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WHY TRYPTOPHAN

Thomas R. Rizzo Sebastien R. Mercier Oleg V. Boyarkin Anthi Kamariotis
(Full Professor) (Ph.D. Student) (Senior Scientist) (Ph.D. Student)

A research group in Molecular Physics at EPFL has
carried out series of spectroscopic experiments on
tryptophan, its fluorescence being widely used to
investigate protein structures and dynamics.




¢ One of the most important processes

that influence

the excited state lifetime seems to be charge transfer

from the indole ring of tryptophan to a nearby

electrophile, a process that is highly sensitive to the

local electrostatic environment.

e The local electric field results from t

ne presence of

charged groups in the vicinity of the ¢

nromophore as

well as any water or polar groups that may solvate

the charges.

e One way to unravel the effects of local

electric field is

to investigate ionic forms of tryptophan solvated with
a controlled number of water molecule.




EXPERIMENTAL SETUP
“Clusters preparation & photo excitation”
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Microsolvation effects on TrpH+ photophysics
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Microsolvation effects on TrpH+ photophysics
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THEORETICAL METHODS

(CLASSICAL DYNAMICS)

Configuration space sampling

Classical MD (300K) / NWChem code
Meta-dynamics (10K) / Gromacs code
Amber force field (parm96)
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CLASSICAL MD
“Searching for the most stable conformers”
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RELEVANT DEGREES OF FREEDOM
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RELEVANT DEGREES OF FREEDOM
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Free-energy profiles (T=300K) along the relevant degrees of freedom ®1 and ®2
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Free-energy profile of W+ at T=10K




Free-energy profile of W+ at T=10K
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Asymmetric stretches of the two water molecules
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INITIAL STRUCTURES
FOR TDDFT DYNAMICS




THEORETICAL METHODS

(QUANTUM DYNAMICS)

DFT/TDDFT

CPMD code: www.cpmd.org, plane wave based, semiclassical ab-initio MD

TDDFT: ALDA, Tamm-Dancoff approx. for energies/ forces calculation
Hutter, J. J. Chem. Phys. 2003, 118, 3928

BO/Landau-Zener dynamics: surface crossing probabilities

Wynne, K.; Hochstrasser, R. M. “In Electron Transfer-from Isolated Molecules to Biomolecules”
Pt 2, 1999, 107, 263

19


http://www.cpmd.org
http://www.cpmd.org
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RI-RICC2 (aug-cc-PVDZ)
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CONCLUSIONS & OUTLOOK

e W+ does dissociate in the “fs” time scale
e W+(2H>0O) does not

e Agreement with the experimental fragment
observations (NHz" moiety)

e ... but this “test system” was not biologically
relevant! Extended QM /MM model:

Human Serum Albumin
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