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Chapter 1

Introduction and Motivation

Research on failure mechanisms (e.g. fatigue and fracture) of engineering components

often focuses on modeling complex, nonlinear response. The analysis by finite element

methods requires large-scale, very refined 3D solid models [19], which necessitate parallel

computation. Finite element methods for quasi-static and transient responses over longer

time scales generally adopt an implicit formulation. Together with a Newton scheme for the

nonlinear equations, such implicit formulations require the solution of large linear systems,

thousands of times, to accomplish a realistic analysis. The equations generally remain sym-

metric positive definite but become very ill-conditioned due to localized damage (cracks)

in the models. This leads to intolerably slow convergence of iterative methods. As a result,

sparse direct solvers dominate commercial finite element software [16]. However, rapid

advances in technology have caused a dramatic growth in the size of the linear systems to

be solved. The fill generated by direct methods makes the storage requirements for such

linear systems prohibitively expensive, and iterative solvers become the only viable option.

While much work has been done on improving iterative solver and preconditioner technol-

ogy for this class of problems, the primary focus has been on improving the convergence of

individual linear systems. Improvements designed to accelerate the solution of a sequence

of linear systems, taken as a whole, remain relatively unexplored. Herein, we develop en-

hancements for solvers and preconditioners that leverage work done solving previous linear
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systems to improve the convergence of subsequent systems.

One avenue to improve the convergence of linear solvers considers more intelligent

Krylov subspace methods. The standard, optimal iterative solver for symmetric positive

definite (SPD) systems, the preconditioned conjugate gradient method (PCG), may in prac-

tice fail to converge for very ill-conditioned problems. The convergence is delayed or fails

entirely due to a loss of orthogonality of the residual vectors in the PCG iteration and

hence a rapid recurrence of certain eigenvectors [49] caused by finite precision compu-

tation. Optimal solvers for non-symmetric problems, such as the generalized minimum

residual method (GMRES) [40], converge, but have much higher memory requirements,

and may incur a cost comparable to that of a direct method [24]. We seek robust and effi-

cient new Krylov methods capable of accelerating the convergence of a sequence of linear

systems.

In Chapter 2 we investigate restarted Krylov subspace methods that retain a carefully

chosen subspace between restarts in an effort to approximate the robustness of GMRES

with the efficiency of PCG. These methods exploit the often relatively slow change in the

linear systems from one timestep to the next by “recycling” Krylov subspace information

from previous linear systems to accelerate convergence. Although motivated by problems

in fracture mechanics, the solver techniques introduced here have proven effective for a

wide variety of problems. In Chapter 3 we analyze the convergence of GCRO-DR, a solver

introduced in Chapter 2 that recycles approximate invariant subspaces.

Improved preconditioners are also required to address the deficiencies of iterative solvers

for this very important problem class. Domain decomposition methods based on substruc-

turing have been applied successfully to many engineering problems. For the work of a

domain decomposition method to scale (nearly) linearly with the number of subdomains,

the method must employ some form of “coarse-space” preconditioner that employs ideas

motivated by multigrid-type methods [47]. The finite element tearing and interconnecting
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(FETI) [15, 16] method has the desirable property of showing scalability with respect to

both the mesh and subdomain sizes. This comes at the cost of an expensive subproblem,

as the inverse of a Schur complement matrix is required. We observe that the FETI method

generates a Karush-Kuhn-Tucker (KKT) system. In other fields requiring the solution of

KKT systems, it is more common to approximate inverses of Schur complements. In an

effort to amortize the cost of this expensive subproblem, a factorized Schur complement

matrix could be “recycled” for the next linear system, and used as an approximation to the

true Schur complement matrix for that linear system. In Chapter 4 we show new connec-

tions between preconditioners and solvers for KKT systems and the original FETI method.

These connections allow us to leverage existing work for KKT systems to create a frame-

work for the analysis of improvements to the FETI method. We will provide eigenvalues

bounds for FETI preconditioners, and develop a new FETI method that allows the use of

an approximate Schur complement. Further, we generate eigenvalue bounds showing the

potential impact on convergence caused by use of an approximate Schur complement.
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Chapter 2

Recycling Krylov Subspaces for
Sequences of Linear Systems

Many problems in engineering and physics require the solution of a large sequence of

linear systems. We can reduce the cost of solving subsequent systems in the sequence by

recycling information from previous systems. We consider two different approaches. For

several model problems, we demonstrate that we can reduce the iteration count required to

solve a linear system by a factor of two. We consider both Hermitian and non-Hermitian

problems, and present numerical experiments to illustrate the effects of subspace recycling.

2.1 Introduction

We consider the solution of a sequence of general linear systems

A(i)x(i) = b(i), i = 1,2, . . . , (2.1.1)

where the matrixA(i) ∈ Cn×n and right hand sideb(i) ∈ Cn change from one system to the

next, and the systems are typically not available simultaneously. Such sequences arise in

many problems, such as Newton or Broyden-type methods for solving nonlinear equations.

They also occur in modeling fatigue and fracture via finite element analysis. These analyses
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use dynamic loading, requiring many loading steps, and rely on implicit solvers [19]. Gen-

erally, several thousand loading increments are required to resolve the fracture progression.

The matrix and right hand side, at each loading step, depend on the previous solution, so

that only one linear system is available at a time. We are interested in retaining a subspace

determined while solving previous systems and use it to reduce the cost of solving the next

system. We refer to this process asKrylov subspace recycling.

For the Hermitian positive definite case, Rey and Risler have proposed to reduce the

effective condition number by retaining all converged Ritz vectors arising in a previous CG

iteration [34, 35, 36]. In general, this requires significant storage. Moreover, memory-wise,

they lose the advantage of a short recurrence, as they keep the full recurrence during the so-

lution of a single system. Since they focus on the finite element tearing and interconnecting

(FETI) method [16], it is less of a drawback, because the interface problem is small relative

to the overall problem, and it is common to use a full recurrence in FETI. The two Galerkin

projection methods developed by Chan and Ng [5] could also be used. These methods re-

quire all systems to be available simultaneously, or at least the right hand sides. Moreover,

they focus on situations where all the matrices are very close. However, for the problems

we target, the matrices change only slowly, but the incremental change over many steps can

be significant.

Solving a sequence of linear systems where the matrix is invariant is a special case

of (2.1.1). When all right hand sides are available simultaneously, block methods such

as block CG [32], block GMRES [52], and the family of block EN-like methods [53] are

often suitable. However, block methods do not generalize to the case (2.1.1). If only one

right hand side is available at a time, the method of Fischer [17], the deflated conjugate

gradient method (deflated CG) [39], or the hybrid method of Simoncini and Gallopoulos

[44] may be employed. Fischer’s method first looks for a solution in the space spanned by

the previous solution vectors in the sequence, which is only helpful if the solution vectors
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are correlated. In deflated CG, only a small number of the initial Lanczos vectors for every

system are used to update the approximate invariant subspace. This is efficient, both in

computation and memory use, but the convergence to an invariant subspace is slow. Hence,

the improvement in iterations is modest. The hybrid method of Simoncini and Gallopoulos

is most effective only when the right hand sides share common spectral information.

When solving (2.1.1), we should consider:

1. Which subspace should be recycled for the next system?

2. How should it be used?

We discuss two answers to the first question. One idea is to recycle an approximate

invariant subspace and use it for deflation. Clearly, reducing the effective condition num-

ber of a matrix may speed convergence. An alternative idea is to recycle a subspace that

minimizes the loss of orthogonality with the Krylov subspace from the previous system [9].

We elaborate on the latter choice in section 2.2.3.

We discuss three answers to the second question. We refer to these approaches as:

• augmentation,

• orthogonalization,

• preconditioning.

In an augmentation approach, we append additional vectors at the end of the Arnoldi re-

currence, in the manner of FGMRES, such that an Arnoldi-like relation is formed [41]. In

an orthogonalization approach, we first minimize the residual over the recycled subspace,

and then maintain orthogonality with the image of this space in the Arnoldi recurrence.

In a preconditioning approach, we construct preconditioners that shift eigenvalues [1, 14].

When using exactly invariant subspaces, an augmentation approach is superior to a precon-

ditioning approach [11]. Hence, we consider only the augmentation and orthogonalization

approaches.
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In section 2.2, we discuss several truncated or restarted linear solvers that use the ideas

above to reduce the total number of iterations for solving a sequence of linear systems.

We define acycleas the computation between truncations or restarts. Subspaces that are

useful to retain for a subsequent cycle when solving a single linear system may also be

useful for subsequent linear systems in a sequence, especially if the matrix does not change

significantly. Therefore, we consider linear solvers that retain a carefully selected subspace

after each cycle. Several such solvers have been proposed. We consider Morgan’s GMRES-

DR [31] and de Sturler’s GCROT [9], and modify GCROT to recycle subspaces between

linear systems. GMRES-DR cannot be modified to do this, so we introduce GCRO-DR, a

flexible variant of GMRES-DR capable of Krylov subspace recycling.

In section 2.3, we introduce several test problems, including both realistic problems

taken from engineering and physics, as well as a problem constructed explicitly for analysis

of subspace recycling. In section 2.4, we give the experimental results, which show that

recycling can be very beneficial. Conclusions and future work are given in section 2.5.

2.2 Truncated and Augmented Krylov Methods

Restarting GMRES [40] may lead to poor convergence and even stagnation. Therefore,

recent research has focused on truncated methods that improve convergence by retaining

a carefully selected subspace between cycles. A taxonomy of popular choices is given

in [11]. In this section, we discuss those choices and solvers implementing them. We

then investigate how those solvers might be modified to recycle subspaces between linear

systems.

Morgan’s GMRES-DR and GMRES-E [29] retain an approximately invariant subspace

between cycles. In particular, both methods focus on removing the eigenvalues of small-

est magnitude, and retain a subspace spanned by approximate eigenvectors associated with
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those eigenvalues. GMRES-E uses an augmentation approach, which was analyzed in

[41]. In contrast, GMRES-DR uses an orthogonalization approach. Despite these differ-

ences, GMRES-E and GMRES-DR generate the same Krylov subspace at the end of each

cycle if they retain the same harmonic Ritz vectors; see [29, 31]. Although GMRES-E

retains the same subspace between cycles as GMRES-DR, GMRES-E can be modified to

select any subspace, whereas GMRES-DR cannot. Thus, GMRES-E is suitable for Krylov

subspace recycling between systems, as in (2.1.1). GMRES-DR cannot be modified for

Krylov subspace recycling, even when the matrix does not change. We discuss GMRES-E

and GMRES-DR further in section 2.2.4. Because GMRES-DR cannot be used for Krylov

subspace recycling, we combine ideas from GCRO [8] and GMRES-DR to produce a new

linear solver, GCRO-DR. GCRO-DR is suitable for the solution of individual linear sys-

tems as well as sequences of them, and is more flexible than GMRES-DR. We discuss

GCRO-DR in section 2.2.5. In Chapter 3 we analyze the convergence of GCRO-DR.

Another strategy for subspace selection was proposed in [9] and was used for the

GCROT method, an extension of GCRO. We discuss this approach, and its modification

towards solving (2.1.1) in section 2.2.3.

We first review some definitions.

2.2.1 Definitions

In the following, we denote the range of a matrixVm ∈ Cn×m by R (Vm). The Arnoldi

recurrence in GMRES leads to the following relation, which we denote as the Arnoldi

relation.

AVm = Vm+1Hm, (2.2.1)
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whereVm ∈ Cn×m, andHm ∈ C(m+1)×m is upper Hessenberg. LetHm ∈ Cm×m denote the

first m rows ofHm.

For any subspaceS⊆ Cn, y∈ S is a Ritz vector ofA with Ritz valueθ if

Ay−θy⊥ w, ∀w∈ S. (2.2.2)

Frequently, we chooseS= K( j)(A, r), the jth Krylov subspace associated with the matrix

A and the starting vectorr. In this case the eigenvalues ofHm are the Ritz values ofA.

Ritz values tend to approximate the extremal eigenvalues ofA well, but can give poor

approximations to the interior eigenvalues. Likewise, the Ritz values ofA−1 tend to ap-

proximate the interior eigenvalues ofA. We define harmonic Ritz values as the Ritz values

of A−1 with respect to the spaceAS,

A−1ỹ− µ̃ỹ⊥ w ∀w∈ AS, (2.2.3)

where againS= K( j)(A, r), andỹ ∈ AS. We call θ̃ = 1/µ̃ a harmonic Ritz value. In this

case, we have approximated the eigenvalues ofA−1, but using a Krylov space generated

with A.

2.2.2 GMRES and GCR

We now review the linear solvers GMRES [40] and GCR [12], which form the basis for

the linear solvers we discuss later. The Arnoldi iteration is the core of GMRES. When

solvingAx= b with GMRES, we start with an initial guessx0 ∈Cn and compute the initial

residualr0 = b−Ax0. Let the first Arnoldi vector bev1 = r0/‖r0‖2. We proceed with

m Arnoldi iterations to form relation (2.2.1) withR (Vm) = K(m)(A, r0). Then, we solve

min‖c−Hmd‖2 for d ∈ Cm, wherec = ‖r0‖2e1. Finally, we form the new approximate

solution,xm = x0+Vmd. GMRES solves the least squares problemA(x0+Vmd)≈ r0 for d.
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So,rm⊥ AK(m)(A, r0).

The linear solver GCR is algebraically equivalent to GMRES, but requires more stor-

age, as it keeps separate bases forK(m)(A, r0) andAK(m)(A, r0). GCR maintains the matri-

cesUm,Cm∈ Cn×m, so that

R (Um) = K(m)(A, r0), (2.2.4)

AUm = Cm, (2.2.5)

CH
mCm = Im. (2.2.6)

We solve the minimization problemmin‖r0−AUmd‖2 for d ∈ Cm, and compute the solu-

tion asxm = x0 +Umd = x0 +UmCH
mr0, and residual asrm = r0−CmCH

mr0 ⊥ AK(m)(A, r0).

The relations (2.2.5)-(2.2.6) still hold ifR (Um) is not a Krylov space, allowing us to find

the minimum residual solution over any subspaceR (Um). In this case the method would

not be called GCR, but the relations (2.2.5)-(2.2.6) are still valid.

2.2.3 GCROT

GCROT is a truncated minimum residual Krylov method that retains a subspace between

cycles such that the loss of orthogonality with respect to the truncated space is minimized.

This process is calledoptimal truncation.

We discuss the idea of optimal truncation in the context of restarted GMRES, although

it can be described in more general terms, and independently of any specific linear solver

[9, 25]. Consider solvingAx = b with initial residualr0. The idea is to determine, after

each cycle, a subspace to retain for the next cycle in order to maintain good convergence

after the restart. At the end of the first cycle of GMRES, starting withv1 = r0/‖r0‖2, we

have the Arnoldi relation (2.2.1).

Let r1 denote the residual vector afterm iterations. Consider some iterations < m.
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After s iterations of GMRES, we have the Arnoldi relation

AVs = Vs+1Hs. (2.2.7)

Let r denote the residual afters iterations. Now suppose that we had restarted after iter-

ation s, with initial residualr, and madem− s iterations, yielding residualr2. The op-

timal residual afterm iterations isr1. At best, we may have‖r2‖2 = ‖r1‖2, but in gen-

eral, ‖r2‖2 > ‖r1‖2, because GMRES restarted after iterations ignores orthogonality to

the Krylov subspaceAK(s)(A, r0). The deviation from optimality incurred by restarting

after iterations is e= r2− r1, which we call theresidual error. The residual errore de-

pends on theprincipal angles[18, pp. 603–4] between the two subspacesAK(s)(A, r0) and

AK(m−s)(A, r). Optimal truncation involves selecting and retaining ak-dimensional sub-

space ofAK(s)(A, r0) such that the magnitude of the residual error‖e‖2 = ‖r1− r2‖2, is

minimized. The complement of that subspace is discarded. Since the Krylov space gener-

ated withr contained vectors close to the recycled subspace, this is likely to happen again

after restarting withr1. Therefore, we retain the selectedk-dimensional subspace for the

next cycle.

GCROT maintains matricesUk andCk satisfying the relations (2.2.5)-(2.2.6). The min-

imum residual solution overR (Uk) is known from the previous cycle. In the following

cycle, we carry out the Arnoldi recurrence while maintaining orthogonality toCk. This

corresponds to an Arnoldi recurrence with the operator(I −CkCH
k )A. Then we compute

the update to the solution as in GMRES, but we take the singularity of the operator into

account [8]. Hence, GCROT uses an orthogonality approach. The correction to the solu-

tion vector and other vectors selected via optimal truncation of the Krylov subspace are

appended toUk, and thenUk andCk are updated such that (2.2.5)-(2.2.6) again hold. At

the end of each cycle, only the matricesUk andCk are carried over to the next cycle. Each

cycle of GCROT requires approximatelym−k matrix-vector products and O(nm2 +nkm)
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other floating point operations. For details, see [9].

GCROT can be modified to solve (2.1.1) by carrying overUk from theith system to the

(i + 1)st system. After we solve theith systemA(i)x(i) = b(i) with GCROT, we have the

relationA(i)Uk = Ck. We must modifyUk andCk so that (2.2.5)-(2.2.6) hold with respect to

A(i+1), which we do as follows:

1: [Q,R] = reduced QR decomposition ofA(i+1)Uold
k

2: Cnew
k = Q

3: Unew
k = Uold

k R−1

Now, A(i+1)Unew
k = Cnew

k , and we can proceed with GCROT on the systemA(i+1)x(i+1) =

b(i+1). Note that in many cases computingA(i+1)Uold
k = Cold

k +∆A(i)Uold
k is muchcheaper

than k matrix-vector products, because∆A(i) is considerably sparser thanA(i) or has a

special structure. See our example problem in section 2.3.1. Moreover, even if we were to

computeA(i+1)Uold
k directly, this can be faster thank separate matrix-vector multiplications

[10]. So long asA(i+1) has not changed significantly fromA(i), the use ofUnew
k should

accelerate the solution of thei +1st linear system.

2.2.4 GMRES-DR and GMRES-E

GMRES-DR and GMRES-E rely on spectral or nearly invariant subspace information,

rather than orthogonality constraints. Removing or deflating certain eigenvalues can greatly

improve convergence. Based on this idea, Morgan has proposed the three linear solvers

GMRES-E, GMRES-IR [30] and GMRES-DR, that aim to deflate the eigenvalues of small-

est magnitude. However, these solvers can be changed to deflate other eigenvalues. We

consider only GMRES-E and GMRES-DR.

GMRES-E (GMRES with eigenvectors) appends harmonic Ritz vectors after the Arnoldi
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recurrence, resulting in the Arnoldi-like relation

A[Vm−k Ỹk] = VmHm, (2.2.8)

wherev1 = r0/‖r0‖, Ỹk = [ỹ1, ỹ2, . . . , ỹk] contains thek harmonic Ritz vectors from the pre-

vious cycle, and where the lastk columns ofVm are formed by orthogonalizing the vectors

Aỹi , for i = 1. . .k, against the previous columns ofVm. For the first cycle, the harmonic Ritz

vectors can be computed fromHm in (2.2.1). It can be shown that the augmented subspace

span{r0,Ar0,A
2r0, . . . ,A

m−k−1r0, ỹ1, ỹ2, . . . , ỹk} (2.2.9)

is itself a Krylov subspace, but with another starting vector [30].

GMRES-DR is algebraically equivalent to GMRES-E at the end of each cycle if both

select the same harmonic Ritz vectors. Because (2.2.9) is a Krylov subspace, it means that

the harmonic Ritz vectors can go first, rather than being appended at the end. It was shown

in [30] that the subspace

span{ỹ1, ỹ2, . . . , ỹk,Aỹi ,A
2ỹi , . . . ,A

m−kỹi} (2.2.10)

is identical to subspace (2.2.9) for1≤ i ≤ k. In one cycle, GMRES-DR first orthogonalizes

Ỹk, giving ϒ̃k. Then GMRES-DR carries out the Arnoldi recurrence form− k iterations

while maintaining orthogonality tõϒk. This gives the Arnoldi-like relation

A[ϒ̃k Vm−k] = [ϒ̃k Vm−k+1]Hm, (2.2.11)

whereHm is upper Hessenburg, except for a leading dense(k+1)× (k+1) submatrix. It

updates the solution and residual as in GMRES. It then computes the harmonic Ritz vectors

associated with thek smallest harmonic Ritz values using (2.2.11), and finally restarts with
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those vectors. Note that each column vector inVm−k is orthogonal toR (Ỹk) in GMRES-DR,

but this is not true in GMRES-E.

GMRES-DR cannot be directly used to solve (2.1.1), even if the matrix is invariant.

The harmonic Ritz vectors ofA in Ỹk do not form a Krylov subspace for another matrix

or even just another starting vector. However, Morgan discusses in [31] a modification to

GMRES-DR that can be used for the case of multiple right hand sides. Standard GMRES-

DR is run for the first right hand side, and the approximate eigenvectors are retained. For

subsequent right hand sides, restarted GMRES is used. Between cycles of restarted GM-

RES, the minimum residual solution over the space spanned by the approximate eigen-

vectors is found, and the solution and residual vectors updated accordingly. However, the

approximate eigenvectors are never updated. We expect this process may suffer the same

difficulties as restarted GMRES, such as poor convergence or stagnation. Additionally, for

nonsymmetric problems, setting the residual orthogonal to an invariant subspace does not

remove that subspace from the residual, which may result in poor convergence.

Because GMRES-E takes an augmentation approach, it can be used when solving

(2.1.1). After the solution of theith linear system, we could run GMRES on thei + 1st

linear system form−k steps, then append thek approximate eigenvectors from theith lin-

ear system to the Arnoldi basis vectors, and then proceed as normal with GMRES-E. This

would form the subspace (2.2.9) for the matrixA(i+1), which is not a Krylov subspace.

Note that breakdown can occur if a subspace ofỸk is contained in the Krylov subspace

generated first. We observed this when GMRES-E was run on the example problem in sec-

tion 2.3.1. Because GMRES-E extends the search space as restarted GMRES, it may suffer

from stagnation. Further, the Krylov subspace generated by GMRES-E ignores the orthog-

onality toR (A(i+1)Ỹk) and thus considers corrections inR (Ỹk) even though the residual is

already orthogonal toR (A(i+1)Ỹk). Although GMRES-E can be used when solving (2.1.1),

because of these problems, we do not consider it further. Based on experiments, we believe
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that it is preferable to preserve orthogonality toR (A(i+1)Ỹk). The linear solver GCRO-DR,

discussed next, accomplishes this.

2.2.5 GCRO-DR

We introduce a new Krylov method that retains a subspace between restarts. We call this

method GCRO-DR because it uses deflated restarting within the framework of GCRO [8].

The method is a generalization of GMRES-DR to solve (2.1.1). GCRO-DR is more flexible

becauseanysubspace may be retained for subsequent cycles, and also between linear sys-

tems. In the pseudocode given in the appendix, the harmonic Ritz vectors corresponding

to the harmonic Ritz values of smallest magnitude have been chosen. However, any com-

bination ofk vectors may be selected. An interesting possibility would be to select a few

harmonic Ritz vectorscorresponding to the harmonic Ritz values of smallest magnitude,

and a fewRitz vectorscorresponding to the Ritz values of largest magnitude. This would

allow simultaneous deflation of eigenvalues of both smallest and largest magnitude using

the better approximation for each.

When solving a single linear system, GCRO-DR and GMRES-DR are algebraically

equivalent. The primary advantage of GCRO-DR is its capability to solve sequences of

linear systems.

Suppose that we solved theith system of (2.1.1) with GCRO-DR. We retaink approxi-

mate eigenvectors,̃Yk = [ỹ1, ỹ2, . . . , ỹk]. GCRO-DR maintains matricesUk,Ck ∈ Cn×k such

that

A(i+1)Uk = Ck, (2.2.12)

CH
k Ck = Ik, (2.2.13)

whereUk andCk are determined from̃Yk andA(i+1) as follows.
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1: [Q,R] = reduced QR decomposition ofA(i+1)Ỹk

2: Ck = Q

3: Uk = ỸkR−1

We find the optimal solution over the subspaceR (Uk) asx = x0 +UkCH
k r0, and setr =

r0−CkCH
k r0, andv1 = r/‖r‖2. We next generate a Krylov space of dimensionm− k+ 1

with (I −CkCH
k )A(i+1), which produces the Arnoldi relation

(I −CkC
H
k )A(i+1)Vm−k = Vm−k+1Hm−k. (2.2.14)

Each of the Arnoldi vectorsVm−k+1 = [v1,v2, . . . ,vm−k+1] is orthogonal toR (Ck). We can

rewrite (2.2.14) as

A[Uk Vm−k] = [Ck Vm−k+1]




Ik Bk

0 Hm−k


 , (2.2.15)

whereBk = CH
k AVm−k. For numerical reasons, we normalize the column vectors ofUk

and replace the identity matrixIk above with a diagonal matrixDk, such thatUkDk has

unit columns. We denote the rescaledUk asŨk. Now, the columns of[Ũk Vm−k] and

[Ck Vm−k+1] have unit norm, which ensures that the rightmost matrix in (2.2.15) is not

unnecessarily ill-conditioned. This improves the accuracy of the numerical solution.

We define

V̂m = [Ũk Vm−k], Ŵm+1 = [Ck Vm−k+1], Gm =




Dk Bk

0 Hm−k


,

and write (2.2.15) more compactly, as

AV̂m = Ŵm+1Gm. (2.2.16)
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Note thatGm = ŴH
m+1AV̂m is upper Hessenberg, withD diagonal. The columns of̂Wm+1

are orthogonal, but this is not true for the columns ofV̂m.

At each cycle, GCRO-DR solves the minimization problem

t = arg min
z∈ R (V̂m)

‖r−Az‖2, (2.2.17)

which reduces to the(m+1)×m least squares problem

Gmy∼= ŴH
m+1r = ‖r‖2ek+1, (2.2.18)

with t = V̂my. The residual and solution are given by

r = r−AV̂my = r−Ŵm+1Gmy, (2.2.19)

x = x+V̂my. (2.2.20)

To compute new harmonic Ritz vectors the method solves the generalized eigenvalue

problem

GH
mGmz̃i = θ̃iG

H
mŴH

m+1V̂mz̃i, (2.2.21)

derived from (2.2.3), and recovers the harmonic Ritz vectors asỹi = V̂mz̃i .

Computationally, GCRO-DR and GMRES-DR use the same number of matrix-vector

products per cycle, although a matrix-vector product for GCRO-DR is slightly more ex-

pensive, as a modified operator is used. Iff is the average number of nonzeros per row

in A(i), then the cost of a matrix-vector product for GMRES-DR is2 f n, and2 f n+ 4kn

for GCRO-DR, wherek¿ n. The additional4kn is the cost orthogonalizing againstCk.

Both GCRO-DR and GMRES-DR solve a smallm×m eigenvalue problem each cycle.
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GMRES-DR orthonormalizesk+1 vectors of lengthm+1 while GCRO-DR finds the QR-

factorization of a small(m+1)×m matrix. Finally, GMRES-DR storesk fewer vectors.

2.3 Test Problems

We discuss our main example in section 2.3.1, a problem from fracture mechanics that

produces a large sequence of linear systems. The matrices are symmetric positive definite

(SPD), and both the matrix and right hand side change from one system to the next. As

these systems are SPD, we also provide results for three problems that involve real non-

symmetric matrices and complex non-Hermitian matrices. To illustrate the effectiveness of

our approach for the case of an invariant matrix, we consider two examples from physics.

We discuss electronic structure calculations in section 2.3.2, and a problem from lattice

QCD in section 2.3.3. Finally, in section 2.3.4, we apply the two main approaches we have

discussed to a simple convection diffusion problem. We use this example to explore the

effects of subspace recycling in the nonsymmetric case, independently from perturbations

in the matrix or right hand side. We show all methods for the main example, but for brevity

we show only selected methods for the remaining problems. Computational results are

presented in section 2.4.

2.3.1 Fatigue and Fracture of Engineering Components

Research on failure mechanisms (e.g. fatigue and fracture) of engineering components

often focuses on modeling complex, nonlinear response. Finite element methods for quasi-

static and transient responses over longer time scales generally adopt an implicit formula-

tion. Together with a Newton scheme for the nonlinear equations, such implicit formula-

tions require the solution of linear systems, thousands of times, to accomplish a realistic

analysis [19].
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Figure 2.3.1: 2D plate mesh for crack propagation problem.

We study a sequence of linear systems taken from a finite element code developed

by Philippe Geubelle and Spandan Maiti (both Aerospace Engineering, UIUC). The code

simulates crack propagation in a metal plate using so-called “cohesive finite elements”. The

plate mesh is shown in Figure 2.3.1. The model is symmetric about thex-axis, and in this

problem the crack propagates exactly along this symmetry axis. The cohesive elements

act as nonlinear springs connecting the surfaces that will define the crack location. As

the crack propagates the cohesive elements deform following a nonlinear yield curve, and

eventually break. These elements are usually inserted dynamically, although that is not the

case here. The element stiffness is set to zero for a broken cohesive element. This results

in a sequence of sparse, symmetric positive definite, stiffness matrices that change slowly

from one system to the next. Each stiffness matrix can be expressed asA(i+1) = A(i)+∆A(i).

Although∆A(i) is considerably more sparse thanA(i), it is not low-rank, as the terms in the

update∆A(i) come from the cohesive elements. The other finite elements model linear

elasticity and have constant stiffness matrices. The matrices produced in our examples are

3988×3988, and have a condition number on the order of104. They have an average of

13.4 nonzero entries per row. We will consider a sequence of 150 linear systems, both

preconditioned and nonpreconditioned. We give results in section 2.4.1.
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2.3.2 Electronic Structure

First-principles electronic-structure calculations based on the Schrödinger equation are

used to predict key physical properties of materials systems with a large number of atoms.

We consider systems arising in the KKR method [23, 22].

For an electron that is not scattered going from atomi to atom j, the Green’s function

solution is the structural Green’s function

G0(r i , r j ;E) =
ei
√

E|r i−r j |

4π|r i− r j | ,

wherer i andr j are position vectors, andE is the complex energy. For an electron scattered

going from atomi to atom j, the Green’s function can be given as follows.

Gi j = t i + t iGi j
0 t j + t iGik

0 tkGk j
0 t j + ..., (2.3.1)

where eacht i is a single-site scattering matrix depending only on the local potential. In

matrix notation, this recursive definition gives the following equation forG,

G = t + tG0(t + tG0t + . . .) = t + tG0G⇔

(I − tG0)G = t, (2.3.2)

wheret is the block-diagonal matrix with blockst i . A localization strategy transforms

(2.3.2) into an equation for the Green’s function relative to a fictitious reference system

chosen to ensure localization. This yields a sparse matrix to invert.

Gref = (I − trefG0)−1tref,

G = (I − (t− tref)Gref)−1(t− tref).
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The first system above can be inverted very rapidly. The second requires the inversion of

a sparse, complex, non-Hermitian matrix, where the relative number of nonzeros in the

matrix decreases with the number of atoms [21, 54, 46]. We give results in Section 2.4.2,

using a model problem provided by Duane Johnson (Materials Science and Engineering,

UIUC) and Andrei Smirnov (Oak Ridge National Laboratory).

Only the block-diagonal elements (corresponding to local sites) are needed to calculate

physical properties. Iterative methods offer the advantage to store only those components of

the inverse (computed column-by-column) that we need. Standard direct inversion methods

are infeasible for large numbers of atoms (N ≥ 500) on regular workstations because the

memory and computational costs grow asO(N3). Once the electronic Green’s function is

determined, one can determine important physical properties such as charge densities, total

energy, force, formation and defect energies in terms of the Green’s function.

2.3.3 QCD

Quantum chromodynamics (QCD) is the fundamental theory describing the strong inter-

action between quarks and gluons. Numerical simulations of QCD on a four-dimensional

space-time lattice are considered the only way to solve QCD ab initio [6, 51]. As the

problem has a12×12 block structure, we are often interested in solving for12 right hand

sides related to a single lattice site. The linear system to be solved is(I −κD)x = b with

0≤ κ < κc, whereD is a sparse, complex, non-Hermitian matrix representing periodic

nearest neighbor coupling on the four-dimensional space-time lattice [27]. Forκ = κc the

system becomes singular. The physically interesting case is forκ close toκc; κc depends

onD. We present results in Section 2.4.3.
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2.3.4 Convection Diffusion

We consider the finite difference discretization of the partial differential equation

uxx+uyy+cux = 0,

on [0,1]× [0,1] with boundary conditions

u(x,0) = u(0,y) = 0,

u(x,1) = u(1,y) = 1.

Central differences are used, and we set the mesh width to beh = 1/41 in both directions,

which results in a1600× 1600 matrix. We consider the symmetricc = 0 case and the

nonsymmetricc = 40case. In order to study how a recycled subspace affects convergence,

we will consider the “ideal” situation for subspace recycling by solving a linear system

twice with GCRO-DR and GCROT, recycling the subspace generated from the first run.

We show results in section 2.4.4.

2.4 Numerical Results

We explore the effects of subspace recycling by comparing the performance of GCRO-DR

and GCROT utilizing subspace recycling with CG, GMRES, restarted GMRES, GMRES-

DR, and GCROT without subspace recycling. All of the examples in this section use a zero

initial guess. In particular, for the fracture mechanics problem, we solve for the incremen-

tal displacement associated with the loading increment. In this case, using the previous

solution as the initial guess for the next system has no benefit, as the displacements are not

correlated. Both preconditioned and nonpreconditioned examples are given.

In the following sections, GMRES(m) indicates restarted GMRES with a maximum
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subspace of dimensionm, and GMRES indicates full (not restarted) GMRES. CG refers to

the conjugate gradient method. For GMRES-DR(m, k) and GCRO-DR(m, k), m is the max-

imum subspace size, andk is the number of vectors kept between cycles. For GCROT(m,

kmax, kmin, s, p1, p2), m is the maximum subspace size over which we optimize. The maxi-

mum number of column vectors stored inUk andCk (as described in section 2.2.3) iskmax.

The argumentkmin indicates the number of column vectors retained inUk andCk after trun-

cation. The arguments indicates the dimension of the Krylov subspace from which we

selectp1 vectors to place inUk. We also include inUk the lastp2 orthogonal basis vectors

generated in the Arnoldi process. See [9, 25] for more regarding the choice of parameters.

At each restart, GMRES is run form−kmin steps.

In comparing restarted GMRES, GCROT, GMRES-DR, and GCRO-DR, we decided to

make the solvers minimize over a subspace of the same dimension. An alternative choice

would be to provide the same amount of memory to each solver, but we felt that our choice

would provide a more informative comparison.

2.4.1 Fatigue and Fracture of Engineering Components

In this example, we solve a sequence of 150 symmetric positive definite linear systems.

Results for nonpreconditioned systems and preconditioned systems are given. Each ma-

trix has a condition number of approximately104, before preconditioning. All solvers

were required to reduce the relative residual to1.0e−10. The number of matrix-vector

multiplications required to solve each of these systems is shown in Figure 2.4.1 for full

GMRES, CG, GMRES-DR(40, 20), GCRO-DR(40,20), and GCROT(40,34,30,5,1,2), both

with and without subspace recycling. Except for GMRES and CG, all methods in Fig-

ure 2.4.1 minimize over a subspace of dimension 40. GMRES(40) is not shown in Figure

2.4.1 because it required an order of magnitude more matrix-vector multiplications than

the other methods to converge. The results in Figure 2.4.2 are for the same sequence with

23



150

200

250

300

350

400

450

500

550

400 420 440 460 480 500 520 540

N
um

be
r 

of
 M

at
rix

-V
ec

to
r 

P
ro

du
ct

s

Timestep (problem index)

CG
GMRES

GCROT(40,34,30,5,1,2)

GMRES-DR(40,20)
GCRO-DR(40,20) (Recycle)

GCROT(40,34,30,5,1,2) (Recycle)

Figure 2.4.1: Number of matrix-vector multiplications vs. timestep for various solvers for
the fracture mechanics problem without preconditioning.

an incomplete Cholesky (IC(0)) preconditioner applied to each problem. A new precondi-

tioner was computed for each matrix, which is not the most efficient approach. The number

of matrix-vector products to solve all 150 preconditioned linear systems is given in Table

2.4.1.

We see in Figure 2.4.1 that GCRO-DR, which employs subspace recycling, requires the

fewest matrix-vector products, except for the first system in the sequence, for which there

is no recycled subspace available. For the first system, GCROT outperforms GCRO-DR.

GCRO-DR and GCROT outperform the solvers without subspace recycling by a signifi-

cant number of matrix-vector products. Overall, GCROT (without recycling) and CG show

about the same convergence. Full GMRES outperforms CG, indicating that the conver-

gence of CG is delayed due to effects of finite-precision arithmetic.

For the preconditioned case shown in Figure 2.4.2, GCRO-DR performs best, with

GCROT with subspace recycling a close second. All the other solvers cluster near GMRES.
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Figure 2.4.2: Number of matrix-vector multiplications vs. timestep for various solvers for
the fracture mechanics problem with incomplete Cholesky preconditioning.

Table 2.4.1: The total number of iterations required to solve 150 sequential IC(0) precondi-
tioned linear systems is compared. Only GCRO-DR and GCROT(recycle) exploit subspace
recycling.

Method Matrix-Vector Products
GMRES(40) 27188

GMRES-DR(40,20) 14305
GCROT(40,34,30,5,1,2) 14277

CG 14162
GMRES 14142

GCROT(40,34,30,5,1,2) (recycle) 7482
GCRO-DR(40,20) (recycle) 6901
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Figure 2.4.3: Typical convergence curves for GCROT and GMRES-DR applied to the frac-
ture mechanics problem, with and without Krylov subspace recycling. The subspace re-
cycled by GCRO-DR converges to an invariant subspace, whereas GCROT recycles the
subspace selected in the last cycle of the previous linear system. This subspace may not be
as important for the first cycle of the next system.
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Comparing GMRES-DR and GCRO-DR, we see a significant difference in conver-

gence, even though both methods focus on removing the same approximate eigenspace.

The difference is due solely to subspace recycling. With no subspace to recycle, GCRO-

DR is algebraically equivalent to GMRES-DR. The data suggests that the eigenspace asso-

ciated with the interior eigenvalues is hard to estimate accurately, and GCRO-DR exhibits

superior performance (except for the first system) because it does not have to recompute

that space with each new linear system. Deflating the eigenspace associated with the 20

smallest eigenvalues is particularly well-suited to these problems because the matrices are

SPD, and so the convergence is determined by the spectra. In Figure 2.3(a), we show

typical convergence curves for GCRO-DR and GCROT without preconditioning for the

first linear system in a sequence, when no subspace is available to recycle. At each cycle,

GCROT continually updates the subspace it retains between cycles, whereas the subspace

retained by GCRODR between cycles converges to an invariant subspace. Commonly, we

have observed GCROT to outperform deflation-based solvers in the absence of Krylov sub-

space recycling. In Figure 2.3(b) we show typical convergence curves for GCRO-DR and

GCROT for a later system in the sequence, when both methods use Krylov subspace re-

cycling. The subspace recycled by GCRO-DR is nearly invariant, and GCRO-DR shows

good convergence. The subspace retained by GCROT is the subspace that was selected in

the last cycle of the previous linear system. This subspace may not be as important for the

first cycle in the next linear system. This observation suggests that retaining the subspace

determined through optimal truncation in thefirst cycle of the previous system may prove

more beneficial than retaining the one determined in the last cycle of the previous system.

This remains to be explored.
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2.4.2 Electronic Structure

We consider a small model problem that arises in the KKR method [23, 22]. The problem

involves the simulation of a cubic lattice of 54 copper atoms (treated as inequivalent) for a

complex energy point close to the real axis. This is the key physical regime for metals and

leads to problems that converge poorly. We use16basis functions per atom, which leads to

864unknowns. The matrix has about300,000nonzeros. However, for increasingly larger

systems the matrix becomes more sparse; the number of nonzeros grows roughly linearly

with the size of the matrix. We solved this problem using GCRO-DR(50,25) with subspace

recycling for32 consecutive right hand sides. In particular, we solve for the first 32 unit

Cartesian basis vectors corresponding to the2×16basis functions associated with the first

two atoms. We give the convergence history for the first atom in Figure 2.4.4. Note that the

first two right hand sides together take about500iterations, the remaining right hand sides

take approximately140iterations each, a reduction of almost50%. Each right hand side for

the second atom (not shown) also takes approximately140 iterations. Although for prob-

lems of this size iterative methods are not competitive with direct solvers, we have observed

this convergence behavior for larger problems, in particular the immediate acceleration in

convergence for subsequent right hand sides.

2.4.3 QCD

As a model problem we use the matrix “conf5.000l4x4.1000.mtx” downloaded from the

Matrix-Market website at NIST [4]. The model problems were submitted by Björn Medeke

(Dept. of Mathematics, University of Wuppertal) [27]. For this problem we haveκc =

0.20611and we usedκ = 0.202.

We solve for12consecutive right hand sides (the first12Cartesian basis vectors) using

the GCROT method with subspace recycling. The results are presented in Figure 2.4.5.
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Figure 2.4.4: Convergence for 16 consecutive right hand sides for a small electronic struc-
ture problem. Each distinct curve gives the convergence for a subsequent right hand side,
plotted against the total number of matrix-vector products. The first two right hand sides
together take about 500 iterations, while the remaining right hand sides take about 140
iterations each, a reduction of almost 50%.
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Figure 2.4.5: Convergence for 12 consecutive right hand sides for a model QCD problem
from the NIST Matrix Market. Each distinct curve gives the convergence for a subsequent
right hand side, plotted against the total number of matrix-vector products.
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Cosines of the principal angles between
the recycled subspace and the subspace
spanned by the 10 smallest eigenvectors

Cosines of the principal angles between
the recycled subspace and the subspace
spanned by the 21 smallest eigenvectors

c = 0 c = 40 c = 0 c = 40
1.00000000000000 1.000000000000001.00000000000000 1.00000000000000
1.00000000000000 0.999999999999971.00000000000000 1.00000000000000
1.00000000000000 0.999999998399421.00000000000000 1.00000000000000
1.00000000000000 0.999999704902031.00000000000000 0.99999999999937
0.99999999999703 0.999901497885621.00000000000000 0.99999999545394
0.00000000593309 0.988446585246161.00000000000000 0.99999681064565
0.00000000003840 0.899574546650580.99999999999988 0.99983896006215
0.00000000000003 0.542371856701100.99999999316379 0.99393007943547
0.00000000000000 0.064269380736420.99993817690380 0.94584519976471
0.00000000000000 0.026032287546050.99792215267787 0.20867650942988

Table 2.4.2: Cosines of principal angles between the recycled subspace and the invariant
subspaces spanned by the 10 and 21 eigenvectors associated with the eigenvalues of small-
est magnitude, respectively, for thec = 0 andc = 40cases.

2.4.4 Convection Diffusion

In this example, we consider GMRES, GMRES(25), GMRES-DR(25,10), GCRO-DR(25,

10), and GCROT(25,18,15,5,1,1). To explore the effects of subspace recycling on this

example problem, wererunGCRO-DR and GCROT on the same linear system, and recycle

the subspace from the first run. We do this to exclude the effects of right hand sides having

slightly different eigenvector decompositions. In a sense, this is the ideal case for subspace

recycling. When GCRO-DR keeps the same subspace between cycles as GMRES-DR,

these methods are equivalent, so we do not plot the first run of GCRO-DR. The results

for thec = 40 (nonsymmetric) case are quite interesting, and counterintuitive. The results

are shown in Figure 2.4.6 for thec = 0 (symmetric) case and Figure 2.4.7 for thec = 40

(nonsymmetric) case. In the legend for each of these figures, “recycle” denotes the second

run of a solver that was run twice. All solvers were required to reduce the residual to

1.0e−10.

For thec = 0 case, we see that the second runs of GCRO-DR and GCROT both con-
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Figure 2.4.6: Number of matrix-vector products vs. timestep for various solvers for the
convection-diffusion problem withc = 0.
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Figure 2.4.7: Number of matrix-vector products vs. timestep for various solvers for the
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verged faster than GMRES. All other solvers are, of course, slightly worse than GMRES,

with GMRES(25) being far worse. GCRO-DR and GCROT recycled a small subspace

from their first run that improved convergence significantly. For thec = 40 case, GMRES

and the second run of GCROT terminate in about the same number of iterations, but the

second run of GCROT had a significantly smaller residual for almost the entire run. Only

near the end, with a much larger search space, does GMRES catch up. The second run of

GCROT also does better than its first run, indicating that it recycled a subspace useful for

convergence. However, GCRO-DR performed initially somewhat better on the second run

than the first, but the overall convergence was approximately the same for both runs. This

means that the subspace it recycled failed to improve convergence.

Table 2.4.2 shows the cosines of the principal angles between the subspace recycled by

GCRO-DR and the invariant subspace associated with the 10 and 21 eigenvalues of small-

est magnitude, respectively, for thec = 0 andc = 40 cases. For the comparison with 10

eigenvectors, we see that the recycled subspace for thec= 0 case only captures 5 eigenvec-

tors. We choose to compare with the space spanned by 21 eigenvectors because it captures

the entire recycled subspace for thec = 0 case. This means that GCRO-DR does not se-

lect the invariant subspace spanned by the eigenvectors for the 10 smallest eigenvalues, but

rather selects some subspace of the space spanned by the 21 smallest. The table also shows

that the approximation of an invariant subspace for thec = 40case is nearly as good as for

c = 0. However, this does not lead to similar convergence.

2.5 Conclusions and Future Work

We have presented an overview of Krylov subspace recycling for sequences of linear sys-

tems where both the matrix and right hand side change. Different choices for subspace

selection and recycling have been shown, as well as methods implementing those choices.
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We propose the solver GCRO-DR to implement Krylov subspace recycling of approximate

invariant subspaces for Hermitian and non-Hermitian systems. When solving a sequence

of linear systems, methods employing Krylov subspace recycling frequently outperformed

GMRES while keeping only a small number of vectors. However, as the examples in sec-

tion 2.4.4 show, this is not always the case. It is not yet well understood precisely how

subspace selection affects convergence. In Chapter 3 we examine this process further, and

develop convergence bounds for GCRO-DR.
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Chapter 3

Analysis of Krylov Subspace Recycling
for Sequences of Linear Systems

In this chapter, we analyze the convergence of GCRO-DR, which recycles nearly invariant

subspaces. We establish a bound on the residual norm produced by GCRO-DR in terms

of GMRES with a deflated Krylov subspace and deflated initial residual vector. It is fre-

quently suggested that deflating away eigenvalues closest to the origin is a desirable goal.

Experimental and theoretical results show that while recycling invariant subspaces can be

beneficial, better choices exist. In particular, we demonstrate that deflating away eigenval-

ues closest to the origin is not always best.

3.1 Introduction

In Chapter 2, the linear solver GCRO-DR was proposed for solving a sequence of general

linear systems where only one linear system is available at a time, and both the matrix and

right hand side change from one system to the next. Here, we take a theoretical look at its

convergence properties. In section 3.2 we define some useful notation and relationships,

and review Krylov subspace recycling. In section 3.3.1 we derive a convergence bound for

GCRO-DR, and in section 3.3.2 we show several experiments illustrating the conditions

under which recycling nearly invariant subspaces is beneficial. We offer conclusions in
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section 3.4.

3.2 Some Notation and Useful Relationships

Here, we introduce notation that will be valuable for our later analysis, catalog useful re-

lationships between various projectors, and review the concept of the “one-sided distance”

between subspaces. We assume the notation and discussion on Krylov subspace recycling

from Chapter 2.

We denote the range of a matrixCk ∈ Cn×k by R (Ck). C†
k denotes the Moore-Penrose

pseudoinverse ofCk, andΠC denotes the orthogonal projector ontoR (Ck). Let R (Q`)

denote aǹ -dimensional simple invariant subspace of the matrixA ∈ Cn×n. We usePQ

to represent the spectral projector [48,§V.1.3] ontoR (Q`). Since a projector acts as the

identity over its range, we see that

ΠQPQ = PQ. (3.2.1)

We define theone-sided distancefrom the subspaceR (Q`) to the subspaceR (Ck)

(k≥ `), as

δ(Q`,Ck)≡ ‖(I −ΠC)ΠQ‖2. (3.2.2)

δ(Q`,Ck) is equal to the sine of the largest principal angle betweenR (Q`) andR (Ck) [2].

This means that any unit vector inR (Q`) has a component of at most lengthδ orthogonal

to R (Ck). To the extent that these two subspaces coincide,δ(Q`,Ck) approaches zero, and

δ(Q`,Ck) = 0 if and only if R (Q`)⊆R (Ck). In particular, we will be considering the case

where a subspaceR (Ck) contains (or nearly contains) an invariant subspaceR (Q`).
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3.3 Analysis of Deflation-Based Krylov Subspace

Recycling

In section 3.3.1 we present a bound on the residual norm produced by GCRO-DR in terms

of a GMRES process with a deflated Krylov space. We operate under the assumption that

the recycled subspaceR (Ck) contains or nearly contains an invariant subspaceR (Q`),

wherek≥ `, for somè -dimensional invariant subspaceR (Q`) of A. All theoretical results

require only thatδ(Q`,Ck) < 1, but are more useful whenδ(Q`,Ck) is small. In section

3.3.2 we present some numerical experiments, and analyze them by applying the newly

developed bounds. In particular, we show that recycling invariant subspaces can be quite

effective on certain problems. However, we also demonstrate that deflating away eigenval-

ues closest to the origin is not always best, and when selecting a subspace to recycle, there

exist better choices than invariant subspaces.

3.3.1 Recycling Invariant Subspaces: Theory

A deflated GMRES process is one in which all components from a particular invariant

subspace have been removed from the individual residual, and the search subspace does not

contain any components in this invariant subspace. The deflated problem can be expressed

as

min
d∈AK( j)(A,(I−PQ)r0)

‖(I −PQ) r0−d‖2, (3.3.1)

wherer0 = b−Ax0 is the residual for the initial guessx0, andPQ is the spectral projec-

tor onto an invariant subspaceR (Q`). In the eigenvector decomposition ofA, the vector

(I −PQ) r0 has no components in the subspaceR (Q`), and the same holds for all vec-

tors in the j-dimensional Krylov subspaceK( j) (A,(I −PQ) r0). In GCRO-DR, we do not
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have available the invariant subspaceR (Q`) or the associated spectral projectorPQ, so in-

stead we use the subspaceR (Ck) and the associated orthogonal projectorΠC. Although

(I −PQ) r0 has no components inR (Q`), this is not necessarily true for(I −ΠC) r0. As we

cannot generate the Krylov subspaceAK( j) (A,(I −PQ) r0), we instead consider the Krylov

subspaceR
(
Vj

)
, whereVj ∈ Cn× j is an orthonormal basis for

(I −ΠC)AKj ((I −ΠC)A,(I −ΠC) r0) . (3.3.2)

We note that(I −ΠC)Vj = Vj . First, GCRO-DR finds the minimum residual solution over

R (Ck), then updates the residual asr1 = (I −ΠC) r0, and finally computes the minimum

residual solution over the subspaceR
(
Vj

)
. As such, we consider the related problem

min
d∈R [(I−PQ)Vj ]

‖(I −PQ) r1−d‖2 (3.3.3)

as an approximation to (3.3.1). In the eigenvector decomposition ofA, the vector(I −PQ) r1

has no components inR (Q`), and neither do the column vectors of(I −PQ)Vj . Even

though we recycle the subspaceR (Ck), which contains an approximate invariant subspace,

and use an orthogonal projectorΠC rather than a spectral projector, we show below that we

can bound the convergence of GCRO-DR using the deflated problem (3.3.3), so long as

δ(Q`,Ck) < 1. We will see below that if‖PQ‖2 is large, the bound may be loose.

Some of the following discussion was inspired by [45], which was in turn influenced

by [41].

Theorem 3.3.1.Let R (Q`) be an`-dimensional invariant subspace ofA ∈ Cn×n. Let

R (Ck) be a k-dimensional subspace(k ≥ `) such thatδ(Q`,Ck) < 1. Let R
(
Vj

)
be a

j-dimensional Krylov subspace, as defined in(3.3.2). Let r0 ∈ Cn, andr1 = (I −ΠC) r0.
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Then,

min
d1∈R ([Vj ,Ck])

‖r0−d1‖2≤ min
d2∈R (Vj)

{‖(I −PQ)(r1−d2)‖2 + γ‖r1−d2‖2}, (3.3.4)

whereγ = ‖(I −ΠC)PQ‖2.

Proof.

min
d∈R ([Vj ,Ck])

‖r0−d‖2 = min
d,d̃∈R ([Vj ,Ck])

‖r1−d− d̃‖2

= min
d,d̃∈R ([Vj ,Ck])

{‖(I −PQ)(r1−d)+PQ(r1−d)− d̃‖2}

≤ min
d∈R (Vj)

{‖(I −PQ)(r1−d)+PQ(r1−d)

−ΠC[(I −PQ)(r1−d)+PQ(r1−d)]‖2} 1

= min
d∈R (Vj)

{‖(I −ΠC)(I −PQ)(r1−d)+(I −ΠC)PQ(r1−d)‖2}

≤ min
d∈R (Vj)

{‖(I −ΠC)‖2‖(I −PQ)(r1−d)‖2

+‖(I −ΠC)PQ(r1−d)‖2}

≤ min
d∈R (Vj)

{‖(I −PQ)(r1−d)‖2 + γ‖r1−d‖2}.

When considering Theorem 3.3.1, it is useful to think of a GCRO-DR process that has

solved at least one linear system in the sequence, and is just beginning the first cycle on the

next linear system in the sequence.

The termγ in Theorem 3.3.1 depends on the one-sided distance (3.2.2) between the

invariant subspaceR (Q`) and the subspaceR (Ck). We observe the following relationship.

1We have set̃d = ΠC[(I −PQ)(r1−d)+PQ (r1−d)].
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Proposition 3.3.2.Assume the notation from Theorem 3.3.1. Then,

γ = ‖(I −ΠC)PQ‖2 = ‖(I −ΠC)ΠQPQ‖2

≤ ‖(I −ΠC)ΠQ‖2‖PQ‖2

= δ(Q`,Ck)‖PQ‖2.

Proof. The first inequality follows from (3.2.1).

Again, we observe that any unit vector inR (Q`) has at most a component of lengthδ

orthogonal toR (Ck), and if R (Q`) ⊆ R (Ck), thenδ = γ = 0. If ‖PQ‖2 is large, we must

haveδ small if γ is to be small.

Continuing with Theorem 3.3.1, letd = Vjy for somey∈ R j , and rewrite the bound in

(3.3.4) as

min
y∈R j

{‖(I −PQ) r1− (I −PQ)Vjy‖2 + γ‖r1−Vjy‖2}. (3.3.5)

We will use (3.3.5) to bound the convergence of GCRO-DR. Note that the first term in

(3.3.5) is just the deflated problem (3.3.3), and the second term in (3.3.5) goes to zero

as γ goes to zero. In this case, it is reasonable to think of the right term in (3.3.5) as a

perturbation of the left term.

Proposition 3.3.3.Assume the notation from Theorem 3.3.1. Then,

min
y∈R j

{‖(I −PQ)
(
r1−Vjy

)‖2 + γ‖r1−Vjy‖2} ≤

min
y∈R j

‖(I −PQ) r1− (I −PQ)Vjy‖2 + γ‖[
(I −PQ)Vj

]†‖2 · ‖PQ‖2 · ‖(I −ΠV) r1‖2.
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Proof. Let yb =
[
(I −PQ)Vj

]†(I −PQ) r1 be the minimizing argument in (3.3.3). Clearly,

min
y∈R j

{‖(I −PQ) r1− (I −PQ)Vjy‖2 + γ‖r1−Vjy‖2}

≤ ‖(I −PQ) r1− (I −PQ)Vjyb‖2 + γ‖r1−Vjyb‖2.

Writing out the explicit representation foryb gives

‖r1−Vjyb‖2 = ‖
(

I −Vj
[
(I −PQ)Vj

]†(I −PQ)
)

r1‖2

= ‖
(

I −Vj
[
(I −PQ)Vj

]†(I −PQ)
)

(I −ΠV) r1‖2 (3.3.6)

≤ ‖I −Vj
[
(I −PQ)Vj

]†(I −PQ)‖2 · ‖(I −ΠV) r1‖2.

Equation (3.3.6) follows from the observation thatVj
[
(I −PQ)Vj

]†(I −PQ) is an oblique

projector ontoR
(
Vj

)
. It follows that

‖I −Vj
[
(I −PQ)Vj

]†(I −PQ)‖2 = ‖Vj
[
(I −PQ)Vj

]†(I −PQ)‖2

≤ ‖Vj‖2 · ‖
[
(I −PQ)Vj

]†‖2 · ‖I −PQ‖2

= ‖[
(I −PQ)Vj

]†‖2 · ‖PQ‖2,

where we have used the assumption thatVj has orthonormal columns.

Finally, we bound‖[
(I −PQ)Vj

]†‖2.

Proposition 3.3.4. Assume the notation from Theorem 3.3.1. For eachR (Q`) such that

δ(Q`,Ck) < 1,

‖[
(I −PQ)Vj

]†‖2≤ 1
1−δ

.
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Proof. We observe that

‖[
(I −PQ)Vj

]†‖2 = [σmin
(
Vj −PQVj

)
]−1,

whereσmin denotes the smallest singular value of a matrix. We now proceed to find a lower

bound on‖Vjz−PQVjz‖2 over allz∈ R j , ‖z‖2 = 1. We start by considering

PQVjz= Ckξ1 +C⊥ξ2,

whereξ1 ∈ Rk, ξ2 ∈ Rn−k, Ck is an orthonormal basis forR (Ck), and[Ck C⊥] is unitary.

We have expressed the vectorPQVjz as the sum of its components inR (Ck) andR (C⊥),

for any unit vectorz. It follows from the definition ofδ(Q`,Ck) that

‖C⊥ξ2‖2≤ δ‖PQVjz‖2. (3.3.7)

Inequality (3.3.7) implies that

‖Cξ1‖2≥
√

1−δ2 ‖PQVjz‖2.

We have that

Vjz−PQVjz=−Ckξ1 +Vjz−C⊥ξ2,

where

Vjz−C⊥ξ2 ∈ R (C⊥) ,
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by construction. Thus,

‖Vjz−PQVjz‖2
2 = ‖Ckξ1‖2

2 +‖Vjz−C⊥ξ2‖2
2

≥ (
1−δ2)‖PQVjz‖2

2 +‖Vjz−C⊥ξ2‖2
2.

We show that either one of these terms may be arbitrarily close to zero, but that the sum

of the two terms together can always be bounded away from zero. We consider two cases,

based on the size ofα≡ ‖PQVjz‖2.

Case I.α < 1. In this case,
(
1−δ2

)
α2 may be small. However,

‖Vjz−PQVjz‖2
2 ≥ ‖Vjz−C⊥ξ2‖2

2

≥ (1−δα)2

≥ (1−δ)2 ,

since0≤ δ < 1 andα < 1.

Case II.α≥ 1. In this case,‖Vjz−C⊥ξ2‖2 may be zero. However,

‖Vjz−PQVjz‖2
2 ≥ (

1−δ2)α2

≥ 1−δ2

≥ (1−δ)2 ,

since0≤ δ < 1 andα≥ 1.

Remark 3.3.5. Proposition 3.3.4 shows that as soon asδ < 1, we have an upper bound on

‖[
(I −PQ)Vj

]†‖2. In all experiments conducted, we observed that‖PQVj‖2¿ 1, and thus

case I of Proposition 3.3.4 applies. In this situation,δ≈ 0 and‖[
(I −PQ)Vj

]†‖2≈ 1.

Corollary 3.3.6. Assume the notation from Theorem 3.3.1. For eachR (Q`) such that
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δ(Q`,Ck) < 1,

min
d1∈R [Vj ,Ck]

‖r0−d1‖2 ≤ min
d2∈R [(I−PQ)Vj ]

‖(I −PQ) r1−d2‖2 (3.3.8)

+
(

γ
1−δ

)
‖PQ‖2 · ‖(I −ΠV) r1‖2.

So, we see that the norm of the residual produced by GCRO-DR can be bounded above

by (3.3.3), plus a term that approaches zero asR (Q`) is increasingly contained inR (Ck)

and as‖(I −ΠV) r1‖2 becomes small.

Note that (3.3.8) is true for any invariant subspaceR (Q`), but if this choice makes

γ
1−δ‖PQ‖2 very large, the bound may be very loose. It is therefore desirable to select the

bestR (Q`) over all possible invariant subspacesR (Q`) such thatδ(Q`,Ck) < 1, where

` < k, in general. When computing the bound (3.3.8) in section 3.3.2 for given values of`

andk, we will select the invariant subspaceR (Q`) that minimizes γ
1−δ‖PQ‖2.

Corollary 3.3.7. Assume the notation from Theorem 3.3.1, and that the matrixA is Hermi-

tian. For eachR (Q`) such thatδ(Q`,Ck) < 1,

min
d1∈R [Vj ,Ck]

‖r0−d1‖2 ≤ min
d2∈R [(I−ΠQ)Vj ]

‖(I −ΠQ) r1−d2‖2

+
δ

1−δ
‖(I −ΠV) r1‖2.

Corollary 3.3.7 shows that the bound is tighter in the Hermitian case, which suggests

that recycling invariant subspaces should be particularly effective for sequences of Hermi-

tian systems.
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3.3.2 Recycling Invariant Subspaces: Numerical Experiments

We show three example problems in this section. In the first example we examine a class

of matrices with a parameter that controls the deviation from normality. This allows us to

examine the influence of normality on the recycling process when invariant subspaces are

used. The second example is a simple convection-diffusion problem. The final example

concerns a matrix with a random eigenbasis but only ten distinct eigenvalues, and shows

that a poorly chosen recycled subspace can severely harm convergence.

We will only consider the bound (3.3.8) over the first cycle, because we are primarily

interested in how the recycling process impacts the initial convergence.

EXAMPLE 3.3.1. Here, we consider Example 4.4 from [45]. We use a set of100×100

matricesA(i) = S(i)Λ(S(i))−1, (i = 1,2,3) with κ1(S(1)) = 1, κ2(S(2)) = 103, κ3(S(3)) = 106.

For eachκi , the matrixS(i) is defined asD(i)U∗, whereD(1) = I , and D( j) = diag(1 :

κ j/100 :κ j) for j = 2,3. The matrixU is the orthogonal matrix in the QR factorization of

the lower triangular part of




1 n+1 2n+1 · · · ...

2 n+2 2n+2 · · · ...
...

...
...

.. .
...

n 2n 3n · · · n2




.

By construction,κ(S(i)) = κi , i = 1,2,3. The matrixΛ = diag(0.1, 0.2, 0.3, 0.4, 5, 6, 7,

. . .,100). The right-hand side vectorf is a normalized vector of all ones.

In Figure 3.3.1, we plot convergence curves for GMRES and GCRO-DR(24,4) applied

to the systemA(1) = f . Note that the matrixA(1) is SPD. Except for the first cycle, GCRO-

DR performs20 matrix-vector multiplications in each cycle. GCRO-DR was asked to re-

cycle four vectors in order to investigate its ability to pick up the four smallest eigenvalues
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Figure 3.3.1: Example 3.3.1,κ
(

S(1)
)

= 1. Number of matrix-vector multiplications vs.

residual norm for various solvers. In the legend, “bound” represents the bound (3.3.8), and
“deflated” represents the deflated problem (3.3.3). For the bound,Q` (` = 4) was selected
to be the the span of the four eigenvectors corresponding to the four eigenvalues of smallest
magnitude.

0.1,0.2,0.3, and0.4. We see that the bound (3.3.8) is nearly identical to the actual con-

vergence curve, and that the GCRO-DR curve appears to line up with the deflated problem

(3.3.3). In Table 3.3.1 we plot some terms from the bound (3.3.8). When computing the

bound for this case, the subspaceR (Q`) (` = 4) was selected to be the span of the four

eigenvectors corresponding to the four eigenvalues of smallest magnitude. In this case,

GCRO-DR was successful in selecting and recycling an invariant subspace, and removing

the effects of all components in that invariant subspace.

In Figure 3.3.2, we plot convergence curves for GMRES and GCRO-DR(24,4) applied

to the systemA(2) = f . We see that the bound (3.3.8) is nearly identical to the actual

convergence curve, and that the GCRO-DR curve appears to line up with the deflated bound

(3.3.3). In Table 3.3.2 we plot some terms from the bound (3.3.8). When computing the

bound for this case, the subspaceR (Q`) (` = 4) was selected to be the span of the four

eigenvectors corresponding to the four eigenvalues of smallest magnitude. Despite the
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Table 3.3.1:Example3.3.1.κ
(

S(1)
)

= 1.

GCRO-DR denotes the residual norm produced by GCRO-DR at iterationj.

κ(A(1)) γ ‖PQ‖2 δ
103 1.8129e-08 1.0000e+00 1.8129e-08

j GCRO-DR Bound Equation
(2nd run) (3.3.8) (3.3.3)

1 2.5052e-01 2.5052e-01 2.5052e-01
2 1.3648e-01 1.3648e-01 1.3648e-01
3 1.0051e-01 1.0051e-01 1.0051e-01
4 6.1982e-02 6.1982e-02 6.1982e-02
5 3.7868e-02 3.7868e-02 3.7868e-02
6 2.6543e-02 2.6543e-02 2.6543e-02

slightly ill-conditioned eigenbasis, GCRO-DR was successful in selecting and recycling

an invariant subspace, and removing the effects of that invariant subspace. This example

shows that convergence is not strongly affected by nonnormality, so long as‖PQ‖2 is small.

In Figure 3.3.3, we plot convergence curves for GMRES and GCRO-DR(68,1) applied

to the systemA(3) = f . With a smaller restart parameter, the method resolved no eigenvec-

tors. We see that the bound (3.3.8) is not close to the actual convergence curve in this case.

In Table 3.3.3 we plot some terms from the bound (3.3.8). When computing the bound

for this case, the subspaceR (Q`) (` = 1) was selected to be the span of the eigenvector

corresponding to the eigenvalue of smallest magnitude. Note that the factorγ indicates

that GCRO-DR was not sufficiently successful in removing this one-dimensional invariant

subspace. Referring to Proposition 3.3.2, we note that althoughδ is not large, the value of

‖PQ‖2 allows for the possibility thatγ may not be small. Note that in Figure 3.3.3 the con-

vergence curve for GCRO-DR(68,1) is initially below the bound (3.3.8), and the deflated

problem (3.3.3). This suggests that a deflationary approach (e.g. problem (3.3.3)) is not

ideal, especially in the case where‖PQ‖2 is large.

In Figure 3.3.4, we examine GCRO-DR(44,4) on the linear systemA(3)x = f . We let
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Table 3.3.2:Example3.3.1.κ
(

S(2)
)

= 103.

GCRO-DR denotes the residual norm produced by GCRO-DR at iterationj.

κ(A(2)) γ ‖PQ‖2 δ
5.9458e+04 2.0715e-07 2.0302e+00 1.3504e-007

j GCRO-DR Bound Equation
(2nd run) (3.3.8) (3.3.3)

1 7.0565e-01 7.3202e-01 7.3202e-01
2 4.4612e-01 4.7169e-01 4.7169e-01
3 3.7762e-01 4.0096e-01 4.0095e-01
4 2.0057e-01 2.2508e-01 2.2508e-01
5 1.4790e-01 1.7091e-01 1.7091e-01
6 9.8155e-02 1.1478e-01 1.1478e-01

Table 3.3.3:Example3.3.1.κ
(

S(3)
)

= 106

GCRO-DR denotes the residual norm produced by GCRO-DR at iterationj.

κ(A(3)) γ ‖PQ‖2 δ
4.9383e+010 7.4978e-003 1.6925e+003 4.4299e-006

j GCRO-DR Bound Equation
(2nd run) (3.3.8) (3.3.3)

1 4.8673e-01 1.7456e+02 1.6838e+02
2 4.7134e-01 1.7087e+02 1.6489e+02
3 3.1344e-01 1.5139e+02 1.4628e+02
4 3.0455e-01 1.5026e+02 1.1065e+02
5 2.4534e-01 1.1451e+02 7.3275e+01
6 2.3129e-01 1.1451e+02 4.9519e+01
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Figure 3.3.2: Example 3.3.1,κ
(

S(2)
)

= 103. Number of matrix-vector multiplications vs.

residual norm for various solvers. In the legend, “bound” represents the bound (3.3.8), and
“deflated” represents the deflated problem (3.3.3). For the bound,Q` (` = 4) was selected
to be the span of the four eigenvectors corresponding to the four eigenvalues of smallest
magnitude.

GCRO-DR recycle the subspace it selected at the end of the first run, and compare with

a different GCRO-DR process that recycles the invariant subspace spanned by the four

eigenvectors corresponding to the four eigenvalues of smallest magnitude. Note that the

subspace selected by GCRO-DR produces a smaller residual norm for almost the entire

run. This means that the four vectors spanning an approximate invariant subspace were

more useful for convergence than the eigenvectors themselves, again suggesting that in-

variant subspaces are not the optimal choice when selecting a subspace to recycle. In

particular, the invariant subspace selected by GCRO-DR proved a better choice than an

invariant subspace. We examine this notion further in Example 3.3.2.
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Figure 3.3.3: Example 3.3.1,κ
(

S(3)
)

= 106. Number of matrix-vector multiplications vs.

residual norm for various solvers. In the legend, “bound” represents the bound (3.3.8), and
“deflated” represents the deflated problem (3.3.3). For the bound,Q` (` = 1) was selected to
be the span of the single eigenvector corresponding to the eigenvalue of smallest magnitude.
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Figure 3.3.4: Example 3.3.1,κ
(

S(3)
)

= 106. Number of matrix-vector multiplications vs.

residual norm for various solvers. In this case, the invariant subspace corresponding to the
four smallest eigenvalues was recycled. Note that recycling the exact invariant subspace
produces worse results than the subspace selected by GCRO-DR.
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EXAMPLE 3.3.2. We consider the finite difference discretization of the partial differential

equation

uxx+uyy+cux = 0,

on [0,1]× [0,1] with boundary conditions

u(x,0) = u(0,y) = 0,

u(x,1) = u(1,y) = 1.

Central differences are used, and we set the mesh width to beh = 1/26 in both direc-

tions, which results in a625×625matrix. We consider the symmetricc = 0 case and the

nonsymmetricc = 25case.
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Figure 3.3.5: Example 3.3.2,c = 0 (Hermitian) case. Number of matrix-vector multipli-
cations vs. residual norm for various solvers. In the legend, “bound” represents the bound
(3.3.8), and “deflated” represents the deflated problem (3.3.3). For the bound,Q` (` = 6)
was selected to be the span of the six eigenvectors corresponding to the six eigenvalues
of smallest magnitude. Note that the deflated bound lines up exactly with the GCRO-DR
convergence curve.
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Table 3.3.4: Example3.3.2. c = 0. Eigenvalues, numbered from smallest magnitude,
along with the inner product of the right-hand side and the eigenvector associated with
each eigenvalue. Eigenvalues in italics correspond to eigenvectors selected by GCRO-DR
at the end of its first run in Figure 3.3.8. The eigenvectors associated with eigenvalues
1,2,3,5,6,7 were used for the run “exact 1-6”, and the eigenvectors associated with eigen-
values 8,9,10,11,14,15 were used for the run “exact 7-12”.

Index Component in RHS Eigenvalue
1 0.30657059601507 -0.02916450360779
2 0.00086174007236 -0.07269861695179
3 0.43039431848736 -0.07269861695179
4 0.00000000000002 -0.11623273029580
5 0.00068793691415 -0.14454976643306
6 0.70928923205265 -0.14454976643307
7 0.00019721614732 -0.18808387977706
8 0.14206341536415 -0.18808387977708
9 0.01706190332871 -0.24367020049746
10 0.83560318634045 -0.24367020049747
11 0.29769480656712 -0.25993502925835
12 0.00000000000001 -0.28720431384147
13 0.00000000000003 -0.28720431384148
14 0.00337731928758 -0.35905546332275
15 0.27585021322494 -0.35905546332275

In Figure 3.3.5, we plot convergence curves for GMRES and GCRO-DR(15,6) applied

to thec = 0 system. Note that this system is SPD. We see that the bound (3.3.8) is very

close to the actual convergence curve, and that the GCRO-DR curve appears to line up

with the deflated bound (3.3.3). When computing the bound for this case, the subspace

R (Q`) (` = 6) was selected to be the span of the eigenvectors 1, 3, 6, 8, 10, and 11,

where the eigenvectors have been numbered starting with the corresponding eigenvalue of

smallest magnitude and moving away from the origin. Note that some of the eigenvec-

tors correspond to repeated eigenvectors, and that the right-hand side vector does not have

components in the direction of all eigenvectors. As with the previous Hermitian example,

GCRO-DR was successful in selecting and recycling an invariant subspace, and removing

from the right-hand side all components in that invariant subspace.
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Figure 3.3.6: Example 3.3.2,c = 25 case. Number of matrix-vector multiplications vs.
residual norm for various solvers. In the legend, “bound” represents the bound (3.3.8),
and “deflated” represents the deflated problem (3.3.3). For the bound,Q` (` = 2) was
selected to be the span of the two eigenvectors corresponding to the two eigenvalues of
smallest magnitude. The deflated problem (3.3.3) tracks nearly on top of the GCRO-DR
curve. A subspace of dimension 6 was recycled, but only captured an invariant subspace of
dimension 2. Note that the first run of GCRO-DR converges before the second run.

In Figure 3.3.6, we plot convergence curves for GMRES and GCRO-DR(15,6) applied

to the c = 25 system. This system is not Hermitian, and the condition number of the

eigenvector matrix is3.0495e+ 05. We see that the bound (3.3.8) is very close to the

actual convergence curve, and that the GCRO-DR curve appears to line up with the deflated

problem (3.3.3). When computing the bound for this case, the subspaceR (Q`) (` = 2) was

selected to be the span of the eigenvectors corresponding to thetwoeigenvalues of smallest

magnitude. In this case,we see that GCRO-DR was successful in selecting and recycling an

invariant subspace, and removing from the right-hand side all components in that invariant

subspace. Note however that GCRO-DR recycled a subspace of dimension6, but only

captured an invariant subspace of dimension2.

Of additional interest, we see in Figure 3.3.6 that the first run of GCRO-DR converges

before the second run, even though the second run utilized the subspace recycled from the
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Figure 3.3.7: Example 3.3.2,c = 25 case. Number of matrix-vector multiplications vs.
residual norm for various solvers. “exact” refers to a GCRO-DR process that started with
the six eigenvectors from the six eigenvalues of smallest magnitude. “cycle 3” refers to a
GCRO-DR process that starts with the subspace determined after the third cycle of the first
run of GCRO-DR.

first run. Clearly, the recycled subspace was not useful for convergence.

This raises the question of how to select the “best” subspace to recycle, which we con-

sider in Figure 3.3.7. Clearly, the invariant subspace corresponding to the six eigenvalues

of smallest magnitude is not the best choice. The subspace selected at the end of the first

GCRO-DR run is the worst choice shown. If we look at the first run of GCRO-DR, we

see a sharp change in the convergence rate at the end of the third cycle (near iteration 33).

The curve “cycle 3” shows the performance of GCRO-DR when recycling this subspace.

Although this does not address the question of the optimal subspace to select, it suggests

that recycling the subspace determined at the end of a GCRO-DR run is not always the best

choice.

How does the choice of subspace affect convergence? Clearly, the actual convergence

process is more complicated than simply removing invariant subspaces, especially those

from the ends of the spectrum. Perhaps contrary to intuition, deflating away the eigenval-
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Figure 3.3.8: Example 3.3.2,c = 0 case. Number of matrix-vector multiplications vs.
residual norm for various solvers. “exact 1-6” refers to a GCRO-DR process that started
with the six eigenvectors from the six eigenvalues of smallest magnitude. “exact 7-12” is
analogous. Note that although “exact 1-6” reduced the condition number of the problem,
“exact 7-12” converged first.

ues closest to the origin is not always best. We believe that the convergenceprocessis

important. GCRO-DR always recycles the subspace corresponding to the harmonic Ritz

vectors of smallest magnitude. If the GCRO-DR process starts with thek eigenvectors cor-

responding to thek eigenvalues of smallest magnitude, it will always recycle those vectors,

and becomes identical to restarted GMRES on a deflated problem. If, instead, a subspace

(such as the one recycled from cycle #3 in Figure 3.3.7) is kept, intermediate eigenvalues

are removed, and the resulting spectrum may appear more clustered, effectively “precon-

ditioning” the iteration. Later GCRO-DR iterations will then recycle and remove invariant

subspaces corresponding to smaller eigenvalues.

Consider Figure 3.3.8, where we plot convergence curves for solvers applied to the

c = 0 (Hermitian) problem, where the convergence is governed exclusively by the spectra.

Here, we compare a GCRO-DR process started with the six eigenvectors corresponding

to the six eigenvalues of smallest magnitude with a GCRO-DR process started with the
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eigenvectors corresponding to the 7-12 eigenvalues of smallest magnitude. Eigenvectors

orthogonal to the right-hand side were not included in the “exact” invariant subspaces. Sur-

prisingly (or perhaps not) the latter of the two processes converges first. This may be due to

clustering of the smaller magnitude eigenvalues, or to the fact that more of the right-hand

side vector is contained in eigenvectors 7-12 than in eigenvectors 1-6, as shown in Table

3.3.4. More importantly, we see in Table 3.3.4 the eigenvectors and eigenvalues selected

by GCRO-DR after its first run. Among the choices shown in Figure 3.3.8, this choice

is clearly best. We can see from Table 3.3.4 that the eigenvectors selected correspond to

the eigenvalues of smallest magnitude where the associated eigenvector is more strongly

oriented with the right-hand side. As we can see from Table 3.3.4, some eigenvalues are re-

peated. For a repeated eigenvalue, a Krylov method only sees one eigenvector, which is the

projection of the right-hand side onto the invariant subspace associated with the repeated

eigenvalue. When GCRO-DR recycles an approximate eigenvector, it will select this single

eigenvector. As such, although GCRO-DR only explicitly recyclesk approximate eigen-

vectors, it may be effectively recycling many more thank eigenvectors. This benefit occurs

only in linear systems with repeated eigenvalues. However, repeated eigenvalues frequently

arise naturally in physical systems, as a consequence of symmetry.

EXAMPLE 3.3.3. As we can see from Example 3.3.2, the choice of the recycled subspace

can seriously impact convergence. In this example, we consider a100× 100 real ma-

trix A generated with a random eigenbasis, but only 10 distinct eigenvalues1,2, . . . ,10.

Thus, GMRES will converge in at most 10 steps. The condition number of the matrix

is approximately5.16e5, and the condition number of the eigenvector matrix is approxi-

mately8.69e3. The right-hand side vector is a random vector of unit norm. We consider

two GCRO-DR processes. The first recycles the subspace generated from an initial run of

GCRO-DR, and the second recycles a randomly generated subspace. For the second case,

we suppose that there was a large perturbation from one matrix to the next in the sequence,
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Figure 3.3.9: Example 3.3.3. Number of matrix-vector multiplications vs. residual norm
for various solvers.
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A, whereC1 determined

by recycling subspace from first run.

56



-1

-0.5

0

0.5

1

-2 0 2 4 6 8 10 12

Im
ag

in
ar

y

Real

Figure 3.3.11: Example 3.3.3. Nonzero eigenvalues of
(
I −C2CH
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)
A, whereC2 random.

and that while the recycled subspace may have been a good approximation to an invariant

subspace for the previous matrix, it is essentially random with respect to the next matrix.

LetC1 denote the first subspace, andC2 the second (random) subspace. Figure 3.3.9 shows

the convergence curve of the first and second GCRO-DR processes, as well as full GMRES.

We see that the convergence is significantly worse when the random subspace is used, and

that far more than 10 iterations are required. This behavior can be explained by examining

Figures 3.3.10 and 3.3.11. Figure 3.3.10 shows the nonzero eigenvalues of
(
I −C1CH

1

)
A,

and Figure 3.3.11 shows the nonzero eigenvalues of
(
I −C2CH

2

)
A. The random subspace

scattered the eigenvalues, meaning that far more than 10 iterations may be required for

convergence. As such, we see that a poorly chosen subspace can have catastrophic effects

on convergence.

3.4 Concluding Remarks

We have presented an analytical model describing the convergence of deflation-based Krylov

subspace recycling. The analysis shows that if the recycled subspaceR (Ck) contains an
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invariant subspaceR (Q`), convergence can be bounded above by problem (3.3.3). Experi-

mental evidence supports this conclusion, but also shows that a deflationary approach is not

optimal. Specifically, there exist better choices than simply trying to deflate the eigenvalues

closest to the origin.
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Chapter 4

KKT Preconditioners for FETI
Methods: New Connections

Preconditioners for KKT (Karush-Kuhn-Tucker) linear systems have been studied exten-

sively. The one-level finite element tearing and interconnecting (FETI) [16] method pro-

duces a linear system of this form. In this chapter, we show new connections between

recently proposed KKT preconditioners and solvers and the one-level FETI method. These

connections provide a new perspective on the analysis of FETI preconditioners by leverag-

ing work for KKT systems. In particular, they provide a means of bounding the eigenvalues

of preconditioned FETI systems, and thus the rate of convergence of an iterative solver.

This theoretical framework gives a means to analyze the usefulness of improvements to

FETI preconditioners.

The FETI method requires the solution of an expensive subproblem, in which a Schur

complement matrix is factorized. Connections we will demonstrate allow us to extend the

FETI method to allow for the use of an approximate Schur complement. This has several

advantages, the first being reduced computational cost. When solving a sequence of FETI

problems, we can amortize the cost of this subproblem by “recycling” the factorized Schur

complement matrix for the next linear system, and using it as an approximation to the true

Schur complement matrix for the next linear system. We can also bound the locations of

the eigenvalues for a preconditioned FETI system using an inexact Schur complement, and
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thus predict how convergence is affected by the inexact Schur complement.

4.1 Introduction

The one-level finite element tearing and interconnecting (FETI) method was one of the

first domain decomposition methods to exhibit numerical scalability with respect to both

the mesh and subdomain sizes [15], when equipped with an appropriate preconditioner. In

section 4.2 we review the original FETI method and its traditional preconditioners, as de-

scribed in [16]. We will find that the FETI method requires the solution of a KKT system,

and that the solution to this KKT system is computed by forming and solving a reduced-size

linear system. In section 4.3 we discuss a class of block-diagonal KKT preconditioners.

In section 4.4 we show an equivalence between these block-diagonal preconditioners and

FETI preconditioners. In connection with this class of block-diagonal KKT precondition-

ers, a reduced-size “related system” was proposed. In section 4.5 we outline this so-called

“related system”, and show equivalence between the related system and the reduced-size

problem solved by the FETI method. In section 4.6 we show applications of these newly

developed insights about the FETI method. These algebraic connections provide a new

means by which to analyze existing FETI preconditioners, and suggest how to construct

new ones. We bound the spectrum of the FETI dual interface problem. We also develop a

FETI method that uses an approximate Schur complement, and bound the locations of the

eigenvalues of the preconditioned system. We offer concluding remarks in 4.7.

4.2 Review of the One-Level FETI Method

The FETI method is a domain decomposition method that solves iteratively the linear sys-

tem of equations arising from the finite element discretization of self-adjoint elliptic partial

differential equations.

60



Suppose for a domainΩ that the associated linear system isKu = f , whereK is the

global stiffness matrix,u is the unknown vector of displacements for each degree of free-

dom, andf is a vector of applied forces. The FETI method proceeds by cutting the domain

into pieces, and then solving a local problem on each subdomain, with the requirement that

the solution is continuous across subdomain boundaries. IfΩ is “torn” into Ns nonoverlap-

ping regions{Ω(s)}s=Ns
s=1 , then FETI replaces the global problem withNs subproblems,

K(s)u(s) = f (s)−B(s)T
λ, s= 1, . . . ,Ns (4.2.1a)

Ns

∑
s=1

B(s)u(s) = 0, (4.2.1b)

whereK(s) is the stiffness matrix,u(s) the displacement vector, andf (s) the prescribed

force vector associated with the finite element discretization of the regionΩ(s), andB(s)

is a signed boolean matrix that extracts and signs the interface components of a vector.

Equation (4.2.1b) represents the set of constraints that require the subdomainsΩ(s) be con-

tinuous along their interfaceΓ(s). The vector of Lagrange multipliersλ represents the

forces between the subdomains at their interface. Clearly, onceλ has been determined,

each of theNs subproblems (4.2.1a) is now completely decoupled and can be solved in an

embarrassingly parallel manner.

The “tearing” process often generates substructures which do not have enough pre-

scribed displacements to locally eliminate rigid body modes. If, for example, the domain

Ω( j) does not have enough prescribed boundary conditions, then the local stiffness matrix

K( j) is semi-definite, and special attention must be given to the equation

K( j)u( j) = f ( j)−B( j)T λ. (4.2.2)
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If this singular system is consistent, the general solution of equation (4.2.2) is given by

u( j) = K( j)†
(

f ( j)−B( j)T
λ
)

+R( j)α( j), (4.2.3)

whereK( j)†
is the pseudoinverse ofK( j), R( j) is a rectangular matrix whose columns form a

basis for the null space ofK( j), andα( j) specifies the contribution from the null spaceR( j)

to the local solutionu( j). Physically,R( j) represents the rigid body (zero energy) modes

of Ω( j), andα( j) specifies a particular linear combination of these. Note that ifK( j) is

singular, for (4.2.2) to have a solution,f ( j)−B( j)T λ must be inR
(

K( j)
)

. This requires

that

R( j)T
(

f ( j)−B( j)T
λ
)

= 0. (4.2.4)

4.2.1 The FETI Dual Interface Problem

If we substitute (4.2.3) into (4.2.1b) and exploit (4.2.4), the equations (4.2.1a-4.2.1b) can

be formulated equivalently as




F −G

−GT 0







λ

α


 =




d

−e


 , (4.2.5)

where the matrixF ∈ Rn×n is symmetric positive semi-definite (SPSD), andG∈ Rn×m is

full rank, wheren≥m. System (4.2.5) is called thedual interface problembecauseλ is the
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dual variable to the primal variablesu(s). The submatrices in (4.2.5) are defined as

F =
Ns

∑
s=1

B(s)K(s)†
B(s)T

,

d =
Ns

∑
s=1

B(s)K(s)†
f (s),

GI =
[
G(1)

I . . .G
(Nf )
I

]
=

[
B(1)R(1) . . .B(Nf )R(Nf )

]
,

α =
[
α(1) . . .α(Nf )

]
,

e=
[

f (1)T
R(1) . . . f (Nf )T

R(Nf )
]
,

whereNf denotes the number of floating subdomains. We refer to the second block equa-

tion of (4.2.5),GTλ = e, as the constraint equations.

In practice, the matrixF is never explicitly assembled. Instead, the dual interface prob-

lem is solved iteratively with the preconditioned conjugate gradient (PCPG) algorithm,

discussed in section 4.2.2, which requires only multiplication by the matrixF .

4.2.2 Iterative Solution of the Dual Interface Problem

In the FETI method, the indefinite dual interface problem (4.2.5) is transformed into a

smaller positive semidefinite system by first satisfying the constraint equations. This posi-

tive semidefinite system is solved iteratively, and the constraint is explicitly maintained by

projection. To satisfy the constraint equations, we must choose aλ(0) such thatGTλ(0) = e.

For this, we select

λ(0) = QGI
(
GT

I QGI
)−1

e. (4.2.6)
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This choice effectively decomposes the solution vectorλ as

λ = λ(0) +∆λ, (4.2.7)

where∆λ ∈ ker
(
GT

)
. The most direct way of doing this is to introduce the projector

P(Q) = I −QGI
(
GT

I QGI
)−1

GT
I (4.2.8)

onto ker
(
GT

)
, whereQ is any matrix such that(GT

I QGI )−1 exists and is SPD. We will

discuss choices forQ below. Letting∆λ = P(Q)ξ for someξ, the first block of equations

in (4.2.5) may be written as

FP(Q)ξ = d−Fλ(0) +Gα. (4.2.9)

Left multiplication of the system (4.2.9) by the projectorP(Q)T decouplesα, restores sym-

metry, and transforms the FETI dual interface problem into theprojected interface problem

(
P(Q)TFP(Q)

)
ξ = P(Q)T

(
d−Fλ(0)

)
. (4.2.10)

Onceξ has been determined, we can express the solutionλ asλ = λ(0) +P(Q)ξ. We then

solve for the rigid body mode coefficients

α =−(
GT

I QGI
)−1

GT
I Q(d−Fλ) , (4.2.11)

and finally for the subdomain solutions (4.2.3), which can be computed concurrently for

each subdomain.

In practice, the projected interface problem (4.2.10) is solved using the Preconditioned

Conjugate Projected Gradient algorithm (PCPG) as shown in Algorithm 4.1, whereM−1
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denotes a particular choice of preconditioner (discussed in section 4.2.3). Note that Algo-

rithm 4.1 has been written to iterate directly onλ(k) = λ(0) +P(Q)ξ(k), rather thanξ(k), and

λ(0) denotes the initial guess for the iterative method in this case.

Algorithm 4.1:Preconditioned Conjugate Projected Gradient (PCPG)

1: λ(0) = QGI
(
GT

I QGI
)−1

e

2: w(0) = PT
(

d−Fλ(0)
)

3: for k = 0,1, . . . do

4: y(k) = PM−1w(k)

5: p(k) = y(k)−∑k−1
i=0

y(k)T F p(i)

p(i)T F p(i)
p(i)

6: η(k) = p(k)T p(k)

p(k)T F p(k)

7: λ(k+1) = λ(k) +η(k)p(k)

8: w(k+1) = w(k)−η(k)PTF p(k)

9: end for

Application ofP(Q) requires the solution of the coarse space problem

(
GT

I QGI
)

µ= η,

which couples all the subdomain equations, propagates error globally, and accelerates con-

vergence [26]. There are several possible choices forQ in P(Q). The simplest isQ = I ,

which is a computationally efficient choice for homogeneous problems [15]. For hetero-

geneous problems, it was proposed in [16] to setQ equal to the FETI lumped or Dirichlet

preconditioners, which are discussed in section 4.2.3.

Note that PCPG keeps a full recurrence. From numerical experiments, it has been

established that while most of the eigenvalues ofF cluster near zero, a handful accumulate

to a larger value [38]. This distribution of eigenvalues is known to cause PCPG to lose

orthogonality, which slows convergence.
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The usual FETI implementation generates redundant constraints at crosspoints of the

finite element mesh (points belonging to three or more subdomains). As a result,F is

semidefinite in these cases [15]. However, this condition can easily be rectified by elimi-

nating the redundant constraints. This is not done in practice because the interface problem

PTFP is nonsingular over the space over which we seek a solution [50]. Without loss of

generality, we will assume thatF is SPD for the remainder of this chapter.

For second order elasticity problems, the condition number of the dual interface prob-

lem grows asymptotically as

κ = O

(
1+ log2

(
H
h

))
(4.2.12)

when the Dirichlet preconditioner (discussed in section 4.2.3) is applied, whereH denotes

the subdomain size andh the mesh size [15]. This result details the numerical scalability

of the FETI method for these problem classes. That is, if the mesh and subdomain sizes are

refined so thatH/h remains constant, the number of FETI iterations required to solve the

problem is bounded by a constant.

4.2.3 Classical Preconditioners

We seek a matrixM−1 that approximates the inverse ofF over the nullspace ofGT . Since

F is not explicitly assembled, we would like to compute the preconditioner without having

F explicitly available. Two commonly used preconditioners in the FETI literature that meet

these requirements are thelumpedandDirichlet preconditioners [16].

Assume that the matrixK(s) is partitioned such that its internal degrees of freedom

(DOFs) are numbered first. We will denote these by the subscripti, and the boundary
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DOFs by the subscriptb. We can then write

K(s) =




K(s)
ii K(s)

ib

K(s)
bi K(s)

bb


 .

The lumped preconditioner derives its name because, from a mechanical viewpoint, it

corresponds to finding a set of “lumped” interface forces that can reproduce the displace-

ment jumps at the substructure interfaces when only the interface DOFs are allowed to

displace. SinceF is represented as the sum of matrices

F =
Ns

∑
s=1

B(s)K(s)†
B(s)T

,

the lumped preconditioner1can be expressed as

(
ML)−1

=
Ns

∑
s=1

W(s)B(s)K(s)B(s)T
W(s)

=
Ns

∑
s=1

W(s)B(s)




0 0

0 K(s)
bb


B(s)T

W(s),

whereW(s) is a diagonal “topological scaling” matrix. In the homogeneous case,W(s)

stores the inverse of the multiplicity of the corresponding interface DOF. For structurally

heterogeneous models, entries on the diagonal ofW(s) are adjusted accordingly to account

for varying material properties [37].

The Dirichlet preconditioner is based on a further mechanical interpretation of the FETI

1The use of−1 indicates that
(
ML

)−1
and

(
ML

)−1
should be viewed as preconditioners, and does not

imply thatML or MD correspond to invertible matrices, although both preconditioners are nonsingular over
the space over which they are applied.
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algorithm and can be expressed as

(
MD)−1

=
Ns

∑
s=1

W(s)B(s)




0 0

0 K(s)
bb −K(s)T

ib K(s)−1

ii K(s)
ib


B(s)T

W(s)

=
Ns

∑
s=1

W(s)B(s)




0 0

0 S(s)


B(s)T

W(s),

whereS(s) = K(s)
bb −K(s)T

ib K(s)−1

ii K(s)
ib is the Schur complement ofK(s). Note that the effect of

multiplication by(MD)−1 can be achieved without the formation of the Schur complement

matrix.

The Dirichlet preconditioner is superior to the lumped preconditioner, and is considered

to be mathematically optimal. The Dirichlet preconditioner is, however, more expensive

than the lumped preconditioner. Because of this added cost, the lumped preconditioner can

be computationally more efficient [16].

4.3 KKT Preconditioners

The FETI dual interface problem (4.2.5) is a KKT system. Rather than focusing on me-

chanical intuition to develop FETI preconditioners, let us approach the problem from a

purely algebraic perspective by leveraging existing research on KKT preconditioners and

solvers.

In [13], the KKT preconditioner




F−1 0

0
(
GTF−1G

)−1


 (4.3.1)

was proposed for nonsingularF . The nonsingular preconditioned system can be shown to
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have at most three distinct eigenvalues, meaning that any Krylov method will converge in at

most three iterations. Unfortunately, this preconditioner is far too expensive to be practical.

In section 4.4, we instead consider a symmetric version of a related block-diagonal

preconditioner derived from (4.3.1) and introduced in [7]. This preconditioner takes the

form




D−1 0

0
(
GTD−1G

)−1


 , (4.3.2)

whereF = D−E. The matrixD is chosen so that it is easily invertible. For the present

problem, we will choose (4.3.2) to be symmetric positive definite. This preconditioner can

be regarded as an extension of the preconditioner (4.3.1), which choosesD = F .

In [7] it is observed that after preconditioning a KKT system by (4.3.2), a smaller

“related system” can be derived. This related system can be viewed as a generalized form

of the projected interface problem (4.2.10). We discuss the related system further in section

4.5.

4.4 Block-Diagonal Preconditioners

Here we consider the application of the block-diagonal preconditioner (4.3.2) to the dual

interface problem (4.2.5). We show that the resulting reduced-size projected interface prob-

lem is equivalent to a preconditioned projected interface problem in the original FETI

method. In particular, this means that all FETI preconditioners can be regarded as split-

tings of the(1,1) block of (4.2.5).
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4.4.1 Applying the Preconditioner

It is generally preferable to preserve symmetry, so we factor the preconditioner (4.3.2) and

apply it to the interface problem (4.2.5) symmetrically. Let us choose a splittingF = D−E

and compute the Cholesky factorization of the preconditioner, giving




D−1 0

0
(
GTD−1G

)−1


 =




LT
D 0

0 LT
G







LD 0

0 LG


 , (4.4.1)

where we have assumed thatD is SPD. SinceG is guaranteed to be full rank [50],GTD−1G

is SPD ifD is SPD. Symmetrically preconditioning the interface problem (4.2.5) gives




LDFLT
D −LDGLT

G

−LGGTLT
D 0







L−T
D λ

L−T
G α


 =




LDd

−LGe


 ,

which we rewrite as




F̃ −G̃

−G̃T 0







λ̃

α̃


 =




d̃

−ẽ


 . (4.4.2)

In (4.4.2),G̃ has the useful property

G̃TG̃ = LGGT (
LT

DLD
)

GLT
G = LG

(
GTD−1G

)
LT

G = I ,

and therefore
(

G̃G̃T
)

is an orthogonal projector.

At this point, we can now apply PCPG to the preconditioned system (4.4.2). In this

case, the modified FETI projector arising from (4.4.2) can be written as

P̃ = I − G̃
(

G̃TG̃
)−1

G̃T = I − G̃G̃T . (4.4.3)
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Note that the projector̃P is always symmetric. Further, the coarse space problem(GTG)µ=

η that must be solved twice at each PCPG iteration has been implicitly handled by the

block-diagonal preconditioner.

4.4.2 Block-Diagonal and FETI Preconditioners

We consider the solution of (4.4.2) by PCPG. We show that application of the block-

diagonal preconditioner (4.3.2) with PCPG is equivalent to any FETI preconditioner.

For the projected interface problem (4.2.10) we will assume that the chosen FETI pre-

conditioner isQ, and that the associated projector is defined asP(Q). We will assume that

the preconditionerQ is applied symmetrically. In the following, we will make the assump-

tion thatQ= D−1. We represent the Cholesky factorization ofQ asQ= D−1 = LT
DLD. The

preconditioned projected interface problem can be expressed as

(
LDP(Q)TFP(Q)LT

D

)(
L−T

D ξ
)

= LDP(Q)T
(

d−Fλ(0)
)

. (4.4.4)

The corresponding block-diagonally preconditioned projected interface problem is

(
P̃T F̃P̃

)
ξ̃ = P̃T

(
d̃− F̃ λ̃(0)

)
, (4.4.5)

whereλ̃(0) = G̃ẽ = L−T
D λ(0) was defined in (4.4.2) and (4.2.6). We show below that the

matrices and right-hand sides in equations (4.4.4) and (4.4.5) are identical. In this case,

we have that̃ξ = L−T
D ξ. If we have thatλ = λ(0) + P(Q)ξ and that̃λ = λ̃(0) + P̃(Q)ξ̃,

thenλ̃ = L−T
D λ, in agreement with the relation given in (4.4.2). We have thus shown that

when preconditioning the dual interface problem (4.2.5) and solving the preconditioned

system with PCPG, the choice of the splittingD−1 is equivalent to selection of any FETI

preconditioner, such as those in section 4.2.3. This means that every FETI preconditioner

can be viewed as a splitting ofF , and any of the large body of literature of matrix splittings
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[28] can now be applied to FETI preconditioners. This allows an algebraic, rather than

mechanical, means of constructing new FETI preconditioners.

It remains to show equality of the matrices and right-hand sides in (4.4.4) and (4.4.5).

We consider the matrices first. We can rewrite the matrix in (4.4.5) as

P̃T F̃P̃ =
(

I − G̃G̃T
)

F̃
(

I − G̃G̃T
)

= LD

(
I −G

(
GTQG

)−1
GTQ

)
F

(
I −QG

(
GTQG

)−1
GT

)
LT

D

= LDP(Q)TFP(Q)LT
D,

which is precisely the matrix in (4.4.4).

Similarly, We can rewrite the right-hand side in (4.4.5) as

P̃T
(

d̃− F̃ λ̃(0)
)

=
(

I − G̃G̃T
)(

d̃− F̃ λ̃(0)
)

= LD

(
I −G

(
GTQG

)−1
GTQ

)(
d−Fλ(0)

)

= LDP(Q)T
(

d−Fλ(0)
)

,

which is precisely the right-hand side in (4.4.4).

4.5 FETI and the Related System

Rather than applying PCPG to the preconditioned system (4.4.2), we can solve the so-called

“related system” developed in [7], which we describe here. We first rewrite the matrix in

(4.4.2) as

B(S̃) =




I − S̃ −G̃

−G̃T 0


 ,
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where

S̃≡ I − F̃ = I −LDFLT
D. (4.5.1)

We note that

B(S̃) = B(0)−




S̃ 0

0 0


 ,

and that the explicit form for the inverse ofB(0) is

B(0)−1 =




I − G̃G̃T −G̃

−G̃T −I


 =




P̃ −G̃

−G̃T −I


 .

We may then rewrite the system (4.4.2) as

B(0)




λ̃

α̃


 =




S̃ 0

0 0







λ̃

α̃


+




d̃

−ẽ


 ,

and multiply through byB(0)−1 to get the fixed-point iteration




λ̃(k+1)

α̃(k+1)


 =




P̃ S̃λ̃(k)

−G̃TS̃λ̃(k)


+




P̃d̃+ G̃ẽ

−G̃T d̃+ ẽ




=




P̃ S̃λ̃(k)

−G̃TS̃λ̃(k)


+




f̃

g̃


 . (4.5.2)
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We note that̃α depends only oñλ, so we may computẽλ first, then computẽα afterwards,

just as in PCPG. Writing out the update forλ̃(k+1) gives

λ̃(k+1) = P̃ S̃λ̃(k) + f̃ . (4.5.3)

The fixed-point̃λ of this system satisfies̃λ = P̃ S̃λ̃+ f̃ , which we rewrite as

(
I − P̃S̃

)
λ̃ = f̃ (4.5.4)

to produce therelated system. Following the discussion in [7], we note that each fixed-

point iterate (4.5.3) corresponds to aλ(k+1) that satisfies the original constraint equation

GTλ(k+1) = e. Further, if a Krylov subspace method is used to solve (4.5.4) where the

initial guess̃λ(0) satisfies the constraint equations, it can be shown that the constraint equa-

tions will be satisfied at every iteration. It is recommended in [7] to apply one fixed-point

iteration to develop an iterate that satisfies the constraint equations, and then use that iter-

ate as an initial guess for a Krylov method. In the following, we will instead assume that

(4.5.4) is solved with a Krylov method usingλ̃(0) as an initial guess. For this case, we solve

the related system

(
I − P̃S̃

)
ξ̃ = f̃ −

(
I − P̃S̃

)
λ̃(0). (4.5.5)

Next, we compare the related system (4.5.5) to the block-diagonally preconditioned

projected interface problem (4.4.5), and show them to be equivalent.

4.5.1 The Related System

Here, we compare the two linear systems (4.5.5) and (4.4.5). Recall that we have already

shown equivalence between (4.4.5) and the original FETI method usingQ = D−1. Tran-
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sitively, this implies the related system is also equivalent. First, we compare the matrices,

then the right-hand sides. Recall the definition ofS̃ in (4.5.1), and that the projector̃P is

symmetric. The related system matrixI − P̃S̃ is nonsymmetric, which seems counterpro-

ductive, as the original system we are trying to solve is symmetric. However, over the space

over which the related system matrix is applied, it is the same as the FETI projected inter-

face operator, and therefore also symmetric. If we start with a consistent initial guess, then

all iterates are inker
(

G̃T
)

. This is equivalent to right-multiplication bỹP, as a projector

applied to its own range is the identity. This produces

(
I − P̃S̃

)
P̃ = P̃− P̃

(
I − F̃

)
P̃

= P̃T F̃P̃,

which is precisely the matrix in (4.4.5). However, note thatI − P̃S̃ is nonsingular, while

P̃T F̃P̃ is nonsingular only over the spaceker
(

G̃T
)

.

Now, we compare the right-hand side vectors. In the related system (4.5.5) we have

f̃ −
(

I − P̃ S̃
)

λ̃(0) = P̃d̃+ G̃ẽ−
(

I − P̃ S̃
)

λ̃(0)

= P̃d̃+ P̃
(

I − F̃
)

λ̃(0)

= P̃T
(

d̃− F̃ λ̃(0)
)

,

which is precisely the right-hand side in (4.4.5).
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4.5.2 Computingα̃

Here, we consider the computation ofα̃ after̃λ has been determined. In the block-diagonally

preconditioned PCPG algorithm, we computeα̃ as

α̃ =−
(

G̃TG̃
)−1

G̃T
(

d̃− F̃ λ̃
)

=−G̃T
(

d̃− F̃ λ̃
)

.

In the method of [7], we computẽα using the fixed point iteration (4.5.2), which produces

α̃ =−G̃TS̃λ̃+ g̃

=−G̃T
(

I − F̃
)

λ̃− G̃T d̃+ ẽ

=−G̃T
(

d̃− F̃ λ̃
)

,

exactly the expression found above.

We have shown algebraic equivalence of the related system (4.5.5) and the block-

diagonally preconditioned projected interface problem (4.4.5). Through section 4.4.2 we

also have the equivalence of the related system (4.5.5) and the projected interface problem

(4.4.4) preconditioned with any FETI preconditioner, so long asQ = D−1. This allows an

alternate approach to constructing and analyzing FETI preconditioners. Further, existing

KKT analysis may now be immediately applied to FETI systems. We show some conse-

quences of these equivalences in section 4.6.

4.6 Results from Equivalences

We begin by bounding the eigenvalues of the related system in a cluster about one. LetλR

denote an eigenvalue of the related system (4.5.5). Ifζ is an eigenvector of (4.5.5), then
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(
I − P̃ S̃

)
ζ = λRζ, and it follows that

|1−λR|2≤ ‖S̃‖2,

becausẽP is an orthogonal projector. To the extent that the FETI preconditioner becomes

an exact inverse,‖S̃‖2 goes to zero.

The block-diagonal preconditioner (4.3.2) requires the inverse of the Schur complement

matrix (coarse space problem)GTD−1G, which can be expensive. Further, factoring and

solving the coarse problem can represent a serious impediment to parallel scalability [3].

Instead, recent research in KKT preconditioners explores the use of an inexact Schur

complement matrix, which can typically be computed at greatly reduced cost [20, 33, 43].

Applying results from sections 4.5 and 4.6, we modify the block diagonal preconditioner

(4.3.2) to use an inexact Schur complement matrix




D−1 0

0
(
GTD−1G

)−1


≈




LT
DLD 0

0 LT
SLS


 , (4.6.1)

where

D−1 = LT
DLD

(
GTD−1G

)−1≈ LT
SLS,

and

LS
(
GTD−1G

)
LT

S = I +E .

If we precondition the dual interface problem (4.2.5) with the preconditioner (4.6.1), we
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arrive at the preconditioned system [43]




F̃ −Ĝ

−ĜT 0







λ̃

α̂


 =




d̃

−ê


 . (4.6.2)

We cannot simply apply PCPG at this point, as it would require the inverse of the Schur

complement, which we are trying to avoid [7, 43]. We instead split the linear system using

a different splitting [43]. This produces




I −Ĝ

−ĜT E







λ̃

α̂


 =




S̃ 0

0 E







λ̃

α̂







d̃

−ê


 ,

whereF̃ = I − S̃, andĜTĜ = I + E . Multiplying through by the inverse of the matrix on

the left-hand side gives the fixed-point iteration




λ̃(k+1)

α̂(k+1)


 =




P̂S̃ −ĜE

−ĜTS̃ −E







λ̃(k)

α̂(k)


+




P̂d̃+ Ĝê

−ĜT d̃+ ê


 ,

where in this casêP = I − ĜĜT is not a projector. Writing the linear system for the fixed-

point gives the related system




I − P̂S̃ ĜE

ĜTS̃ I+E







λ̃

α̂


 =




P̂d̃+ Ĝê

−ĜT d̃+ ê


 . (4.6.3)

Unlike the case with an exact Schur complement, we cannot reduce the size of the system

to be solved. However, especially for3D models, the size increase is very modest.

By combining [43, Theorem 4.2] with the observation that‖Ĝ‖2
2 = ‖I +E‖2

2, the eigen-
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Figure 4.6.1: Number of matrix-vector products vs. residual norm using an approximate
Schur complement formulation of FETI. The number in parentheses indicates the drop
tolerance used, with (0) indicating the exact Schur complement.

valuesµ of the matrix in (4.6.3) can be bounded about one:

|1−µ| ≤ (
1+‖I +E‖2

2

) ·max
(
‖S̃‖2,‖E‖2

)
. (4.6.4)

Here,‖S̃‖2 is a measure of the accuracy of the FETI preconditioner, and‖E‖2 is a measure

of the accuracy of the approximate Schur complement. This bound suggests that using a

less expensive approximation to the inverse of the Schur complement may not significantly

impact the eigenvalue distribution, and thus the overall convergence rate of an iterative

method. In particular, the theory presented here can be used to estimate the impact on the

eigenvalue distribution and the convergence rate of the iterative method in the case where

we “recycle” a factored Schur complement from a previous linear system in a sequence.

We present a simple example illustrating the impact of an approximate Schur comple-

ment on convergence. A 2D finite element model of a cantilevered beam was cut into a
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3×3 decomposition of 9 subdomains, and the resulting dual problem solved by applying

full GMRES to the related system (4.6.3). An approximate Schur complement was gener-

ated using an incomplete Cholesky decomposition with a drop tolerance [42]. While not

a practical choice, it gives the ability to vary the accuracy of the approximation. In Figure

4.6.1, we show convergence curves for an exact Schur complement with a Dirichlet pre-

conditioner and with no preconditioner, and also an approximate Schur complement with a

Dirichlet preconditioner. In the figure, the number in parentheses indicates the drop toler-

ance used, with (0) indicating the exact Schur complement. This demonstrates the interplay

between the Schur complement and preconditioner, as suggested in the bound (4.6.4). In

the presence of a strong preconditioner, it is possible to use an inexact Schur complement

without significantly impacting convergence.

4.7 Conclusions

We have shown that every FETI preconditioner may be viewed as a splitting of the(1,1)

block of (4.2.5), suggesting algebraic (rather than mechanical) means of constructing and

analyzing new FETI preconditioners. How to choose a better splittingF = D−E (e.g.,

a better preconditioner) requires further investigation. We have also shown equivalence

between a class of block-diagonal preconditioners and traditional FETI preconditioners.

These new algebraic connections make existing KKT preconditioner analysis immediately

applicable to FETI systems. We have leveraged this analysis to provide a theory regarding

the clustering of the eigenvalues of preconditioned systems, which provides a mechanism to

evaluate existing and new FETI preconditioners. Furthermore, the use of a preconditioner

based on an approximate Schur complement may be computationally more efficient than

existing FETI preconditioners, especially when solving a sequence of FETI systems where

the Schur complement matrix can be recycled between systems.
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Chapter 5

Conclusions

We have discussed improvements to solvers and preconditioners for sequences of linear

systems arising in nonlinear finite element analysis, with a focus on recycling information

between consecutive linear systems in a sequence. In Chapter 2 we discussed the theory

of Krylov subspace recycling, and introduced two linear solvers, GCRO-DR and a modifi-

cation of GCROT to support recycling. When solving a sequence of linear systems, meth-

ods employing Krylov subspace recycling frequently outperformed GMRES while keeping

only a small number of vectors, although this was not always true.

Chapter 3 presented a bound on the convergence of GCRO-DR using deflation-based

Krylov subspace recycling. The analysis shows that if the recycled subspaceR (Ck) con-

tains an invariant subspaceR (Q`), convergence can be bounded above by problem (3.3.3).

We performed numerical experiments to evaluate the usefulness of these bounds, and found

them to be tight in cases where‖PQ‖2 is not large. Experimental evidence shows that a de-

flationary approach is not optimal, and that there exist better choices than simply trying

to deflate the eigenvalues closest to the origin. More work is needed to determine how to

identify and select better subspaces within the recycling process.

In Chapter 4 we turned to analysis of preconditioners for FETI systems, and showed

that every FETI preconditioner may be viewed as a splitting of the(1,1) block of the FETI

dual-interface problem, suggesting algebraic (rather than mechanical) means of construct-
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ing and analyzing new FETI preconditioners. We have also shown the equivalence between

a class of block-diagonal preconditioners and traditional FETI preconditioners. Further, we

showed equivalence between the related system and the FETI projected interface problem.

We supply bounds on the eigenvalues of preconditioned FETI systems, which provides a

mechanism to evaluate existing and new FETI preconditioners. Finally, we demonstrated

that the use of a preconditioner based on an approximate Schur complement may not sig-

nificantly impact convergence, and has the potential to be computationally less expensive.

This may be especially beneficial when solving a sequence of FETI systems where the

Schur complement matrix can be recycled between systems.

82



Appendix A

Algorithm A.1: GCRO with Deflated Restarting (GCRO-DR)

1: Choosem, the maximum size of the subspace, andk, the desired number of approx-
imate eigenvectors. Lettol be the convergence tolerance. Choose an initial guessx0.
Computer0 = b−Ax0, and seti = 1.

2: if Ỹk is defined (from solving a previous linear system)then
3: Let [Q,R] be the reduced QR-factorization ofAỸk.
4: Ck = Q
5: Uk = ỸkR−1

6: x1 = x0 +UkCH
k r0

7: r1 = r0−CkCH
k r0

8: else
9: v1 = r0/‖r0‖2

10: c = ‖r0‖2e1

11: Performmsteps of GMRES, solvingmin‖c−Hmy‖2 for y and generatingVm+1 and
Hm.

12: x1 = x0 +Vmy
13: r1 = Vm+1(c−Hmy)
14: Compute thek smallest eigenvectors̃zj of (Hm + h2

m+1,mH−H
m emeH

m)z̃j = θ̃ j z̃j and
store inPk.

15: Ỹk = VmPk

16: Let [Q,R] be the reduced QR-factorization ofHmPk.
17: Ck = Vm+1Q
18: Uk = ỸkR−1

19: end if
20: while ‖r i‖2 > tol do
21: i = i +1
22: Performm−k Arnoldi steps with the linear operator(I −CkCH

k )A, letting
v1 = r i−1/‖r i−1‖2 and generatingVm−k+1, Hm−k, andBm−k.

23: Let Dk be a diagonal scaling matrix such thatŨk = UkDk where the columns of̃Uk

have unit norm.
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24: V̂m = [Ũk Vm−k]
25: Ŵm+1 = [Ck Vm−k+1]

26: Gm =
[

Dk Bm−k

0 Hm−k

]

27: Solvemin‖ŴH
m+1r i−1−Gmy‖2 for y.

28: xi = xi−1 +V̂my
29: r i = r i−1−Ŵm+1Gmy
30: Compute thek smallest eigenvectors̃zj of G

H
mGmz̃i = θ̃iG

H
mŴH

m+1V̂mz̃i and store in
Pk.

31: Ỹk = V̂mPk

32: Let [Q,R] be the reduced QR-factorization ofGmPk.
33: Ck = Ŵm+1Q
34: Uk = ỸkR−1

35: end while
36: Let Ỹk = Uk (for the next system).
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