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FINITE ELEMENT METHODS OF LEAST-SQUARES TYPE *

PAVEL B. BOCHEV! anD MAX D. GUNZBURGER?

Abstract. We consider the application of least-squares variational principles to the numerical
solution of partial differential equations. Our main focus is on the development of least-squares
finite element methods for elliptic boundary value problems arising in fields such as fluid flows,
linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer
numerous theoretical and computational advantages in the algorithmic design and implementation
of corresponding finite element methods, that are not present in standard Galerkin discretizations.
Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic
problems and allows one to circumvent stability conditions such as the inf-sup condition arising in
mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares
principles has led to the development of robust and efficient finite element methods for a large class
of problems of practical importance.

Key words. least-squares finite element methods, elliptic equations

AMS subject classifications. 65N30

1. Introduction. The success of finite element methods for the numerical so-
lution of boundary value problems for elliptic partial differential equations is, to a
large extent, due to the variational principles upon which these methods are built.
These principles allow one to draw upon rich mathematical foundations that influence
both the analyses and the algorithmic development of finite element methods. A key
ingredient in the application of variational principles is the casting of elliptic problems
into a set of variational (or “weak”) equations. For linear elliptic problems, weak
forms usually involve bilinear forms that are continuous in some Hilbert space. In
some instances, e.g., the Dirichlet problem for the Poisson equation, weak problems
can be associated with the minimization of quadratic functionals. In such a case,
variational principles lead to symmetric and coercive bilinear forms, i.e., forms which
are equivalent to an inner product for the underlying function space. One immediate
and important consequence is that the existence and uniqueness of weak solutions for
such problems can be established through the application of the Riesz representation
theorem in the form of the Lax-Milgram lemma. Of similar importance is that any
conforming discretization of such weak problems, i.e., a discretization for which the
finite dimensional approximating space is a subspace of the underlying space, auto-
matically leads to symmetric and positive definite algebraic problems. Furthermore,
the equivalence of bilinear forms to inner products also implies that the discrete so-
lutions are projections of exact solutions onto the approximating space with respect

*Received by the editors Month xx, 1997; accepted for publication Month yy, 1998.

IDepartment of Mathematics, University of Texas at Arlington, Box 19408, Arlington, TX
76019-0408 bochev@utamat.uta.edu.

2Department of Mathematics, Iowa State University, Ames IA 50011-2064 gunzburg@iastate.edu.
1



2 PAVEL BOCHEV AND MAX GUNZBURGER

to the norms generated by these bilinear forms, i.e., approximations are optimally
accurate.

When elliptic boundary value problems involve systems of partial differential
equations in several variables, variational problems derived in a standard manner
often correspond to saddle-point optimization problems. A typical example is given
by the primitive variable formulation of the Stokes problem for which a pair of ap-
proximating spaces is used for the velocity and the pressure fields. The fact that we
have to deal with a saddle-point optimization problem leads to several difficulties of
both a theoretical and practical nature. First, it is now well-known that the spaces
used for the approximation of the different unknowns, e.g., velocity and pressure, dis-
placement and stress, etc., cannot be chosen independently, and must satisfy strict
stability conditions such as the inf-sup, or Ladyzhenskaya-Babuska-Brezzi condition;
see, e.g., [27], [79], or [82]. For example, a mixed method for the Stokes problem can-
not use equal interpolation order finite element spaces defined with respect to the same
triangulation, since such spaces form unstable pairs. The saddle-point nature of the
mixed method is also manifested through the indefiniteness of the associated discrete
algebraic problems. Although significant progress has been made in the development
of methods for such algebraic systems, their numerical solution is still challenging and
computationally demanding.

As a result, in the past decade, the formulation of finite element methods that
circumvent stability conditions such as the LBB condition has been the subject of
intensive research efforts. Existing approaches can be broadly classified into two main
categories: stabilization techniques for mixed methods and the application of least-
squares principles. We stress that in this paper the term “least-squares” will be used
in strict reference to bona-fide least-squares methods, i.e., to methods based upon
minimization of quadratic least-squares functionals, as opposed to Galerkin least-
squares or stabilized mixed methods where least-squares terms are added locally or
globally to mixed variational problems; see, e.g., [8], [28], [29], [84], [77], and [78].

Loosely speaking, least-squares methods can be viewed as a combination of a
least-squares step at which one defines a quadratic functional and a discretization
step at which one chooses the form of the approximate solution. Methods for which
the discretization step is invoked before the least-squares step are traditionally called
point-matching, collocation, or discrete least-squares; see [56], [69], [100], [105], [119],
[120], and [101]. As a rule, the study of collocation least-squares methods emphasizes
algebraic principles since they often lead to overdetermined algebraic systems that are
solved through the corresponding normal equations.

In this paper, we focus attention on least-squares methods for which the dis-
cretization step is invoked after the least-squares functional has been defined; some
earlier works refer to such methods as “continuous least-squares;” see [69]. The chief
reason to adopt this setting is that it allows one to accentuate the variational inter-
pretation of least-squares principles as projections in a Hilbert space with respect to
problem-dependent inner products. From this point of view, the principal task in the
formulation of the method becomes setting up a least-squares functional that is norm
equivalent in some Hilbert space. This in turn allows one to work in the variational
setting of, e.g., the Lax-Milgram lemma.

From a theoretical viewpoint, such bona-fide (continuous) least-squares finite el-
ement methods possess a number of significant and valuable properties:

e the weak problems are in general coercive;
e conforming discretizations lead to stable and, ultimately, optimally ac-
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curate methods;
e the resulting algebraic problems are symmetric and positive definite;
e essential boundary conditions may be imposed in a weak sense.

These properties can yield notable computational advantages and simplifications when
properly accounted for in the algorithmic design of least-squares finite element meth-
ods:

e finite element spaces of equal interpolation order, defined with respect
to the same triangulation, can be used for all unknowns;

e algebraic problems can be solved using standard and robust iterative
methods, such as conjugate gradient methods;

e methods can be implemented without any matrix assemblies, even at
the element level.

In some specific nonlinear applications, e.g., the numerical solution of the incom-
pressible Navier-Stokes equations, least-squares principles can offer significant added
advantages:

e used in conjunction with a Newton linearization, least-squares finite el-
ement methods involve only symmetric, positive definite linear systems,
at least in the neighborhood of a solution;

e used in conjunction with properly implemented continuation, e.g., with
respect to the Reynolds number, techniques, a solution algorithm can be
devised that will only encounter symmetric and positive definite linear
systems.

In recent years this impressive list of theoretical and computational advantages
has sparked a steadily growing interest in the use of least-squares ideas for the nu-
merical solution of partial differential equations, and in particular, for the numerical
solution of elliptic boundary value problems. This high level of activity in least-squares
finite element methods makes it impossible to present, within a limited space, an ex-
haustive account of all current and past research directions. Thus, we have in mind the
less ambitious goal of giving the reader a selective account of past and ongoing work
that is sufficiently representative and illustrative of the developments in least-squares
finite element methods.

The paper will have a strong focus on the advances made in least-squares finite
element methods for the Stokes and Navier-Stokes equations. The analysis and imple-
mentation of such methods have drawn most of the attention of researchers interested
in modern least-squares finite element methods and there exists an abundant mathe-
matical and engineering literature devoted to this subject; see, e.g., [3], [9], [11]-[19],
[25], [34], [36], [47], [54], [57], [50], [51], [53], [59], [68], [87], [90]-[94], [96], [99], [105],
[112], and [117] among others. As a result, least-squares finite element methods in
these settings are among the best understood, studied, and tested from both the the-
oretical and computational viewpoints. Our discussion will also include least-squares
methods for convection-diffusion and other second-order elliptic problems (see [6], [24],
[26], [33], [35], [38], [42]-[45], [48], [52], [62], [71], [72], [75], [86], [95], [106], [107], and
[104]), linear elasticity (see [34], [36], and [37]), inviscid, compressible flows (see [61],
[64], [67], [99], and [118]), and electromagnetics (see [46], [58], [60], [97], and [116].)

The paper is organized as follows. The rest of this section introduces notation,
gives a background on finite element spaces, outlines the model problems that will
be used in the discussion of least-squares finite element methods, and, for the sake of
completeness and contrast, gives a short description of mixed and stabilized Galerkin
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methods for the Stokes equations. In §2, we discuss a general least-squares framework
that includes the formulation, analysis, and implementation of least-squares finite ele-
ment methods, using an abstract boundary value problem. In §3, we focus attention on
the transformation of elliptic boundary value problems into first-order systems, which
is one of the fundamental ideas in modern least-squares methods. The transformation
process is illustrated using five different first-order forms of the Stokes equations along
with first-order forms for the biharmonic, convection-diffusion, and other equations.
The central core of the paper is §4 where various least-squares finite element methods
for linear, elliptic partial differential equations are presented and compared. In §5, we
briefly consider the extension of least-squares finite element methodology and analy-
ses to nonlinear problems, using as prototypes the Navier-Stokes equations and the
equations of compressible, potential flow. In §6, we include a brief review of methods
such as collocation, restricted least-squares, and least-squares/optimization methods
that fall outside the framework given in §2.

1.1. Notation. Let Q denote an open bounded domain in R*, n = 2 or 3,
having a sufficiently smooth boundary I". Throughout, vectors will be denoted by
bold face letters, e.g., u, tensors by underlined bold faced capitals, e.g., T, and C' will
denote a generic positive constant whose meaning and value changes with context. For
s > 0, we use the standard notation and definition for the Sobolev spaces H*(2) and
Hs(T') with corresponding inner products denoted by (-,-)so and (+,-)s,r and norms
by ||‘|ls,o and ||-||s,r, respectively. Whenever there is no chance for ambiguity, the
measures ) and I" will be omitted from inner product and norm designations. We will
simply denote the L2(Q2) and L2(T") inner products by (-, -) and (-, -)r, respectively. We
recall the space H}(Q) consisting of all H1(£2) functions that vanish on the boundary
and the space L2(9) consisting of all square integrable functions with zero mean with
respect to 2. Also, for negative values of s, we recall the dual spaces Hs(2); see, e.g.,
[1], for details. We also recall the notion of a Banach scale X, (see, e.g., [98] or [102].)

By (+,+)x and || - ||x we denote inner products and norms, respectively, on the
product spaces X = Hs1(Q2) x --- X Hsn(Q); whenever all the indices s; are equal we
shall denote the resulting space by [H#1(£2)]” or by H*(2) and simply write (-, )s,0
and ||-||s,o for the inner product and norm, respectively. Some important spaces that
arise in the decompositions of vector fields are

(1.1) H(Q,div) ={u e [L2(Q)]" | divu e L2(Q)}
and
(1.2) H(Q,curl) = {u € [L2(Q)]" | curlu € [L2(Q)]F},

where £ = 1 in two dimensions and k = 3 in three dimensions, along with the subspaces

(1.3) Ho(,div) ={ue H(Q,div) | u'n=0 onl}
and
(1.4) Hy(Q,curl) ={ue H(Q,curl) | uxn=0 onTl}.

Norms corresponding to (1.1) and (1.3) and to (1.2) and (1.4) are given by

2
H(Q,div

2

vl H(Q,curl)

, = IvI§ + lldivv]g and [iv] = [IvII§ + llcurl v[[3,
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respectively. See [79] for details.

1.1.1. Finite element spaces. We let 7, denote a regular triangulation (see,
e.g., [65]) of the domain Q into finite elements. For example, in two dimensions, 7
could consist of triangles or rectangles. The parameter h is normally associated with
the size of the elements in the triangulation. Let Py denote the set of all polynomials
of degree less then or equal to k. For & > 1, a corresponding finite element space
defined with respect to a subdivision 75, of  into triangles, or more generally, into
simplices, is given by

Pe={uh €CO@Q) | uh|, €Pr YAET},

e.g., in R?, P, is the space of all continuous, over €, piecewise polynomial functions
ul such that, in each triangle, u” € Py. Alternately, let Q) denote the space of
polynomial functions such that the degree of ¢ € Qy in each coordinate direction
does not exceed k. A corresponding finite element space defined with respect to a
subdivision 7, of € into rectangles is given by

Qn={uh e COQ) | uh|pe Qp YOET).

Some commonly used finite element spaces are Py and P (continuous, piecewise linear
and quadratic elements on triangles) and @1 and @2 (continuous, piecewise bilinear
and biquadratic elements on rectangles). Also, there are the piecewise constant finite
element spaces

POZ{uh|A€'Po VAE%} and QoZ{uh|D€Qo VDE'Z}I}.

An important characteristic of every finite element space is its approximation
order, i.e., the asymptotic rate of convergence of the best approximation out of the
space. For the spaces Py (or Q) defined above, one has the following property: for
k > 1, given a function u € Hk+1(Q), there exists an element w" in Py (or Q) such
that

[u = wh|lr < CRF =" Jufla, r=0,1,

where the constant C' is independent of h. For example, if u € H3(Q2), one can show
that there exists an element w" € P> (or @)2) such that

lu —whl, < Ch3="u|lz, r=0,1.

See [65] for details.

1.2. Model problems. We now list the model problems that we will use as the
context for our discussion of least-squares finite element algorithms.

1.2.1. The Poisson, Helmholtz, and biharmonic equations. Two funda-
mental prototype problems for second-order elliptic partial differential equations are
given by the Poisson equation

(1.5) —Ap=f inQ
along with the boundary condition

(1.6) =0 onTl
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and the Helmholtz equation
(1.7) Ap+k2p=f inQ

along with the boundary condition (1.6). Instead of (1.6), one can impose the inho-
mogeneous boundary condition

(1.8) ¢p=g onl

or the Neumann boundary condition

29
(1.9) I 6 onT

or combinations of (1.8) and (1.9) on disjoint parts of the boundary.
The leading prototype for higher-order problems is the fourth-order biharmonic
equation

(1.10) AN2¢p=f in Q)
along with the homogeneous Dirichlet boundary conditions

_ 9¢ _
(1.11) ¢=0 and - =0 onT.

1.2.2. Convection-diffusion and potential flow. A more general problem
involving second-order linear elliptic partial differential equation is given by the (gen-
eralized) convection-diffusion equation

(1.12) —div (A(x) grad ¢>) fAb=f inQ,

where A(z) is a symmetric, positive definite matrix and A is a linear differential
operator of order less then or equal to one, along with the boundary condition (1.6).
For (1.12), one could replace (1.6) by the inhomogeneuous boundary condition (1.8)
or by the flux condition

(1.13) n-A(z)grad¢g =0 onT
or by a combination of (1.8) and (1.13) on disjoint parts of the boundary.

A related nonlinear, second-order problem is the velocity potential equation for
steady, inviscid, irrotational, compressible flow

(1.14) div (pgrad¢) =0 in Q,

where ¢ is the velocity potential and p is the fluid density; p is given in terms of
|grad ¢| by

_ |grad ¢|?
(1.15) p=po (1 i ;
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where pp and Hp denote the stagnation density and enthalpy, respectively; see, e.g.,
[64] or [83]. A boundary condition for (1.14) is given by

(1.16) pgradg-n=0 onT,

where in this case I' is usually an obstacle in the flow. Additional boundary conditions
on a far-field boundary are also imposed for problems posed in exterior domains; see
[83]. If the flow is everywhere subsonic, then (1.14) is a nonlinear elliptic equation; in
regions where the flow is supersonic, (1.14) is of hyperbolic type.

1.2.3. Linear elasticity. The equations of linear elasticity provide a model for
linear, second-order, elliptic systems of partial differential equations. These equations
are given by

(1.17) —pAu — (A + p)graddivu=1f in Q,

where u denotes the displacement vector, f a given body force, and A and u are the
Lamé constants. Displacement and traction boundary conditions are given by

(1.18) u=g onl
and
(119) aij(u)nj =6 on F,

respectively, where o(u) = 2ue(u) + Atr(e(u)) denotes the stress tensor and e(u) =
(1/2)(grad u+grad uT’) the deformation tensor. Combinations of (1.18) and (1.19) on
disjoint parts of the boundary are also of interest.

If A = AbbT + 2uB, where b = (1,0,0,1)T and B1y = By = 1, Bag = Bsz =
Bas = B3y = 1/2 with all other B;; = 0, the system (1.17)-(1.19) takes a form very
similar to (1.12) and (1.13), i.e.,

(1.20) —div(Agradu) =f in Q
and (1.18) or
(1.21) n-(Agradu)=60 onT.

One also easily sees that (1.17) can be re-written in the form

1 1 .
1.22 ———Au+gradp= ——1f inQ
(1.22) N n gradp = 1=
and
(1.23) divu+p=0 in.

This form of the equations of linear elasticity is merely a perturbed form of the Stokes
equations introduced below in §1.2.4.

1.2.4. The Stokes and Navier-Stokes equations. Most of our discussion will
be in the context of the stationary Stokes problem with velocity boundary conditions
as given by

(1.24) —vAu+gradp=1f in Q,
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(1.25) divu=0 inQ,
and
(1.26) u=0 onl,

where u denotes the velocity field, p the pressure, v a given constant, and f a given
function. We shall also consider the incompressible Navier-Stokes equations for which
(1.24) is replaced by

(1.27) —vAu+u-gradu+gradp=£f in Q.

Often, one appends to (1.24)-(1.26) or (1.25)-(1.27) a zero mean constraint on the
pressure field of the form

(1.28) / pdQ =0
Q

in order to assure the uniqueness of pressure. Also, in many cases, (1.26) is replaced
by the inhomogeneuous velocity boundary condition u = U on I'.

Clearly, the constant v can be scaled out of the problem (1.24)-(1.26); however,
keeping the reference to v in (1.24) will ease the transition from the discussion of
least-squares finite element methods for the linear Stokes problem to like methods for
the nonlinear Navier-Stokes problem for which v denotes the inverse of the Reynolds
number.

1.2.5. Div-curl systems. We conclude the list of model problems with div-curl
systems of the form

(1.29) curlu=f inQ
and
(1.30) divu=yg inQ

augmented by one of the boundary conditions
(1.31) u-n=20 or nxu=0 onl.

The functions f and g are subject to compatibility conditions. For example, (1.29)
requires that divf = 0 and the first boundary condition in (1.31) requires that g have
zero mean with respect to 2. A related system in three dimensions is given by (1.30)
and

(1.32) curlu+Veo=1£f inQ

with perhaps an additional boundary condition on ¢, e.g., » =0 on T".

The systems (1.29)-(1.31) and (1.30)-(1.32) are representative of systems of partial
differential equations that arise in electromagnetics, fluid dynamics, and other appli-
cations. Note that (1.29)-(1.30) is a first-order system of partial differential equations.
Also note that, in two dimensions, the operator on the left-hand side of (1.29)-(1.30)



FINITE ELEMENT METHODS OF LEAST-SQUARES TYPE 9

is merely the Cauchy-Riemann operator, so that (1.29)-(1.30) can be viewed as a
generalization of the Cauchy-Riemann equations.

1.3. Mixed and stabilized methods for the Stokes problem. For the sake
of completeness and for contrast with bona-fide least squares finite element methods,
we describe, in a very brief manner, well-known mixed Galerkin finite element methods
for the Stokes problem and some of the approaches that have been used to stabilize
these methods.

1.3.1. Mixed finite element methods for the Stokes problem. A mixed
variational formulation for (1.24)-(1.26) is given by (see [79], [82], or [27])

seek u € H5(Q) and p € L3(Q) such that

(1.33) a(u,v) +b(p,v) = (f,v)o Vv eHIQ)

and

(1.34) b(g,u) =0 Vqe L3(Q).

In (1.33)-(1.34),
a(u,v) = / gradu: gradvdQ and b(g,u)= —/ gdivudQ,
Q Q

where the colon denotes the scalar product operator between two tensors.

If (Vh,Sh), VP c H§(Q) and S C L3(Q), denotes a pair of discrete spaces
for the approximation of the velocity and pressure fields, respectively, then it is not
difficult to show that a discretization of (1.33)-(1.34) results in an algebraic problem
of the form

(1.35) <BAT ﬁ) (g’;) B <€> ’

where U and P" are vectors from which the discrete velocity and pressure fields may
be determined. The coefficient matrix in (1.35) is symmetric but indefinite.

A consequence of the fact that the variational equations (1.33)-(1.34) corre-
spond to a saddle-point optimization problem is that the existence and uniqueness
of solutions to the discrete system (1.35) are subject to the well-known inf-sup or
Ladyzhenskaya-Babuska-Brezzi (LBB) condition (see, e.g., [79], [82], or [27]): there
exists 0 > 0, independent of h, such that

b
(1.36) inf sup M > 0.
ges™ vevn lallollvila

In fact, a conforming discretization of (1.33)-(1.34) is well-posed if and only if the
conforming finite dimensional spaces V* and S satisfy the inf-sup condition (1.36)
and the form af(.,.) is coercive on Z" x Z where Z" C V" denotes the subspace of
discretely divergence free functions

Zh = {vh € Vi | b(gh,vh) =0 Vgh € Sh}.
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Consequently, the inclusions Vi ¢ H§(Q) and S c L2(Q2) are not by themselves
sufficient to guarantee the stability of the discrete problem.

The verification of the inf-sup condition (1.36) can be rather intricate (see, e.g.,
[20], [22], [79], or [82]) and some of the most obvious choices of pairs of finite element
spaces do not satisfy it. Examples of such unstable spaces are the linear-constant
pair (P1-Py) and the bilinear-constant pair (Q1-Qo), neither of which satisfies the
LBB condition, although the inclusions Py C H1(Q), Q1 € HY(Q), Py C L3(Q), and
Qo C L2(2) hold; see [21], [22], [79], or [82].

1.3.2. Stabilized Galerkin and penalty methods for the Stokes prob-
lem. Complications caused by the inf-sup condition have prompted the introduction
of various stabilization techniques intended to circumvent this condition. Typically,
stabilization relies on some form of modification of the discrete continuity equation.
For example, in [84] that equation is modified to

/Qqhdiv uhdQ + Z hi/ (—Auh + gradph —f) - grad g dQ = 0.
AET;,

The purpose of the new term (with an appropriate choice for «) is to make the bilinear
form

a(uh, vh) + b(ph,vh) — b(gh,uh) + « Z h2 / (—=Au” + grad p”) - grad g" d2
NET,

1
coercive with respect to the mesh-dependent norm (||uh||% +Xner, Pa ||Vp||(2)7A)
This approach can be interpreted as adding a type of least-squares term; however, it
can’t be viewed as being, according to our definition, a bona-fide least squares method,
i.e., one based on the minimization of a quadratic functional. For more examples of
such Galerkin-least squares methods we refer to (8], [77], and [78].

A somewhat different approach, which targets the indefiniteness of the system
(1.35), is represented by penalty methods; see, e.g. [10], [28], [29], [70], [85], and
[114]. The main idea is to make (1.35) positive definite by “penalizing” the continuity
equation, i.e., by replacing (1.35) with a system of the form

A B uh\ (F

BT M pr) N0 )"
The matrix M denotes the Gram matrix of the finite element basis for the pressure
approximating space. Penalty methods are essentially a form Tikhonov regularization

since they can be derived starting from the regularized Stokes problem

—vAu, + gradp. =f in

(1.37) divue = —epe  in Q,

and
u-=0 onlI.
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A related penalty stabilization method is that of [28], [29]. Here, instead of ep
in (1.37) the continuity equation is penalized by the mesh-dependent term hZAph.
Accordingly, the modified weak continuity equation takes the form

/ ghdivuhdQ + Z h2/ grad ph - gradgh dQ2 = 0.
Q ACT, A

Unlike Galerkin-least squares methods, penalty formulations introduce a penalty error
of order proportional to the added penalty term.

Each of these classes of methods, e.g., mixed, stabilized Galerkin, and penalty,
have their adherents and are used in practice; none, however, have gained universal
popularity.

2. An abstract framework for least-squares problems. A specific least-
squares finite element method for the numerical solution of a given elliptic boundary
value problem is determined by several factors such as the form of the system of
partial differential equations and boundary conditions, the functional setting for the
relevant differential and boundary operators, the choice of discretization spaces, and
the choice of solution method for the discrete equations. Thus, the application of
least-squares principles can result in several substantially different algorithms, even
for the same problem. Despite these differences, many least-squares methods share as
a common principle the minimization of a norm equivalent functional. This allows us
to consolidate the formulation and analysis of a large class of methods into a single
abstract variational framework. The main goal of this section is to outline such a
framework for an abstract boundary value problem of the form

(2.1) LU)=F inQ
and
(2.2) RU)=G onT

and then to discuss how this framework can be adapted in order to address issues such
as the optimality and practicality of least-squares finite element methods.

2.1. The abstract framework. We assume that £ is a differential operator
which corresponds to a scalar equation or to a system of equations and that L is
elliptic in the sense of Agmon, Douglis and Nirenberg (ADN); see [2]. We recall that
an important subclass of ADN elliptic operators arises in planar systems of Petrovsky
type; see [115]. These are first-order differential operators of the form £(U) = AU, +
BU, 4+ CU, where A, B and C denote 2n by 2n matrices such that det (46 + Bn) =0
if and only if £ =9 = 0. We further assume that there are two Hilbert scales X4(2)
and Yy () x Yg(I') such that (£,R) has a complete set of homeomorphisms, i.e., the
mapping U — (L(U),R(U)) is a homeomorphism X,(£2) — Y,(2) x Y,(T") for all g;
see [109]. As a result, (2.1)-(2.2) is well posed in the indicated Hilbert scales, and the
a priori estimate

(2.3) 1Ulx, < C(IL@)y,@ + IRy, @)

is valid for all ¢. In order to set up a norm equivalent functional, residuals of (2.1)-
(2.2) must be measured in the norms indicated by the a priori estimate (2.3), i.e., with
the problem (2.1)-(2.2), we associate a quadratic least-squares functional of the form

2. TW) = 5 (I£@) = FIZ ) + IRO) ~ Gl 1)) -
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It is not difficult to see that a minimizer of (2.4) solves (2.1)-(2.2) and conversely,
i.e., an abstract least-squares principle for (2.1)-(2.2) is given by

(2.5) seek U € X4 such that J(U) < T (V) for allV € X,,.

Then, a variational problem for (2.1)-(2.2) is readily available by means of the Euler-
Lagrange equation for the principle (2.5)

SIW) = lim LI +V)=0 YV e X,

Equivalently, we can write the necessary condition as
(2.6) seek U € X4 such that B{U,V)=F(V) VV e X,

where B(U,V) = (L(U), L(V))y,) + (R(U),R(V))y,(r) is a symmetric, continuous
bilinear form and F(V) = (F,L(V))y,) + (G,R(V))y,r) is a continuous linear
functional. A consequence of the a priori estimate (2.3) is that the form B(-,-) is
coercive on Xy x Xg, i.e., a bound of the form

(2.7) ClUll%, < BU.U)

is valid for all U € X,. As a result, the existence and uniqueness of minimizers for
the problem (2.6) follows by virtue of the Lax-Milgram lemma.

The inclusion of the boundary residual in (2.4) allows the use of minimization
spaces X, () that are not constrained to satisfy the boundary condition (2.2), i.e., such
conditions are enforced weakly through the variational principle. This is advantageous
whenever the condition (2.2) is difficult to satisfy computationally and represents an
additional beneficial feature of least-squares based methods. If, on the other hand,
(2.2) can be easily imposed, one can consider (2.4) with the boundary term omitted.
Then, the functions belonging to the space X4(92) should be required to satisfy the
boundary condition, i.e., (2.2) is enforced strongly or directly on candidate minimizers.

We now have a framework for developing a least-squares finite element method
for (2.1)-(2.2); indeed, one can proceed as follows: given the boundary value problem
(2.1)-(2.2),

e choose a functional setting, i.e., two Hilbert scales X4(2) and Y, () x
Y4 (') such that (2.3) is valid;

e choose between variational or strong enforcement of the boundary con-
ditions and set up the relevant least-squares functional, i.e., (2.4) with
or without the boundary residual term, respectively;

e fix the scale parameter ¢, e.g., choose ¢ = 0;

e choose a finite dimensional subspace X? C X, parametrized by h — 0;

e restrict (2.6) to X7

This process leads to a discrete variational problem given by
(2.8) seek Uh € X} such that B(Uh, Vh) = F(Vh) V Vhe Xk

Since X} C X, the method defined by (2.8) is a conforming discretization. Such
discretizations have numerous theoretical advantages. In particular, the analysis of
such methods falls within the standard framework of elliptic finite element theory.
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However, there are instances when one prefers to use nonconforming discretizations
for which the spaces X7 are not contained in X,. Such a case is discussed in more
detail in §4.2.1.

2.2. Optimality and practicality. Most research activity in least-squares fi-
nite element methods has used the framework of §2.1 to formulate methods that are
“easy” to implement and that, at the same time, are optimally accurate, where the
latter is defined to mean that there exists a constant C', independent of the parameter
h, such that
(2.9) \U—-U"x, <C inf |[U-Vh|x,.

vhexh
For conforming methods, i.e., if X2 C X4(Q), it is not difficult to see that a condition
that guarantees the existence and uniqueness of minimizers and optimal discretization
errors is given by:

optimality principle: £, R, X4(Q2), and Yq(Q) x Y4 (T') are such that an a
priori estimate of the form (2.3) is valid.

Indeed, if {¢;} denotes a basis for X/, it is not difficult to see that problem (2.8)
corresponds to a linear algebraic system with a symmetric coefficient matrix A having
entries given by ai; = B(¢s, ¢4,) and right-hand side vector B with components given
by b; = F(¢i). The inclusion X} C X, implies that the bound (2.7), which is a
consequence of (2.3), is also valid for all discrete functions U”, i.e., the form B(-,-) is
coercive on X x X!. As a result, the discrete variational problem will have a unique
solution out of X?. Similarly, the validity of (2.7) for all functions in X/ implies that
the matrix B(¢i, ¢;,) is positive definite. Finally, standard arguments from elliptic
finite element theory yield the optimal estimate (2.9).

Thus, given a particular elliptic boundary value problem, the framework of §2.1
allows one to define, in relatively easy terms, a least-squares method that theoretically
is optimally accurate. However, a straightforward application of this framework will
not necessarily result in a practical method. To deem a least-squares finite element
method as being practical, one should at least be able to obtain the discrete sys-
tem without difficulty, certainly with no more difficulty than that encountered for a
Galerkin method for the same problem. To meet this requirement, first a;; = B(¢s, ¢5,)
and b; = F(¢;) should be computable, e.g., inner products for fractional order Sobolev
spaces should not occur in their definition. Second, discretization should be accom-
plished using standard, easy to use finite element spaces. One must, of course, also
solve the discrete problem (2.8) and thus a third requirement for practicality, espe-
cially when iterative solution methods are used, is that the discrete problem should
have a “manageable” condition number. In summary, we then have the following:

practicality principle: the inner products in B(;,o) are computable, dis-

cretization is accomplished employing standard CO(QY) finite element spaces,
and the discrete problem has a manageable condition number.

For an example of a problem and a least-squares finite element method for which
the optimality principle holds but that is not practical, consider the problem (1.5)-
(1.6). We require that the boundary condition is imposed strongly and we thus choose
Xq(Q) = H2(Q)NHL(Q). A least-squares functional can then be defined in a straight-
forward manner by taking the L2-norm of the equation residual

(2.10) T6) =5 186+ fI3)
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The bilinear form corresponding to the functional (2.10) is given by

B, ) = /Q AGLG .

As a result, any conforming method based on the minimization of (2.10) necessarily
uses finite dimensional subspaces of H2(2), i.e., one is forced to work with impractical
continuously differentiable finite element spaces. The resulting least-squares finite
element method also fails to be a practical one because the condition numbers of
the corresponding discrete problems are O(h—*) compared with the O(h~2) condition
numbers that result from standard Galerkin methods for the same problem. See [6],
[24], and [26] for details.

2.3. A recipe for practicality. A critical idea responsible for overcoming these
flaws and rendering least-squares finite element methods into viable alternatives to
Galerkin methods is the introduction of a decomposition step prior to defining a least-
squares functional. The decomposition step consists of transforming the problem into
a first-order system. For many problems, decomposition can be accomplished through
the introduction of physically meaningful variables such as vorticity, stresses, or fluxes,
and has been often exploited in both least-squares and Galerkin methods; see, e.g.,
[11]-[19], [33]-[38], [42], [43]-[45], [47)-[57], [59], [61], [62], [64], [66], [67], [72], [73],
[86], [87], [90]-[96], [99], [103], [104], [107], [108], [111]-[113], and [117].

Among the first methods for which a decomposition (or transformation) step has
been combined with least-squares principles are the methods of [72], [86], and [103].
For example, in [86], the problem (1.5)-(1.6) is transformed into a first-order div-grad
system (see also [49] and [95])

(2.11) —divv=f and v=grad¢ in () and =0 onTl.

We can use L2-norms of the equation residuals to define the least-squares functional

(212) T(6,v) = 5 (ldivv + fI3 + v — arad 6]3)

where we require that the boundary condition is imposed strongly on candidate min-
imizers. Then, in contrast to (2.10), the resulting least-squares method can be imple-
mented using practical, merely continuous finite element spaces such as P, P, Q1,
or Q2. If, however, the space X,(£2) is not constrained by the boundary condition in
(2.11), then, instead of (2.12) one has to consider the least-squares functional

1 .
T(6,v) = 5 (Idivv + F3+ v = grad [}3 + 913 )

As a result, the form B(-,-) now involves the inner product of the trace space Y (I') =
H1/2(T"), i.e., the method is still impractical despite the reduction to a first-order
system. We postpone discussion of this topic until §4.2.2 and turn our attention to
the issue of the optimality of methods based on functionals that only involve L2-norms
of residuals of equations in first-order systems.

Evidently, the practicality principle can always be met by transforming the given
partial differential equations into a first-order system and forming least-squares func-
tionals that use only L2-norms. We refer to least-squares methods based on this
approach as basic L2 methods. Then, a seemingly natural choice for Y5 (€2) and X,(92)
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is given by products of L2 and H1!-spaces, respectively. The crucial question is then:
does this choice of Y5 () and X, () satisfy the optimality principle as well, i.e., is the
basic L? least-squares functional norm equivalent to a product of H! norms? In what
follows, we shall refer to all first-order systems having this property, i.e., systems that
are well-posed in products of L2 and H! spaces for the data and solution, respectively,
as fully H'-coercive formulations. In such a case, basic L? least-squares functionals
are quite attractive. First, conforming methods are practical and yield optimal error
estimates with respect to the H!(Q)-norm for all variables. Second, the resulting
algebraic systems have condition numbers of O(h=2). A third valuable trait of H-
coercivity is that interactions between the dependent variables are subdominant, i.e.,
the variables become essentially decoupled. This allows one to precondition the re-
sulting algebraic systems by products of the inverses of discrete Laplacian operators
and ensures the fast convergence of multiplicative and additive multigrid methods; see
[34], [35] and [36].

One example of a fully H!-coercive problem is furnished by planar first-order
systems with differential operators £ of Petrovsky type (see §2.1 and [115]). Un-
fortunately, and somewhat surprisingly, many (important) first-order systems are
not fully Hl-coercive. For example, the system (2.11) is well-posed in the space
HY(Q) x H(Q,div). As a result, a finite element method based on the minimization
of (2.12) yields optimal error estimates in the norm of this space and not necessarily
with respect to the H1(Q2)-norm of the vector field v, i.e., one cannot control all first
derivatives of the error. As we shall see below, for (2.12), optimal convergence in
the H(Q)-norm requires an additional “grid decomposition property” on the finite
element spaces (see [61] and [72]) or an additional “curl” constraint added to the
first-order system (2.11) (see [43], [44], [48], [49], [95], and [106].) Other examples of
first-order systems that are not H!-coercive are given by particular decompositions of
the biharmonic equation and the Stokes problem. These will be discussed in §3.1 and
§3.2, respectively.

There are many other theoretical problems that accompany the decomposition
process. For example, transformation to a first-order system may lead to ambiguously
defined principal parts and may affect the set of admissible boundary operators as
well as the ellipticity, which can also depend on the space dimension. As a result, if
an optimally accurate and practical method is desired, all of these issues must be ad-
dressed. The possibilities which exist can be distinguished as techniques affecting the
functional setting of least-squares principles or techniques invoked at the discretization
level:

Functional level
Spaces
e establish the relevant a priori estimates in intermediate spaces such
as H(Q,div); see [33], [35], [38] [76], [86], and [107];
e use weaker spaces from the Hilbert scale, e.g., choose negative order
Sobolev spaces; see [14], [23], [25], and [34];
Operators
e find, if possible, fully H!-coercive first-order systems; see [36], [37],
[47], and [53];

Discretization level

e replace stronger (and impractical) norms by weighted L2 norms, see
3], [4], [11], [12], [17], [19], [64], [75], [86], and [115];
e use nonconforming discretizations; see [3].
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Most modern least-squares methods rely on one or another form of these techniques in
order to achieve robustness and efficiency. However, they all rely on the transformation
of elliptic boundary value problems into equivalent first-order systems, if the former
are not given in the latter form in the first place. Due to the central place of this
subject in modern least-squares methods, the next section is devoted to a detailed
account of various transformations to first-order systems.

3. Decomposition into first-order systems. In some settings, e.g., the Maxwell
equations, mathematical models of natural phenomena are most naturally set as first-
order systems of partial differential equations. In many other settings, however, such
models involve differential equations of higher-order. Fortunately, virtually every
scalar partial differential equation or system of partial differential equations of second
or higher-order can be reduced to a first-order system by introducing new dependent
variables defined as derivatives (or linear combinations of derivatives) of the original
variables. For example, in the scalar, second-order setting, if ¢ denote the scalar de-
pendent variable, then, a standard way to introduce new dependent variables is to set
v = grad ¢ which leads to a “div-grad” decomposition, i.e., to a div-grad first-order
system. Such decompositions will be considered in §3.1.

If the dependent variable u is a vector-valued function, there are at least three
categories of transformations to first-order systems. In addition to v = gradu, two
other natural choices are v = (gradu + gradu”)/2 or v = (gradu — gradu”)/2,
i.e., the new variables are identified with the symmetric or the skew-symmetric parts
of the velocity gradient tensor, respectively. While the first choice can be viewed
as a generalization of the scalar div-grad decomposition, the other two choices do
not have direct equivalents in the scalar case. Their interpretation also depends on
the given problem. For example, in the context of the Stokes problem, the choice
of (gradu — grad u”)/2 gives rise to a vorticity-based first-order system whereas the
choice (grad u + grad u?')/2 corresponds to a stress-based first-order system.

As we shall see, the well-posedness of resulting first-order boundary value prob-
lems, e.g., their ellipticity and the existence of a priori estimates, depends on factors
such as the choice for the new variables, the space dimension, and the particular form
of the boundary conditions. As a result, two first-order systems describing the same
problem (in terms of different variables) may have substantially different properties.
To illustrate these issues, the main focus (see §§3.2-3.3) will be on five different possi-
bilities for expressing the Stokes problem as a first-order system. The first two systems
correspond to decompositions that use the skew-symmetric (vorticity) and symmetric
(stress) parts of the velocity gradient, respectively. The last three systems can be
viewed as variants of the div-grad decomposition. For each system, we indicate the
properties relevant to least-squares methods such as the validity of a priori estimates.
In addition, we also indicate how resulting first-order systems may be extended to the
incompressible Navier-Stokes equations.

Most details in the discussion below are given in the context of homogeneous
boundary conditions. However, in §3.4, we discuss the form of the a priori estimates
in case the boundary data is inhomogeneous. Such a priori estimates are relevant to
least-squares functionals for which the essential boundary conditions are enforced in
a weak sense.

3.1. Scalar div-grad systems. We present several examples of the reduction
of scalar, higher-order problems to first-order systems involving the divergence and
gradient operators. The new variables introduced to effect the reduction are the
components of the gradient of the scalar dependent variable of the original higher-
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order equation.

3.1.1. Poisson, biharmonic, and higher-order equations. The first exam-
ple of a div-grad decomposition has already been given by (2.11). This decomposition
is also probably the first one used in the context of least-squares methods, see [72],
[86], and [103]. A functional setting for the system (2.11) is provided by the space

(3.1) X ={(¢,v) € H{(Q) x H(Q,div)},

i.e., the system (2.11) is not fully H!-coercive, and the a priori estimate relevant to
the least-squares method is given by

(3.2) 1611+ ¥l v < € (Iv — grad dllo + [divv]lo) -

In view of the equation v = grad ¢, one can augment (2.11) by a compatibility condi-
tion known as the curl constraint (see, e.g., [55], [49], [48], and [95])

(3.3) curlv =0.

The addition of (3.3) allows one to control both ||curlv|o and [|divv|o. As a result,
one can establish full H!l-coercivity of the system (2.11) and (3.3) as follows. Since
¢ = 0 on I is specified, the new variable v satisfies v xn = 0 on I'; ie., v €
H(Q,div) N Ho(Q, curl). Then, full H!-coercivity follows from the well-known result
(see [79]) that the space H(Q,div) N Ho(f2,curl) is topologically and algebraically
equivalent to [H1(Q2)]". A div-grad decomposition with very similar properties can be
defined in an obvious manner for the Helmholtz equation (1.7). If, instead of (1.6),
0¢/On = v -n = 0 is specified on I', then v € Ho(Q,div) N H(Q, curl ) and again full
H!-coercivity can be established if the system divv = f and v = grad ¢ is augmented
by (3.3).

The fourth-order biharmonic problem (1.10)-(1.11) can be recast as a first-order
system in a very similar manner. We introduce the new dependent variables as follows

([76]):
(,250 = qf), Vo = grad (;50 s ¢1 =div grad ¢0 = A(ﬁo s V] = grad A¢0 .

Then, a first-order problem corresponding to (1.10)-(1.11) is given by

(3.4) vo—gradgo =0 inQ,
(3.5) vi—grad¢; =0 in Q,
(3.6) divvg—¢1 =0 in Q,
(3.7) divvi = f inQ,
and

(3.8) po=0 and vp-n=0 onT.
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A function setting appropriate for this first-order system is provided by

(3.9) X = {(¢o, ¢1,vo,v1) € H} () x HL(Q) x Ho(R,div) x H(Q,div)}.

An a priori estimate relevant to the least-squares method for (3.4)-(3.8) is given by

[Gollx + N1l + [1voll gy divy + V1l g q.div)

(3.10) . .
< C(llvo — grad ¢ollo + [[v1 — grad ¢1|o + [|divvo — ¢1]lo + [|divvi]lo) .

The transformation scheme applied to the biharmonic problem (1.10)-(1.11) can
be generalized to scalar elliptic problem of order 2m; see [76]. Starting with ¢9 = ¢
and vg = grad ¢, one introduces the new variables

vV = (V(),.~.7Vm71) and ¢: (¢07~"7¢m71)
recursively according to the formulas
(bi:diVVi_l, i:l,...,m—l,

and
vi=grad¢;, i1=1,...,m—1.

The resulting first order system has the structure

(3.11) <lf) g) (g):F

where in (3.11) G is matrix of gradients, D is matrix of divergences, and C is a
bounded (with respect to L?2) multiplication operator.

The two first-order systems (3.4)-(3.8) and (3.11) are very similar to the system
(2.11) arising from the decomposition of the Poisson equation, both in structure and
ellipticity properties (compare (3.2) and (3.10)). Likewise, (3.4)-(3.8) and (3.11) can
be augmented by curl constraints to obtain fully H!-coercive first-order systems. For
example, the curl constraints for (3.4)-(3.8) are given by

curlvg =0 and curlvy = 0.

3.1.2. Compressible flows and convection-diffusion problems. The trans-
formation of both (1.12)-(1.13) and (1.14)-(1.16) can also be handled by introducing
grad ¢ as a new dependent variable, i.e., by using a scalar div-grad decomposition.
For example, a first-order form for (1.14)-(1.16) is given by (see [61], [64], [67], and
[99])

(3.12) u—grad¢ =0 in Q,
(3.13) divpu=0 inQ,
and

(3.14) pu-n=0 onl,
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where
(3.15) —po (1= L up
. P = po Ho .

Equation (3.12) is a consequence of the irrotationality assumption and (3.13) is a result
of mass balance. Similarly, (1.12) can be cast into the following first-order system (see,
e.g., [33], [38], [43], [44], [106], and [107]):

(3.16) v — A(z)grad¢ =0 in Q
and
(3.17) divv+Ap=f inQ.

In both cases, if the flow is subsonic and since A is positive definite, respectively, the
appropriate function spaces for the original variable ¢ and the new dependent variable
v are given by H1(2) and H(f,div ), respectively, i.e., the relevant a priori estimates
are similar to (3.2). Likewise, in view of (3.12) and (3.16), the systems (3.12)-(3.13)
and (3.16)-(3.17) can be augmented by curl constraints of the form

(3.18) curlv =0 in Q
and
(3.19) curl (A=1(z)v) =0 inQ,

respectively; see [43], [44], [106], and [107].

3.2. Vorticity and stress decompositions of the Stokes problem. We
now turn to the Stokes equations, the setting for which least-squares finite element
methods are most developed and have been most studied. In this section, we consider
two first-order formulations of the Stokes equations that are not fully H!-coercive. In
§3.3 we will consider three additional first-order formulations for the Stokes system,
two of which are fully H!-coercive.

3.2.1. The velocity-vorticity-pressure formulation of the Stokes prob-
lem. Despite the fact that it is not a fully H!-coercive system, the velocity-vorticity-
pressure formulation of the Stokes equations is, by a wide margin, the most widely
used (and studied) formulation in the context of least-squares finite element method
for fluid flows; see, e.g., [11], [12], [15]-[18], [34], [50], [51], [54], [57], [59], [87], [90]-[94],
[96], [99], [112], and [113], among others.

We recall the curl operator in three dimensions

curlu=V x u,

and its two-dimensional counterparts

curl ¢ = ( % ) and curlu = ug, —uyy, .
—Wx

The context should make clear which operator is relevant.
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Using the wvorticity field w = curlu as a new dependent variable, the vector
identity
curlcurlu = —Au + graddivu,

and in view of the incompressibility constraint (1.25), the Stokes equations (1.24)-
(1.25) can be cast into the first-order system

(3.20) veurlw + gradp = f in Q,
(3.21) divu=0 inQ,

and

(3.22) curlu—w =0 in Q.

Remark. For the linear elasticity problem (1.22)-(1.23), the corresponding first-
order system is given by (see [34])

M 12 1 .
curlw+ (1+ ——)gradp= ——fF in Q,
+ ( /\+u)g b Atp

divu+p=0 in Q,

and (3.22).

In two dimensions, the system (3.20)-(3.22) contains four equations and four
unknowns and is uniformly elliptic of total order four. In three dimensions, the number
of equations and unknowns increases to seven, and the resulting system is not elliptic
in the sense of ADN. By adding a seemingly redundant equation

(3.23) divw=0 inQ
and the gradient of a “slack” variable ¢ to (3.22):
(3.24) curlu —w +grad¢ =0 in Q,

uniform ellipticity can be restored; see [55] and [49]. The augmented system (3.20),
(3.21), (3.23), and (3.24) has total order eight, in contrast to the total order of the
Stokes problem in primitive variables which is six in three dimensions. It should be
noted that one also imposes homogeneous boundary conditions for the slack variable
¢ and that one can then show that ¢ = 0 so that, a posteriori, (3.24) is identical to
(3.22). In fact, the addition of ¢ is needed only for the purpose of analyses; it is not
needed in the development or implementation of least-squares based algorithms for
which one can safely use the system (3.20)-(3.23). However, the addition of (3.23) is
crucial to the stability and accuracy of least-squares finite element methods for the
Stokes problem in three dimensions.

To extend the velocity-vorticity-pressure formulation to the Navier-Stokes equa-
tions, one has to choose a particular form for the nonlinear term in (1.27). One
possibility is to keep the nonlinear term in a form involving only the velocity field,
i.e., to replace (3.20) by

(3.25) veurlw +u-gradu+ gradp = f in Q.
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Another possibility is to use the vector identity
1 1
u-gradu = igrad [u]2 —u x curlu = igrad [ul2 —uxw

to replace (3.20) by

(3.26) veurlw +w x u+grad P =f in Q

)

where P = p + 1/2|u|? denotes the total pressure.

For simplicity, in what follows, we shall discuss properties of the velocity-vorticity-
pressure Stokes equations in two dimensions; most of the relevant results can be easily
extended to the augmented system, i.e., including (3.23), in three dimensions.

Recall that the existence of a priori estimates for (3.20)-(3.22) along with the
boundary condition (1.26) and the zero mean condition (1.28) is of paramount impor-
tance for the development of least-squares methods. The existence of such estimates
is essentially equivalent to the well-posedness of elliptic boundary value problems in
appropriate Sobolev spaces. As we shall see, the choice of boundary conditions has
great importance to the validity of a priori estimates. To determine functional settings
in which elliptic boundary value problems are well-posed, one may rely on the ellip-
tic regularity theory of Agmon, Douglis and Nirenberg [2]. In particular, well-posed
problems are characterized as having uniformly elliptic principal parts and boundary
conditions which satisfy the celebrated complementing condition.

Analyses based on ADN elliptic theory, see [17], show that the velocity-vorticity-
pressure system admits two different principal parts, given by

veurlw 4+ gradp
(3.27) LY = curlu
divua

and

veurlw + gradp
(3.28) Lh = —w + curlu
divu

In view of the boundary condition (1.26) and the zero mean condition (1.28), the
function spaces corresponding to these principal parts are given by

(3.29) Xg = Hat1(Q) x Hat1(Q) N L3(Q2) x Hat1(Q) N HE(Q)
and
(3.30) Y, = He(Q) x H1(Q) x H1(Q)

for (3.27) and
(3.31) Xy = Hat1(Q) x Hat1(Q) N L3(Q2) x Hat2(Q) N HE(Q)
and

(3.32) Y, = H1(Q) x H1(Q2) x Hat1(Q)
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for (3.28), where X, denotes the function space for the unknowns (w,p,u) and Y,
denotes the function space for the data or equation residuals. To each pair of function
spaces there corresponds a specific a priori estimate given by

[wllg+1+llpllg+1 + [lullg+1

(3.33) .

< C (JJveurlw + grad p||q + ||curlu — w||q + ||divul|q)
and
I e

< C([lveurlw + grad pllq + [curlu — wl[g+1 + [|divullg+1) ,

respectively. Although both the principal parts (3.27) and (3.28) are uniformly elliptic
operators of total order four, not all boundary conditions for the system (3.20)-(3.22)
will satisfy the complementing condition for both principal parts. For example, the
boundary condition (1.26) on the velocity vector satisfies the complementing condition
only with the principal part (3.28). As a result, the a priori estimate for the system
(3.20)-(3.22), (1.26), and (1.28) relevant to the least-squares methods, is given by
(3.34). In fact, one can show that the estimate (3.33) cannot hold with the velocity
boundary condition. For an example (see [17]), consider Q given by the unit square
and let v = 1, ¢ = 0, w, = —cos(nz) exp(ny), pn = sin(nz) exp(ny), and u, = 0.
Then, (3.33) would imply that

O(exp(n)) ~ ||curlwy, + grad py|jo+||curl uy, — wy o + [|divuy||o
> C([[unllr + lwnllr + Ipnll1) ~ O(nexp(n))

which is a contradiction. This counterexample can also be extended to three dimen-
sions; see [12]. An example of a boundary condition for which (3.33) is valid is provided
by the pressure-normal velocity boundary condition

(3.35) p=0 and u-n=0 onT.

The fact that (3.34) is not valid for velocity boundary conditions indicates that the
corresponding boundary value problem is not well-posed in the spaces (3.29)-(3.30).
This can also be seen by considering the principal part (3.27) along with the velocity
boundary condition. The corresponding boundary value problem then uncouples into
two ill-posed problems given by

curlu =10
{ veurlw + grad p =f } and divu=0 ; ;
u‘F =0

the first is underdetermined and the second is overdetermined. In contrast, the same
principal part with (3.35) uncouples into two well-posed problems:

w4 i ¢ curlu =0

curlw =

et gracp and divu=0
pr=0

u-n,=0

To summarize, the full H1-coercivity of the velocity-vorticity-pressure Stokes sys-
tem depends on the particular set of boundary conditions. Even more interestingly,
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one can find examples of boundary conditions for which full H!-coercivity also de-
pends on the space dimension; see [12]. One such example is given by the tangential
velocity-pressure boundary condition

nxuxn=0 and p=0 onT.

In two dimensions, this boundary operator satisfies the complementing condition with
either of the principal parts (3.27) or (3.28), whereas in three dimensions it satisfies
the same condition only with the principal part (3.28). As a result, the estimate (3.33)
is valid only in two dimensions.

Despite the fact that the velocity-vorticity-pressure formulation (3.20)-(3.22) along
with (1.26) is not fully H!-coercive, it is the most widely used formulation for least-
squares finite element methods for the Stokes equations. The corresponding formula-
tions (3.21), (3.22), and (3.25) or (3.26) along with (1.26) are likewise the most used
for the Navier-Stokes system. The reasons for the popularity of these formulations in
engineering circles are that they require relatively few unknowns and the fact that the
lack of full H!-coercivity does not cause a catastrophic loss in accuracy, at least for
the approximations of the velocity field; see [54] and Table 1 in §4.1.1.

3.2.2. The velocity-pressure-stress formulation of the Stokes problem. A
first-order system with substantially different properties is obtained when the stress

tensor scaled by /v/2

T =+V2ve(u), where €(u) = (gradu+ (gradu)?)

1
2

is used in the transformation of (1.24)-(1.25) into a first-order system. Here, the
relevant vector identity is given by

divT = vV2v (Au+ grad divu),

where div T denotes the vector whose components are the divergences of the corre-
sponding rows of T. Then, in view of incompressibility constraint (1.25), the system
(1.24)-(1.26) can be replaced by the velocity-pressure-stress system

V2udivT —gradp = f in Q
divu=0 in Q
T —V2ve(u)=0 in Q

u=20 onl.

(3.36)

The inclusion of the nonlinear term u - grad u into the first equation of (3.36) provides
an extension of the velocity-pressure-stress system to the Navier-Stokes equations. As
before, uniqueness of solutions to (3.36) can be guaranteed by imposing the zero mean
constraint on the pressure (1.28).

In two dimensions, the velocity-pressure-stress system has six equations and un-
knowns. In three dimensions, the number of unknowns and equations increases to
ten. Analysis of this system based on the ADN theory (see [19]) indicates that the
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principal part of the differential operator in (3.36) is given, in two dimensions, by

o1y JT: 0
\/5( 1 + 2 P

dr1  dxa’ O
Ty OT3 dp
Vs T Oy s
Our | Ouz
(3.37) U= | 9 63&;u , where T = (f;l §2> .
T1 . \/571 2 3
81‘1
3U1 8u2
Ty - Va2
6332

In contrast to the velocity-vorticity-pressure equations, the principal part (3.37) is
unambiguously defined, and the total order of (3.36) coincides with the total order of
the Stokes problem in primitive variables in both two and three dimensions; see [19].
The corresponding functional setting in two dimensions for the problem (3.36) is given
by

Xo = [HFH Q)P x Hat1(Q) N L§(Q) x [HaT2(Q) N Hy ()2

for the unknowns (T, p, u) and
Yy = [HI(Q)]? x Hit1(Q) x [Hat1(Q)]?

for the data or equation residuals. As a result, the a priori estimate relevant to least-
squares methods is given by

[Zllg+1 + lIpllg+1 + lullg+2 <

3.38
( < € (IVardivT — grad plly + [divul 1 + T = V20 e(u) 1)

Note that the estimate (3.38) implies that regardless of the choice of boundary opera-
tors, the system (3.36) cannot be Hl-coercive, i.e., in two dimensions (3.36) is not of
Petrovsky type.

3.3. Div-grad decompositions of the Stokes problem. A fully Hl-coercive
first-order system is quite appealing from a least-squares perspective: a basic L2
method is optimal, discrete problems have condition numbers of order O(h—2), and
these problems can be solved by efficient multilevel techniques, see [35] and [36].
However, as we have seen in §3.2, when the skew-symmetric or symmetric parts of the
velocity gradient are used as new dependent variables, the resulting first-order systems
are not always fully H!-coercive. T'wo of the first-order Stokes systems presented in
this section are guaranteed to be fully H1-coercive, regardless of the choice of boundary
conditions. Interestingly, both formulations introduce all derivatives of the velocity
field as new dependent variables and augment the resulting first-order systems with
additional constraints, i.e., they can be viewed as vector counterparts of the scalar div-
grad or div-grad-curl decompositions in §3.1. Currently, it appears that, for the Stokes
problem, full Hl-coercivity that is independent of space dimension and boundary
conditions can be achieved solely by means of augmented div-grad decompositions.
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3.3.1. Two velocity gradient-velocity-pressure formulations of the Stokes
problem. To define the first velocity gradient-velocity-pressure formulation, one in-
troduces all first derivatives of the velocity components as new dependent variables,
i.e., we set V. = (gradu)t so that Vi; = (Qu;/0x;). In terms of V, the Stokes problem
(1.24)-(1.26) is given by

(3.39) —vdivV +gradp=1f in Q,
(3.40) divu=0 inQ,
(3.41) V — (gradu)t =0 in ),
and

(3.42) u=0 onTl,

where divV denotes the vector whose components are the divergences of the corre-
sponding rows of V. The system (3.39)-(3.42) is not fully H!-coercive. The relevant
a priori estimate associated with this system is given by

P e e
C (|| = vdivV +gradpll + [V — (grad u)*|lg1 + [[divulg1) .

In [36], the new variables V are called “velocity fluxes;” since that terminology is
usually reserved for a different physical quantity, we have adopted the terminology
“velocity gradient.”

The main idea of [36] is that full H!-coercivity can be obtained by augmenting
(3.39)-(3.42) with additional constraints. In particular, in view of the identity trV =
div u, the definition of V, and the boundary condition (1.26), one can add to (3.39)-
(3.42) the equations

(3.44) grad (trV) =0 in Q
and
(3.45) curlV.=0 in Q

and the boundary condition
(3.46) Vxn=0 onl,

where curl V denotes the vector whose components are the curls of the corresponding
rows of V and V x n denotes the vector whose components are the vector product of
the rows of V. with the unit outer normal vector n. Note that (3.45) generalizes the
curl constraints (3.3) and (3.18) to the tensor case.

The resulting system (3.39)-(3.42) and (3.44)-(3.46) is overdetermined, but con-
sistent. In two-dimensions, the number of unknowns equals seven, and the number of
equations equals eleven. In three-dimensions, we have thirteen unknowns and twenty
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five equations. A functional setting relevant to the least-squares method for the aug-
mented system (3.39)-(3.42) and (3.44)-(3.46) is given by

X, = Het1(Q) x Hot1(Q) NHL(Q) x Hat1(Q) N L3(Q)
for the unknowns (V. u, p), where Ha+1(Q) = [Ha+1(2)]* constrained by (3.46), and
Y, = He(Q) x Ha(Q) x [H1(Q)]"* x He(Q) x Ha(Q)
for the equation residuals; the corresponding a priori estimate is given by

e Bl < O (Il - vaiv ¥ + grad pl, + [[divull,
+ [V~ (grad )|y + lgrad (V) + leurl VI, )

The two velocity gradient-velocity-pressure formulations can be easily extended
to the Navier-Stokes equations. In terms of the new variable V, the nonlinear term
in (1.27) can be expressed as V - u so that, for the Navier-Stokes problem, (3.39) is
replaced by

—vdivV+V -u+gradp=f inQ.

The (generalized) div-grad decomposition used above can also be used for the
linear elasticity equations (1.17)-(1.19); see [37]. The new variables are again V. =
(gradu)t and are called “displacement fluxes” in [37], put perhaps should be more
properly referred to as ‘displacement gradients.” The first-order displacement-gradient
system corresponding to the form (1.20)-(1.21) of the equations of linear elasticity is
given by

(3.48) —divAV=f inQ,
(3.49) V — (gradu)* =0 in €,
and

(3.50) u=0 and n-AV=0 onTl.

Similarly to that for (3.39)-(3.41), to achieve full H'-coercivity, the system (3.48)-
(3.50) should be augmented by a curl constraint of the form

curlV.=0 in Q.

3.3.2. The constrained velocity gradient-pressure formulation of the
Stokes problem. This approach was suggested in [47] and here we present it in the
case of two space dimensions. The new variables introduced to effect the transforma-
tion to a first-order system are the entries of the velocity gradient constrained by the
incompressibility constraint (1.25), i.e., they are given by

(3.51) G- (”1 % ) ,

U3 —U1
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where
(9’LL1 aU2 aU1 aUQ
V= ——=—— Vg = — and v3 = ——,
(9£E2 (9:61

81‘1 (9:62 ’

and where u; and us denote the components of the velocity u. Using the new variables
and the equality of second mixed derivatives, the Stokes problem (1.24)-(1.26) in two
dimensions can be written in the form [47]

—vdivG +gradp=f in Q,
(3.52) curlG=0 inQ,
Gxn=0 onl,

In [47], the new variables (3.51) are called “accelerations” and the system (3.52) the
“acceleration-velocity” formulation of the Stokes equations. However, the new vari-
ables are not components of the acceleration vector so that, instead, we call the system
(3.52) the constrained velocity gradient-pressure formulation of the Stokes problem.
The planar system (3.52) has four equations and four unknowns, and one can
show that it is elliptic in the sense of Petrovsky so that, with Ha+1(€) = [Ha+1(Q)]3
constrained by the boundary condition in (3.52), the function setting is given by

X, = Hot Q) x Hor (@) NI3(Q)  and Y, = [HI(Q)]2 x [Ho(Q)]2

for the unknowns (G, p) and the equation residuals, respectively. The a priori estimate
relevant to least-squares methods is given by

(3.53) 1G]lg+1 + [[Pllg+1 < C (|| = vdiv G + grad pll + [[curl Gl|g) -

The velocity has been eliminated from (3.52); it is recovered by solving the addi-
tional div-curl system

curlu=v3 —v2 in Q
(3.54) divu=0 inQ

un=0 onl.

Although it is not obvious that the solution of (3.54) satisfies the boundary condition
(1.26), it can be shown that this is indeed the case.

Although the system (3.52) is fully H!-coercive, owing to the elimination of the
velocity field, this system cannot be extended to the Navier-Stokes equations. Elim-
ination of the velocity field in (3.52) can be considered as an artifact since one can
simply consider (3.52) together with (3.54). Such a first-order system is studied in
[53], where the new variables are called “stresses” and the corresponding first-order
system is called the “stress-velocity-pressure” Stokes system despite the fact that the
new variables are not the components of the stress tensor. This is not to be confused
with the formulation of §3.2.2 for which the true stresses are used.

3.3.3. First-order Stokes formulations: concluding remarks. We have
presented five different first-order systems that can be derived from the Stokes equa-
tions by introducing new dependent variables. In all five cases the new variables
involve derivatives of the velocity field. When new variables represent linear combi-
nations of these derivatives, such as the vorticity or stresses, resulting systems are
not always fully H!-coercive. This is due to the fact that interdependencies between
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the new variables and the velocity field remain coupled, i.e., formulations “remember”
that some of the variables are actually velocity derivatives. To uncouple the variables,
the velocity-gradient and the constrained velocity-gradient approaches use the com-
ponents of the velocity gradient as new dependent variables, and add new constraints
until the dependencies between the variables become subdominant. This may lead to
an overdetermined, but consistent, problem.

3.4. Inhomogeneous boundary conditions. The a priori estimates presented
above are valid for homogeneous boundary conditions imposed on the function spaces.
Below, we give a necessarily brief account of the relevant a priori estimates for inho-
mogeneous essential boundary conditions.

To determine the appropriate norms for a given boundary operator one may rely
again on the elliptic regularity theory of [2], or on various trace theorems relating
boundary and interior norms of functions. For example, a result of [102] states that
for every g € H'/2(T') there is a unique u € H1(Q) such that Au=0in Q, u =g on
I, and |lull1 < Cllglli/2,r- As a result, for the div-grad system with inhomogeneous
Dirichlet boundary condition given by

—divv=f and v=grad¢ inQ and p=¢g onl,
the relevant a priori estimate is given by

(3.55) ol + ¥l o divy < C (v —gradéllo + [[divv]o + [[¢]l1/2,r) -

Similar estimates can be derived for the other div-grad type first-order systems.
Recall that the velocity-vorticity-pressure Stokes problem has an ambiguously
defined principal part and that, as a result, there are two possible functional settings
for this problem, given by (3.29)-(3.30) and (3.31)-(3.32), respectively. When this
problem is augmented with inhomogeneous boundary conditions, the data spaces are
given by Y, x Z,, where Z, is a trace space defined on I'. The specific form of Z; can
be determined with the help of the elliptic regularity theory of [2]. More precisely,
given a particular boundary operator, the form of Z; will depend on the principal part
which assures the validity of the complementing condition for this boundary operator.
For example, for the velocity-vorticity-pressure formulation of the Stokes equations
with the pressure-normal velocity boundary condition (3.35) this space is given by

Zy, = H1tY/2(T) x Ha+1/2(T)
for (u-n,p), whereas for the velocity boundary condition (1.26) we have that
Zg=[Het3/2()]», m=2or3,

for u. As a result, the relevant a priori estimates corresponding to the two principal
parts (3.27) and (3.28) are now given by

[@llg+1+lplla+1 + [[ullg+r < C (lveurlw + grad pllg + [Jcurla — wllq

(3.56) .
+ [[divullg + [u-nllgy1 o0 + [Plgr1/2.r)
and
(3.57) [wllg+1+pllg+1 + [[ullgr2 < C ([[reurlw + grad pl|q + [lcurlu — w([g+1

+ ||divul|g+1 + ||11||q+3/2,1“) )
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respectively. A priori estimates for other first-order Stokes problems with inhomoge-
neous boundary conditions can be derived in a similar manner. For example, when the
first-order Stokes problem is H!-coercive, e.g., the velocity gradient-velocity-pressure
formulation, the space Z; for the inhomogeneous velocity boundary condition is given
by [H9+1/2(T')]?, n = 2 or 3. If the system is not H!-coercive, e.g., the velocity-stress-
pressure formulation, then Z; is given by [H43/2(T)]", n = 2 or 3.

The estimates (3.55), (3.56), and (3.57) can be used to define norm-equivalent
least-squares functionals when a variational enforcement of the essential boundary
conditions is desired. In particular, these estimates indicate the appropriate norms
that should be used to measure the residuals of the boundary data.

In conclusion, we note that the Agmon-Douglis-Nirenberg theory also allows one
to determine the form of the boundary data space Z; when the boundary condition
involves differential operators. Such boundary conditions for the Stokes problem are,
however, outside the scope of this paper.

4.. Least-squares methods. We now turn to specific least-squares finite ele-
ment methods for elliptic boundary value problems. We divide these methods into
three classes according to the analytical and computational approaches employed to
satisfy the optimality and practicality principles of §2. Thus, we use the following
nomenclature to classify least-squares finite element methods:

e Basic L2 methods — methods that use only L2-norms in the least-squares func-
tional;

e Weighted L2 methods — methods that use mesh-dependent or other weighted L2-
norms in the least-squares functional;

e H—1 methods — methods that use negative Sobolev space norms in the functional
setting and in the least-squares functional.

Most of the methods discussed in this section are illustrated using primarily the Stokes
equations as a model problem, although other model problems are also used.

4.1. Basic L2 least-squares methods. The principal appeal of basic L2 meth-
ods is their straightforward formulation and ease of implementation. Given a first-
order system, a quadratic least-squares functional for the system is readily available
by summing up the L2-norms of the residual equations. As a result of the use of first-
order differential equations in the functionals, the corresponding variational problems
can be discretized by means of standard finite element spaces such as Py or Qg, i.e.,
spaces consisting of functions that are merely continuous across element edges. How-
ever, for such methods, optimal discretization error estimates in L2 and H!-norms
can only be established provided the first-order system is fully H!-coercive. More-
over, if the system lacks the latter property, one can find smooth solutions for which
convergence rates are suboptimal. Thus, the main theoretical and practical problems
experienced by basic L? formulations can be attributed to the lack of such coercivity
in the first-order system. These problems will be discussed in §4.1.1 in the context
of the Stokes equations. In §4.1.2; fully H!-coercive basic L2 methods for div-curl
systems are considered.

The need for full H1-coercivity reflects the desire to establish Sobolev space error
estimates that provide control over all first derivatives. In §4.1.3 we consider basic
L2 methods that adhere to a different philosophy with respect to error estimates.
These methods take advantage of the fact that a first-order system, although not fully
H1-coercive, may nonetheless be coercive in a setting which involves “intermediate”
function spaces such as H(2,div). Then, optimal error estimates for a basic L2
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method can still be established, but for some of the variables these estimates will
be in the weaker norm of the intermediate space and one does not establish full
control over all first derivatives. Such methods allow one to exploit, in the analyses,
the ellipticity properties that are inherent in the first-order system without adding
additional constraints. Finally, in §4.1.3, we also discuss methods for div-grad systems
that result in optimal H! error estimates by means of adding additional constraints
or by employing special grids.

4.1.1. Basic L2 least-squares methods for the Stokes equations. For the
Stokes problem in two-dimensions, one can consider the following five least-squares
functionals associated with the first-order systems discussed in §§3.2-3.3.

Velocity-vorticity-pressure functional:

(4.1) J(w,u,p) = %(Hucurlw + gradp — f]|2 + ||curlu — w||3 + ||div u||%)
Velocity-pressure-stress functional:

(42) T up) = 5 (1T~ V()3 + ldivul} + |V div T~ grad p — £[3)
Constrained velocity gradient-pressure functional:

(43) 7(@.p) = 5 (I - veliv G + gradp — £ + el GI3)

Velocity gradient-velocity-pressure functional I:

(14)  TV,up) = o (|~ velivV + gradp — £ + dival} + [V (arad u)[3)
Velocity gradient-velocity-pressure functional II:

1
uy ) =5 (Il = (@iv V)" + gradp — €3 + [[div ] 3+
4.5
|V — grad ut[[3 + lgrad (trV) |3 + [leurl VI3) .

With each one of the above functionals we associate a least-squares finite element
method in the usual manner, as described in §2. To obtain optimally accurate dis-
cretization error estimates for the resulting methods one has to establish the coerciv-
ity of respective bilinear forms, i.e., show that the least-squares functionals (4.1)-(4.5)
with zero data are norm-equivalent to the H1l-norm. This, however is not true for all
five functionals.

Consider, for example, the functional (4.1). When the first-order system (3.20)-
(3.22) is augmented by the normal velocity-pressure boundary condition (3.35), the
corresponding boundary value problem is elliptic in the sense of Petrovsky. As a
result, the system (3.20)-(3.22) is fully H!-coercive, and the relevant a priori estimate
is given by (3.33). Analyses based on standard elliptic finite element theory can be
used to establish optimal discretization errors for this method (see [17]) of the form

[u—u"[[;+lw ="+ lp = 2"

< Cnt1=r (s + @less + Iplesn ), 7 =0,1.
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This estimate is valid, e.g., if the finite element spaces Py or Qi (see §1) are used
for all variables. Let us now suppose that (3.20)-(3.22) is instead augmented by the
velocity boundary condition (1.26). The corresponding boundary value problem is
elliptic in the more general sense of Agmon, Douglis and Nirenberg, but fails to be
elliptic in the sense of Petrovsky. As a result, the system (3.20)-(3.22) is not fully H1-
coercive, and the relevant a priori estimate is now given by (3.34). This fact by itself
does not immediately imply that the method is not optimal; it only indicates that
standard finite element analyses cannot be used to show that the optimally accurate
error estimates given by (4.6) are valid with the velocity boundary condition. A
more careful analysis of this method does however reveal that it indeed is suboptimal;
suboptimal convergence rates can be observed computationally as well. Using the
exact solution from §3.2.1 with n = 1, the functional (4.1), and discretization by
quadratic elements on triangles, we have computationally obtained the (approximate)
convergence rates as given in Table 1; one can conclude that the rates for the velocity
boundary condition case are sub-optimal.

TABLE 1

Rates of convergence of the L? and H' errors in the least-squares finite element solution with velocity
(V) and normal velocity-pressure (NVP) boundary conditions compared to the best approximation
rates (BA).

L2 error rates H? error rates

Variable | BA V | NVP BA V | NVP

3.00 | 271 3.11 2.00 |2.03 2.04
3.00 |237 3.10 2.00 | 2.06 2.02
3.00 |2.20 3.00 2.00 |1.64 1.93
3.00 |234 2.98 2.00 |1.64 1.97

=" R < g

Consider next the functional (4.2). From §3.2.2, we know that the associated
boundary value problem is not fully H!-coercive, regardless of the choice of boundary
conditions. Similarly, the first-order system (3.39)-(3.42) is not fully H!-coercive and
estimate (3.43) implies that the functional (4.4) is not norm equivalent. Thus, in both
cases, the optimality of the resulting methods cannot be established using standard
elliptic arguments. In fact, in both cases, one can devise counterexamples, similar to
the one in §3.2.1, that will result in sub-optimal convergence rates.

Lastly, consider the constrained velocity gradient functional (4.3) and the aug-
mented velocity gradient functional (4.5). In both cases, the functionals are associated
with fully H!-coercive systems given by (3.52) and (3.39)-(3.42), (3.44)-(3.46), respec-
tively. The a priori estimates (3.53) and (3.47) that are valid for these systems imply
that both functionals are norm equivalent to a product of H! spaces. As a result, op-
timally accurate discretization error estimates in the H1({2)-norm can be established
for all dependent variables using standard elliptic finite element theory; see [36] and
[47].

4.1.2. Basic L2 least-squares methods for div-curl type equations. In
two-dimensions, the div-curl first-order system (1.29)-(1.30) has two equations and
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two unknowns and is elliptic in the sense of ADN. Moreover, along with one of the
boundary conditions (1.31), this system is fully H'-coercive, provided I is of class C'1:1
or is piecewise smooth with no re-entrant corners. This follows from the algebraic and
topological equivalence of each the spaces Ho(§2,div) N H(€, curl) and H(£,div) N
Ho(€, curl ) with the space H(Q2) for such domains; see [79]. Thus, in two-dimensions,
the quadratic functional

1 .
(4.7) () = 5 (flewrlu — £ + |ldiva - g]3)

leads to an optimal least-squares method.

In three-dimensions, the system (1.29)-(1.30) consists of four equations and three
unknowns, i.e., it is seemingly overdetermined. Thus, along with the velocity-pressure-
velocity gradient system, this system is another example of the utility of least-squares
methods for solution of systems having different numbers of unknowns and equations.
The functional (4.7) can be used in three dimensions as well; however, analyses of
resulting methods can vary significantly depending on the mathematical framework
chosen. For example, in [74], existence and uniqueness of minimizers to (4.7) and
optimal discretization error estimates are established using the integral identity

/(|curlu|2—|—|divu\2) sz/ |gradu|? .
Q )

Unfortunately, this identity holds for special cases such as rectangular domains, but
is not true in general; see [55].

A more general mathematical framework for the analyses of least-squares methods
based on (4.7) has been suggested in [55]. This framework utilizes the ADN elliptic
theory. Since in three dimensions the system (1.29)-(1.30) is not elliptic in the sense
of ADN, it must be modified before the ADN theory can be applied. For this purpose,
equation (1.29) is modified according to (1.32), where ¢ is a “slack” variable subject
to the boundary condition ¢ = 0 on I (compare with §3.2.1.) The slack variable ¢
is used only for the analyses; one can show that this variable is identically zero and
therefore it can be completely ignored in computations. Thus, using, e.g., P; elements,
one has the optimal error estimates (see [55])

[u—u"], < Ch2="[ufl, r=0,1.

Methods described in this section can be extended to problems arising in electromag-
netic applications. For further details on such methods, see, e.g., [46], [58], [60], [97],
and [116].

4.1.3. Basic L2 least-squares methods for div-grad type equations. We
now turn to a class of basic L2 methods that is principally associated with the scalar
div-grad decomposition of §3.1, e.g., methods that arise in biharmonic, convection-
diffusion, and reaction-diffusion type problems. We first consider least-squares meth-
ods that are customarily set in H(, div ) spaces.

The simplest setting for such methods is given by the Poisson’s equation (1.5)
with the homogeneous Dirichlet boundary condition (1.6). Here, the scalar div-grad
decomposition yields the first-order system (2.11) and the corresponding least-squares
functional is given by (2.12). From the a priori estimate (3.2) it follows that (2.12) is
norm equivalent on the space X, where X is given by (3.1). As a result, the bilinear
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form associated with this functional is coercive on X x X. Then, standard elliptic
finite element theory can be used to establish error estimates of the form

(4.8) 16 = 811+ 1V = V¥l o divy < OB (I0llksn + [Vl

if, e.g., the finite elment spaces Py or @y are used for all variables.

Next, consider the biharmonic problem (1.10)-(1.11) and the associated first-order
problem (3.4)-(3.8). We recall that a function setting for this first-order problem is
given by (3.9) and that the a priori estimate relevant to least-squares methods is given
by (3.10). As a result, a least-squares functional for (3.4)-(3.8) can be defined by (see
[76])

1
T (60,61, v0,v1) =5 (Ivo = dullf + v = 1

(4.9)
+ ||divvo — ¢1 |2 + ||div vy — f”%) :

According to (3.10) this functional is norm equivalent on a space X where X is now
given by (3.9). Correspondingly, the bilinear form associated with the functional (4.9)
is not coercive on a product of H1(f2) spaces; instead, this form is coercive on X x X.
As aresult, the optimal error estimates for least-squares finite element approximations
of (3.4)-(3.8) are very similar to (4.8), i.e., one can find optimal upper bounds for

Ivo = VAl adivy + V1 = Vil adivy + 160 — bl + lén — 6211

but not for
Vo — Vil 4 [vi = vill1 + [|¢o — ofll1 + [|¢1 — o1 -

Lastly, consider the convection-diffusion problem (1.12)-(1.13). A least-squares
functional for this problem can be defined using the first-order system (3.16)-(3.17)
and is given by

(4.10) Tv,8) = 5 (v~ Alw)arad 6] + divy +Aé — f[3).

It can be shown (see [33], [35], and [107]) that the functional (4.10) is equivalent
to a norm on the space X = H}(Q) x H(Q,div) for the unknown (¢, v), i.e., the
associated bilinear form is coercive on X x X. As a result, one can show (see [33])
that least-squares finite element approximations satisfy the error estimate (4.8).

The need to carry the analyses of the above least-squares methods in a setting
involving the space H(2,div) stems from the lack of full H!-coercivity in div-grad
type systems. However, in most cases such coercivity can be achieved by adding curl
constraints. For example, if the system (2.11) is augmented by (3.3), a least-squares
functional given by

1.,
T(9,v) = 5 (laivv + fI + IIv = grad ¢[}3 + |lcurl v]o)

allows one to establish optimal error estimates in the norm of H1(2) for all dependent
variables; see [49]. The curl constraint (3.3) can also be used to augment the div-grad
system corresponding to the Helmholtz equation; see, e.g., [48] and [95].
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The same approach can be applied to the convection-diffusion problem (1.12)-
(1.13). In this case, the appropriate form of the curl constraint is given by (3.19), i.e.,
instead of (4.10) one can consider the minimization of the following functional (see
[43] and [44])

(412) T(6,v) = 3 (Iv — Alw)erad 9] + |div v + A6 — fI + [leurl A= 2)v]3)

Functional (4.12) can also be applied to the self-adjoint case, i.e., when the term A¢
is omitted from (1.12)-(1.13); see [106].

In conclusion, it should be mentioned that optimal rates of convergence in H(§2)
norms can still be obtained without adding a curl constraint to the first-order system.
This, however, requires a restrictive condition on the triangulation, known as “grid-
decomposition property”, see [72]. An example of a grid that satisfies this property
is furnished by the “criss-cross” grid; see [73]. Furthermore, it can be shown (see
[61]) that the grid decomposition property is a necessary and sufficient condition for
stability and optimal discretization errors.

4.2. Weighted least-squares methods.

The use of weights in least-squares functionals has long been among the preferred
ways to handle issues such as lack of full H!-coercivity, inhomogeneous boundary
conditions, singular solutions, computations in regions with corners, etc. Loosely
speaking, the idea of weighted least-squares functionals can be described as follows.
We are given a least-squares functional which is equivalent to a norm on some Sobolev
space, but this norm is not convenient from a computational point of view or is not
appropriate for a particular class of solutions. When this functional is restricted to a
finite element space, one can appeal to the fact that all norms on a finite dimensional
space are equivalent. Thus, essentially all norms can be replaced by L2-norms weighted
by the respective equivalence constants. Here, we consider three typical examples of
weighted least-squares methods. In the first, weights are used to replace H!-norms
by L2-norms; in the second, weights are used to replace inconvenient boundary norms
by more convenient ones; and, in the third, weights are used to handle singularities in
the solution.

4.2.1. Weighted methods — Part 1. We consider the first-order system (3.20)-
(3.22) along with the boundary condition (1.26). In this case, the a priori estimate
relevant to the least-squares methods is given by (3.34). Setting ¢ = 0 in (3.34) implies
that a norm-equivalent functional should be defined as

1
(4.13) J(w,u,p) = 3 <||chr1w + gradp — f]|3 4 ||curlu — w||? + ||div u||%) .

Because (4.13) is norm-equivalent on the space (3.31) (with ¢ = 0) conforming dis-
cretization of this functional yields a formally optimal method. However, the use of
Hl-norms in (4.13) calls for discretization of second-order terms such as (grad div u)
and (grad curlu). Conforming discretizations of such terms can be handled using sub-
spaces of H2(2). In the finite element setting, this essentially requires the use of finite
element spaces that are continuously differentiable across the element faces. Unfortu-
nately, in two and three dimensions, such elements are impractical, which offsets the
potential advantages of a least-squares formulation based on (4.13).

The fact that a first-order system may lead to a least-squares method that still
requires discretization by subspaces of H?2 has been first pointed out in [17]. In that
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paper some ideas of [3] were extended to the system (3.20)-(3.22). To avoid this
problem, the relevant observation is that for finite element functions the equivalence
constant between the L2 and H! norms is given by Ah—1. This can be seen either by a
scale argument or by using inverse inequalities; see [65]. Then, instead of (4.13), one
can consider the weighted functional given by

1
(4.14) Jn(w,u,p) = 3 (||1/curlw +gradp — f[|3 + h=2||curlu — w2 + h—2||diqu3) :

The functional (4.14) involves only first-order derivatives of the unknown functions.
As a result, the associated variational problem can be discretized using finite element
spaces like Py or Q. The use of weighted L2-norms does, however, introduce some
interesting features into the resulting least-squares method. First, we note that the
functionals (4.13) and (4.14) are not equivalent unless the functions U = (w, u, p) are
restricted to a finite dimensional space. Furthermore, since discretization is performed
using finite element spaces such as P and @, it is not conforming with respect to the
spaces for which (4.13) is norm equivalent (these spaces include H?(2) for the velocity
field.) As a result, the bilinear form associated with (4.14) is not coercive in the usual
sense; instead, it can be shown (see [17]) that it satisfies a “stability” estimate of the
form

(415) |w = whllgs1+ [p = pPllgs1 + 0 = ut|lg2 < Ch=a BHU = UR U = UM,

where ¢ < —1. Together with a standard “continuity” estimate, (4.15) yields an error
estimate (compare with (4.6))

(416) o —whlo+ p— o+ fu— whll < CRE (Wl + lIpl + s )

that is valid for £ > 2 if one uses, e.g., the finite element spaces Py or @y for the
velocity and Py_1 and Qy—1 for the pressure and vorticity. Note that, in (4.16),
the error in the approximation is measured in norms corresponding to (3.34) with
q = —1. As a result, for the approximation of the pressure and the vorticity one can
use finite element spaces with interpolation order of one degree less than that used for
the velocity approximation. This also means that (4.16) is not optimal if equal order
interpolation is used for all dependent variables.

An obvious candidate for a similar treatment is the velocity-pressure-stress system
(3.36). Recall that this system is not fully H!-coercive, i.e., the basic L2 functional
(4.2) is not norm equivalent. As a result, one can find smooth solutions such that the
basic L? formulation (4.2) for (3.36) yields suboptimal convergence rates.

At the same time, using (3.38) with ¢ = 0 to define a norm-equivalent least-
squares functional will lead to impractical methods. An argument similar to the one
used to define the functional (4.14) now leads to the following weighted functional for
(3.36):

(T u,p) =5 (h2 T = VEv w3+
(4.17)

h=2||divu|2 + ||vV20 div T — gradp — f||g) ;

see [19]. The resulting finite element method shares many common properties with
the one for the velocity-vorticity-pressure system, including optimal error estimates



36 PAVEL BOCHEV AND MAX GUNZBURGER

in which the error in the approximations of T, u, and p is measured in norms corre-
sponding to (3.38) with ¢ = —1, i.e.,

(418) T =T"fo+ lIp — p*flo + ru = whlls < ChF (IThe + ol + Jullsa)

that is valid for & > 2 if one uses, e.g., the finite element spaces Py or Qj for the
velocity and Py_; and Q—1 for the pressure and stress. As with (4.16), the estimate
(4.18) is not optimal if equal order interpolation is used for all dependent variables.
One can also show that the weights in (4.17) are necessary for the optimal con-
vergence rates in (4.18). For example, consider the following exact solution (see [19])

up = ug =sin(wz) sin(wy)
T1 =Ty = T3 =sin(nz) exp(my)

p =cos(mx) exp(my) .

and a method based on (4.17) implemented using P; elements for T and p, and P>
elements for the velocity. Numerical estimates of convergence rates for (4.19) with
and without the weights are summarized in Table 2.

TABLE 2
Rates of convergence of the H' and L2 errors in the least-squares finite element solution with the
weights (WLS) and without the weights (LS) compared to best approximation rates (BA).

L2 error rates H? error rates
Variable | WLS LS BA WLS LS BA
U 3.59 1.11 3.00 2.85 1.00 2.00
v 3.13 1.28 3.00 2.77 1.17 2.00
Ty 2.42 1.25 2.00 0.99 0.94 1.00
Ty 2.48 1.14 2.00 1.01 0.99 1.00
Ts 2.34 1.26 2.00 1.05 0.76 1.00
p 2.40 0.94 2.00 1.10 0.92 1.00

4.2.2. Weighted methods — Part 2. In this section, we consider least-squares
methods where weights are used to replace trace norms on the boundary by com-
putable, weighted boundary-L2-norms. One example is provided by the least-squares
theory for planar elliptic systems of Petrovsky type developed in [115].

We consider first-order systems in the plane. It is assumed that these systems
can be cast into the standard form (see §2.1)

(4.19) AU, + BU,+CU =F inQ

where U = (u1,...,u2), F = (F1,...,Fay,), and A, B, and C are 2n x 2n matrices.
Along with the system (4.19), we consider a boundary condition of the form

(4.20) RU=G onTl,
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where R is a full-rank n x 2n matrix. It is further assumed that the boundary value
problem (4.19)-(4.20) is elliptic in the sense of Petrovsky, that is, A and B satisfy the
algebraic condition of §2.1, which is equivalent to the uniform ellipticity of (4.19), and
that (4.20) satisfies the Lopatinskii condition; see [115]. As a result, the following a
priori estimate is valid for the problem (4.19)-(4.20):

(4.21) ||UHq+1 <C (HAUJ? + BU, + CUHq + ||RU||q+1/2,F) :

In the terminology of §2, the system (4.19)-(4.20) is fully H!-coercive (set ¢ = 0 in
(4.21).) Let us assume for the moment that (4.20) can be satisfied exactly by the
approximating spaces. Then, an optimal least-squares method for (4.19)-(4.20) can
be defined using only L2-norms in the functional. In some cases, however, it might be
advantageous to impose (4.20) in a weak sense by using a least-squares functional of
the form

1
(4.22) JW) =5 (||AUI + BU, +CU — F||§ + |RU — Gllf/z,r) :

In contrast with the functional (4.13), the difficulty now lies with the computability
of the boundary norm || - ||;2,r. Using a scale argument, one can infer that for finite
element functions, an appropriate equivalence constant for such a norm and the L2(T')-
norm is h=1/2. The corresponding weighted least-squares functional is then given by

1
(123) () =3 (HAUI + BU, + CU — F|2 + h-1||RU — G||§7F) .

The minimization of the functional (4.23) without the h—1 coefficient results in sub-
optimal convergence rates; minimization of (4.23) yields optimal rates; see [115];

Evidently, the concepts presented above are not limited to elliptic systems of
Petrovsky type, and can be extended to other types of first-order systems. One par-
ticular example is given by the method of [86] for the Poisson’s equation (1.5) with
inhomogeneous Dirichlet boundary condition ¢ = g on I'. The least-squares functional
considered in [86] is given by

1
(4.24) Tn(év) = 5 (Idivy + fI3 + v = grad 6 + h=11l6 — g3 ) -

To obtain the functional (4.24), one can first use (3.55) to define a norm-equivalent
quadratic functional similar to (4.22)

1 .
T(6,v) = 5 (Ildivy + FIE + v — grad o3 + 1o — 9112 .1

and then replace the boundary norm as in (4.23). The corresponding least-squares
method is similar to the basic L2 methods of §4.1.3 in the sense that the error estimate
for the new variable v is derived in the norm of H(, div). Further examples of least-
squares methods utilizing weighted L?(I") norms can be found in [3] and [4].

Another possibility involves the use mesh dependent weights for the residuals of
both the partial differential equations and the boundary conditions. The resulting
methods combine features of the weighted methods in §4.2.1 and this section. More
details about such methods can be found in [3].

4.2.3. Weighted methods — Part 3.. In this section we consider yet a third
application of mesh dependent weights in least-squares functionals. In the first two
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applications, the need to consider weights in functionals stemmed from computability
and/or practical considerations. Here, the purpose of the weights will be to handle
singularities in the solutions of boundary value problems. These singularities may be
caused by, e.g., shock waves in transonic flows or cracks and corners in the computa-
tional domain. Here, we consider the latter case; the case of shock waves is considered
in §5.2. It is known that least-squares principle based methods tend to be more sensi-
tive to singularities in the solutions, and that mesh refinement alone is not a sufficient
remedy; see [66]. Thus, the need for weights in the present context is motivated
entirely by the salient features of the solution.

For an example, we consider least-squares approximation to the Dirichlet problem
(1.5)-(1.6) in a planar region Q having a corner with an interior angle 6 € [, 27]; see
[75]. In this case, solutions to (1.5)-(1.6) exhibit a corner singularity which behaves as
ro where r is the distance to the corner and the choice of o depends on 6. To formulate
a least-squares method, we consider again the div-grad decomposition (2.11). Because
of the presence of singularities in the solution, the functional (2.12) is not appropriate
anymore. The main idea of [75] is to consider an alternate least-squares approximation
set up in weighted function spaces. In particular, one can consider a weighted analogue
H, (82, div) of the space H(f,div) defined as the closure of [C'>°(2)]2 with respect to
the norm

V2, a0y = lIr/2divv]3 + V3.

Note that the new space is defined using weights which reflect the strength of the
singularity. As a result, the appropriate least-squares functional for (1.5)-(1.6), when
the region {2 has a corner, is given by

Fit6.9) = 5 (Ire/2(ivy + I + v — grad o[3)

It has been shown in [75] that if « is bounded from below by 4 — 27/6 then one can
derive the error estimates for v and ¢ in unweighted L2-norms, i.e.,

v —v"o < Ch £l

and . ~
¢ — dhllo < C(hs + h)2|| f]l1,

respectively. In the above estimates h and h denote the grid sizes used in the approx-
imation of v and ¢, respectively, and s = 7/f. Note that for optimal accuracy, one
must take h = h1/¢, i.e., the grid for the scalar field ¢ must be finer than that for v.

4.3. H-! least-squares methods.

As we have seen in §4.1, a basic L2 least-squares method is optimally accurate
provided the first-order system is fully H!-coercive (or equivalently, elliptic in the sense
of Petrovsky in two dimensions.) The lack of full H-coercivity essentially implies that
one cannot use the same norm to measure all residuals of the first-order system. Let us
consider again the velocity-vorticity-pressure system (3.20)-(3.22) with the boundary
condition (1.26). Recall that setting ¢ = 0 in the a priori estimate (3.34) leads to
the (impractical) functional (4.13) which has been used to motivate the weighted
functional (4.14). If, on the other hand, one chooses ¢ = —1 in the a priori estimate
(3.34), the corresponding norm-equivalent least-squares functional is given by

(4.25)  J(w,u,p)-1 = = (lveurlw + gradp — f[|2; + [lcurlu — w2 + [|divul]3) .

| =
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Functionals such as (4.25) form the basis of the minus-one or negative norm or H—1-
norm least-squares methods. H—1 methods are a relatively recent development sug-
gested in [23] and [25].

Because H—!-norms are not easy to compute, the functional (4.25) is not any
more practical than (4.13). Thus, one still has to consider replacement of the negative
norm by a discrete, computable equivalent. One simple way to accomplish this is to
use a scale argument. In particular, we can consider a weighted functional of the form

1
(426)  Jn(@up) =3 <h2||ycur1w +gradp — f|[2 + |jcurl u — w||2 + Hdivung) ,

i.e., we replace | - ||-1 by the weighted L2-norm hl| - ||o. We note that (4.26) can be
obtained from (4.14) simply by scaling the latter functional with the common (and
unimportant for the minimization) factor h2. Thus, computationally, both functionals
should have similar properties.

A more sophisticated approach (see [23] and [25]) involves replacement of the
H-1-norm by a discrete negative norm, defined using a preconditioner for the Laplace
operator. The main idea of this approach is as follows. Consider the following equiv-
alent norm on H-1(Q):

12, = sup L9
semi() |oh

Now, let S: H-1(Q) — H}(Q) denote the solution operator of the Dirichlet problem
(1.5)-(1.6). Then, ||f||2, = (Sf, f) for all f € H-1(Q); see [23]. Furthermore, the
inner product associated with the norm |[|-||—1 can be expressed as (f, g)-1 = (Sf,g) =
(f,Sg). Lastly, let S : H-1(Q2) — X" denote a discrete approximation to S defined
using, e.g., a standard Galerkin method. Then, a computable, discrete negative norm
can be defined as ||<;S||271’h = (8"¢, ¢)o. However, the cost of computing S* may still be
prohibitive. Thus, S" is further replaced by a preconditioner B* that is a symmetric
and positive semidefinite operator on L? that is spectrally equivalent to S* in the
sense that

CO(Sh¢a (b)o S (Bh(ba d))o S Cl(Sh¢a (b)O .

The main consideration in the choice of B" is computational cost. The cost of com-
puting B¢ must be significantly lower than the cost of computing S*¢. Once B is
chosen, a discrete minus-one norm can be defined as follows (see [23])

Ipll—1.n = (Shp,d)o,  where  Sh = h2[ + Bh

and where I denotes the identity matrix. The corresponding least-squares functional
for the Stokes equations is given by

1 —_—
J-1n(w,u,p) =3 ((Sh(l/curlw +gradp — f), veurlw + grad p — f)o
(4.27)
+ fleurlu — w[}3 + [|div u3)

where S* is the block diagonal matrix with diagonal blocks given by S*. Note that
with the trivial choice B* = 0, (4.27) reduces to the weighted functional (4.26). It
should be noted that the use of discrete negative norms in (4.27) leads to algebraic
problems with dense matrices. As a result, a practical implementation of correspond-
ing finite element methods is necessarily restricted to the use of iterative solvers that
do not require matrix assembly.
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5. Least-squares methods for nonlinear problems. In this section we briefly
study two examples of the application of least-squares principles to the approximate
solution of nonlinear problems. First, we consider the Navier-Stokes system of in-
compressible, viscous flow and then the potential equation of inviscid, irrotational,
compressible flow.

5.1. Least-squares methods for the Navier-Stokes equations. A least-
squares method for the Stokes equations can be easily extended, at least in principle,
to the nonlinear Navier-Stokes equations. Indeed, given a least-squares functional
for a first-order Stokes problem, the corresponding functional for the Navier-Stokes
equations is readily available by simply including an appropriate form of the nonlinear
term into the residual of the momentum equation. From a practical point of view,
the resulting methods differ from their Stokes counterparts in two aspects. First, the
associated discrete problem now constitutes a nonlinear system of algebraic equations
that must be solved in an iterative manner using, e.g., a Newton linearization. Second,
solving the discrete system may not be straightforward for high values of the Reynolds
number since it is well-known that the attraction ball for, e.g., Newton’s method,
decreases as the Reynolds number increases.

Most existing least-squares methods for the Navier-Stokes equations are based on
the velocity-vorticity-pressure form of this problem, see e.g. [11], [12], [15], [18], [87],
[91]-[94], [96], [99], [112], and [113]. Exceptions include [13] and [14] which consider
velocity gradient methods, and [92] where a stress-based method is discussed. The
differences among various least-squares methods involve the choice of the discretization
spaces, the treatment of the nonlinear term, and the method used for solution of the
nonlinear discrete equations. For example, the methods of [87], [91], [92], and [94]
use basic L? functionals, discretization by piecewise linear finite elements, and the
u-grad u form of the nonlinear term. Other authors use instead the w x u form of the
nonlinear term. Solution of the nonlinear discrete equations is by Newton linearization
and solution of the linearized equations is by the conjugate gradient method with
Jacobi preconditioning. The method of [99] is very similar; however, solution of the
linearized problem now involves the conjugate gradient method preconditioned by
incomplete Choleski factorization. The p-version of the finite element method has
been used in [96]. The methods of [11] and [18] use weighted least-squares functionals
similar to (4.14), where in addition to the mesh dependent weights h—2, the residual
of the momentum equation is weighted by the Reynolds number. To handle large
values of the Reynolds number, these methods use Newton linearization combined
with continuation with respect to the Reynolds number.

The nonlinearity also considerably complicates the mathematical analysis of corre-
sponding least-squares methods. At present, analyses available are limited to methods
based on the velocity-vorticity-pressure (see [11], [18], and [12]) and velocity gradient
(see [13] and [14]) forms of the Navier-Stokes equations. In both cases, analyses are
based on the abstract approximation theory of [30] or its modifications. Since dis-
cussion of these results would require substantial amount of theoretical and technical
background about the theory of [30], it is beyond the scope of this paper. Thus, in
what follows we only outline the main idea of the error analysis.

It can be shown that the Euler-Lagrange equation associated with a least-squares
functional for the Navier-Stokes equations can be cast into an abstract canonical form
given by

(5.1) FOLU)=U+T-GA\U) =0,
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where A = Re, T corresponds to a least-squares solution operator for the associated
Stokes problem, and G is a nonlinear operator. Similarly, the corresponding discrete
nonlinear problem can be identified with an abstract equation of the form

(5.2) Fh(\,UR) = Uh +Th -G\ Uh) =0,

where T" is a discrete counterpart of 7. The importance of this abstract form is
signified by the fact that discretization in (5.2) is introduced solely by means of an
approximation to the linear operator T in (5.1). As a result, under some assumptions,
one can show that the error in the nonlinear approximation defined by (5.2) is of the
same order as the error in the least-squares solution of the linear Stokes problem.

5.2. Least-squares methods for compressible, potential flow.
_ We now consider another nonlinear example, namely potential flow over a body
) contained in a box Q; see [61] and [64]. The relevant state equations are given by
(3.12)-(3.13) in the domain €2/Q along with (3.15). On the boundary 9 of the body
we consider the boundary condition (3.14), i.e., u-n = 0, and on the boundary of the
flow domain 0f2, a condition of the form u-n = g is assumed.

In view of (3.12), one also has that

(5.3) curlu=0 in Q/Q,

so that together with (3.13) and the boundary conditions, we arrive at a div-curl
type system. The system (3.13) and (5.3) is known to be effective for subsonic flows
(smooth density p and velocity field u; see [65]), and nonlinear least-squares finite
element methods based on the functional

(54) () = 5 (v (pu) 3 + flewrlu?)

are well-suited for the approximation of such flows.

However, the use of (5.4) for the approximation of transonic flows containing
shock waves is problematic. Indeed, although the mass flow (pu - n) and the tangen-
tial velocity are continuous across the shock, the terms div (pu) and curlu may not
necessarily belong to L2(2), i.e., a basic L2-functional would be meaningless for such
flows. To remedy this situation, the residual of the mass balance equation can be
measured in a weighted L2-norm given by

[Indiv (pu)|3 ,

where the weight function 7 is subject to the condition
/ _nldiv (pu)|2dQ < co.
Q/Q

This condition essentially means that n vanishes on the shock, i.e., we are dealing
with a degenerate L2-norm. The second term in (5.4) can be dealt with in a similar
manner.

In [64] it has been suggested that a least-squares method for transonic flows should
be based instead on the mass flow-potential variables, i.e., instead of (5.4), we consider
a weighted functional of the form

1 . v
(5.5) T(v,0) = 5 (Indiv v[3 + | ~ grad 6]3) .
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In (5.5), the density p is a function of grad ¢ through (1.15). For the analysis of
resulting nonlinear least-squares finite element method, the reader can consult [61].

6. Other least-squares methods. So far the least-squares finite element meth-
ods we have studied fit into the framework of §2. We now examine three types of
methods that do not fit into that framework. The first is represented by collocation
least-squares methods. Here we consider examples of point and subdomain colloca-
tion methods. The second includes a method that combines least-squares ideas with
the technique of Lagrange multipliers in order to enhance mass conservation. Lastly,
the third method casts the original boundary value problem into the framework of an
optimal control or optimization problem with a least-squares functional serving the
role of the cost or objective functional.

6.1. Least-squares collocation methods. In this section, we briefly review
a class of least-squares methods in which the discretization step is taken prior to the
least-squares step. Such methods are commonly known as least-squares collocation,
point least-squares, point matching, or overdetermined collocation methods; see [69].
The main idea is as follows. Consider again the linear boundary value problem (2.1)-
(2.2). We assume that an approximate solution is sought in the form

U(z) ~Un(a,z),

where a = (a1,a2,...,an) is a vector of unknown coefficients. Let Rﬂ(a,aﬁ), j =
1,..., K, and R%(a,z), j =1,...,L denote residuals of the equations in (2.1) and
(2.2), respectively. To define a least-squares collocation method, one chooses a finite
set of points {z;}" in ©Q, and another set of points {wi}M 41 on I. Then, a
least-squares functional is defined by summing the weighted squares of the residuals

evaluated at the points xz;:

K M, ) 2 L M ] 2
61  T@ =Y an(Rraz) +> Y G (Rilaw)
j=11i=1 j=14i=M;+1

The weights oj; and §j; may depend on both the particular equation and collocation
point. Minimization of (6.1) with respect to the parameters in a leads to (a usually
overdetermined) algebraic system of the form Aa = b, where A4 is an M by N matrix.
Then, a discrete solution is determined by solving the normal equations AT Aa = ATb.
Methods formulated along these lines have been used for the numerical solution of the
Navier-Stokes equations (see [105]) and hyperbolic problems, including the shallow
water equations (see [119], [120], [100], and [101].) For numerous other applications
of collocation least-squares, see [69].

Evidently, when the number of collocation points M equals the number of degrees
of freedom N in Uy(a,z), the above methods reduce to a standard collocation proce-
dure. Similarly, if Uy (a, z) is defined using a finite element space and the collocation
points and weights correspond to a quadrature rule, then collocation is equivalent to a
finite element least-squares method in which integration has been replaced by quadra-
ture. Collocation least-squares methods offer some specific advantages. For example,
since only a finite set of points x; in the domain €2 need be specified, collocation least-
squares are attractive for problems posed on irregularly shaped domains; see [100].
On the other hand, since the normal equations tend to become ill-conditioned, such
methods require additional techniques, like scaling, or orthonormalization, in order to
obtain a reliable solution; see [69].
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Standard collocation, as well as collocation least-squares methods, use point-by-
point matching criteria to define the discrete problem. Instead of a set of points one
can also consider collocation over a set of subdomains of £2. In such a case, the discrete
problems are obtained by averaging differential equations over each subdomain. Here,
for an illustration of this approach, we consider the subdomain Galerkin least-squares
method of [56]. Let (2.1)-(2.2) correspond to a planar first-order elliptic boundary
value problem of Petrovski type with C' = 0, i.e., L(U) = AU, + BU,, RU = RU
where R is again a full-rank n by 2n matrix. To define the subdomain Galerkin/least-
squares method for (2.1)-(2.2), we consider a finite element space X" consisting of
continuous piecewise linear functions defined on a regular triangulation 7, of the
domain € into triangles k. These triangles will also serve as collocation subdomains.
We let K and N denote the number of triangles and vertices, respectively, in 7p,.
For simplicity, we shall assume that the finite element functions in X" satisfy the
essential boundary conditions (2.2). Then, a set of discrete equations is formed by
averaging separately the components of the differential system (2.1)-(2.2) over each of
the triangles Qy € 7p:

(6.2) / (Luh),; dQ :/ (f);d for k=1,...,K and j=1,...,2n.
Qi Q

Once a basis for X" is chosen, it is not difficult to see that (6.2) is equivalent to a
rectangular linear algebraic system of the form C'U = F which consists of 2nK equa-
tions in approximately 2nN unknowns, i.e., there are about twice as many equations
as unknowns. The subdomain-Galerkin/least-squares method of [56] consists per se of
forming the matrix C' and subsequently solving the above linear system by a discrete
least-squares technique. If the data F is sufficiently smooth, one can show (see [56])
that the resulting method is optimal in the sense that

|U = UMy < Cih||Flly and U = U"jo < Coh?||F|1 .

We note that the discretization step in (6.2) can also be interpreted as an application
of a nonstandard Galerkin method to the system (2.1)-(2.2) in which the test space
consists of piecewise constant test functions with respect to 7p.

Similar subdomain collocation least-squares methods have also been developed
for the numerical solution of Maxwell’s equations; see [46].

6.2. Restricted least-squares methods. In general, when a least-squares
method is used for the numerical solution of incompressible flow problems, computed
velocity fields do not exactly satisfy the continuity equation. As a result, least-squares
methods conserve mass only in an approximate manner and usually one can show
that ||divu”?|lo = O(h"), where r > 0 depends on the particular finite element space
employed. One way to enhance mass conservation involves the use of local mesh de-
pendent weights along with special weights for the continuity equation. For example,
the weighted functional (4.14) can be modified as follows (see [68]):

1
Jr (w,p,u) =3 (||1/cur1w + gradp — f||2

(6.3) J
+ Z h3 (W div u||§7Qj + ||curlu — w||(2)79j)) )
J
where Q;, j = 1,...,J, denotes the j—th finite element, h; denotes the diameter
of ;, and W is a weight for the continuity equation. Computational results with
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the corresponding finite element method reported in [68] indicate very good mass
conservation properties with a moderate continuity equation weight (W = 10). Note
that finite element methods based on the functional (6.3) do fit into the framework of
§2.

Another approach, suggested in [59], which does not fit into the framework of
§2, combines least-squares and Lagrange multiplier techniques into a method called
restricted least-squares. The main idea of this method is to consider the continuity
equation as a constraint that is enforced on each finite element via Lagrange multipli-
ers. In this sense, the restricted least-squares method has some similarities with the
methods of [5] and [7], where Lagrange multipliers are employed to enforce boundary
conditions. To state the method of [59], let 7}, denote a triangulation of Q with n
finite elements, £ denote a first-order Stokes differential operator, and X" denote a
suitable finite element space defined over 7;,. The variational problem associated with
the restricted least-squares method for the Stokes equations is then given by

seek Uh € Xh and \j e R, j=1...,J, such that

J
/ LZUh-EVth—i—Z()\j / div vhdQ + p; / divuth>
Q ; Q; Q;
:/EVh-F YWheXh pieR, j=1...,J.
Q

Although computational results obtained with the restricted method are very satisfac-
tory, it also has some shortcomings. The use of Lagrange multipliers leads to a linear
algebraic system with a symmetric but indefinite matrix that has a structure very
similar to the matrices arising in mixed methods. Likewise, the size of the discrete
problem increases by the number of additional constraints. Thus, at present it remains
unclear whether the advantages of the restricted method outweigh the problems asso-
ciated with imposing constraints on the velocity approximation. In particular, the loss
of positive definiteness negates the main advantage of the least-squares formalism.

6.3. Least-squares/optimization methods. The main idea of least-squares/optimization
methods is to transform the original boundary value problem into an optimal control
or optimization problem for which a cost functional is given by a least-squares type
functional. To describe the method consider the following nonlinear Dirichlet problem
(see [31)):

(6.4) ~Ap—G(¢) =0 inQ

along with the boundary condition (1.6). Then, an H~1 least-squares functional for
(6.4) is given by

(6.5) J(9) =llA¢+G(9)]12,,

where || - ||=1 denotes the negative norm of §2.3. Minimization of (6.5) over Hi ()
would lead to a least-squares principle that is similar to the principles of §2.
The least-squares-optimization approach, however, considers minimization of

where £ € H(Q) is a solution of

(6.7) —NE=G(p) InQ and £=0 OnT.
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In the context of optimal control problems, one can identify ¢ with the control vec-
tor, £ with the state variable, (6.7) with the state equation, and (6.6) with the cost
functional. Furthermore, using the identity

IA¢] -1 = llgrad ¢llo V¢ € Hy(Q),

one can replace (6.7) with the more easily computable (and therefore practical) cost
functional

(6.8) K(,€) = llgrad (¢ — &)|l3 -

To summarize, the least-squares/optimization method for (6.4) can be stated as fol-
lows:

minimize K(¢, &) given by (6.8) over ¢ € HE(Q), subject to the state equation
(6.7).

To solve the above optimization problem one can use an abstract version of the conju-
gate gradient method; see [31]. At each iteration, this method would require solution
of two Dirichlet problems (6.7) for the computation of the descent direction; see [31]

This class of methods has been developed for nonlinear flow problems, includ-
ing compressible flows (see [31], [32], and [81]) and the Navier-Stokes equations (see
[31] and [80].) For example, to derive the least-squares/optimization method for the
Navier-Stokes equations (1.25)-(1.28), let

Z={ucH}Q) |divu=0in Q}

and
(69) (.8 = F1AE =Wl =5 [ ferad €~ )2

and consider the Stokes problem

—vAE +gradg = —u-gradu in Q
(6.10) divéE=0 inQ
£E=0 onT.

Then, the least-squares/optimization method for (1.25)-(1.28) is given by:

minimize K(u,€) given by (6.9) over u € Z, subject to the state equation
(6.10).

To solve the above optimal control problem, one can again use an abstract conjugate
gradients process. Now, computation of the descent direction at each iteration involves
the solution of several Stokes problems; see [31] and [80].

7. Concluding remarks. In this paper, we have focused primarily on least-
squares methods for elliptic boundary value problems. Among the various applications
of least-squares principles these methods appear currently to be at the most advanced
theoretical and practical stage. The mathematical framework for the analyses of such
methods is well-developed, and their computational performance is well-documented
in the literature. The limited space did not allow us to consider many other important
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areas, such as hyperbolic problems, time dependent problems, and time-space least-
squares. For further details on such applications, we refer interested readers to [4], [9],
[39], [40], [41], [62], [63], [88], [89], and [110]-[113], among others.
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