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1. Regularized formulations of FETI

Pavel Bochev1, R.B. Lehoucq2

1. Introduction. Our report introduces two regularized formulations of the
FETI-1 [3, 2] algorithm. These formulations provide an alternative way for handling
the rigid body modes (RBM) associated with floating subdomains. Both formulations
start with the FETI-1 Lagrangian but differ in the treatment of the RBMs. They
provide coercive bilinear forms on the floating subdomains resulting in symmetric,
positive definite finite element linear systems and so pseudoinverse computations can
be avoided.

Our report is organized as follows. Section 2 formulates a consistently stabilized
variant of FETI-1. This is accomplished by augmenting the FETI-1 Lagrangian with
a redundant term that uses a suitable set of solution moments. Section 3 also employs
the FETI-1 Lagrangian and the same set of moments but uses them to induce a
splitting of the Sobolev space for the floating subdomain. A brief summary of the
relevant moments and their properties is given in Section 4.

We quickly review our use of standard notation. Let Ω be a bounded domain in Rd

where d = 2, 3 with Lipschitz boundary ∂Ω and so let H1(Ω) denote a Sobolev space of
order 1; H1(Ω, ∂ΩD) denote a subspace of H1(Ω) consisting of functions that vanish
on ∂ΩD ⊂ ∂Ω. We further suppose that Ω is partitioned into two nonoverlapping
subdomains Ω1 and Ω2 with interface Γ; let H1/2(Γ) denote the trace space of H1(Ωi)
on Γ; and let the dual spaces of H1(Ω, ∂ΩD) and H1/2(Γ) be denoted by H−1(Ω, ∂ΩD)
and H−1/2(Γ), respectively. Let the norms and inner products on H1(Ω) be given by
‖ · ‖1 and (·, ·)1, respectively; and let 〈·, ·〉 denote the duality pairing between a space
and its dual.

Finally, we define the moments c(·) : H1(Ω, ∂ΩD) 7→ Rp for some positive integer
p.

2. FETI-CS: A consistently stabilized FETI-1 algorithm. We consider
the problem

inf
v∈H1(Ω,∂ΩD)

1
2
a(v, v)− 〈f, v〉Ω (2.1)

where a(v, v) is a coercive symmetric bilinear form and f ∈ H−1(Ω, ∂ΩD). For ex-
ample, the bilinear form could represent a scalar Poisson or linear elasticity equation
in the plane or space. Equivalently, the minimization problem (2.1) may be posed
over the subdomains Ω1 and Ω2 and recast as: Find a saddle-point (u1, u2, λ, τ, µ) ∈
H1(Ω1, ∂Ω1)×H1(Ω2)×H1/2(Γ)× Rp × Rp for the Lagrangian

L(û1, û2, λ̂, τ̂ , µ̂) =
2∑

i=1

(1
2
a(ûi, ûi)Ωi−〈f, ûi〉Ωi

)
+〈λ̂, û1− û2〉Γ + τ̂T (c(û2)− µ̂). (2.2)
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The last term introduces a Lagrange multiplier τ̂ for the difference of the moments
of the Lagrange multiplier µ̂ representing the (unknown) moment of the minimizer of
(2.1) on subdomain Ω2. Without this term (2.2) is simply the FETI-1 Lagrangian.

The optimality system for (2.2) is: Find (u1, u2, λ, τ, µ) ∈ H1(Ω1, ∂Ω1)×H1(Ω2)×
H1/2(Γ)× Rp × Rp

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2, u2)Ω2 − 〈û2, λ〉Γ + c(û2)T τ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

〈λ̂, u1 − u2〉Γ = 0 ∀λ̂ ∈ H1/2(Γ)
τ̂T (c(u2)− µ) = 0 ∀τ̂ ∈ Rp

µ̂T τ = 0 ∀µ̂ ∈ Rp.

(2.3)

The last two equations imply that τ = 0 and c(u2)−µ = 0. Therefore the last term of
the Lagrangian (2.3) is a redundant constraint and we recover the FETI-1 optimality
system

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2, u2)Ω2 − 〈û2, λ〉Γ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

〈λ̂, u1 − u2〉Γ = 0 ∀λ̂ ∈ H1/2(Γ).
(2.4)

However, instead of using (2.3) directly, we stabilize the second and third con-
straints of (2.3) as

τ̂T (c(u2)− µ) = τ̂T Υ−1τ ∀τ̂ ∈ Rp

µ̂T τ = µ̂T Υ(c(u2)− µ) ∀µ̂ ∈ Rp (2.5)

where Υ is a diagonal matrix of order p with positive diagonal elements. We can now
eliminate τ from (2.3). Equation (2.5) implies

c(û2)T τ = c(û2)T Υ(c(u2)− µ). (2.6)

With these relations, we obtain the optimality system: Find (u1, u2, λ, µ) ∈ H1(Ω1, ∂Ω1)×
H1(Ω2)×H1/2(Γ)× Rp

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
ã(û2, u2)Ω2 − 〈û2, λ〉Γ − c(û2)T Υµ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

〈λ̂, u1 − u2〉Γ = 0 ∀λ̂ ∈ H1/2(Γ)
−µ̂T Υc(u2) + µ̂T Υµ = 0 ∀µ̂ ∈ Rp

(2.7)

where ã(·, ·)Ω2 ≡ a(·, ·)Ω2 + c(·)T Υc(·). We remark that this optimality system can
also be derived by penalizing a FETI-1 Lagrangian by

1
2
‖c(û2)− µ̂‖2

or, equivalently, by replacing the last term of (2.2) with the above least-squares term.
In either case, we have the following two results.

Lemma 2.1 The symmetric bilinear form ã(·, ·)Ω2 is coercive on H1(Ω2)×H1(Ω2).

Proof. See Bochev Lehoucq for the proof.
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Theorem 2.1 (u1, u2, λ) solves (2.4) if and only if (u1, u2, λ, µ = c(u2)) solves (2.7).

Proof. The theorem is easily established by using the stabilized constraints (2.5) and
recalling that τ = 0.

The theorem demonstrates that (2.5) represents a consistent stabilization. The
impact of this innocuous sleight of hand is that the resulting coarse grid problem is
equivalently stabilized. We now demonstrate this.

A conforming FEM for (2.7) results in the discrete optimality system



K1 0 BT
1 0

0 K̃2 −BT
2 −CT

2 Υ
B1 −B2 0 0
0 −ΥC2 0 Υ







u1

u2

λ
µ


 =




f1
f2
0
0


 (2.8)

where K̃2 ≡ K2 + CT
2 ΥC2.

Elimination of the primal variables in (2.8) results in the coarse grid problem
[
B1K−1

1 BT
1 + B2K̃−1

2 BT
2 B2K̃−1

2 CT
2 Υ

ΥC2K̃−1
2 BT

2 ΥC2K̃−1
2 CT

2 Υ−Υ

] [
λ
µ

]
=

[
d1

d1

]
(2.9)

where [
d1

d2

]
=

[
B1K−1

1 f1 −B2K̃−1
2 f2

−ΥC2K̃−1
2 f2

]
.

As compared with FETI-1, the columns of K̃−1
2 CT

2 Υ are approximating a basis
for the rigid body modes associated with Ω2, and K̃−1

2 is an approximation to the
pseudoinverse of K2. Inserting the solution of the coarse grid problem (2.9) into (2.8)
results in

K1u1 = f1 −BT
1 λ (2.10)

K̃1u2 = f2 + BT
2 λ + CT

2 Υµ. (2.11)

These two linear systems have symmetric positive definite coefficient matrices and can
be solved in parallel.

We remark that (2.11) corresponds to the minimization problem

inf
v∈H1(Ω2)

1
2
ã(v, v)− 〈f̃ , v〉Ω2

where f̃ is the continuous load associated with the discrete load of (2.11).

3. FETI-SS: Regularization by space splitting. In this section we introduce
a modification of FETI-1 that allows for a wider choice of well-posed primal problems
for these domains. In particular, our approach results in nonsingular linear systems
with properties that can be easily controlled.

Our starting point is the splitting of H1(Ω2) into the direct sum

H1(Ω2) = H1
c (Ω2)⊕N2
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where N2 is the RBM space for Ω2 and

H1
c (Ω2) = {u ∈ H1(Ω2) | c2(u) = 0},

is the complement space with respect to the moments c2. The report [1] demonstrates
that such a splitting exists for any non-degenerate set of moments. As a result,
any u2 ∈ H1(Ω2) can be uniquely written as u2c + R2α where R2 is a basis for
N2 and α ∈ Rp. To solve (2.1) we consider the problem of finding the saddle-point
(u1, u2c, α, λ) ∈ H1(Ω1, ∂Ω1)×H1

c (Ω2)× Rp ×H1/2(Γ) of the Lagrangian

L(û1, û2c, α̂, λ̂) =
2∑

i=1

(1
2
a(ûi, ûi)Ωi

− 〈f, ûi〉Ωi

)
+ 〈λ̂, û1 − (û2c + R2α̂)〉Γ. (3.1)

This Lagrangian only differs from the FETI-1 Lagrangian by explicitly specifying a
particular solution on the floating subdomain. The optimality system for (3.1) is to
seek (u1, u2c, α, λ) ∈ H1(Ω1, ∂Ω1)×H1

c (Ω2)× Rp ×H1/2(Γ) such that

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2c, u2c)Ω2 − 〈û2c, λ〉Γ = 〈f, û2c〉Ω2 ∀û2c ∈ H1

c (Ω2)
−〈R2α̂, λ〉Γ = 〈f,R2α̂〉Ω2 ∀α̂ ∈ Rp

〈λ̂, u1 − (u2c + R2α)〉Γ = 0 ∀λ̂ ∈ H1/2(Γ).

(3.2)

Note that in (3.2) the floating subdomain problem is restricted to finding a partic-
ular solution out of the complement space H1

c (Ω2) rather than the space H1(Ω2).
This seemingly minor change makes the floating subdomain problem uniquely solv-
able. Therefore, its conforming discretization, that is restriction to a finite element
subspace of H1

c (Ω2), would engender a non-singular linear system. However, building
a finite element subspace of H1

c (Ω2) may not be a simple matter and discretization by
standard finite element subspaces of H1(Ω2) is preferred.

To enable the use of standard finite elements the floating subdomain equation
is further replaced by a regularized problem in which the bilinear form a(·, ·)Ω2 is
augmented by the term c2(û2)T Υc2(u2). The regularized optimality system is to seek
(u1, u2, α, λ) ∈ H1(Ω1, ∂Ω1)×H1(Ω2)× Rp ×H1/2(Γ) such that

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2, u2)Ω2 + c2(û2)T Υc2(u2)− 〈û2, λ〉Γ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

−〈R2α̂, λ〉Γ = 〈f,R2α̂〉Ω2 ∀α̂ ∈ Rp

〈λ̂, u1 − (u2 + Rα)〉Γ = 0 ∀λ̂ ∈ H1/2(Γ).
(3.3)

Theorem 3.1 Problems (3.2) and (3.3) are equivalent.

Proof. The only point that needs to be verified is that a solution (u1, u2, α, λ) of (3.3)
has its second component in the complement space H1

c (Ω2). Choosing û2 = R2α̂ in
the second equation in (3.3) combined with the third equation gives

c2(R2α̂)T Υc2(u2) = 〈R2α̂, λ〉Γ + 〈f,R2α̂〉Ω2 ≡ 0
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for any α̂ ∈ Rp. Therefore, c2(u2) = 0 and u2 ∈ H1
c (Ω2).

A conforming FEM for (3.3) results in the linear system



K1 0 BT
1 0

0 K̃2 −BT
2 0

0 0 −(B2R2)T 0
B1 −B2 0 −B2R2







u1

u2

λ
α


 =




f1
f2

RT
2 f2
0


 (3.4)

where K̃2 is the same matrix as in (2.8) and we redundantly use R2 to denote the
coefficients associated with the finite element approximants for the RBMs.

We note the close similarity between (3.4) and a FETI-1 discrete problem. In both
cases a particular solution for the floating subdomain is generated and a component
in N2 is added to satisfy the interface continuity condition. However, in contrast to a
FETI-1, in (3.4) the floating subdomain matrix is non-singular and we have complete
control over the choice of the particular solution by virtue of the moments c2. These
moments can be further selected so as to optimize the nonsingular matrix K̃2 with
respect to a particular solver.

Elimination of the primal variables in (3.4) results in the coarse grid problem
[
B1K−1

1 BT
1 + B2K̃−1

2 BT
2 −B2R

−(B2R)T 0

] [
λ
α

]
=

[
d1

d1

]
(3.5)

where [
d1

d2

]
=

[
B1K−1

1 f1 −B2K̃−1
2 f2

RT f2

]
.

Inserting the solution of the coarse grid problem (3.5) into (3.4) results in

K1u1 = f1 −BT
1 λ (3.6)

K̃2u2 = f2 + BT
2 λ. (3.7)

This primal system and the FETI-1 primal system only differ in the coefficient matrix
for u2. Here K̃2 is symmetric positive definite whereas FETI-1 uses the singular K2.
Therefore a computation of a pseudoinverse is avoided.

4. The moments c(·). Suppose that we have a floating subdomain Ω, a RBM
subspace N and resulting basis R (discrete or continuous). The moments c(·) play a
central role in our regularization strategy. Both of the FETI formulations introduced
in this report rely upon these moments to regularize the floating subdomain problems.
The purpose of the moments is to provide an “energy” measure for the RBMs that
otherwise have zero strain energy a(·, ·).

Therefore, the guiding principle in their choice is to ensure that they form a non-
degenerate set. By non-degenerate here we mean that the matrix c(R) of order p is
non-singular. For linear elasticity [1] one such set of moments is given by the functional

c(v) ≡




∫

Ω

Θ1v∫

Ω

Θ2∇× v


 (4.1)
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where the diagonal elements of

Θ1 = diag(θ1,1, θ1,2, θ1,3) and Θ2 = diag(θ2,1, θ2,2, θ2,3) (4.2)

are elements of H−1(Ω) satisfying the hypothesis
∫

Ω

θ1,i 6= 0 and
∫

Ω

θ2,i 6= 0

for i = 1, 2, 3. These dual functions serve the useful purpose of allowing us to enforce
the mean and mean of the curl of the displacement along a portion of Ω.

When the moments (4.1) are restricted to finite element subspaces they generate
full rank matrices with p columns, where p is the dimension of N . The regularizing
term added to the singular stiffness matrix on a floating subdomain is simply a rank-
p correction to this matrix. When the dual functions in (4.2) have small supports
the rank-p correction is a sparse matrix and the regularized problem is amenable to
a direct solver methods. Larger supports generally improve the condition number
of the regularized matrix but they also lead to formally dense systems. Therefore,
regularization via moments is useful for iterative solution methods where it is only
necessary to compute the product of the rank-p correction matrix with a direction
vector.

5. Conclusions. Our report introduced two regularized formulations of the FETI-
1 [3, 2] algorithm. These formulations provide an alternative way for handling the
rigid body modes (RBM) associated with floating subdomains. Both formulations
start with the FETI-1 Lagrangian but differ in the treatment of the RBMs. They
provide coercive bilinear forms on the floating subdomains resulting in symmetric,
positive definite finite element linear systems and so pseudoinverse computations can
be avoided.
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