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Abstract

We will review the basic foundations of Kohn-Sham density

functional theory (DFT). Afterwards, applications of electronic

ground-state, electronically excited states calculations, and ab initio

molecular dynamics studies will be presented. The selected examples

will include condensed as well as gas phase systems properties.

Finally, we will discuss to which extent current DFT

implementations are predictive.
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• Introduction

• Theory

• Electronic applications

• Ab initio molecular dynamics

• Excited states



Intro — Explicit electronic structure

• When does one have to solve the electron structure explicitly?

– Chemical reactions: Breaking and creation of chemical bonds

– Variable coordination

– Changing type of interaction

– Difficult chemistry of elements

→ whenever potentials are unknown — leverage Quantum Mechanics
The fundamental laws necessary for the mathematical treatment of a
large part of physics and the whole of chemistry are thus completely
known, and the difficulty lies only in the fact that application of
these laws leads to equations that are too complex to be solved.
P. Dirac

• Unfortunately, the complexity of the problem grows immensely: Nuclei
localised (only coordinates needed), explicit electron structure means solving
the full Schrödinger equation

⇒ Compromises, approximations



Intro — Many body electronic structure theory
Φ: Born-Oppenheimer Ansatz (Adiabaticity),

Φ ({RI} , {ri}) ≈ Ψ{RI} ({ri})× χ({RI}),
leads to electronic many-body eigenvalue equation (Schrödinger),

HeΨ(n)
{RI} ({ri}) = E(n)

{RI}Ψ
(n)
{RI} ({ri})

with electronic Hamiltonian

He = T̂ee + V̂ext + V̂ee =
∑

i

−
h̄2

2me
∇2

i + Vext (r) +
1

4πε0

∑
ij

e2

|ri − rj|

Ψ: – depends on coordinates of electrons,

Ψ(n)
{RI} (r1, . . . , rN) ,

– has to satisfy (Pauli),

Ψ (r1, . . . , ri, . . . , rj, . . . rN) = −Ψ(r1, . . . , rj, . . . , ri, . . . rN) ,

– obtain ground state energy and wave function via minimisation (Ritz)

E0 =
〈
Ψ(0)

∣∣∣He|Ψ(0)
〉

= min
Ψ(r1,...,rN)

〈Ψ| He|Ψ〉

– subject to the constraint on normalisation (Hilbert)



Intro — Many body wave function
Quantum chemistry approaches

• Hartree-Fock: Approximate wave function with a single determinant;
anti-symmetric property automatically fulfilled

• Correlation:

– MP2, MP3, MP4

– MC-SCF

– FCI

– Coupled-cluster

– . . .

Explicit presentation

� Imagine storing the full many body wave function, not even speaking of

solving it

� For example 10 orbitals (20 electrons with spin degeneracy), 100 points per

orbital

{ 100

10

points, 4 bytes per point ) � 4 � 10

20

= 0.4 mio PB

) impossible data amount, simpli�cation and/or approximations required
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• Hartree-Fock: Approximate wave function with a single determinant;
anti-symmetric property automatically fulfilled

• Correlation:

– MP2, MP3, MP4

– MC-SCF

– FCI

– Coupled-cluster

– . . .

Explicit presentation

• Imagine storing the full many body wave function, not even speaking of
solving it

• For example 10 orbitals (20 electrons with spin degeneracy), 100 points per
orbital

– 10010 points, 4 bytes per point ⇒ ≈ 4 × 1020 = 0.4 mio PB

⇒ impossible data amount, simplification and/or approximations required



Theory — Alternative route
via density

• Density is a basic property of the system and the coordinate space does not
grow with the number of particles (electrons)

• Is it enough to know only the (electron) density?

n1 (r) = N

∫
. . .

∫
|Ψ(r, r2, . . . , rN)|2 dr2 dr3 . . . drN

Hohenberg-Kohn theorem I

The exact electron many body (ground state) wave function 	

| de�ned by external potential + N interacting electrons |

is a unique functional of the electronic density n

Thus, all quantum mechanical observables are functionals of n, n can be used

instead of the wavefunction to characterise all the properties of an electronic

structure
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Thus, all quantum mechanical observables are functionals of n, n can be used
instead of the wavefunction to characterise all the properties of an electronic
structure



Solution: Walter Kohn

1
2

Nobel prize Chemistry, 1998 (shared
with Pople).



Theory — Hohenberg-Kohn theorem I: Proof
By reductio ad absurdum:

• Suppose there were two different potentials, v1 and v2, yielding the same
density but different ground state wave functions Ψ1 and Ψ2

• Clearly, trial function Ψ2 with potential v1 would give,

〈Ψ2| T̂ee + V̂ee + v1 |Ψ2〉 > 〈Ψ1| T̂ee + V̂ee + v1 |Ψ1〉 = E0

h	jv

1

j	i =

R

dn()v

1

(), (n is the same),

h	

2

j

^

T

ee

+

^

V

ee

j	

2

i > h	

1

j

^

T +

^

V

ee

j	

1

i

Swap 1 and 2,

h	

1

j

^

T +

^
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ee
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1

i > h	
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T +
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ee
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) Absurdum!
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Since 〈Ψ|v1|Ψ〉 =
∫

drn(r)v1(r), (n is the same),
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Theory — Hohenberg-Kohn theorem II

From all the densities, the one n that minimizes the

energy functional with a given external potential is the

ground state density, i. e. the density which corresponds

to the solution of the Schrödinger equation; E [ñ] ≥ E0



Theory — Chemical potential

• All the variations with respect to density must be done at a constant number
of electrons N

• This can be done applying a Lagrangean multiplier µ

E′[n] = E[n]− µ

[∫
r

n (r) dr−N

]
• Variation yields

δE′[n] = δ

{
E[n]− µ

∫
r

n (r) dr

}
= δE[n]− µ

∫
r

δn (r) dr

=

∫
r

δE[n]

δn (r)
δn (r) dr− µ

∫
r

δn (r) dr

=

∫
r

{
δE[n]

δn (r)
− µ

}
δn (r) dr = 0

⇒

µ =
δE[n]

δn (r)
= vext (r) +

δT [n]

δn (r)
+

δVee[n]

δn (r)



Theory — Kohn-Sham Ansatz

• Assume one electron orbitals {φi} in Slater determinant wave function (i. e.
non-interacting),

Ψs =
1

N !
|φ1 φ2 . . . φN |.

• Kohn-Sham Equations

ĥsφi = εiφi ĥs = −
1

2
∇2 + vs(r)

Kohn-Sham orbitals φi are normalized orthonormal eigenstates of an effective
Kohn-Sham potential vs in the Kohn-Sham Hamiltonian,

〈φi|φj〉 = δij

n(r) =
N∑
i

|φi(r)|2∫
dr n(r) = N



Theory — Kohn-Sham scheme: Total energy

• This Ansatz leads to the total energy

EKS[n] =

∫
dr n(r) vext(r) + Ts[n] + EH[n] + Exc[n] =

∫
dr n(r) vext(r) + Fee[n].

• First term corresponds to interaction between electrons and external
potential (ionic density + perturbations), and

Ts[n] = −
1

2
min
{φi}7→n

N∑
i

〈φi|∇2|φi〉; kinetic energy of KS electrons

EH[n] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
; classical Coulomb interaction, aka Hartree term

all the remainder goes into
Exc[n] = (T [n]− Ts[n]) + (Eee − EH[n])



Theory — Kohn-Sham potential
Variational principle: for infinitesimally small variation δn(r)
(conserving N , i. e.

∫
r
δn(r) dr = 0),

δEKS = δTs +

∫
r

δ [n(r) vext(r) + EH + Exc]

δn(r)
δn(r) dr

= δTs +

∫
r

[vext(r) + vH(r) + vxc(r)] δn(r) dr = 0

where

vH (r) =
δEH

δn(r′)
=

∫
r′

n(r′)

|r− r′|
dr′; Hartree potential

vxc(r) ≡
δExc

δn(r)
; exchange-correlation potential

And δTs? Use HK theorems, de�ne n

NI

, and v

s

[n], and minimise E

s

,

E

s

[n]

and, due to the variational principle,

�E

s

�! (1)



Theory — Kohn-Sham potential
Variational principle: for infinitesimally small variation δn(r)
(conserving N , i. e.

∫
r
δn(r) dr = 0),

δEKS = δTs +

∫
r

δ [n(r) vext(r) + EH + Exc]

δn(r)
δn(r) dr

= δTs +

∫
r

[vext(r) + vH(r) + vxc(r)] δn(r) dr = 0

where

vH (r) =
δEH

δn(r′)
=

∫
r′

n(r′)

|r− r′|
dr′; Hartree potential

vxc(r) ≡
δExc

δn(r)
; exchange-correlation potential

And δTs? Use HK+KS,∑
i

〈φi| −
1

2
∇2 + vs[n]|φi〉 = Ts[n] +

∫
r

vs(r, [n])n(r) dr

and, due to the variational principle,

δTs +

∫
r

vs(r) δn(r) dr = 0 −→ δTs = −
∫

r

vs(r) δn(r) dr



Theory — Kohn-Sham potential

• Substitute δTs,

δEKS = −
∫

r

vs(r) δn(r) dr +

∫
r

[vext(r) + vH(r) + vxc(r)] δn(r) dr = 0

• The condition for n to be n0, i. e. the density which minimizes EKS, is that
the integrands equate,

→ vs[n0](r) := vext(r) +

∫
r′

n0 (r′)

|r− r′|
dr′ + vxc[n0](r)

evaluate n0 self-consistently

• E0 = minimal EKS[n0] is given by

E0 =

∫
r

vext n0 dr + Ts[n0] + EH[n0] + Exc[n0]

• While also,

Ts[n0] +

∫
r

vs[n0]n0 dr =
N∑
i

εi



Theory — Ground state energy
Alternative expression

E0 =

∫
r

vext n0 dr + Ts[n0] + EH[n0] + Exc[n0]

=

∫
r

vext n0 dr−
∫

r

vs[n0]n0 dr +
N∑
i

εi + EH[n0] + Exc[n0]

=

∫
r

(vext − vs) n0 dr + REST

=

∫
r

[
vext −

(
vext +

∫
r

n0(r′)

|r− r′|
dr′ + vxc

)]
n0 dr + REST

= −
∫

r

∫
r′

n0(r′)n0(r)

|r− r′|
dr′ dr−

∫
r

vxc n0 dr + REST

= −2EH[n0]−
∫

r

vxc n0 dr + REST

E0 = −
∫

r

vxc n0 dr +
N∑
i

εi − EH[n0] + Exc[n0]



Theory — Kohn-Sham scheme
Lessons learned

• The Kohn-Sham equations must be solved self-consistently :

n (r) ⇒ vs [n] ⇒ {φi} ⇒ n (r) ⇒ . . .

• There is an exact Kohn-Sham potential, albeit not known (2008)

• The eigenvalues are not physical, except for the one of the highest occupied
orbital, which is represents the ionisation potential

• KS-DFT is a ground state theory

• There are other DFT flavors, orbital-free DFT (cheaper, less accurate),
density matrix theory (more accurate, more expensive) ... KS-DFT most
popular compromise



Theory — Approximations to vxc
Climbing Jacob’s ladder

• John Perdew’s vision on the development of XC functionals

HEAVEN (chemical accuracy < kcal/mol)

explicit dependence on. . .
unoccupied orbitals rung 5 fully nonlocal (to come)
occupied orbitals rung 4 e. g. hybrid functionals

PBE0, HSE06, B3LYP
kinetic energy density rung 3 meta-GGAs

TPSS, B00, PKZB, BR89, LAP3
gradients of the density rung 2 GGAs

PBE, revPBE, PW91, BLYP, BP, HCTH93/407
local density only rung 1 LDA

EARTH (Hartree theory)



Application — Electronic

Mattsson et al JCP (2008)



Application — Electronic
further performances

Property LDA GGA meta or hybrid
Structures slightly overbound slightly underbound ok
Energies no ok good
Reaction barriers no strongly underest. significantly underest.
Band gap signific. underest. strongly underest. very good
Intermolecular overbound underbound underbound
Electron transfer no sometimes sometimes



Application — Ionic forces
Hellmann-Feynman forces in DFT

FI =
∂E0(R)

∂RI
=

∂

∂RI
〈Ψ|Ĥ|Ψ〉

= 〈
∂

∂RI
Ψ|Ĥ|Ψ〉+ 〈Ψ|

∂

∂RI
Ĥ|Ψ〉+ 〈Ψ|Ĥ|

∂

∂RI
Ψ〉

= E〈
∂

∂RI
Ψ|Ψ〉+ 〈Ψ|

∂

∂RI
Ĥ|Ψ〉+ E〈Ψ|

∂

∂RI
Ψ〉

= E
∂

∂RI
〈Ψ|Ψ〉+ 〈Ψ|

∂

∂RI
Ĥ|Ψ〉

= 〈Ψ|
∂

∂RI
Ĥ|Ψ〉

=

∫
dr n(r)

∂vext

∂RI
=

∫
dr n(r)

ZI × (r−RI)

|r−RI|3

Basis for Verlet algorithm based Ab Initio Molecular Dynamics,

RI(t + dt) = 2RI(t)−RI(t− dt) +
FI(t)

mI
dt2

→ for a given stoichiometry physically meaningful ensembles can be generated

and averaged (Movie @ youtube.com)



Car-Parrinello vs Born-Oppenheimer dynamics

Born-Oppenheimer MD Car-Parrinello MD
Exactly on BO surface Always slightly off BO surface

∆t ≈ ionic time scales, ∆t � ionic time scales,
maximum time step possible (much) shorter time step necessary

Expensive minimisation Orthogonalisation only,
at each MD step less expensive per MD step

Not stable against deviations Stable against deviations
from BO surface from BO surface
⇒ Energy/temperature drift,
thermostatting of ions necessary

Same machinery in zero-gap systems Thermostatting of electrons
to prevent energy exchange

Most applications in solids Superior for liquids



CP vs BO



Why AIMD? — Free energy differences
including reactions

• reaction coordinate ζ

• probabilistic interpretation of free
energy

W
(
ζ ′

)
= −kT lnPζ

(
ζ ′

)
• Free energy difference

W (ζ2)−W (ζ1) =

∫ ζ2

ζ=ζ1

dζ

〈
∂E

∂ζ

〉conditional

ζ ′

• Problematic rare events

c© D Chandler



Transition path sampling
Or: Throwing ropes over rough mountains passes, in the dark

• Transition path sampling, idea:

– Start with an initial reaction path

– At a point along the present path start MDs with velocities ṘI and −ṘI;
if they lead to different end states, the state is probably close to a
transition state

– This way new reaction paths can be found, with a lower reaction barrier:
Starting from a point “p” we might find another path with a lower barrier



• Reaction rates can be obtained, but with a large amount of statistics
(different MD runs)



Electronic excitations
Time-dependent DFT

• Runge-Gross theorem (1984) extends the validity of KS to the time
dependent domain. Time-dependent Kohn–Sham theory,[

−
1

2
∇2 + Veff(r, t)

]
Φi(r, t) = i

∂

∂t
Φi(r, t)

Veff(r, t) = VH(r, t) + Vxc(r, t) + Vext(r, t)

ρ(r, t) =
∑

i

| Φi(r, t) |2

• Real time (small time step) and imaginary time (no electron dynamics)
propagation

Linear response in TD Kohn–Sham scheme

• Excitation Energies from Time-Dependent Density-Functional Theory,
Petersilka, Gossmann & Hardy Gross, PRL 76, 1212-1215 (1996)

• Excited state nuclear forces from the Tamm–Dancoff approximation to
time-dependent density functional theory within the plane wave basis set
framework, Jürg Hutter, JPC (2003)



Example for real time propagation:
Formaldimine

Ivano Tavernelli Mol Phys (2005)



Solvation: Acetone in water (full QM)
Bernasconi, Sprik & Hutter, JCP 119 (2003) 12417; CPL 394 (2004) 141

• Model system acetone for excited states in solvated systems

• acetone–water complexes and acetone in liquid water



Acetone in water
Acetone + water molecules

• Isolated (CH3)2CO: Lowest

excitation symmetry-forbidden

n→ π∗

• In TDA/TDDFT pure

HOMO-LUMO transition at 4.18

eV

• Experimentally 4.3–4.5 eV

• With two water molecules mixing of

HOMO, pure LUMO



Acetone in water
(CH3)2CO · 2H2O:

• In optimised structure: Solvation
shift +0.16 eV



Acetone in water

• MD in liquid water: Occasional
switching of states

• Water bands are wrong, water band
gap is ≈ 8 eV !



Acetone in water
• ω2 + ω3 corresponds to excitation in

acetone → solvation shift +0.19 eV

• Experimentally 0.19-0.21 eV

• However comparison difficult due to

mixing of excitations — we need a

better description

for more details,
Bernasconi, Sprik & Hutter, JCP (2003); CPL (2004)

(Another example: Movie @ youtube.com)



Applications — More properties

• diffusion, v-v autocorrelation spectrum

• T, displacement, fluctuations

• vibrations

• DOS, orbitals

• atomic charges, polarisation

• NMR chemical shifts

• Redox properties



Density functional theory: Summary

• All (ground state) properties can be derived from the ground state density

• The Kohn-Sham scheme yields a set of self-consistent equations; however the
effective, or Kohn-Sham potential is local, the scaling with system size
typically not worse than N3.

• LDA yields in general good structural properties, less so for energetics. GGAs
usually yield more accurate results than the local density approximation at a
similar cost

• Method of choice for systems with ' 102..104 atoms in solid state, molecular
liquids, gas phase, reactions, spectroscopy

• no systematic way to improve the results (so far, that is)

• Various implementations, linear scaling, QM/QM/MM, AIMD, properties, ...

• DFT @ SNL: Ann Mattsson (functional development), Peter Schultz (code
development, Seqquest), Alan Wright (code development, Socorro), and
many users

• Me: http://www.sandia.gov/∼oavonli



Reminder: Kohn-Sham Equations

{
−

1

2
∇2 + vs [n] (r)

}
φi (r) = εiφi (r)

vs [n] (r) = vext (r) +
∫
r′

n
(
r′

)
|r− r′|

dr′ + vxc [n] (r)

〈φi|φj〉 = δij

n (r) =
∑
i

|φi (r)|2∫
dr n(r) = N


