, Hunter, and Parker [1] provide the motivation for and describe
properties of the kernel Λ(k, l) for a generalized Burgers equation of this form.

Nonlocal convection-diffusion equation. Perhaps the approach most closely
aligned with the nonlocal advective approach introduced in the next section is that
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considered by Ignat and Rossi [20]. They analyze the nonlocal evolution equation

(3.2)

ut(x, t) =

∫
Rd

(
u(y, t)− u(x, t)

)
J(y − x) dy

+

∫
Rd

(
h
(
u
)
(y, t)− h

(
u
)
(x, t)

)
K(y − x) dy , (x, t) ∈ R

d × (0,∞) ,

u(x, 0) = g(x) , x ∈ R
d ,

where J(y − x) = J(x − y) and K are nonnegative, normalized radial functions sat-
isfying

∫
Rd J =

∫
Rd K = 1, and h is a nondecreasing, locally Lipschitz, continuous

function such that h(0) = 0. In addition to proving existence, uniqueness, and con-
tinuous dependence with respect to the initial condition upon the solution, Ignat and
Rossi demonstrate that, under an appropriate scaling, the solution of the rescaled
(3.2) converges to the solution of vt = Δv + b · ∇h(v), v(x, 0) = g(x).

4. Nonlocal advection: A new approach. The approaches of the previous
section impose specific assumptions on the nonlocality, either in the advective operator
or in the regularization term. Motivated by the peridynamic theory, we consider a
generalization of nonlinear advection given by (1.1) and posit the following integro-
differential equation:

(4.1)
ut(x, t) +

∫
R

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy = 0 , (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) , x ∈ R ,

where, again, the kernel φo is an odd function. We claim that (4.1) represents a
nonlocal, nonlinear conservation law for advection.

The following lemma connects terms in the nonlocal advection equation (4.1)
and nonlocal convection-diffusion equation (4.10) with their classical counterparts.
In particular, this lemma can be used to show that the nonlocal and conventional
conservation laws are equivalent in the sense of distributions.

Lemma 4.1. Assume that ψ, u, and ux are smooth functions and decay sufficiently
fast to zero as their arguments approach infinity, and let φo be the negative derivative
of the Dirac delta distribution. Then,∫

R

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy = ψx

(
u(x, t)

)
, (x, t) ∈ R× (0,∞) .

Further assume that uxx is continuous, and let φe be the second derivative of the Dirac
delta distribution. Then,∫

R

(
u(y, t)− u(x, t)

)
φe(y − x) dy = ψxx

(
u(x, t)

)
, (x, t) ∈ R× (0,∞) .

Proof. The proof follows from the definition of the Dirac delta distribution and
its derivatives.

The following subsections discuss the notion of a nonlocal flux, its relation to
the conventional flux, regularization of the nonlocal, nonlinear conservation law (4.1),
the special case of linear advection, and a derivation that the linear one-dimensional
peridynamic equation can be written as two linear advection equations.
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4.1. Nonlocal flux. We now show how (4.1) corresponds to a conservation law
and identify the flux. The result

(4.2)

∫ b

a

∫ b

a

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy dx = 0

is a consequence of the antisymmetry of the integrand. Using this result and inte-
grating the first equation of (4.1) over the interval (a, b) yields

(4.3)
d

dt

∫ b

a

u(x, t) dx+

∫ b

a

∫
R\(a,b)

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy dx = 0 .

Extending the interval (a, b) to the entire line and using the asymmetry of this inte-
grand with respect to x and y gives the result that

(4.4)
d

dt

∫
R

u(x, t) dx = 0 ,

demonstrating that
∫
R
u(x, t) dx =

∫
R
g(x) dx is a conserved quantity for the nonlocal

conservation law (4.1).
More generally, let I1 and I2 be two disjoint sets. Define

(4.5) Ψ
(I1, I2, t) := ∫

I1

∫
I2

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy dx .

With this notation, we rewrite (4.3) as

(4.6)
d

dt

∫ b

a

u(x, t) dx+Ψ
(
(a, b),R \ (a, b), t) = 0 .

It follows immediately from the antisymmetry of the integrand that

Ψ
(I1, I2, t)+Ψ

(I2, I1, t) = 0 ,(4.7a)

Ψ
(I1, I1, t) = 0 .(4.7b)

We therefore identify Ψ
(I1, I2, t) with the flux of u from I1 into I2. Evidently (4.7)

states that the flux is equal and opposite among disjoint intervals, and there is no
flux from an interval into itself. This is in contrast to the conventional notion of the
flux where a unit normal on an orientable surface separating the volumes I1 and I2
carries the direction for the flux. We conclude that (4.6) is an instance of an abstract
balance law—the production of an extensive quantity inside of an interval is balanced
by the flux of the same quantity out of the same interval. Both the production and
flux are additive and biadditive, respectively, over disjoint intervals; e.g.,

d

dt

∫
I1

u(x, t) dx +
d

dt

∫
I2

u(x, t) dx =
d

dt

∫
I1∪I2

u(x, t) dx

= −Ψ
(I1 ∪ I2,R \ (I1 ∪ I2

)
, t
)

= Ψ
(
R \ (I1 ∪ I2

)
, I1, t

)
+Ψ

(
R \ (I1 ∪ I2

)
, I2, t

)
= Ψ

(
R \ I1, I1, t

)
+Ψ

(
R \ I2, I2, t

)
,

where the last equality follows by adding 0 as given by (4.7a). These additive and
biadditive properties for the production and flux of a quantity can be shown to be a
necessary and sufficient condition for the antisymmetry of the integrand of Ψ given
in (4.5); see [13] for details.
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4.2. Conventional flux. The following result demonstrates that the flux given
by (4.5) may be expressed in a more conventional form as the flux out of an interval
through its endpoints.

Lemma 4.2. If the map

(x, y) → ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x)

is integrable, then

Ψ
(
(a, b),R \ (a, b), t) = F+

u

(
a, b, t

)−F−
u

(
a, b, t

)
,

where

F−
u (a, b, t) =

∫ b−a

0

∫ ∞

0

ψ

(
u(a+ y, t) + u(a− z, t)

2

)
φo(z + y) dz dy ,(4.8a)

F+
u (a, b, t) =

∫ b−a

0

∫ ∞

0

ψ

(
u(b+ y, t) + u(b− z, t)

2

)
φo(z − y) dy dz ,(4.8b)

each denoting the flux emanating from the interval (a, b) in the negative and positive
directions, respectively.

Proof. Biadditivity of the flux Ψ implies that

Ψ
(
(a, b),R \ (a, b), t) = Ψ

(
(a, b), (−∞, a), t

)
+Ψ

(
(a, b), (b,∞), t

)
.

The change of variables s := a+ y, r := a− z and r := b+ y, s := b− z on the fluxes
on the right-hand side of the equality, respectively, yields

Ψ
(
(a, b), (−∞, a), t

)
= −

∫ b−a

0

∫ ∞

0

ψ

(
u(a+ y, t) + u(a− z, t)

2

)
φo(z + y) dz dy ,

Ψ
(
(a, b), (b,∞), t

)
=

∫ b−a

0

∫ ∞

0

ψ

(
u(b+ y, t) + u(b− z, t)

2

)
φo(z + y) dy dz ,

after changing back to the original integration variables x and y. The conclusion now
follows by recalling that φo in Ψ

(
(a, b), (−∞, a), t

)
is an odd function, and that the

map (x, y) → ψ(1/2(u(y, t) + u(x, t)))φo(y− x) is integrable; e.g., see [4, p. 421].
More generally, the equation for the flux from an interval (x−x1, x) to an interval

(x, x + x2) through the point x takes the form∫ x1

0

∫ x2

0

ψ

(
u(x+ y, t) + u(x− z, t)

2

)
φo(y + z) dy dz .(4.9)

This expression can be construed as a sum of all interactions carried by ψ between two
points such that their interaction passes through x, and it is determined collectively
by the values of u at points to the left of x (identified by z) and the values of u at
points to the right of x (identified by y).1 This stands in contrast to the conventional
setting, where the flux through x depends only upon the value of u and its derivative
at x, as in (2.2).

1A similar interpretation within the context of the balance of linear momentum is given in [24,
sect. 6].
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Further insight into the relationship between (4.1) and (4.9) can be gained from
an application of Noll’s Lemma I [31, 25] to scalar functions in one dimension. Namely,
given continuously differentiable u, there exists a scalar function q,

q(x) =

∫
R

∫
R

ψ

(
u(x+ y, t) + u(x− z, t)

2

)
φo(y + z) dy dz,

such that

d

dx
q(x) =

∫
R

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy .

This demonstrates that (4.1) can be written in the form (2.2) using the flux q for a
continuously differentiable u.

4.3. Regularization of nonlocal advection. The regularization of inviscid
advection equations (such as (2.2)) plays an important role in the associated physics
and mathematics. By regularization, we refer to the modification of the otherwise-zero
right-hand side of the conservation law with terms (often of a distinctly dissipative or
dispersive nature) that are small relative to the scale of the solution, except in regions
of steep gradients. We propose a regularization of the (inviscid) nonlocal advection
equation (4.1) that is a variation on the convection-diffusion equation introduced by
Ignat and Rossi (see section 3) of the form
(4.10)

ut(x, t) +

∫
R

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy = εLu(x, t), (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) , x ∈ R ,

where

(4.11) Lu(x, t) :=
∫
R

(
u(y, t)− u(x, t)

)
φe(y − x) dy , (x, t) ∈ R× (0,∞) ,

with the kernel φe an even function. Assuming φo, φe as in Lemma 4.1, (4.10) reduces
to the viscous conservation law

ut + ψx(u) = ε uxx .

In the local case, shock waves are typically idealized as inviscid structures, but it is
only through an appropriate regularization of the governing conservation equations,
associated with vanishing viscosity, that shock formation and propagation can be
properly understood. The form of the equation given in (4.10) comprises a nonlocal
approach to a regularized (viscous) nonlocal conservation law consistent with the
(inviscid) nonlocal advection equation given in (4.1). See [19] for a more involved
discussion on the relationship between L and the Laplacian Δ.

Integrating the first equation of (4.10) over the interval I implies the balance law

(4.12)
d

dt

∫
I
u(x, t) dx+Φ

(I,R \ I, t) = 0 ,

where

Φ
(I,R \ I, t) := Ψ

(I,R \ I, t)− ε

∫
I

∫
R\I

(
u(y, t)− u(x, t)

)
φe(y − x) dy dx ,
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and Ψ is the flux given by (4.5). The balance law (4.12) states that the production of
an extensive quantity inside the interval I is balanced by the flux Φ out of the same
interval. Evidently the balance law (4.12) augments the advective law (4.6) with
diffusive flux. It is in this sense that the viscous conservation law (4.10) is a variation
on the convection-diffusion equation introduced by Ignat and Rossi (see section 3)
because their equation is in nonconservative form. Equation (4.7) and the ensuing
discussion explain that it is crucial that the kernel in the flux integrand be an odd
function.

4.4. Linear advection. Consider the important special case when ψ(v) = v.
The conservation law (4.1) then becomes

(4.13)
ut(x, t) +

∫
R

u(y, t)φo(y − x) dy = 0 , (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) , x ∈ R ,

where the integral involving u(x) vanishes identically because φo is an odd function.
Let

(4.14) û(ξ, t) :=
1√
2π

∫
R

u(x, t) e−iξx dx, u(x, t) :=
1√
2π

∫
R

û(ξ, t) eiξx dξ

denote the Fourier and inverse Fourier transforms, respectively, of the function u.
Then the Fourier transform of the nonlocal evolution equation (4.13) is

(4.15)
ût(ξ, t) =

√
2π φ̂o(ξ) û(ξ, t) ,

û(ξ, 0) = ĝ(ξ) .

Because φo is an odd function,

φ̂o(ξ) = i Im
(
φ̂(ξ)

)
=

i√
2π

∫
R

φo(x) sin(ξx) dx := i
1√
2π
β(ξ) .

Therefore, the solution to (4.15) is given by

(4.16) û(ξ, t) = eiβ(ξ)t ĝ(ξ) .

The inverse Fourier transform of (4.16) implies that

u(x, t) =

∫
R

G(x, y, t) g(y) dy ,(4.17a)

where

G(x, y, t) :=
1

2π

∫
R

eiβ(ξ)t eiξ(x−y) dξ .(4.17b)

If we consider the choice φo(y − x) = −∂δ(y − x)/∂y, then β(ξ) = −ξ, so that

(4.18) G(x, y, t) =
1

2π

∫
R

eiξ(x−y−t) dξ = δ(x− y − t) ,

and, therefore, u(x, t) = g(x− t). Thus, the solution to the nonlocal linear conserva-
tion law (4.13) is the same as that for the conventional linear conservation law in a
distributional sense.
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For the nonlocal linear conservation law (4.13), there are traveling wave solutions
of the form2 u(x, t) = eik(x−c(k)t), where the wave speed c = c(k) is determined from
(4.15) by

(4.19) c(k)k = β(k) =

∫
R

φo(x) sin(kx) dx .

For the specific choice of φo = φPo χ(−ε,ε) given by3

(4.20) φPo (y − x) = φPo (s) =
1

ε2

⎧⎨
⎩

1 , s > 0 ,
0 , s = 0 ,
−1 , s < 0 ,

where χ(−ε,ε) is the characteristic function on (−ε, ε), we obtain

c(k) =
sin2(kε/2)

(kε/2)2
,

a particular case of the dispersion relation. Clearly, we have that c(k) ≤ 1, which
implies that the wave speed in this nonlocal case is always less than or equal to that
of the linear local advection equation. This is reflected in the numerical simulations;
see Figures 4 and 7.

4.5. Linear peridynamic equation. We now demonstrate that the peridy-
namic model for an infinite one-dimensional bar [37] given by (1.2) can be rewritten
as a system of two first-order in time nonlocal equations—in direct analogy to the
system of first-order advection equations associated with the second-order linear wave
equation.

Let φε denote an even function with zero mean such that φε approaches the second
derivative of the Dirac delta distribution as ε → 0. Lemma 4.1 demonstrates that
such a φe implies that the peridynamic equation (1.2) is equivalent to the classical
second-order wave equation in a distributional sense. For simplicity, we set b(x, t) = 0.
Now let

φε(x) :=

∫
R

ρε(z)ρε(x− z) dz

for an odd function ρε; that is, φε is the self-convolution of ρε. Note that
∫
R
φε dx = 0

so that φε denotes an even function with zero mean. Define the function

(4.21a) vt(x, t) :=

∫
R

u(z, t)ρε(x− z) dz =

∫
R

(
u(z, t) + u(x, t)

)
ρε(x− z) dz

as the nonlocal analogue of the conventional splitting vt = ux. The linear peridynamic

2This is equivalent to the usual plane wave form u(x, t) = exp(ikx − ω(k)t), where the angular
frequency is given by the wave speed times the wave number, i.e., ω(k) = c(k) k.

3The prefactor 1/ε2 has been chosen such that φP
o (y−x) converges in distribution to the negative

derivative of the Dirac delta distribution as ε → 0.
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equation (1.2) and the relation (4.21a) imply that

∂

∂t
ut(x, t) = utt(x, t) =

∫
R

(
u(y, t)− u(x, t)

)
φε(x− y) dy

=

∫
R

u(y, t)

(∫
R

ρε(z)ρε(x− y − z) dz

)
dy

=

∫
R

(∫
R

u(y, t)ρε(x− z − y) dy

)
ρε(z) dz

=

∫
R

vt(x− z, t)ρε(z) dz =
∂

∂t

∫
R

v(x − z, t)ρε(z) dz ,

where the second equality follows from φε having zero mean. A compatible set of
initial conditions implies

(4.21b) ut(x, t) =

∫
R

v(z, t)ρε(x− z) dz =

∫
R

(
v(z, t) + v(x, t)

)
ρε(x − z) dz ,

which is the nonlocal analogue of the conventional splitting ut = vx.
A change of variables with w± = u ± v leads to a nonlocal linear advection

equation for w of the form

(4.22) w±
t (x, t) = ±

∫
R

w±(y, t)ρε(x− y) dy =

∫
R

(
w±(x, t)±w±(y, t)

)
ρε(x− y) dy .

The results of section 4.5 explain that

w±(x, t) = ei(x±c(ξ)t)ξ

are waves traveling to the right and left, respectively, and are the nonlocal analogue
of waves eiξ(x±t) for the conventional wave equation wtt = wxx.

5. A numerical scheme for the nonlocal advection equation. In this sec-
tion we discuss a conservative numerical scheme and the associated numerical fluxes
for the nonlocal equations that we consider as analogues of classical conservative nu-
merical schemes [23, 26].

The preponderance of peridynamic constitutive models utilize a φo that is com-
pactly supported on intervals of length 2ε, so that the flux Ψ takes the form

(5.1) Ψ
(
(a, b),R \ (a, b), t) = ∫ b

a

∫ x+ε

x−ε

ψ

(
u(y, t) + u(x, t)

2

)
φo(y − x) dy dx .

In the following we overload our notation and write

Ψ
(
a, b, t

)
= Ψ

(
(a, b),R \ (a, b), t) .

5.1. A nonlocal Lax–Friedrichs method. As shown in Figure 1, we divide
a one-dimensional domain into cells (xi−1/2, xi+1/2), each of width Δx. Suppose also
that time is divided into discrete intervals (tn, tn+1). A numerical scheme is conser-
vative if the change in the total conserved quantity in cell (xi−1/2, xi+1/2) in time
interval (tn, tn+1) is equal to the net flux through the boundaries of (xi−1/2, xi+1/2)
in the time interval (tn, tn+1). Utilizing (5.1), we express this relation mathematically
as ∫ x+1/2

x−1/2

(
u(x, tn+1)− u(x, tn)

)
dx = −

∫ tn+1

tn
Ψ(xi−1/2, xi+1/2, t) dt ,
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xi xi+1xi 1 xi 1/2 xi+1/2

tn
tn+1

Fig. 1. Finite volume discretization of a one-dimensional domain, showing cell [xi−1/2, xi+1/2].

which we rewrite as

(5.2) un+1
i = uni − Δt

Δx
Ψ

n
(xi−1/2, xi+1/2, t

n) ,

where

uni ≈ 1

Δx

∫ x+1/2

x−1/2

u(x, tn) dx

and

Ψ
n
(xi−1/2, xi+1/2, t) ≈ 1

Δt

∫ tn+1

tn
Ψ(xi−1/2, xi+1/2, t) dt .

In analogy with the classical Lax–Friedrichs method [23], we propose a nonlocal Lax–
Friedrichs method:

(5.3) un+1
i =

uni−1 + uni+1

2
− Δt

Δx
Ψ(xi−1/2, xi+1/2, t

n).

This method is conservative, as it can be cast in the form of (5.2) by identifying

Ψ(xi−1/2, xi+1/2, t
n) := Ψ(xi−1/2, xi+1/2, t

n)− 1

2

Δx

Δt

(
uni+1 − 2uni + uni−1

)
.

The rightmost term is immediately identified as introducing an artificial viscosity. See
[23, sect. 14.2] for more details. For the remainder of the paper, we follow standard
practice and drop the bar notation.

5.2. A discrete flux. We develop a quadrature for the nonlocal flux under the
assumption that the numerical solution uh approximating u is a piecewise constant
function within each cell, and there is no continuity of uh across adjoining cells. For
ease of exposition, we assume that Δx < ε. Of course, higher-order approximations
to the function within each cell could be used, but we consider the simplest case in
the illustrative examples that follow. Distinct from the classical case, all the fluxes
we will consider are nonlocal.

To describe a quadrature for (5.1) we make the simplifying assumption that
ε/Δx ≡ r is a positive integer. That is, we assume that there are r ∈ Z

+ com-
putational cells in the interaction region of extent ε. This is not a limiting constraint
but simplifies the presentation. Since we assume the discretized solution to be piece-
wise constant over the cells, we can write an exact quadrature for (5.1) as

(5.4) Ψ
(
xi−1/2, xi+1/2, t

)
=

r∑
j=−r

ωjψ

(
uh(xi+j , t) + uh(xi, t)

2

)
φo(xi+j −xi)(Δx)2 ,
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a

b+ x

x

y

b+

b

y=x

y=x+

y=x

a

b
x

a + x

a

Fig. 2. A graphical depiction of (5.4), a discretization of (5.1) using a piecewise constant
solution over each cell. The domain of integration is shown in grey. Cell (a, b) × (a, b) is zero by
(4.2). Only half of the cells farthest from (a, b) in y are integrated, as expressed in (5.5).

where

ωj =

⎧⎨
⎩

0 , j = 0 ,
1 , j = ±1, . . . ,±(r − 1) ,

1/2 , j = −r, r .
(5.5)

Equation (4.2) explains why ω0 = 0. As for ω±j = 1/2, consider the limits of integra-
tion of the flux (5.1) through the points xi+1/2 and xi−1/2. The domain of integration
shown in Figure 2 illustrates why ω±j = 1/2.

5.3. Linear stability analysis. We consider classic von Neumann stability
analysis for the nonlocal linear advection equation, where ψ(u) = u in (5.2). For
simplicity, we assume the odd function φPo given in (4.20). The numerical method of
(5.3) may then be written as

un+1
i =

uni+1 + uni−1

2
− 1

ε2
Δt

Δx

⎛
⎝ r∑

j=1

(
uni+j + uni

2

)
(Δx)2 −

r∑
j=1

(
uni−j + uni

2

)
(Δx)2

⎞
⎠ .

We substitute the ansatz uni = λneikjΔx, where xj = jΔx, into this expression. This
gives, after considerable simplification, that

(5.6) |λ|2 = cos2(kΔx) +

(
ΔtΔx

ε2

)2
⎛
⎝ r∑

j=1

sin(jkΔx)

⎞
⎠

2

.

We now derive sufficiency relations for a CFL condition, that is, conditions en-
suring |λ| ≤ 1. First, we notice that for any j ≥ 1 we have the simple elementary
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inequality | sin(jkΔx)| ≤ j| sin(kΔx)|, and so

⎛
⎝ r∑

j=1

sin(jkΔx)

⎞
⎠

2

≤ | sin(kΔx)|2
⎛
⎝ r∑

j=1

j

⎞
⎠

2

=

(
r(r + 1)

2

)2

| sin(kΔx)|2 .

With our assumption that ε = rΔx for a positive integer r, we obtain

(5.7) Δt ≤ r

(r + 1)
2Δx,

which, substituted into (5.6), gives |λ| ≤ 1. The choice of r = 1 corresponds to the
Lax–Friedrichs scheme for conventional linear advection (with unit wave speed) for
which the above restriction on the time step and the conventional restriction are the
same.

For the nonlinear nonlocal problem, applying a linear stability analysis to the
linearized equation based on the frozen coefficient technique modifies the time-step
restriction (5.7) to

(5.8) Δt ≤ r

c(r + 1)
2Δx,

where c is a suitable upper bound of the local wave speed.
Consequently, for given values of ε and Δx, one can always choose a time step

so that the scheme in (5.3) is linearly stable. Note that a direct implementation of
(5.2) with Ψ replaced by Ψ is just a nonlocal analogue of the classical forward-time
center-space (FTCS) discretization [23], which is well known to be unconditionally
unstable.

6. Nonlocal Burgers equation. This section presents analytical and numerical
results for a special case of the nonlocal conservation law (4.1), where ψ(u) = u2/2.
This leads to the nonlocal Burgers equation:

(6.1)
ut(x, t) + Bu(x, t) = 0 , (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) , x ∈ R ,

where the kernel is compactly supported and

(6.2) Bu(x, t) := 1

2

∫
R

(
u(y, t) + u(x, t)

2

)2

φ(x− y) dy.

Lemma 4.1 demonstrates that for the special choice of the negative derivative of the
Dirac delta distribution for the kernel we have

1

2

∫ x+ε

x−ε

(
u(y, t) + u(x, t)

2

)2(
− ∂

∂y
δ(y − x)

)
dy =

1

2

∂

∂x

(
u(x, t)

)2
.

That is, the nonlocal Burgers equation (6.1) and the conventional inviscid Burgers
equation, respectively, are equivalent in the sense of distributions for such a singu-
lar kernel. We therefore anticipate shock formation when the kernel is sufficiently
singular.

We will now show, however, that for integrable kernels, i.e., kernels of the form
φo(y−x) with φo an odd function in L1, the solutions of the nonlocal Burgers equation
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do not develop a shock; i.e., they do not develop a discontinuity in finite time for a
finite valued u. Before presenting the main result, Theorem 6.3, we present two
needed technical results. The first result characterizes the regularity of the nonlocal
quadratic spatial operator, while the second result provides an energy estimate.

Lemma 6.1. For φ ∈ L1(R) an odd function, B is a bounded operator from H1(R)
to H1(R) and satisfies, for any u ∈ H1(R),

‖Bu‖L2 ≤ 1

2
‖φ‖L1‖u‖2L4 ≤ 1

2
‖φ‖L1‖u‖L∞‖u‖L2 ,(6.3a) ∥∥∥∥ d

dx
Bu

∥∥∥∥
L2

≤ ‖φ‖L1‖u‖L∞

∥∥∥∥ d

dx
u

∥∥∥∥
L2

.(6.3b)

B is also locally Lipschitz in H1(R), or more precisely, there exists a constant C > 0
such that, for any u, v ∈ H1(R),

‖Bu− Bv‖H1 ≤ C
(‖u‖H1 + ‖v‖H1

)‖φ‖L1‖u− v‖H1 .(6.3c)

Proof. Given u and v in H1(R), by the Sobolev embedding theorem, we have
‖u‖L∞ ≤ C‖u‖H1 and ‖v‖L∞(R) ≤ C‖v‖H1(R) for some constant C > 0. Thus, by
Young’s and the Cauchy–Schwarz inequalities, we arrive at (6.3a). Similarly, it is
straightforward to see that

(6.4)
d

dx
Bu(x) = 1

4

∫
R

(
u(y) + u(x)

)(
u′(y) + u′(x)

)
φ(x− y) dy .

We may again use Young’s and the Cauchy–Schwarz inequalities to obtain (6.3b).
Next, let M = max

(‖u‖L∞, ‖v‖L∞
)
, which gives

|Bu(x)− Bv(x)| ≤ M

2

∫
R

(|u(y)− v(y)|+ |u(x)− v(x)|)|φ(x − y)| dy .

By Young’s and Hölder’s inequalities, we get

|Bu(x)− Bv(x)|L2 ≤M‖u− v‖L2‖φ‖L1 ,

and, moreover,

d

dx
Bu(x)− d

dx
Bv(x) = 1

4

∫
R

[(
u(y) + u(x)

)(
u′(x) + u′(y)

)
− (

v(y) + v(x)
)(
v′(x) + v′(y)

)]
φ(x − y) dy .

After comparing, term by term, the difference in the integrand on the right-hand
side and using the Sobolev and Young’s inequalities, we obtain∣∣∣∣ ddxBu(x)− d

dx
Bv(x)

∣∣∣∣ ≤ 1

2

∫
R

[CM |u′(y)− v′(y)|+ ‖u− v‖L∞ |v′(y)|] |φ(x − y)|dy

+
1

4
[CM |u′(x) − v′(x)| + |u′(x)|‖u− v‖L∞ ] ‖φ‖L1 ,

which implies∥∥∥∥ d

dx
Bu(x)− d

dx
Bv(x)

∥∥∥∥
L2

≤ (3CM + C ‖u‖H1 + C ‖v‖H1)‖φ‖L1‖u− v‖H1 .
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Since M ≤ Cmax(‖u‖H1 , ‖v‖H1), the inequality (6.3c) is established, thus leading to
the local Lipschitz property of B.

The next results explains that while
∫
R
u(x, t)dx is a conserved quantity, the

spatial L2 norm of the solution in time for the nonlocal Burgers equation (e.g., the
energy of the system) is not conserved, in contrast to the energy associated with the
conventional Burgers equation.

Lemma 6.2. Given a time interval (0, T ) and φ ∈ L1(R) an odd function, let
u = u(x, t) be a solution of the nonlocal Burgers equation (6.1). Then

d

dt

∫
R

u2(x, t)dx =
1

4

∫
R

∫
R

u2(y, t)u(x, t)φ(x − y) dy dx .(6.5a)

Thus, if K = ‖u‖L∞(R×(0,T )) is finite, then for any t ∈ (0, T ),

‖u(·, t)‖L2 ≤ ‖g‖L2e‖φ‖L1Kt/4 ,(6.5b) ∥∥∥∥ ∂

∂x
u(·, t)

∥∥∥∥
L2

≤
∥∥∥∥dgdx

∥∥∥∥
L2

e‖φ‖L1Kt.(6.5c)

Proof. By multiplying (6.1) by u, (6.5a) follows from a change of variables in the
integration (or rather, from the nonlocal Green’s identity [13]).

Young’s inequality implies

1

4

∫
R

∫
R

u2(y, t)u(x, t)φ(x − y) dy ≤ 1

4
‖u(·, t)‖2L2‖u(·, t)‖L∞‖φ‖L1 ,

establishing (6.5b) by integrating in time.
Similarly, by differentiating (6.1) in space and multiplying with ∂

∂xu(x, t), we get

d

dt

∫
R

(
∂u

∂x
(x, t)

)2

dx =
1

2

∫
R

∫
R

ux(x, t)(u(y, t)+u(x, t))(ux(y, t)+ux(x, t))φ(x−y) dy .

We may thus combine Young’s inequality with the Cauchy–Schwarz and Hölder’s
inequalities to get (6.5c).

Lemmas 6.1–6.2 lead to our main result, the well-posedness of the nonlocal Burg-
ers equation.

Theorem 6.3. Assume that φ ∈ L1(−ε, ε), g ∈ H1(R); then there exists a time
interval (0, T ) such that the nonlocal Burgers equation (6.1) has a unique solution in
C(0, T ;H1(R)) ∩H1(R× (0, T )). Moreover, let (0, T ) be the maximum time interval
on which such a solution exists; then lim supt→T ‖u(·, t)‖L∞ = ∞.

Proof. The proof follows standard steps such as those for the case of existence of
solutions for abstract ODEs in Banach space, and we only outline the key ingredients.
First, by integrating (6.1) in time, we may define a Picard iteration that, for a suf-
ficiently small time interval (depending on the spatial H1 norm of the initial data),
gives a contraction in L2(0, T ;H1(R)) due to the local boundedness and the local Lip-
schitz continuity of the operator B. This leads to the local existence and uniqueness
of the solution; one may obtain further regularity from the nonlocal equation. In the
second step, based on the a priori estimates given in Lemma 6.2, we see that for a time
interval (0, T ), as long as lim supt→T ‖u(·, t)‖L∞ remains finite, we have the uniform
boundedness of the solution in L∞(0, T ;H1(R)), and thus the solution can be further
extended to a larger interval. Combining these steps, we get the global well-posedness
result and the possible blow-up criterion as stated in the theorem.
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Table 6.1

The set of numerical experiments run for the Δx-refinement study and the ε-refinement study.
The domain has a characteristic length L with N − 1 cells each of width Δx. The smallest and
largest values of ε constitute 0.4% of L and 10% of L, respectively.

Δx-refinement study ε-refinement study
N 2000 4000 8000 16000 32000 10000 10000 10000 10000
Δx 3.14e-3 1.57e-3 7.86e-4 3.93e-4 1.97e-4 6.28e-4 6.28e-4 6.28e-4 6.28e-4
ε 5.02e-2 5.02e-2 5.02e-2 5.02e-2 5.02e-2 1.26e-2 6.28e-2 1.57e-1 3.14e-1

ε/L 1.60e-2 1.60e-2 1.60e-2 1.60e-2 1.59e-2 4.00e-3 2.00e-2 5.00e-2 1.00e-1
ε/Δx 16 32 64 128 256 20 100 250 500

The above theorem implies in particular that if we start with smooth data, while
the solution remains pointwise bounded in space and time, the solution maintains H1

regularity in space (further regularity may also be derived) so that there is no shock
formation for the nonlocal Burgers equation (6.1) with an L1 kernel φ. Moreover, if
H1 regularity of the solution is lost, then this can only occur because of finite time
blow-up.

Theorem 6.3 leads to the striking conclusion that for an L1 kernel φo, the solution
of the nonlocal Burgers equation (6.1) maintainsH1 regularity without the addition of
any viscous regularization. The regularization introduced in section 4.3 is unnecessary
for L1 kernel φo. For instance, selecting φo ≡ φPo χ(−ε,ε), where φPo is given by
(4.20), implies that the solution of the nonlocal Burgers equation possesses spatial
H1 regularity for all positive ε. But since the limit of φPo χ(−ε,ε) as ε → 0 is defined
only in the sense of distributions, the conclusion of Theorem 6.3 is invalid for the
limit. This behavior is consistent with the local Burgers equation where the solution
is known to not possess spatial H1 regularity.

6.1. Numerical experiments. Motivated by basic results for the local inviscid
Burgers equation, we consider numerical simulations for two simple initial conditions.
The first of these is used to illustrate shock formation from continuous initial condi-
tions in the local inviscid Burgers equation, and the second shows how an initially
discontinuous profile evolves.

A nondimensional measure of the nonlocality is given by the ratio of the nonlocal
radius ε to a characteristic length L of the problem under consideration. For the
problems considered, the latter value is assigned to the half-length of the interval.
Another nondimensional measure of the nonlocality of the discrete problem is given
by ε/Δx, the number of mesh cells within the interaction radius. We thus conduct
both a Δx-refinement study, holding ε fixed, and an ε-refinement study, holding Δx
fixed. In the Δx-refinement study, the solution is computed with a fixed nonlocal
interaction distance ε ≈ 0.05 on five meshes, with N = 2000, 4000, 8000, 16000, and
32000 nodes, respectively. In the ε-refinement study, the solution is computed with
N = 10000 nodes for nonlocal interaction distances defined by ε/Δx = 20, 100, 250,
and 500, respectively. The nondimensionalized measures of nonlocality for these prob-
lem parameters are shown in Table 6.1. The smallest and largest values of ε constitute
0.4% and 10% of L, respectively.

All of the following numerical experiments are performed using the nonlocal Lax–
Friedrichs scheme (5.3) on the interval [−π, π) with periodic boundary conditions. As
we mainly consider cases where r � 1, the right-hand side of (5.8) is well approxi-
mated by 2Δx/c. Consequently, we utilize for all simulations a mesh refinement path
where Δt/Δx = 2/c is fixed, with c = 80.

To explore the effect of the kernel function φo(y − x), three different kernel func-
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tions are chosen, and all studies described in Table 6.1 are run for each kernel. The
first kernel we consider is (4.20), which is perhaps the simplest odd kernel function
possible, where all points interact equally. The second kernel function we consider is
the C∞ derivative of a Gaussian:

φCo (y, x) =
1

α

y − x√
2πσ3

e(y−x)2/2σ2

, α = erf(2
√
2)− 4 e−8

√
2

π
,(6.6)

where we choose σ = ε/4. The final kernel function we consider is the singular function

φSa (y, x) =
1

2ε

1

y − x
.(6.7)

This kernel function is the odd analogue to the even micromodulus function described
in [35], the most commonly used micromodulus function in peridynamics. As with
the kernel (4.20), the functions (6.6) and (6.7) contain prefactors so that these kernels
converge to the negative of the first derivative of the Dirac delta distribution as σ → 0
and ε→ 0, respectively, in the sense of distributions. Unlike the other kernel functions
considered, (6.7) is not in L1. Further, the numerical scheme used does not integrate
the singularity (cf. Figure 2).

6.2. Nonlocal Burgers shock formation. The following problem leads to
shock formation from a smooth initial state for the local inviscid Burgers equation, as
discussed by Muraki [30]; see also Crighton [11], who alludes to Fubini Ghiron [18].
Consider the following initial conditions:

(6.8) u(x, 0) = − sinx , −π ≤ x ≤ π, u(x± 2kπ, t) = u(x, t) ∀k ∈ Z
+ .

The nonlocal Lax–Friedrichs scheme is run for these initial conditions to a final sim-
ulation time t = 2.0. Computed results are presented in Figures 3, 4, and 5.

Figures 3(a), (b) show the outcome of the mesh refinement study, holding the
horizon ε constant (ε ≈ 0.05, ε/L ≈ 1.59× 10−2). The classical Lax–Friedrichs
method, whose solution for this initial condition can be seen in Figure 4(a), has a
well-established shock front at x = 0 at this time (and for which shock formation
begins at t = 1). The nonlocal solutions are qualitatively similar to an N -wave, with
additional oscillations appearing around x = 0. The horizon refinement findings are
shown in Figures 3(c), (d), where more oscillations are observed for larger values of ε.
In this case the smallest (“least nonlocal”) horizon (ε ≈ 1.26×10−2, ε/L ≈ 4×10−3)
exhibits no oscillations, while the largest (“most nonlocal”) horizon (ε ≈ 3.14×10−1,
ε/L ≈ 0.1) exhibits pronounced oscillations. A study of the effect of different kernel
functions is given in Figure 4, which shows solutions generated by the three different
kernels on a relatively fine mesh (Δx ≈ 6.28×10−4, Δx/L ≈ 2×10−4), the top row
having the smallest horizon (ε ≈ 1.26×10−2, ε/L ≈ 4.00×10−3), and the bottom row
having the largest horizon (ε ≈ 3.14×10−1, ε/L ≈ 0.1). For comparison, the solu-
tion generated by the classical Lax–Friedrichs method for the local inviscid Burgers
equation (2.4) is also plotted. The wave speed of the classical model exceeds that of
the nonlocal model, as discussed in section 4.4. Figures 4(a), (b) show that for the
smallest horizon, results very close to the local Lax–Friedrichs result are produced,
while Figures 4(c), (d) show that solutions for the largest horizon are distinctly dif-
ferent from the local solution. Additionally, differences in the three kernel functions
are revealed only for larger horizons. We see in Figure 4(d) that the solution com-
puted using kernel (4.20), which is in a sense the “most nonlocal” kernel (weighting
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(a) Δx-refinement study, ε ≈ 5.02e-2. (b) Δx-refinement study, ε ≈ 5.02e-2.

(c) ε-refinement study, Δx ≈ 6.28e-4. (d) ε-refinement study, Δx ≈ 6.28e-4.

Fig. 3. Numerical results for initial condition (6.8), as described in section 6.2. The mesh
refinement study in (a),(b) and nonlocal horizon study in (c),(d) are based on the kernel (4.20).

all nonlocal interactions equally), is visually distinct from solutions computed using
the other two kernels, as it has a larger peak value and more oscillations near x = 0.
Figures 5(a), (b) show that the energy integral

∫ π

−π u
2(x, t) dx is not conserved. These

plots indicate that energy is strictly nonincreasing in time, as we expect from a stable
discretization, and also consistent with the dissipation associated with the artificial
viscosity introduced by the nonlocal Lax–Friedrichs scheme.

6.3. Nonlocal Burgers shock/rarefaction propagation. We also consider
a different initial condition given by the periodic “tophat” function:

(6.9) u(x, 0)=H(x+π/2)−H(x−π/2) ,−π < x < π , u(x±2kπ, t)=u(x, t) ∀k ∈ Z
+.

For these initial conditions, the local Burgers equation possesses an exact solution
consisting of a growing, linear rarefaction wave (on the left) together with a uniformly
propagating shock wave (on the right); these independent structures persist up to
t = 2π, when the leading edge of the rarefaction overtakes the shock.

We repeat the mesh and horizon refinement studies of the previous section. For
this initial condition, the nonlocal Lax–Friedrichs scheme is run to a final simulation
time t = 1.0. The mesh refinement and horizon refinement studies for the kernel
(4.20) and this initial condition are shown in Figure 6 and are qualitatively similar to
the previous test case, with increased oscillations seen for larger values of ε. Plots of
the energy are not reported for these initial conditions, as they are similar to those
in Figure 5.

A study of the effect of different kernel functions is given in Figure 7, which again
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(a) All φ, Δx ≈ 6.28e-4, ε ≈ 1.26e-2. (b) All φ, Δx ≈ 6.28e-4, ε ≈ 1.26e-2.

(c) All φ, Δx ≈ 6.28e-4, ε ≈ 3.14e-1. (d) All φ, Δx ≈ 6.28e-4, ε ≈ 3.14e-1.

Fig. 4. Numerical results for initial condition (6.8), as described in section 6.2. Results for all
three kernel functions are shown. Figures (a),(b) show the smallest value of ε used, and (c),(d) show
the largest value of ε used. The solution produced by the classical Lax–Friedrichs method applied
to the local inviscid Burgers equation is included for comparison. For small ε, all kernels display
results close to the classical result, but this is not the case for larger values of ε.

(a) Δx-refinement study, ε ≈ 5.02e-2. (b) ε-refinement study, Δx ≈ 6.28e-4.

Fig. 5. Plots of
∫ π
−π

u2(x, t) dx as a function of time, for the studies shown in Figure 3. Both
plots confirm that the energy is strictly nonincreasing.

shows the solutions generated by the three different kernels on a relatively fine mesh
(Δx ≈ 6.28×10−4, Δx/L ≈ 2×10−4) for both the smallest and largest values of
ε used in the horizon refinement study. For comparison, the solution generated by
the classical Lax–Friedrichs method for the local inviscid Burgers equation (2.4) is
again plotted. Figures 7(a), (b) show that for the smallest horizon, results very close
to the local Lax–Friedrichs result are produced, while Figures 7(c), (d) again show
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(a) Δx-refinement study, ε ≈ 5.02e-2. (b) Δx-refinement study, ε ≈ 5.02e-2.

(c) ε-refinement study, Δx ≈ 6.28e-4. (d) ε-refinement study, Δx ≈ 6.28e-4.

Fig. 6. Numerical results for initial condition (6.9), as described in section 6.3. The mesh
refinement study in (a),(b) and nonlocal horizon study in (c),(d) are based on the kernel (4.20).

nonlocal solutions distinctly different from the local solution. Again, differences in
the three kernel functions are revealed only for larger horizons. The nonlocal solution
component corresponding to the rarefaction wave (on the left) is qualitatively similar
to the local solution even for a large horizon, unlike the shock (on the right), where
the local and nonlocal solutions are manifestly different.

7. Summary. We have presented a new approach to nonlocal, nonlinear advec-
tion in one dimension. The motivation for this research is provided by the peridynamic
theory of continuum mechanics [36]. The development contained in this paper com-
prises the first steps toward formulation of a coherent mathematical approach for
nonlocal advective phenomena consistent with existing peridynamics theory. Using
integral operators, we proposed a nonlocal advection equation that we showed to be
equivalent to the corresponding local advection equation in the sense of distributions,
analyzed the specific case of nonlocal linear advection, and demonstrated that the
linear peridynamic equation can be written in terms of two nonlocal linear advective
equations. Moreover, we posited a nonlocal regularization that, likewise, reduces to
the usual local case in the sense of distributions. Our analysis suggested a general-
ized concept of a flux that applies, in one dimension, to disjoint intervals on the line.
We developed a simple conservative numerical method that was shown to be linearly
stable under the usual von Neumann analysis. We performed basic computational ex-
periments with this method on a nonlocal Burgers equation for initial conditions that
correspond, in the local case, to shock formation and shock/rarefaction propagation.
We also established the well-posedness of the nonlocal Burgers equation over finite
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(a) All φ, Δx ≈ 6.28e-4, ε ≈ 1.26e-2. (b) All φ, Δx ≈ 6.28e-4, ε ≈ 1.26e-2.

(c) All φ, Δx ≈ 6.28e-4, ε ≈ 3.14e-1. (d) All φ, Δx ≈ 6.28e-4, ε ≈ 3.14e-1.

Fig. 7. Numerical results for initial condition (6.9), as described in section 6.3. Results for all
three kernel functions are shown. Figures (a),(b) show the smallest value of ε used, and (c),(d) show
the largest value of ε used. The solution produced by the classical Lax–Friedrichs method applied
to the local inviscid Burgers equation is included for comparison. For small ε, all kernels display
results close to the classical result, but this is not the case for larger values of ε.

time intervals when the odd kernel associated with the nonlocal advective operator
is an element of L1. Two important conclusions are that a shock cannot develop in
finite time and that the resulting nonlocal Burgers equation naturally incorporates
regularization. The results of these calculations showed that dissipation on the coarser
meshes considered significantly damped the solution structure. For the parameters
considered, the effect of different nonlocal horizons, however, was slight, and, likewise,
the influence of different kernel functions was minor.

Our numerical results are dependent not only on the parameters and kernel func-
tions considered, but on the numerical scheme as well. In future work, we intend to
develop more sophisticated, less dissipative numerical methods with which to investi-
gate solution behavior, go beyond L1 kernels, and seek exact solutions so that we may
verify our numerical results. Additionally, it is natural to consider generalizations of
the one-dimensional conservation law (4.1), such as
(7.1)

ut(x, t)+

∫
Rd

ψ
(u(y, t)v(y, t) + u(x, t)v(x, t)

2

)
· φa(y,x) dy = 0 , (x, t) ∈ R

d×(0,∞) ,

u(x, 0) = g(x) , x ∈ R
d ,

where v is the velocity field, ψ is a vector-valued mapping, and the antisymmetric
vector kernel φa generalizes the kernel φo, which was previously assumed to be an
odd function.
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