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Abstract

In this paper we consider the application of least-squares principles to the approximate solution
of the Stokes equations cast into a first-order velocity-vorticity-pressure system. Among the
most attractive features of the resulting methods are that the choice of approximating spaces
is not subject to the LBB condition and a single continuous piecewise polynomial space can
be used for the approximation of all unknowns, that the resulting discretized problems involve
only symmetric, positive definite systems of algebraic equations, that no artificial boundary
conditions for the vorticity need be devised, and that accurate approximations are obtained for
all variables, including the vorticity. Here we study two classes of least-squares methods for
the velocity-vorticity-pressure equations. The first one uses norms prescribed by the a priori
estimates of Agmon, Douglis, and Nirenberg and can be analyzed in a completely standard
manner. However, conforming discretizations of these methods require C1 continuity of the
finite element spaces, thus negating the advantages of the velocity-vorticity-pressure fomulation.
The second class uses weighted L2-norms of the residuals to circumvent this flaw. For properly
choosen mesh-dependent weights, it is shown that the approximations to the solutions of the
Stokes equations are of optimal order. The results of some computational experiments are also
provided; these illustrate, among other things, the necessity of introducing the weights.

AMS Subject Classification: 65N30, 65N12, 76M10

1 Introduction

Recently, there has been substantial interest in the use of least-squares principles for the approx-
imate solution of the Navier-Stokes equations of incompressible flow; for some examples of bona
fide least-squares methods, one may consult, e.g., [5], [8], [9], [11], [12], [19], [20], [21], [22], [23],
[24], and [28]. The computational results provided in these papers indicate that the methods con-
sidered are effective; however, careful analyses of these methods indicates that they do not yield
optimally accurate approximations. According to the theory of [7], the formulation and analysis of
discretization methods for the Stokes problem are critical for the understanding of like methods for
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the Navier-Stokes equations. Thus, the main goal of this paper is to analize least-squares methods
for the Stokes problem.

Here we develop two such methods that result in optimally accurate approximations. For the
case of the important velocity boundary conditions, one method requires the introduction of mesh-
dependent weights in the least-squares functional in order to obtain optimal order approximations
using merely C0-finite element spaces. The other method, which is not practical since it requires
the use of C1-finite element spaces, is introduced in order to show the proper formulation of a
method for which the use of weights in the functional is not necessary. For the formulation of
our methods we cast the Stokes equations into a first-order system involving the velocity, vorticity,
and pressure as dependent variables. In two-dimensions, one has four unknown scalar fields and
in three-dimensions their number increases to seven. However, the order of differentiation in each
variable is one so that there exists the possibility of discretizing the least-squares minimization
problem using merely continuous finite element spaces. The validity of this argument is one of the
central subjects of this paper.

Although there are other ways to cast the Stokes problem into a first order system (see, e.g., [3] and
[15])) for several reasons we prefer to work with the velocity-vorticity-pressure equations. First,
we can directly approximate the vorticity variable. Also, the velocity-vorticity-pressure equations
involve fewer variables. Lastly, there is a large group of standard finite element methods which use
the vorticity as a primary variable and can be used for comparison with our methods.

Least-squares methods for elliptic boundary value problems of order 2m were studied in [6]. More
recently, a least-squares theory for elliptic systems of Agmon, Douglis and Nirenberg type was
developed in [2] and, in particular, the primitive variable Stokes problem was treated within this
theory. Least-squares methods for Petrovskii (see [27]) elliptic systems in the plane were considered
in [29]. Least-squares ideas have also been used for stabilization of standard saddle-point formu-
lations of flow and elasticity problems; for results in this direction the reader may consult [3] and
[15].

Compared to the classical mixed Galerkin formulation, (see, e.g., [16] or [17]) the least-squares
methods considered here offer certain advantages, especially for large-scale computations. For
example,

the choice of approximating spaces is not subject to the LBB condition and a single
continuous piecewise polynomial space can be used for the approximation of all unknowns

and

its application to the Navier-Stokes equations together with, for example, a Newton
linearization, results in symmetric, positive definite, linear algebraic systems, at least in
a neighborhood of the solution.

Thus, used in conjunction with a properly implemented continuation (with respect to the Reynolds
number) technique, the method will only encounter symmetric, positive definite, linear systems
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in the solution procedure. The solution of these systems can be accomplished effectively by, e.g.,
conjugate gradient methods. As a result,

a method can be devised which requires no matrix assembly, even at the element level.

This is particularly important for large-scale computations since standard Galerkin mixed methods
produce nonsymmetric systems which must then be solved by direct methods or by complex and
non-robust iterative methods. We also mention two other advantages of the least-squares approach
considered here. The first is that

no artificial boundary conditions for the vorticity need be devised at boundaries where
the velocity is specified.

The second is that, unlike many other methods involving the vorticity, e.g., see [14] and [18],

accurate vorticity and pressure approximations are obtained.

The determination of the proper function spaces in which boundary value problems for the velocity-
vorticity-pressure equations are well-posed is crucial to the success of the methods considered here.
The crucial issue is the choice of spaces for the dependent variables and the data that make the
(elliptic) differential operator compatible with the boundary operator. If, for example, we assume
an equal order of differentiability for all unknowns (as it may seemingly look appropriate for a
first-order system), then compatibility of a first-order elliptic operator in the plane with a given
boundary operator can be established by verifying the Lopatinskii condition [29]. However, if the
velocity-vorticity-pressure equations in two-dimensions are supplemented with velocity boundary
conditions, then the Lopatinskii condition does not hold. This is not surprising if one recalls that
the vorticity is defined as the curl of the velocity and thus should not, in general, have the same
order of differentiability. For some boundary conditions, e.g., prescribing the normal component of
the velocity and the pressure, the Lopatinskii condition is satisfied and such cases can be treated
with the least-squares theory developed in [29].

In order to formulate and study least-squares methods with the important velocity boundary condi-
tions and in three space dimensions we need the more general theory of Agmon-Douglis-Nirenberg
(ADN) [1]. This theory permits, even for a first-order system, to assume different orders of dif-
ferentiability for the unknowns by assigning indices to each equation and unknown function. An
elliptic boundary value problem is then considered to be well-posed if it is possible to find a set of
indices under which the complementing condition of [1] holds. These indices, if they exist, deter-
mine the proper function spaces for both the data and the solution of the boundary value problem.
Whenever all unknowns are assigned the same index, the complementing condition for first-order
systems in the plane is equivalent to the Lopatinskii condition; see [29]. In the three-dimensional
case, although there is no equivalent to the Lopatinskii condition, the velocity boundary condition
poses the same problem: if an equal order of differentiability is assumed for all seven unknowns,
then the complementing condition does not hold.
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Given a well-posed elliptic boundary value problem we define the standard least-squares functional
to be the sum of the residuals of the equations measured in norms determined by the ADN index
of the corresponding equation. The minimization of this functional is equivalent to solving a
variational problem. Coercivity of this problem follows from the ADN a priori estimates and its
error analysis can be carried on in a completely standard manner. However, for each nonzero
equation index, the standard functional will include norms stronger than the L2 norm. Hence,
a conforming discretization of such a least-squares principle will require the use of continuously
differentiable finite element spaces; this is a serious practical flaw.

To circumvent this flaw we introduce a mesh-dependent least-squares functional where the residual of
each equation is measured in the L2-norm multiplied by a weight determined by the equation index
and the mesh parameter h. The purpose of these weights is to modify the behavior of the L2-norm
terms so that they now resemble, as h tends to zero, the behavior of the stronger norms prescribed
originally by the ADN equation indices. A single piecewise polynomial finite element space which
is merely continuous can now be used for all test and trial functions at the price of a more elaborate
error analysis than in the standard case. The mesh-dependent least-squares functional considered
here is similar to the one in [2]. However, the latter is based on the primitive variable formulation
of the Stokes problem and thus necessarily requires C1-spaces for the conforming approximation of
the velocity field.

The paper is organized as follows. For brevity we state and prove most of the results for the
two-dimensional case. In §2, we introduce the velocity-vorticity-pressure equations and analize
the complementing condition for two different choices of boundary operators. Then, we extend
the ADN a priori estimates for the first-order system to negative regularity indices. In §3, we
introduce the standard least-squares principle and show that optimal convergence rates can be
achieved for conforming discretizations. The mesh-dependent least-squares functional is introduced
in §4. We show that for properly chosen weights, the minimization of this functional produces
approximations which converge to smooth solutions of the Stokes equations at the best possible
rate. In §5, we consider least-squares methods for three-dimensional problems. Most of the results
for the three-dimensional setting can be carried over from the corresponding two-dimensional results
and, thus, we focus on the differences between the formulation and analysis of such methods in
three-dimensions and their two-dimensional counterparts. In §6 we present some numerical results
obtained for the two different boundary operators. The first operator corresponds to the velocity
boundary condition and requires weights in the least-squares functional. The importance of these
weights is assessed by comparing the numerical results obtained with and without the weights.
The second operator which satisfies the Lopatinskii condition and corresponds to normal velocity-
pressure boundary condition provides an example of conforming discretizations of the standard
least-squares principle that result in a practical method.

2 The Velocity-Vorticity-Pressure Stokes Equations

Let Ω ∈ RI 2 be an open and bounded set with smooth boundary Γ. The Stokes equations are given
by

−4u + grad p = f1 in Ω
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divu = 0 in Ω , (1)

where u = (u1, u2) denotes the velocity, p the pressure, and f1 the body force. The system (1)
is a uniformly elliptic system of total order 4. We recall that in two-dimensions we have two curl
operators:

curlω =
(

ωy

−ωx

)
curlu = u2x − u1y .

The vorticity ω is defined by ω = curlu. Using the identity curl curlu = −4u + graddivu, and
in view of the incompressibility constraint divu = 0, one may replace the first equation in (1) by
curlω + grad p = f1. Let U = (ω, p,u). Then, the generalized velocity-vorticity-pressure form of
the Stokes problem is

LU =

 curl grad 0
−1 0 curl
0 0 div

  ω
p
u

 =

 f1
f2

f3

 = F in Ω (2)

RU = G on Γ . (3)

Here we examine two choices for the boundary operators. The first one imposes the velocity on the
boundary, i.e.,

R1 U =
(

u0
1

u0
2

)
on Γ , (4)

where u0 is a given function defined along Γ. The second boundary operator imposes the pressure
and the normal component of velocity, i.e.,

R2 U =
(

P 0

U0

)
on Γ , (5)

where P 0 and U0 are given functions defined along Γ. For the solvability of the boundary value
problems (2)- (4) and (2)-(5), the data must be subject to the compatibility conditions∫

Ω
f3dx =

∫
Γ
u0 · n ds (6)

and
∫
Ω f3dx =

∫
Γ U0ds respectively.

The boundary conditions (5) are considered here mostly because they satisfy the Lopatinskii con-
dition and accordingly the standard least-squares approach will result in a practical method which
can be analyzed in a familiar way. The boundary conditions (4) are more difficult to analyze and
have presented serious problems in the development of effective computational methods involving
the vorticity as a dependent variable; see, e.g., [18]. Here we shall only consider homogeneous
boundary conditions that are satisfied exactly by candidate solutions and their finite-dimensional
approximations. Although less general, compared with the inclusion of inhomogeneous boundary
conditions into the least-squares functional, this setting eliminates some nonessential details from
the error analysis. At the price of some tedious calculations, our results can be extended to the more
general case. Indeed, another potential advantage of the least-squares approach is that boundary
conditions could be enforced in a weak sense through their inclusion in the least-squares functional
(see [2], [6] and [29]).
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If f2 = f3 = 0, the boundary value problem (2) and (4) is equivalent to the Stokes problem (1) and
(4) in primitive variable form. In order to guarantee the uniqueness of solutions of (2) and (4), one
also has to impose an additional constraint on the pressure. The usual choice is to require that the
pressure have zero mean over Ω, i.e., ∫

Ω
p dx = 0 . (7)

With this assumption we can prove the following result.

Proposition 1 The problem (2), (4), and (7) has unique solution for all smooth data f1, f2, f3

and u0

Proof. Let ω, p and u be smooth functions which satisfy

curlω + grad p = 0 in Ω
curlu− ω = 0 in Ω

divu = 0 in Ω
u = 0 on Γ .

(8)

The first equation in (8) implies that ω and p must be harmonic functions. Taking the Laplacian
of the second equation yields

4curlu = curl (4u) = 4ω = 0 .

Let us suppose that 4u = 0; then, the boundary condition u = 0 on Γ implies that u ≡ 0. If,
on the other hand, we suppose that 4u 6= 0, the identity curl (4u) = 0 implies that 4u must
be a gradient, i.e., 4u = grad q for some q. Then the pair (u, q) solves the homogeneous Stokes
problem

−4u + grad q = 0 in Ω
divu = 0 in Ω

u = 0 on Γ

and we can infer that u ≡ 0. Now, from the second equation in (8), it follows that ω = curlu ≡ 0
and then from the first equation we have that grad p = 0. Then, (7) implies that p = 0. �

Uniqueness for the problem (2)-(5), (7) can be established in a similar way.

Let us now define the necessary function spaces. We use D(Ω) to denote the space of smooth
functions with compact support in Ω and D(Ω̄) to denote the restrictions of the functions in D(RI n)
on Ω̄. For s ≥ 0 we use the standard notation and definition for the Sobolev spaces Hs(Ω) and Hs(Γ)
with inner products and norms denoted by (·, ·)s,Ω and (·, ·)s,Γ and ‖·‖s,Ω and ‖·‖s,Γ, respectively.
Often, when there is no chance for confusion, we will omit the measure Ω from the inner product
and norm designation.

As usual, Hs
0(Ω) will denote the closure of D(Ω) with respect to the norm ‖·‖s,Ω and L2

0(Ω) will
denote the subspace of square integrable functions with zero mean. We set D̃(Ω) = D(Ω) ∩ L2

0(Ω),
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D̃(Ω̄) = D(Ω̄) ∩ L2
0(Ω) and H̃s(Ω) = Hs(Ω) ∩ L2

0(Ω). For negative values of s the spaces Hs(Ω),
Hs

0(Ω) and H̃s(Ω) are defined as the closures of D(Ω̄), D(Ω) and D̃(Ω̄) with respect to the norm

‖φ‖−s = sup
q∈D(Ω)

∫
Ω φq dx

‖q‖s,Ω
; (9)

where D(Ω) = D(Ω̄),D(Ω) and D̃(Ω̄) respectively. We identify Hs(Ω), Hs
0(Ω) and H̃s(Ω) with

the duals of H−s(Ω), H−s
0 (Ω) and H̃−s(Ω) respectively; for s ∈ RI these spaces form interpolating

families. By (·, ·)(s1,...,sn) and ‖ · ‖(s1,...,sn) we denote inner products and norms, respectively, on
the product spaces Hs1(Ω)× · · · ×Hsn(Ω); when all si are equal we shall simply write (·, ·)s,Ω and
‖·‖s,Ω.

2.1 The Agmon-Douglis-Nirenberg estimates

Let L = {Lij}, i, j = 1, . . . , N , denote an elliptic differential operator of order 2m and R = {Rlj},
l = 1, . . . ,m, j = 1, . . . , N , denote a boundary operator. We consider the boundary value problem

L(x) U = F in Ω (10)
R(x) U = G on Γ . (11)

Following [1], we assign a system of integer indices {si}, si ≤ 0, for the equations and {tj}, tj ≥ 0,
for the unknown functions such that the order of Lij is bounded by si + tj . Then, the principal
part Lp of L is defined as all those terms Lij with orders exactly equal to si + tj . The principal
part Rp is defined in a similar way by assigning nonpositive weights rl to each row in R such that
the order of R is bounded by rl + tj .

The complementing condition [1] is a local algebraic condition on the principal parts Lp and Rp

of the differential and boundary operators which guarantees the compatibility of a particular set
of boundary conditions with the given system of differential equations. This condition is necessary
and sufficient for coercivity estimates to be valid; see [1]. Before introducing the complementing
condition, some notation must be established.

Let P be any point on the boundary Γ and let n be the unit outer normal vector to Γ at P . Let ξ
be any nonzero vector tangent to Γ at P . Let L′ denote the adjoint matrix to Lp. We first require
that the following condition is satisfied.

Supplementary Condition on L. First, detLp(ξ) is of even degree 2m (with respect
to ξ). Also, for every pair of linearly independent real vectors ξ, ξ′, the polynomial
detLp(ξ + τξ′) in the complex variable τ has exactly m roots with positive imaginary
part.

For any elliptic system in three or more dimensions, the supplementary condition is satisfied, i.e.,
the characteristic equation detLp(ξ + τn) = 0 always has exactly m roots with positive imaginary
parts. In two-dimensions, this condition must be verified for any given Lp.
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Let τ+
k (ξ) denote the m roots of detLp(ξ + τξ′) having positive imaginary part. Let

M+(ξ, τ) =
m∏

k=1

(
τ − τ+

k (ξ)
)

.

Then, we have the following definition [1].

Complementing Condition. For any point P ∈ Γ and any real, non-zero vector ξ
tangent to Γ at P , regard M+(ξ, τ) and the elements of the matrix

N∑
j=1

Rp
lj(ξ + τn)L′jk(ξ + τn)

as polynomials in τ . The operators L and R satisfy the complementing condition if the
rows of the latter matrix are linearly independent modulo M+(ξ, τ), i.e.,

m∑
l=1

Cl

N∑
j=1

Rp
ljL

′
jk ≡ 0 (modM+) (12)

if and only if the constants Cl all vanish.

In [1], the following result is proved.

Theorem 1 Assume that the system (10) is uniformly elliptic (and in 2D satisfies the Supplemen-
tary Condition) and assume that the boundary conditions (11) satisfy the Complementing Condi-
tion. Furthermore, assume that for some q ≥ 0, U ∈

∏N
j=1 Hq+tj (Ω), F ∈

∏N
i=1 Hq−si(Ω), and

G ∈
∏m

l=1 Hq−rl−1/2(Γ). Then, there exists a constant C > 0 such that

N∑
j=1

‖uj‖q+tj ,Ω ≤ C

 N∑
i=1

‖Fi‖q−si,Ω +
m∑

l=1

‖Gl‖q−rl−1/2,Γ +
N∑

j=1

‖uj‖0,Ω

 . (13)

Moreover, if the problem (10)-(11) has a unique solution, then the L2-norm on the right-hand side
of (13) can be omitted.

The complementing condition rules out existence of wildly oscillating solutions which decay expo-
nentially away from the boundary. Indeed, let us suppose that in a neighborhood of P the boundary
Γ is flattened so that it lies on the plane z = 0. Then, on z ≥ 0 we consider a homogeneous, con-
stant coefficient (frozen at P ) system of partial differential equations corresponding to the principal
part of the original system (10) with homogeneous (also constant coefficient) boundary conditions
corresponding to the principal part of the boundary operator (11):

Lp(P ) U = 0 in z > 0 (14)
Rp(P ) U = 0 on z = 0 . (15)

Now, let x = (x, y, 0) and ξ be any real vector in the plane z = 0. The Complementing Condition
requires that all solutions to (14)-(15) of the form u = ei x·ξv(z) must be identicaly zero, i.e.,
v ≡ 0. The ansatz u = ei x·ξv(z) reduces (14)-(15) to a system of ordinary differential equations
for v which provides for an alternative way (see [26]) to verify the Complementing Condition.
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2.1.1 The Complementing Condition for the velocity-vorticity-pressure equations

In this section we discuss the complementing condition for the two-dimensional Stokes equations
in velocity-vorticity-pressure form (2) with the velocity boundary conditions (4).

Let us first assume equal order of differentiability for all unknown functions. Then we have to
chose the indices for the equations and unknowns according to s1 = s2 = s3 = s4 = 0 and
t1 = t2 = t3 = t4 = 1. The symbol of the principal part of (2), according to these indices, is

Lp(ξ) =


ξ2 ξ1 0 0

−ξ1 ξ2 0 0
0 0 −ξ2 ξ1

0 0 ξ1 ξ2

 . (16)

The determinant of the principal part is detLp(ξ) = detL(ξ) = −(ξ2
1 + ξ2

2)
2 = −|ξ|4 and hence the

uniform ellipticity condition

C−1
e |ξ|2m ≤ |detLp(ξ)| ≤ Ce|ξ|2m

holds with m = 2 and Ce = 1. It is easy to see that Lp also satisfies the supplementary condition.

Let ξ be a tangent vector to Γ; for simplicity, let |ξ| = 1 and |n| = 1. Without loss of generality we
may assume that the coordinate axes are aligned with the directions of ξ and n so that ξ = (1, 0)
and n = (0,−1). Then, (12) reduces to

−C1τ + C2 = (τ − i)A1

C1 − C2τ = (τ − i)A2

where A1 and A2 are arbitrary constants. Evidently for C1 = i , C2 = 1 and A1 = i , A2 = −1 the
above identities hold and therefore the complementing condition is not satisfied.

Remark 1. This conclusion is not surprising, for if we assume an equal order of differentiability for
all unknowns, then the term (−ω) is not in the principal part of L and the system corresponding
to (14)-(15) decouples into the two independent systems:

curlω + grad p = 0

and
curlu = 0 divu = 0

with boundary conditions solely on u. Now, it is easy to see that for any n the functions

ωn = − sin(nx) exp(−ny) pn = cos(nx) exp(−ny)

satisfy the first equation, decay exponentially away from the boundary but |ωn|1,Ω/‖ωn‖0,Ω = O(n).

Let us now show that if we assume different orders of differentiability for the unknown functions,
then the complementing condition will hold for the velocity boundary condition. We now choose
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the following indices: s1 = s2 = 0, s3 = s4 = −1 and t1 = t2 = 1, t3 = t4 = 2. The symbol of the
corresponding principal part of (2) is then given by

Lp(ξ) =


ξ2 ξ1 0 0

−ξ1 ξ2 0 0
−1 0 −ξ2 ξ1

0 0 ξ1 ξ2

 . (17)

As before, we find that detLp = −(ξ2
1 + ξ2

2)
2 = −|ξ|4 and thus the uniform ellipticity condition and

the supplementary condition clearly hold. Again, without loss of generality, we may assume that
the coordinate axes are choosen so that ξ = (1, 0) and n = (0,−1). Then, (12) can be reduced to

−C1τ
2 − C2τ = A1(τ − i )2 (18)

−C1τ − C2 = A2(τ − i )2 . (19)

The right-hand side of (19) is a second degree polynomial and equality is possible if and only if
A2 = C1 = C2 ≡ 0. Hence, the complementing condition holds.

For smooth solutions ω, p and u of the boundary value problem (2)-(4) and (7) this fact and the
uniqueness result from Proposition 1 imply the following form of the a priori estimate (13):

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+2 ≤ C (‖f1‖q + ‖f2‖q+1 + ‖f3‖q+1) , (20)

where q ≥ 0. When ω ∈ Hq+1(Ω), p ∈ H̃q+1(Ω) and u ∈ Hq+2(Ω)2 are solutions of (2)-(4) for
f1 ∈ Hq(Ω)2, f2 ∈ Hq+1(Ω), f3 ∈ H̃q+1(Ω) and u0

1 = u0
2 = 0 the estimate (20) follows by a density

argument.

Remark 2. One can verify that the boundary operator (5) satisfies the complementing condition
with either choice (16) or (17) for the principal part.

Remark 3. The equal order of differentiability is implicitly assumed in the Lopatinskii condition.
Indeed, this condition requires one to cast the first-order system into the canonical form Ux+BUy +
CU + F = 0 and then to verify an algebraic condition involving only the matrix B and the symbol
of R. Consequently, the boundary value problem (2)-(4) cannot be treated within the least-squares
theory of [29].

The analysis of least-squares methods with mesh dependent functionals requires that the estimate
(20) be extended to negative regularity indices q. Results of this type hinge on the existence of
a complete set of isomorphisms for the particular elliptic system. For example, a complete set of
isomorphisms for Petrovskii systems is established in [27]. However the problem (2)-(4), (7) is not
of Petrovskii type. Nevertheless we can still extend (20) for q < 0 using the idea of [27] of passing
to the adjoint equation due to the observation that after a suitable permutation of the equations
the problem (2)-(4), (7) becomes self-adjoint.

Theorem 2 Let U = (ω, p,u) ∈ D = D(Ω̄)× D̃(Ω̄)×D(Ω̄)2, u = 0 on Γ and let f1, f2, and f3 be
defined by (2). Then, the a priori estimate (20) holds for all q ∈ RI .

Proof. For the proof of this theorm we shall assume that L corresponds to the system (2) where
div is replaced by −div and the equations are permuted so that the first one becomes the last one.
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We introduce the product spaces

Xs = Hs+1(Ω)× H̃s+1(Ω)× [Hs+2(Ω)]2 s ≥ 0

Ys = Hs+1(Ω)× H̃s+1(Ω)× [Hs(Ω)]2 s ≥ 0

together with their respective dual spaces

X∗
s = H−(s+1)(Ω)× H̃−(s+1)(Ω)× [H−(s+2)(Ω)]2 s ≥ 0

Y ∗
s = H−(s+1)(Ω)× H̃−(s+1)(Ω)× [H−s(Ω)]2 s ≥ 0.

For U ∈ D the estimate (20) holds for all q ≥ 0 and can be written as

‖U‖Xq ≤ ‖LU‖Yq .

The operator L : Xs 7→ Ys together with (4) defines a self-adjoint boundary value problem and
therefore the estimate (20) will also hold for the solutions of the adjoint boundary value problem.
We shall prove that

‖U‖Y ∗
s
≤ ‖LU‖X∗

s
∀U ∈ D; s ≥ 0

By the definition of the dual norm, uniqueness of the solutions to (2)-(4), (7) and by (20)

‖U‖Y ∗
s

= sup
H∈D;H 6=0

(U,H)
‖H‖Ys

= sup
V ∈D;V 6=0

(U,LV )
‖LV ‖Ys

≤ sup
V ∈D;V 6=0

(LU, V )
‖V ‖Xs

= ‖LU‖X∗
s

This establishes (20) for q ≤ −2 and q ≥ 0. For the intermediate values of q result follows by
interpolation. �

3 The Standard Least-Squares Functional

We now consider the finite element approximation of solutions of the velocity-vorticity-pressure
formulation of the Stokes equations based on the minimization of a least-squares functional that
is defined in terms of the norms indicated by the ADN theory. We shall first address the general
boundary condition (3), and then specialize the results to the specific boundary conditions (4) and
(5). As we shall see, for the boundary condition (5), this results in a practical method having
optimal accuracy. However, for the boundary condition (4), although conforming approximations
are again optimally accurate, they require the use of continuously differentiable finite element
functions and therefore are not very practical.

Let us assume that {si} = {s1, s2, s3, s4} and {tj} = {t1, t2, t3, t4} are indices for which the boundary
operator (3) satisfies the Complementing Condition and that the problem (2)-(3) has a unique
solution. (The latter assumption may require additional information of the type (7).) Then, we
define the standard least-squares functional for the problem (2)-(3) by

J (U) = ‖curlω + grad p− f1‖2
(−s1,−s2) + ‖curlu− ω − f2‖2

−s3
+ ‖divu− f3‖2

−s4
. (21)

Recall that degLij ≤ si + tj ; hence, minimization of (21) is meaningful over a suitable subspace U
of Ht1(Ω)×Ht2(Ω)×Ht3(Ω)×Ht4(Ω). The subspace U will depend on the particular boundary
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operator, i.e., it will be defined by requiring that homogeneous boundary conditions are satisfied.
The least-squares principle is then given by

seek U = (ω, p,u) ∈ U such that J (U) ≤ J (Û) ∀ Û = (ω̂, p̂, û) ∈ U . (22)

Standard techniques of the calculus of variations may be used to deduce that any solution U of
(22) necessarily satisfies the variational problem

find U ∈ U such that B(U, V ) = F(V ) ∀ V ∈ U , (23)

where, for U = (ω, p,u) and V = (φ, q,v),

B(U, V ) = (curlω + grad p , curlφ + grad q)(−s1,−s2)

+(curlu− ω , curlv − φ)−s3
+ (divu , divv)−s4

(24)
F(V ) = (curlφ + grad q , f1)(−s1,−s2) + (curlv − φ , f2)−s3

+ (divv , f3)−s4
.

As a result of the a priori estimates (13) and the fact that we have assumed that (2)-(3) have
at most one solution, one can easily establish the existence and uniqueness of the solution of the
variational problem (23).

Proposition 2 The problem (23) has a unique solution U ∈ U. This solution is the unique
minimizer of the functional (21).

Proof. Using (13) with q = 0, the fact that (2)-(3) have at most one solution, and the fact that
the order of Lij is bounded by si + tj , we find that

C1

(
‖ω‖2

t1 + ‖p‖2
t2 + ‖u1‖2

t3 + ‖u2‖2
t4

)
≤

≤ ‖curlω + grad p‖2
−s1,−s2

+ ‖curlu− ω‖2
−s3

+ ‖divu‖2
−s4

= B(U,U) , (25)

i.e., the form B(·, ·) is coercive on the space U×U. Continuity of the form is trivial and thus, by
the Lax-Milgram lemma, the problem (23) has a unique solution U ∈ U. By the definition of (23),
this solution will also be the unique minimizer of the least-squares functional (21). �

3.1 Discretization of the standard least-squares principle

For the conforming discretizations of the standard least-squares principle, we shall need finite
dimensional subspaces Sj of Htj (Ω). These spaces are parametrized by a parameter h; for example,
h is usually some measure of the grid size; the grid itself need not be uniform. We assume the
following approximation property of the spaces Sj : there exists a d ≥ 0 such that for every u ∈
Hd+tj (Ω) there exists an element vh ∈ Sj such that for 0 ≤ r ≤ tj

‖u− vh‖r ≤ C hd+tj−r ‖u‖d+tj . (26)

Let Uh = S1 × S2 × S3 × S4; then the discretization of (22) is given by

seek Uh = (ωh, ph,uh) ∈ Uh such that J (Uh) ≤ J (Ûh) ∀ Ûh = (ω̂h, p̂h, ûh) ∈ Uh . (27)
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One easily sees that (27) is equivalent to the variational problem:

find Uh ∈ Uh such that B(Uh, V h) = F(V h) ∀ V h ∈ Uh ; (28)

clearly (28) is a discrete version of (23). By assumption, Uh is a subspace of U; hence, the
inequality (25) holds for all functions Uh ∈ Uh. Thus the discrete problem (28) is coercive, has
a unique solution Uh and this solution is the unique minimizer for the problem (27). We note
that (28) corresponds to a linear system of algebraic equations with a symmetric, positive definite
coefficient matrix. An estimate of the error U − Uh can now be deduced in a completely standard
manner.

Theorem 3 Let U = (ω, p,u) ∈ U and Uh = (ωh, ph,uh) ∈ Uh be the solutions of the problems
(23) and (28), respectively. Assume that Sj , j = 1, 2, 3, 4 satisfy the approximation property (26).
Assume that for some q ≥ 0, ω ∈ Hq+t1(Ω), p ∈ Hq+t2(Ω), and u ∈ Hq+t3(Ω) × Hq+t4(Ω). Let
q̃ = min{d, q}. Then,

‖ω − ωh‖t1 + ‖p− ph‖t2 + ‖u− uh‖(t3,t4) ≤ C hq̃
(
‖ω‖q̃+t1 + ‖p‖q̃+t2 + ‖u‖(q̃+t3,q̃+t4)

)
(29)

Proof. Let ‖U‖2 = ‖ω‖2
t1 + ‖p‖2

t2 + ‖u‖2
t3,t4 Using the orthogonality relation B(U − Uh, V h) =

0 ∀ V h ∈ Uh and the inequality (25), we find that

C1‖U − Uh‖2 ≤ B(U − Uh, U − Uh) = B(U − Uh, U − V h) + B(U − Uh, V h − Uh)
= B(U − Uh, U − V h) ≤ C2‖U − Uh‖ ‖U − V h‖ .

Above V h is an arbitrary element of Uh; hence

‖U − Uh‖ ≤ C3 inf
V h∈Uh

‖U − V h‖ .

Now, (26) and q̃ = min{d, q} implies that we can find Vh = (φh, qh,vh) ∈ Uh such that

‖U − V h‖ =
(
‖w − φh‖2

t1 + ‖p− qh‖2
t2 + ‖u− vh‖2

(t3,t4)

)1/2

≤ hq̃
(
‖w‖q̃+t1 + ‖p‖q̃+t2 + ‖u‖(q̃+t3,q̃+t4)

)
which completes the proof of the theorem. �

The estimate (29) is optimal in the sense that if a component of the solution belongs to H q̃+tj (Ω)
then hq̃ is the best possible rate of convergence for the error measured in the Htj (Ω)-norm.

3.1.1 Pressure-normal velocity boundary conditions

Let us now specialize the above results to the homogeneous boundary condition (5). According to
§2.1.1, we can choose the indices si = 0 and tj = 1. Then, the least-squares functional (21) involves
only L2(Ω)-norms of the residuals of all the equations, i.e., we have that

J (U) = ‖curlω + grad p− f1‖2
0 + ‖curlu− ω − f2‖2

0 + ‖divu− f3‖2
0 (30)
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and U = H1(Ω) ×H1
0 (Ω) ×H1

n(Ω), where H1
n(Ω) denotes the subspace of H1(Ω) ×H1(Ω) whose

members have normal components equal zero on the boundary. Furthermore, for the conforming
discretization of (23) one can employ finite dimensional subspaces Sj of H1(Ω). For example, we
can use piecewise linear elements or, in general, any C0 piecewise polynomial finite element space.
For the sake of concreteness, let us choose piecewise quadratic finite element spaces. It is well-
known (see [13]) that for every function u in H3(Ω) there exists a finite element function vh such
that ‖u − vh‖r ≤ C h3−r ‖u‖3 for r = 0 or 1. Hence, if we choose d = 2 in (26) and assume that
q = 2 in Theorem 3, then (29) yields that the error estimate for piecewise quadratic approximations
is given by

‖ω − ωh‖1 + ‖p− ph‖1 + ‖u− uh‖1 ≤ C h2 (‖w‖3 + ‖p‖3 + ‖u‖3) . (31)

Clearly, this estimate is optimal for quadratic finite elmement spaces.

3.1.2 Velocity boundary conditions

Next we consider the case when (2) is supplemented with the homogeneous velocity boundary
condition (4). According to §2.1.1, now s3 = s4 = −1 and t3 = t4 = 2; we still have that
s1 = s2 = 0 and t1 = t2 = 1. Thus, now the standard least-squares functional (21) involves the
H1(Ω)-norms of the residuals of some of the equations, i.e., we have that

J (U) = ‖curlω + grad p− f1‖2
0 + ‖curlu− ω − f2‖2

1 + ‖divu− f3‖2
1 (32)

and U = H1(Ω) × H̃1(Ω) × (H2(Ω) ∩H1
0 (Ω))2. This implies that for a conforming discretization,

the velocity field should be approximated in finite dimensional subspaces of H2(Ω). Hence, the
straightforward conforming discretization of (23) in this case bears no direct advantage over dis-
cretizations of least-squares princples based on the primitive variable Stokes equations (see [2]). We
can conclude that from a practical point of view the standard least-squares functional is appropriate
only for those problems where the Complementing Condition holds under the assumption of the
equal order of differentiability.

4 The Mesh-dependent Least-Squares Principle

In the previous section we saw that the application of the standard least-squares method to the
velocity-vorticity-pressure form of the Stokes equations with velocity boundary conditions resulted
in approximate methods that required the use of continuously differentiable finite element functions.
We now examine the possibility of devising a least-squares method that allows the use of merely
continuous finite element functions. Of course, for the velocity boundary conditions we cannot use
the functional (30) instead of (32). The reason for this is that (30) was defined using indices si and
tj for which the complementing condition does not hold with (4) and the ADN theory does not
apply . In particular, and notwithstanding previous claims made in the literature, the inequality

‖curlω + grad p‖2
0 + ‖curlu− ω‖2

0 + ‖divu‖2
0 ≥ C(‖ω‖2

1 + ‖p‖2
1 + ‖u‖2

1) .

does not hold for velocity boundary conditions. For example, let u = 0 and let ω and p be conjugate
harmonic functions. Then,

‖curlω + grad p‖2
0 + ‖curlu− ω‖2

0 + ‖divu‖2
0 = ‖ω‖2

0 .
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However, for harmonic functions it is not true, in general, that ‖ω‖0 ≥ C‖ω‖1. (See also Remark
1 of §2.1.1.)

Thus, in order to take full advantage of the velocity-vorticity-pressure equations we shall consider a
mesh-dependent functional which will involve only weighted L2-norms of the residuals. The choice
of the mesh-dependent weights is dictated by the “inverse inequalities” which hold for a wide range
of finite element spaces Sh; see [13]. Specifically, we have that for vh ∈ Sh ⊂ Hm(Ω) and 0 ≤ r ≤ m

‖vh‖r ≤ C h−r ‖vh‖0 . (33)

i.e. hsi‖vh‖0 can “simulate” ‖vh‖−si . Hence, the H(−si)-norm of the residual of i-th equation
which appears in the standard functional (21) can be replaced by the L2-norm of the same residual
multiplied by h2si .

After all norms in the standard least-squares functional are replaced with properly weighted L2-
norms, we obtain the mesh-dependent (or weighted) least-squares functional:

J h(U) = h2s1 ‖ωy+px−f11‖2
0+h2s2 ‖py−ωx−f12‖2

0+h2s3 ‖curlu−ω−f2‖2
0+h2s4 ‖divu−f3‖2

0 . (34)

If all equation indices are equal one has the common and unimportant factor h2si and, insofar as
minimization is concerned, the functional (34) is identical to the standard one (21).

Using standard techniques of the calculus of variations one can show, for any fixed value of h, that
minimization of (34) over an appropriate space U is equivalent to the variational problem

find U ∈ U such that Bh(U, V ) = Fh(V ) ∀ V ∈ U , (35)

where U = (ω, p,u), V = (φ, q,v),

Bh(U, V ) =
∫

Ω

(
h2s1(ωy + px)(φx + qy) + h2s2(−ωx + py)(−φx + qy)

)
dx

+
∫

Ω

(
h2s3(curlu− ω)(curlv − φ) + h2s4(divu)(divv)

)
dx (36)

Fh(V ) =
∫

Ω

(
h2s1(φx + qy)f11 + h2s2(−φx + qy)f12 + h2s3(curlv − φ)f2 + h2s4(divv)f3

)
dx .

For the discretization of (35) we consider a finite dimensional subspace Uh of U and pose the
problem:

find Uh ∈ Uh such that Bh(Uh, V h) = F(V h) ∀ V h ∈ Uh , (37)

where Uh = (ωh, ph,uh) and V h = (φh, qh,vh). Evidently, Uh is the minimizer of J h(U) over Uh.

4.1 Error Estimates

The error analysis for the approximations Uh generated by the variational problem (37) is signifi-
cantly more elaborate then the error analysis for the standard least-squares method of §3.1. In the
former case, coercivity of the form B(·, ·) stems directly from the ADN a priori inequality (13). For
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the form (36), such a conclusion cannot be drawn immediately and proof of the stability of (36)
requires the use of (20) with q < 0. In this we follow some ideas of [2].

Here, we consider homogeneous velocity boundary conditions; for more general treatments as well
for other boundary conditions we refer to the methods given in [2] and [4]. With the appropriate
indices s1 = s2 = 0, s3 = s4 = −1, t1 = t2 = 1, and t3 = t4 = 2 for this boundary condition, the
weighted least-squares functional (34) becomes

J h(U) = ‖ωy + px− f11‖2
0 + ‖−ωx + py − f12‖2

0 + h−2 ‖curlu−ω− f2‖2
0 + h−2 ‖divu− f3‖2

0 . (38)

By Lij we shall denote the differential operators of the system (2); for example, L21 = −∂/∂x and
L44 = ∂/∂y. The orders of each Lij are, of course, bounded by si + tj . We let Uj and Uh

j denote
the j-th component of the solution of U = (ω, p,u) and its weighted least-squares approximation
Uh = (ωh, ph,uh), respectively.

We shall assume that the solution (ω, p,u) of (2) and (4) (with u0 = 0) satisfies

(ω, p,u) ∈ U = Hd+1(Ω)× H̃d+1 × [Hd+2(Ω) ∩H1
0 (Ω)]2 . (39)

In addition, we require that d be subject to the condition

max
i=1,...,4

(2si − d) ≤ min
i=1,...,4

si . (40)

For velocity boundary conditions we have that mini=1,...,4 si = −1 and maxi=1,...,4 2si = 0 and
hence, (40) requires that d ≥ 1. The necessity of this restriction will become clear in the proof of
Proposition 4 below.

In contrast to the standard least-squares method (32) for velocity boundary condition, we can now
choose to approximate each unknown in a subspace of H1. Therefore, we consider minimization of
(38) over the following finite dimensional space:

(wh, ph,uh) ∈ Uh = S1 × S2 × S3 × S4 ⊂ H1(Ω)× H̃1(Ω)× [H1
0 (Ω)]2 . (41)

Each space Sj in (41) will be required to approximate optimally with respect to the corresponding
function space in (39), i.e., the inequality (26) must hold with the appropriate values of tj . Note that
the required approximation properties of the spaces Sj do not imply higher smoothness properties of
these spaces because the latter solely depend on the highest order of differentiation in the weighted
least-squares functional (38).

We begin with a continuity type of estimate for the solutions of the discrete variational problem
(37).

Proposition 3 Let U = (ω, p,u) ∈ U be arbitrary functions, let f1, f2 and f3 be defined by (2) and
let Uh = (ωh, ph,uh) ∈ Uh be the corresponding least-squares approximation given by (37). Then

Bh(U − Uh, U − Uh)
1
2 ≤ hd (‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2) (42)

Proof. The error U − Uh satisfies the orthogonality relation Bh(U − Uh,W h) = 0 and therefore

Bh(U − Uh, U − Uh)
1
2 ≤ Bh(U −W h, U −W h)

1
2 ∀W h ∈ Uh .
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Let W h = (φh, qh,vh); using the approximation properties of the spaces Sj we can further estimate
Bh(U −W h, U −W h) as follows:

Bh(U −W h, U −W h)
1
2 =

=
(
‖curl (ω − φh)− grad (p− qh)‖2

0 + h−2 ‖curl (u− vh)− (ω − φh)‖2
0 + h−2 ‖div (u− vh)‖2

0

) 1
2

≤ C
(
‖ω − φh‖1 + h−1‖ω − φh‖0 + ‖p− qh‖1 + h−1‖u− vh‖1

)
≤ Chd (‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2) � .

The next proposition establishes the stability of the form B(·, ·).

Proposition 4 Let the spaces Sj be defined by (41) with d satisfying (40). Let q be a nonpositive
number such that

max
i

(2si − d) ≤ q ≤ min
i

si . (43)

Then, for U and Uh as in Proposition 3,

‖ω − ωh‖q+1 + ‖p− ph‖q+1 + ‖u− uh‖q+2 ≤ C h−q Bh(U − Uh, U − Uh)
1
2 (44)

We postpone the proof of the Proposition 4 until the end of this section. The final error estimate
now easily follows.

Theorem 4 Let U ∈ U solve the problem (2)-(4), (7) and let q and d be defined as in Proposition
4. Then, the weighted least-squares solution Uh ∈ Uh satisfies

‖ω − ωh‖q+1 + ‖p− ph‖q+1 + ‖u− uh‖q+2 ≤ C hd−q
(
‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2

)
. (45)

Proof. Using (42) and (44) it follows that

‖ω − ωh‖q+1 + ‖p− ph‖q+1 + ‖u− uh‖q+2

≤ C h−q Bh(U − Uh, U − Uh)
1
2

≤ h−q inf
Wh∈Uh

Bh(U −W h, U −W h)
1
2

≤ C hd−q
(
‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2

)
� .

In Theorem 4 we must assume q ≤ −1, i.e., (45) gives only L2 norm estimates for the error in

the vorticity and the pressure approximations. If the inverse inequality (33) holds for the spaces
Sj one can obtain stronger H1-norm estimates for these errors.

Corollary 1 Suppose the hypotheses of Theorem 4 hold and that the inverse inequality (33) holds
for the spaces S1 and S2. Then,

‖ω − ωh‖1,Ω ≤ Chd (‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2) (46)

‖p− ph‖1,Ω ≤ Chd (‖w‖d+1 + ‖p‖d+1 + ‖u‖d+2) . (47)
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Proof. Using the approximation properties (26) and the estimate (45) with q = −1 we find that

‖ω − ωh‖1,Ω ≤ ‖ω − φh‖1,Ω + ‖ωh − φh‖1,Ω

≤ C
(
hd‖ω‖d+1 + h−1‖ωh − φh‖0,Ω

)
≤ C

(
hd‖w‖d+1 + h−1

(
‖ω − φh‖0,Ω + ‖ω − ωh‖0,Ω

))
≤ C

(
hd‖ω‖d+1 + hd−q−1 (‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2)

)
≤ Chd (‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2) .

The estimate (47) is derived in an identical manner. �

Let us now prove Proposition 4. Here we follow the ideas of [2].

Proof of Proposition 4. We apply (20) with q ≤ −1 to the error U − Uh to find that

C1

(
‖ω − ωh‖2

q+1 + ‖p− ph‖2
q+1 + ‖u− uh‖2

q+2

)
≤

≤ ‖curl (ω − ωh) + grad (p− ph)‖2
q + ‖curl (u− uh)− (ω − ωh)‖2

q+1 + ‖div (u− uh)‖2
q+1.

The terms on the right-hand side above are of the form ‖
∑

j Lij(Uj − Uh
j )‖q−si and, thus the

estimate (44) will follow if each one of these terms can be estimated by Bh(U −Uh, U −Uh). This
can be accomplished by interpolation between the spaces Hsi−d(Ω) and L2(Ω). By definition (9),

‖
∑

j

Lij(Uj − Uh
j )‖si−d = sup

fi∈D

(∑
j Lij(Uj − Uh

j ), fi

)
‖fi‖d−si

.

where D is a space of smooth functions which is dense in Hd−si(Ω) or H̃d−si(Ω). The duality
pairing which appears above is also meaningful as an L2 integral. Let f1 ∈ D(Ω̄)2, f2 ∈ D(Ω̄), and
f3 ∈ D̃(Ω̄). We can choose this space for f3 becouse of our earlier assumption that the boundary
conditions are satisfied exactly. In this case

∑
j L4j(Uj − Uh

j ) = div (u − uh) has zero mean and
the supremum in the corresponding dual norm has to be taken with respect to D̃(Ω̄). Therefore,
f3 meets the compatibility condition (7) for the Stokes problem (2)-(4) and the system

curlφ + grad q = f1 in Ω
curlv − φ = f2 in Ω

divv = f3 in Ω
v = 0 on Γ

(48)

will have a unique solution for every smooth right-hand side in the indicated spaces. If the boundary
conditions were not exactly satisfied, one would have to consider an arbitrary smooth function f3.
Then the system (48) must be modified (see [2], [29]) in order to guarantee its solvability.

Now, let V = (φ, q,v) be the solution of (48) with only one, say fi, nonzero right-hand side and
let V h denote the least-squares approximation to V computed by (37). We use orthogonality of
the errors, definition (36), and the estimates (42) and (20) to find an upper bound for the term(∑

j Lij(Uj − Uh
j ) , fi

)
:(∑

j

Lij(Uj − Uh
j ) , fi

)
= h−2si

(
h2si

∑
j

Lij(Uj − Uh
j ) , fi

)
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= h−2si
∑

k

(
h2sk

∑
j

Lkj(Uj − Uh
j ) , fk

)
= h−2si

∑
k

(
h2sk

∑
j

Lkj(Uj − Uh
j ) ,

∑
m

LkmVm

)
= h−2siBh(U − Uh, V ) = h−2siBh(U − Uh, V − V h)

≤ Ch−2si(Bh(U − Uh, U − Uh))1/2(Bh(V − V h, V − V h))1/2

≤ Chd−2si(Bh(U − Uh, U − Uh))1/2
(
‖φ‖d+1 + ‖q‖d+1 + ‖v‖d+2

)
≤ Chd−2si(Bh(U − Uh, U − Uh))1/2‖fi‖d−si

Therefore,
‖

∑
j

Lij(Uj − Uh
j )‖si−d ≤ Chd−2si(Bh(U − Uh, U − Uh))1/2 .

For the estimate of
∑

j Lij(Uj −Uh
j ) in the norm of L2(Ω) we use the definition of the form Bh(·, ·)

to find
‖

∑
j

Lij(Uj − Uh
j )‖0 ≤ Ch−si(Bh(U − Uh, U − Uh))1/2 .

Now, the estimate for the (q − si)-th norm can be found by interpolation between Hsi−d(Ω) and
H0(Ω). For q choosen according to (43) one has

si − d ≤ q − si ≤ 0

and if
θ =

si − q

d− si

then the space Hsi−q(Ω) can be defined by interpolation (see [25]):[
H0(Ω),Hsi−d(Ω)

]
θ

= Hq−si(Ω)

The application of the interpolation inequality [25] yields

‖
∑

j

Lij(Uj − Uh
j )‖q−si ≤ C‖

∑
j

Lij(Uj − Uh
j )‖θ

si−d‖
∑

j

Lij(Uj − Uh
j )‖1−θ

0

≤ Ch(d−2si)θh−si(1−θ)(Bh(U − Uh, U − Uh))1/2 = Ch−q(Bh(U − Uh, U − Uh))1/2 .

Now (44) easily follows. �

4.2 Application to some concrete finite element spaces

A few comments are now in order with regard to the error estimates. Let us suppose that S3 and S4

are chosen to be finite element spaces of continuous piecewise quadratic functions with respect to a
given regular (but not necessarily uniform) triangulation. Then, d = 1 and q must be chosen equal
to −1. For the approximations of the vorticity and the pressure it suffices to consider continuous
piecewise linear elements. Then, the estimates (45), (46), and (47) yield

‖ω − ωh‖0 + ‖p− ph‖0 + ‖u− uh‖1 ≤ C h2 (‖ω‖2 + ‖p‖2 + ‖u‖3) (49)
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‖ω − ωh‖1 ≤ Ch (‖ω‖2 + ‖p‖2 + ‖u‖3) (50)

‖p− ph‖1 ≤ Ch (‖ω‖2 + ‖p‖2 + ‖u‖3) (51)

for all solutions of (2) with sufficient regularity. Let us now suppose that S1 and S2 are also chosen
to be piecewise quadratic finite element spaces, so that all fields are approximated with the same
discrete spaces defined with respect to the same grid. This will not change the error estimates and
if ω and p are only in H2(Ω), then the rates in (50) and (51) are indeed the best one can expect
for H2 functions, regardless of the approximation spaces used for the pressure and the vorticity.
However, if ω and p are more regular, then the rates in the error estimates (50) and (51) would be
optimal only if piecewise linear elements were used for the approximations of the vorticity and the
pressure. On the other hand, for smooth ω and p one can speculate that quadratic elements might
improve the convergence rates for the L2 and H1 error norms of ω and p to 3 and 2 respectively,
despite the fact that this cannot be deduced from our error estimates. In §6 we present numerical
results wich suggest that, at least computationally, for smooth solutions (ω, p,u) convergence rates
of the L2 and H1 norms of the errors for all four fields are indeed 3 and 2 respectively.

If we use cubic polynomials for the velocity, and quadratic or cubic polynomials for the vorticity
and pressure, we have that d = 2 and then we may choose q such that −2 ≤ q ≤ −1. Then, for
sufficiently smooth solutions, by setting q = −1 in (45), (46), and (47), we obtain the estimates

‖ω − ωh‖0 + ‖p− ph‖0 + ‖u− uh‖1 ≤ C h3 (‖ω‖3 + ‖p‖3 + ‖u‖4)

‖ω − ωh‖1 ≤ Ch2 (‖ω‖3 + ‖p‖3 + ‖u‖4)

‖p− ph‖1 ≤ Ch2 (‖ω‖3 + ‖p‖3 + ‖u‖4) .

By setting q = −2 in (45), we can also get improved estimates in weaker norms, including the
L2-norm for the velocity:

‖ω − ωh‖−1 + ‖p− ph‖−1 + ‖u− uh‖0 ≤ C h4 (‖ω‖3 + ‖p‖3 + ‖u‖4) .

The requirement that −d ≤ q ≤ −1 implies that our theory does not cover the case of piecewise
linear finite element spaces for the velocity.

5 Least-Squares Methods for the Stokes Equations in 3D

For practical applications it is important to extend the results of §§2-4 to the three-dimensional case.
With minor modifications, virtually all results, especially those concerning the error estimates for
least-squares methods, remain unchanged in three-dimensions. Most of the modifications are due to
the fact that the velocity-vorticity-pressure formulation of the Stokes equations in three-dimensions
involves seven unknowns and equations, and thus cannot be elliptic. Once the proper first-order
system and boundary conditions are defined, the least-squares theory can be easily extended to the
three-dimensional case. For example, along the same lines as those developed in §2, one can show
that the Complementing Condition does not hold for the velocity boundary conditions (understood
in the context of the velocity-vorticity-pressure equations in 3D) if an equal order of differentiability
is assumed for all unknowns. In this section we shall only state the main results concerning the
least-squares in 3D and for the details we refer to [4].
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The velocity-vorticity-pressure Stokes equations in three-dimensions are given by

curlω + grad p = f in Ω
curl u− ω = 0 in Ω (52)

divu = 0 in Ω ,

where Ω is open and bounded set in RI 3 with smooth boundary Γ. One has seven unknown scalar
fields and seven equations. It is easy to see that the system (52) is not elliptic in the sense of [1].
Hence, following [9] and [21], we add the seemingly redundant relation

div ω = 0 .

This brings the number of the equations to eight and for the well-posedness of the system we must
add one more unknown, or slack variable; see [10]. Although the addition of this variable seemingly
changes the differential equations, we shall see that in the end this variable vanishes identically.
Thus we consider the following generalized velocity-vorticity-pressure equations in three-dimensions:

curlω + grad p = f1 in Ω
div ω = f2 in Ω (53)

curl u + gradφ− ω = f3 in Ω
divu = f4 in Ω .

One can show that for the differential operator L in (53), detL(ξ) = |ξ|8 , i.e., (53) is an elliptic
system of total order eight which must be supplemented with four boundary conditions; in contrast,
the primitive variable Stokes problem is a system of total order six and needs only three boundary
conditions. Of course, in our context, we have the boundary condition on the velocity

u = u0 on Γ .

These three boundary conditions suffice for the primitive variable formulation, but the velocity-
vorticty-pressure formulation (53) requires one more. It is tempting to choose the fourth boundary
condition to be the specification of the normal component of the vorticity on the boundary. Indeed,
if u = u0 on the boundary Γ, and if we assume that the definition of the vorticity holds all the way
to the boundary, at least in the sense that ω · n = n · curl u on Γ, then we have that

ω · n = n · curl u0 on Γ , (54)

where n · curl u0 is computable from u0, i.e., n · curl u0 involves only tangential derivatives of the
components of u0.

However, we do not need to assume that the differential equation ω · n = n · curl u holds at the
boundary Γ if we instead choose for the fourth boundary condition

φ = 0 on Γ , (55)

i.e., a condition on the slack variable φ. Note that if f3 satisfies div f3 = 0, as is true for the Stokes
system (52), then φ is a harmonic function, so that, using (55), we have that φ = 0 everywhere. (If
we instead use (54), we can still conclude that φ = constant everywhere; in this case, in order to
get a unique solution we have to require that φ have zero mean.)
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Here, we will adopt (55) as the fourth boundary condition. Since, for simplicity, we are considering
only homogeneous boundary conditions, the four boundary conditions for the system (53) are given
by

u = 0 , φ = 0 on Γ . (56)

The addition of the seemingly redundant equation divω = 0 is crucial to the algorithm, as well as
to its analysis. However, it is important to point out that the introduction of the slack variable φ is
purely for the purposes of analysis; the least-squares algorithm we are about to introduce does not
make use of this variable, i.e., it only invloves ω, p, and u. In fact, we can carry out the analyses
including the slack varaible φ, and then specialize all results to the case when φ = 0. Thus, we
obtain results for the system

curlω + grad p = f1 in Ω
div ω = f2 in Ω (57)

curl u− ω = f3 in Ω
divu = f4 in Ω

with boundary condition
u = 0 on Γ (58)

under the assumptions that
div f3 = 0 in Ω . (59)

Of course, due to (56), we also have the compatibility assumption on f4:∫
Ω

f4 dx = 0 (60)

and in order to get a unique solution, we specify that∫
Ω

p dx = 0 . (61)

Note that the velocity-vorticity-pressure Stokes problem fits into the framework of (57)-(61).

We now summarize some results for the velocity-vorticity-pressure equations which are of central
importance for the formulation and analyses of the least squares methods in three-dimensions.

Proposition 5 Let U = (ω, p,u). Then

• For every solution (u, p) of the primitive variable Stokes problem (ω = curl u, p,u) is a
solution of (57) and (58) with f2 = 0, f3 = 0, and f4 = 0 and for every solution U of the
latter, (u, p) solves the Stokes problem.

• The complementing condition holds for the boundary value problem (53) and (56) with the
following weights:

{tj}8
j=1 = (1, 1, 1, 1, 2, 2, 2, 2) {si}8

i=1 = (0, 0, 0, 0,−1,−1,−1,−1) .
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• For any smooth right-hand sides satisfying (59) and (60), the problem (57), (58), and (61)
has a unique solution U ; if for q ≥ 0, U is a solution that belongs to [Hq+1(Ω)]3× H̃q+1(Ω)×
([Hq+2(Ω) ∩H1

0 (Ω))]3, then, there exists a constant C > 0 such that

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+2 ≤ C
(
‖f1‖q + ‖f2‖q + ‖f3‖q+1 + ‖f4‖q+1

)
. (62)

• The estimate (62) can be extended to negative regularity indices q.

5.1 The weighted least-squares functional in 3D

For the velocity boundary conditions (58), the mesh-dependent least-squares functional J h(U) in
three-dimensions is given by

J h(U) = ‖curlω + grad p− f1‖2
0,Ω + ‖div ω − f2‖2

0,Ω (63)

+ h−2‖curl u− ω − f3‖2
0,Ω + h−2‖divu− f4‖2

0,Ω .

We consider minimization of (63) over a finite dimensional subspace Uh of

[H1(Ω)]3 × H̃1(Ω)× [H1
0 (Ω)]3 .

The index d is again subject to the condition (40) and with the weights determined in Proposition
5 we find that d should be at least 1. Then, for d ≥ 1, we assume that the finite element spaces ap-
proximate optimally with respect to Hd+tj (Ω). Finally, let Uh = (ωh, ph,uh) denote the minimizer
of (63) out of Uh. Then, we have the following result.

Theorem 5 Let −d ≤ q ≤ −1. Let the hypotheses of Proposition 5 hold. Then there exists C > 0
such that

‖ω − ωh‖q+1 + ‖p− ph‖q+1 + ‖u− uh‖q+2 ≤ Chd−q (‖ω‖d+1 + ‖p‖d+1 + ‖u‖d+2) . (64)

Thus, the results in three-dimensions are the same as those for two-dimensions and the discussions
of §§2-4 for the latter case carry over virtually intact to the former case.

6 Numerical results

We take for our domain the unit square Ω = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and we consider the
generalized Stokes equations (2) where f1, f2, and f3 are given functions. We consider the two sets
of boundary conditions (4) and (5) where u0, P 0, and U0 are given functions defined on Γ. We will
define the various data functions by choosing an exact solution U = (ω, p,u) and then substituting
into the equations and the boundary conditions.

In our examples we use BC1W to label results obtained with the weighted least-squares functional
for the velocity boundary condition (4). With BC1 we label results for the same boundary condition
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Figure 1: L2 errors vs. number of grid intervals in each direction. Velocity boundary condition:
weighted vs. unweighted functional.

but obtained when the weights are removed from the functional. Finally, BC2 labels results for the
standard least-squares method with the boundary condition (5).

Our numerical results were obtained using, for all unknowns, piecewise quadratic finite element
spaces based on a uniform triangulation; for nonuniform grids we found virtually the same conver-
gence rates. Hence, we expect that for the velocity boundary conditions convergence rates will be
determined according to (49) if we use the weighted least-squares functional. Convergence rates for
the pressure-normal velocity boundary condition should be as in (31). For a computational study
of the accuracy for the unweighted least-squares functional we refer to [5].

Our computational results for the pressure-normal velocity boudnary condition (5) involve inho-
mogeneous boundary conditions. In this case we used boundary interpolants of the data in the
corresponding finite element spaces in order to define boundary conditions that could be satisfied
by the finite element functions. This method of treating the boundary conditions did not introduce
a noticable change in the convergence behavior of the least-squares approximations.

Here we only consider computational results for the exact solution given by

u1 = u2 = sin(πx) sin(πy)
ω = sin(πx) exp(πy)
p = cos(πx) exp(πy) .
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Figure 2: H1 errors vs. number of grid intervals in each direction. Velocity boundary condition:
weighted vs. unweighted functional.

The homogeneous velocity boundary condition for this solution can be satisfied exactly, so that the
error estimates hold unconditionally. The second reason to choose this solution is that ω and p are
conjugate harmonic functions (see Remark 1 in §2.1.1) with curlω + grad p = 0 and we expect
that the elimination of the weights from the functional will lead to a noticable reduction in the
convergence rates. Figures 1 and 2 give log-log plots of the L2 and H1 errors, respectively, vs. the
number of grid intervals in each direction for a uniform grid spacing. The solid line corresponds to
the results obtained with the weighted least-squares functional and the dashed line is for the results
computed without the weights in the functional. (Note that in the figures, U = u1 and V = u2.)

In the Figures 3 and 4 we compare results obtained with the weighted least-squares method for
velocity boundary condition (solid lines) with the results for the standard least-squares method for
pressure-normal velocity boundary condition (dashed lines).

The slopes of the curves in Figures 1 to 4 correspond to the rates of convergence; it is evident
from the plots presented in Figures 1 and 2 that the addition of the weights to the least-squares
functional improves the asymptotic convergence rates. From the plots in Figures 3 and 4 one can
also infer that asymptotically the convergence rates of the weighted least-squares approximations
for the velocity boundary condition are identical with the convergence rates for the normal velocity-
pressure boundary condition and the standard least-squares functional.

In fact, conclusions drawn from Figures 1 to 4 can be supported by computing the slope of least-
squares straight line fits to the various curves in the figures. The results for these slopes are
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Figure 3: H1 errors vs. number of grid intervals in each direction. Velocity boundary condition:
weighted vs. unweighted functional. L2 errors vs. number of grid intervals in each direction.
Velocity vs. normal velocity-pressure boundary condition.

summarized in the next table.

The differences between the rates in BC1W and BC1 columns suggest that the unweighted least-
squares results are approximately one order less accurate than the corresponding weighted ones.
The nonoptimality of the approximations computed without the weights is best seen in the vorticity
component; recall the well-documented fact that methods which use the vorticity as a primary
variable often yield very poor approximations; see [18].

We used the same degree polynomials based on the same grid for all variables since that is one of
the advantages of the least-squares approach. According to the theory of §4, we could have used
one degree lower polynomials, i.e., piecewise linears, for the vorticity and pressure. On the other
hand, we draw attention to the fact that the weighted least-squares method produces results which
exhibit the expected convergence rates for the approximations of the velocity and approximately
one order higher rates than is expected from (50) and (51) for the approximations of the vorticity
and the pressure. That means all four fields are approximated with the same order although one
cannot infer this from the error analysis in §4. In fact, from Table 1 we can see that the rates under
the BC1W columns are roughly the same as the rates under the BC2 columns, and for the latter the
error estimates (31) indeed imply that all four fields should be approximated with the same order.
Currently, we are unable to give a rigorous justification of this fact and it is not clear whether such
justification can be obtained along the same lines as for the error estimates in §§2-4. However,
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Figure 4: H1 errors vs. number of grid intervals in each direction. Velocity vs. normal velocity-
pressure boundary condition.

based on the computational evidence, one can argue that the weighted least-squares method can
possibly take the advantage of the better finite element spaces used for the approximations of the
vorticity and the pressure.

Acknowledgment. The authors wish to thank the referee whose detailed remarks and suggestions
helped to improve the content and the style of the paper. In particular, the permutation under
which L becomes self-adjoint and some ideas which led to a shorter proof of Theorem 2 were pointed
to us by the referee.

L2 error rates H1 error rates
Function BC1W BC1 BC2 BC1W BC1 BC2

u 3.64 2.71 3.11 2.15 2.03 2.04
v 3.31 2.37 3.10 2.10 2.06 2.02
ω 3.57 2.20 3.00 2.35 1.64 1.93
p 3.11 2.34 2.98 2.37 1.64 1.97

Table 1: Rates of convergence of the H1 and L2 errors in the least-squares finite element solution
with and without the weights.
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