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Abstract

These lectures are devoted to variational and geometrical aspects of stable dis-
cretizations for Partial Differential Equations problems.

Variational principles have been in the arsenal of finite element methods since
their inception in the early fifties. They are a powerful tool for stability and er-
ror analysis, and indeed, variational principles have remained unsurpassed in their
ability to generate sharp error estimates. One of the main reasons for the tremen-
dous success of variational methods lies in the fundamental connection that exists
between variational principles, on one hand and optimization problems and the
structure of PDE’s on the other hand.

Differential complexes serve to provide another tool that can be used to encode
PDE structure. Differential forms model global quantities rather than fields, and in
many ways their formalism is closer to the first principles used to describe physical
phenomena. Two decades ago Bossavit pointed out that differential forms can and
should be used to analyze and develop discretizations that mimic the topological
structure of the underlying PDE. This viewpoint proved to be the key to successful
application of finite element methods in electromagnetics.

Since then there has been an increased interest in the use of such geometrical
methods for the discretization of PDE’s. The main goal of these lectures is to show
how variational and geometric approaches can complement each other in the quest
for accurate and stable discretizations.

We begin with a review of basic facts about variational methods and take time
to consider three special cases of variational settings. Then we provide examples of
finite element methods in each setting and discuss their stability. In particular, we
show how variational principles associated with a given PDE are propagated to the
discrete problems, thus forming the basis of the variational approach to stability of
discretizations.

The lectures contain a necessarily brief introduction into the elements of differ-
ential forms calculus. After these preliminaries we embark on a mission to apply this
formalism to describe topological structure of PDE problems. We choose the Kelvin
principle as a model problem and derive factorization diagrams for the associated
first-order optimality system. Using these diagrams we define compatible discretiza-
tions of the PDE equation and show how the structure encoded in the factorization
diagram is being propagated through a wide range of different discretizations, thus
forming the basis of the geometrical approach to stability of discretizations.

The last part of these lectures highlights the fundamental connection between
geometrical structure of PDEs and variational characterizations of their stable dis-
cretizations. Our examples are based on the grid decomposition property and the
commuting diagram property for the Kelvin principle.

We conclude with examples of alternative discretization methods that are capa-
ble of circumventing the rigid constraints imposed by geometrical structures upon
finite dimensional representations of PDEs and explain why such methods are useful.
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1 Introduction

Partial Differential Equations (PDE) are a fundamental modeling tool in science and
engineering. Their applications range from design and modeling of semiconductor devices
to global climate simulations. As a result, approximate numerical solution of PDE’s is a
task of tremendous practical importance.

A numerical solution of a PDE problem, which we will write symbolically as

LU = F (1)

involves two principal ingredients:

a discretization step, wherein the continuous problem is replaced by a finite
dimensional algebraic equation

LhUh = F h (2)

and

a solution step, wherein the algebraic problem (2) is solved either by a direct
or an iterative solution method.

In (2) we follow the accepted custom of using h to denote a small positive parameter
whose reciprocal h−1 is related to the dimension of the space where Uh is sought.

In these lecture notes our main focus will be on the first, discretization step and the
three dominant paradigms that exist in the construction of (2):

• finite element methods where projection or quasi-projection principles are restricted
to finite dimensional subspaces;

• finite difference methods where differential operators are approximated by algebraic
operators;

• finite volume methods where integral fluxes are approximated by quadrature.

While both ingredients are vital to the success of computer simulations, it is the discretiza-
tion step that ultimately holds the key to all fundamental properties, both desirable and
undesirable, of any numerical method for PDE’s. Our main goal will be to explain why
some discretization choices work well, while some other perform poorly or lead to down-
right disasters. Such an undertaking cannot be accomplished without a keen appreciation
of the mathematical structure of the PDE. This structure governs well-posedness of the
PDE and reflects intrinsic properties of the physical phenomena that are being modeled,
e.g., conservation laws, solution symmetries, positivity, and maximum principles. Im-
portance of well-posedness has been noted long before the dawn of the computer age by
Maxwell who in 1873 wrote3

3J. C. Maxwell. Does the progress of Physical Science tend to give any advantage to the opinion of
Necessity (or Determinism) over that of the Contingency of Events and the Freedom of the Will? in [64,
pp.434-463].
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There are certain classes of phenomena, as I have said, in which a small
error in the data only introduces a small error in the result. Such are,
among others, the larger phenomena of the Solar System, and those
in which the more elementary laws in Dynamics contribute the greater
part of the result. The course of events in these cases is stable.

Of course, given a well-posed PDE problem we seek the same in its discrete counter-
part, i.e., we would like small changes in the discrete data F h to effect only small changes
in the solution Uh so that the course of the discrete events also remains stable. In addition
we also want to be able to make the difference between Uh and U as small as we wish by
taking smaller and smaller values of h.

1.1 Importance of structure

Common sense dictates that a well-behaved discretization must somehow represent or
reproduce the portion of the mathematical structure in (1) that is responsible for the
well-posedness of this problem. For many years physical intuition served as a trusted
guide in the development of successful discretization schemes, while mathematical rigor
and understanding usually trailed behind. Numerical literature abounds with examples
of methods that were discovered by imitating, albeit intuitively, the underlying physics,
and which worked well even though initially the reasons for their superiority over other
schemes were not fully understood. Classical examples are the Finite Element method
in structural analysis, Yee’s FDTD scheme [83], MacCormack’s scheme [62], and the Box
Integration method.

On the mathematical side, analytical techniques within each one of the discretization
paradigms took on different routes and evolved into fairly self-contained disciplines with
few if any overlaps. Each discipline relied upon its own set of analytical tools to identify
the basic requirements for obtaining well-posed discrete problems in (2). For instance,
finite element methods rely upon variational principles and their analysis draws upon the
rich theory of Hilbert spaces and such powerful results as Riesz representation theorem.
Compared to finite elements, finite difference and finite volume methods have been less
amenable to functional analysis tools. However, regardless of the differences in analytic
approaches in all cases we find that

consistency + stability = convergence . (3)

This is the celebrated Lax equivalence theorem; see [61, p.142] which is a result that
transcends many of the boundaries in numerical analysis and remains valid in contexts
other than numerical PDE’s. Convergence signifies the fact that the approximate solution
Uh can be made arbitrarily close to the exact solution U , provided h is small enough, which
of course is the coveted prize in any numerical method. The recipe for this, according to
(3) is to ensure that (2) is stable and consistent; i.e., that Lh has a bounded inverse with
respect to some norm and that Lh is close to L, again with respect to some norm. Then,
if F h is close to F , recovery of Uh from F h will introduce only a small amount of error.
Moreover, since (Lh)−1 is bounded, we can make this error as small as we wish by taking
smaller h, i.e., the method is convergent.
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It is important to recognize that, while not completely orthogonal, consistency is not
synonymous with stability. It is wrong to assume that just by constructing an Lh that
is close to L, we will automatically ensure that (Lh)−1 is well-behaved. In fact, consis-
tency and stability capture different aspects of the discretization process and require each
other to validate (3). This fact is universal and can be observed across all discretization
platforms regardless of their individual differences. Another universal and equally re-
markable fact is that ”unstable” and ”stable” discretizations constructed under different
discretization paradigms are strikingly similar.

For instance, Galerkin method for scalar hyperbolic equations is a textbook example of
a consistent but unstable finite element discretization. Its finite difference analogue is the
central difference scheme. In both cases discrete solutions develop spurious oscillations
unless the exact solutions is globally smooth. Also, in both cases a stable discretization
can be obtained by introducing an upwind bias either in the finite element weight function
or in the finite difference approximation of the derivatives.

Another example is the mixed finite element for the Stokes problem implemented with
equal order interpolation for the velocity and the pressure variables. The finite difference
analogue is a collocated scheme where pressure and velocity derivatives are approximated
by the same stencils. In both cases the discrete problem is unstable and gives ”strange”
results. The fix in finite elements and finite difference contexts is essentially the same -
pressure and velocity approximations are separated - what differs is the implementation
of the separation which necessarily follows the discretization paradigms. In finite element
methods it is effected by approximation of the variables by finite element spaces defined
with respect to different triangulations, or having different polynomial degrees. In finite
differences the separation process amounts to a use of a staggered scheme where pressure
and velocity are placed at different mesh locations.

The striking similarity shared across different discretization platforms by troublesome
discretizations on one hand, and their stable counterparts on the other hand, is not
accidental. It highlights the complementary roles played by consistency and stability.
Consistency is most closely related to the metric aspects of the discretization. A consistent
method will only introduce a small error per time step or per spatial cell. However, this
is not enough to capture completely structural or topological properties that may govern
stability of the continuous PDE problem (and which are ultimately determined by the
physics of the process that is being modeled by the PDE). The fact that this structure
is relevant to the well-posedness of the discrete problem is clear by noting that in spite
of the differences between FEM, FD and FV, stable discretizations in all cases are forced
into what is essentially the same pattern of variable approximations. A close inspection
of stable discrete models across a wide range of scientific and engineering applications will
only confirm this fact!

1.2 Discovery of structure

Having agreed that structure is important the obvious questions are what components
of this structure are relevant in the discrete world, and how to make our discretization
compatible with them? In some cases the answer can be easily deduced directly from the
physical process that is being modeled without resorting to more abstract mathematical
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tools. For an example, consider the PDE

ut(x, t) + Fx(u(x, t)) = 0 in (0, 1). (4)

This equation models, e.g., flow of a fluid through one dimensional pipe, and is an example
of a conservation law. For any two points 0 < x ≤ x̄ < 1 we have that∫ x̄

x

ut dx = F (u(x̄, t))− F (u(x, t)) . (5)

Equation (5) is merely a mathematical statement of the fact that the total change of fluid
mass in any section of the pipe will only depend on the fluxes at the endpoints, i.e., the
amount of mass leaving and entering the section. A finite difference discretization of (4)
that imitates this property is given by

un+1
i = uni −

4t
4x

(
F n
i+1/2 − F n

i−1/2

)
, (6)

where F n
i±1/2 are numerical fluxes. This scheme is conservative in the sense that the dis-

crete mass will only change due to the fluxes at the endpoints 0 and 1, while inside the
domain the mass flowing from one cell to another is conserved. Note that this is accom-
plished by staggering the locations of the numerical fluxes and the density function. If
these variables are collocated, then the scheme will not be conservative, i.e., discrete con-
servation is a consequence of the grid topology. It is well-known that discrete conservation
is critical for accurate calculation of shock waves; see [61, p.237]. However, conservation
alone is not sufficient to provide stable and convergent approximations!

Indeed, conservation is a purely topological property of the scheme in (6) that is au-
tomatically satisfied as long as the variables remain staggered. Convergence on the other
hand requires consistency which is a metric quality measured by the local truncation error
in the flux calculation. To put it differently, in addition to situating the fluxes at the right
places, we also need to calculate them accurately! Otherwise, (6) can be made arbitrarily
inconsistent while remaining conservative.

The reason that (6) may not be stable is that so far we have captured just one of the
relevant properties of (4), and have yet to account for other, equally important aspects
of the physics behind conservation laws. If we track one of the particles in our one-
dimensional pipe we will see that it moves with finite speed along a curve in the (x, t) plane.
In mathematical terms we express this by saying that hyperbolic problems propagate
information with finite speed along characteristics.

Consider now how these features affect stability of (6). Suppose we wish to compute
F n

1+1/2 using uni and uni+1. If the time step is too large, there will be enough time for the
data from other cells to propagate to the flux location and make it dependent on more cell
values. To prevent this from happening spatial and temporal discretization steps must
satisfy the CFL (Courant, Friedrichs, Lewy) condition

v∆t

∆x
≤ 1 (7)

where v denotes the propagation speed. The CFL condition forces (6) to comply with
the finite propagation speed by ensuring that numerical domain of dependence contains

6



standard nodal functions upwind nodal functions

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Galerkin:

0 10 20 30 40 50 60
0

10

20

30

40

50

60

SUPG

Figure 1: Galerkin vs. SUPG solution of circular advection problem

the true domain of dependence of (4); see [61, p.69]. Still, this is not enough to guarantee
that (6) is stable, i.e., CFL is a necessary but not a sufficient stability condition.

The reason is simple: CFL does guarantee that the cells we use to compute the fluxes
will contain all the necessary information, but it doesn’t guarantee that this information
will be used properly! To mimic the flow of information in (4) computation of fluxes in
(6) must rely on data that comes from the ”upwind” region, while information from the
”downwind” regions is either neglected or given lesser importance. Failure to do so may
lead to severe oscillations in the discrete solutions.

So far it appears that in a discretization of a problem like (4) mimicking its topology,
i.e., the conservation, is less important for the stability than imitating the correct flow of
information. For instance, a Galerkin method for the scalar equation

∇ · (bφ) = 0 in Ω; and φ = φ− on Γ− ,

where Γ− is the inflow part of ∂Ω, is given by the variational equation: seek φ ∈ Φh such
that φ = φ− on Γ− and ∫

Ω

∇ · (bφ)ψ dx = 0 (8)

for all ψ ∈ Φh such that ψ = 0 on Γ−. If Φh is the usual ”hat” function finite element
space, solutions of (8) are not conservative4 and will develop spurious oscillations unless
the solution is globally smooth. These oscillations are shown on the left side of Fig. 1.

4Continuous nodal Galerkin solutions are not conservative in the same sense as (6): there are no
discrete fluxes that are conserved. However, Hughes et.al. [51] have shown that the weak equation (8)
can be used to define nodal ”fluxes” and that the sum of these fluxes is conserved on each element. Thus,
continuous Galerkin method is locally conservative in the sense of nodal fluxes.
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The Streamline Upwind Petrov-Galerkin (SUPG) formulation; see [47]∫
Ω

∇ · (bφ)(ψ + hb · ∇ψ) dx = 0 (9)

is still not conservative but has improved stability, as can be seen on the right side of Fig.
1. The only difference between (8) and (9) is that the former uses weight functions that
have upwind bias, see Fig. 1. We will return to this example in Section 3.3.

Ability to determine how different aspects of the mathematical structure affect dis-
cretizations is very important in practice. Besides being a prerequisite for well-posed
discrete problems, this knowledge can help us solve problems more efficiently. For ex-
ample, if we are in a setting where solutions of (4) will not develop shock waves, it may
be more efficient to use a SUPG formulation implemented with high-order elements even
though such a scheme is not conservative. However, if the goal is to compute correct
shock positions and speeds, a better choice would be to use a conservative scheme.

Unfortunately, as the complexity of the mathematical structure of the PDE increases,
the interplay between its components becomes more intricate and well-posedness of dis-
crete models becomes more elusive.

1.3 Why do we need mathematicians?

So far we were able to imitate the physics of advection in our discrete model by using
staggered grids to reproduce conservation, and by using upwinding to simulate the correct
flow of information in the discrete problem. These solutions seem very logical, or at least
easy to explain and justify to anyone who has observed, say the flow of water in a river.

However, not all PDE models divulge their structures so readily. As Maxwell pointed
out, (see [64, pp.434-463])

There are other classes of phenomena which are more complicated, and in
which cases of instability may occur, the number of such cases increasing, in
an exceedingly rapid manner, as the number of variables increases.

Actually, even if the physics may seem simple enough, the PDE’s that describe it may
turn out to have a surprisingly rich structure. To illustrate this point consider the Poisson
equation

−4φ = f in Ω and φ = 0 on Γ (10)

and its equivalent first-order system form
∇ · v = f in Ω

∇φ+ v = 0 in Ω

φ = 0 on Γ

(11)

A weak Galerkin form of (10) is to seek φ in some suitable function space Φ, such that∫
Ω

∇φ · ∇ψ dx =

∫
Ω

fψ dx (12)
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for all ψ in some other space Ψ. It is well-known, see [29], that a finite element solution
of (12) that uses continuous nodal finite element spaces is stable and converges in the
L2 norm to all smooth exact solutions of (10) as O(hr+1). Here r is the degree of the
complete polynomials contained in the finite element space.

Situation with (11) is not so simple. One weak Galerkin form of (11) is to seek a pair
(v, φ) in some suitable function spaces such that

∫
Ω

(∇ · v)ξ dx =

∫
Ω

fξ dx∫
Ω

∇φ ·w + v ·w dx = 0

(13)

for all (w, ξ) in some other function spaces. But (11) has other weak forms such as the
div-div problem 

∫
Ω

(∇ · v)ξ dx =

∫
Ω

fξ dx∫
Ω

−φ∇ ·w + v ·w dx = 0

, (14)

the grad-div equations 
∫

Ω

−v · ∇ξ dx =

∫
Ω

fξ dx∫
Ω

−φ∇ ·w + v ·w dx = 0

. (15)

or the grad-grad formulation
∫

Ω

−v · ∇ξ dx =

∫
Ω

fξ dx∫
Ω

∇φ ·w + v ·w dx = 0

. (16)

It is clear that in seeking a finite element solution of (11) we face much more choices.
First, we have to decide which one of the four weak forms (13)-(16) to use. Then we need
to choose a pair of finite element spaces to approximate φ and v. Here’s a list of some
possible choices:

1. use either one of (13)-(16) and continuous nodal elements for φ and v;

2. use (14), piecewise constants for φ and nodal elements for v;

3. use (14), nodal elements for φ and Raviart-Thomas elements [71] for v;

4. use (14), piecewise constants for φ and Raviart-Thomas elements for v;

5. use (16), nodal elements for φ and piecewise constant elements for v.
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It is clear that the list of discretization options can be continued indefinitely. However,
it turns out that only few of the combinations between a variational problem and finite
element spaces will lead to a stable finite element solution of (11)! Moreover, each stable
and unstable finite element method will have its finite volume and finite difference twins.
Thus, merely by switching from finite elements to, e.g., finite differences will not solve
our difficulties.

What complicates the matters, compared to, e.g., (4), is that now well-posedness of
(11) hinges on mathematical structures that are not so transparently connected to the
physics that is being modeled by the PDE. As a result, the stable discretization choices
are more obscure and ”guessing” them right is not easy without first understanding what
governs the well-posedness of (11), and then figuring out what does this mean for the
discretization of this problem.

In these lectures we will investigate two different methodologies that can be used to
address stability. The first one, discussed in Section 2, is based on variational principles.
Variational principles are the mathematical foundation of finite element methods and
rely upon results from functional analysis to give conditions for the well-posedness of the
variational problems. In this approach, stability of discretizations is inferred from the type
of the underlying variational principle and the fact that variational methods propagate
this principle into the discrete equations.

The second methodology, presented in Section 4, has its roots in differential geometry
and exterior calculus of differential forms. Differential forms are a powerful tool that
can be used to separate topological and metric aspects of a PDE model. The result is
a factorization diagram that expresses the PDE in terms of equilibrium equations and
constitutive relations. These diagrams represent the foundations of geometrical modeling
where they serve as templates for compatible discretizations. In this approach, stability
of discretizations is assessed by measuring its conformity with a factorization diagram for
the PDE.

In Section 7 we will talk about the fundamental links between geometrical structure of
PDEs encoded in their factorization diagrams, and variational characterizations of their
stability used in finite element methods. Then, in Section 8 we will explain why sometimes
one is forced to consider discretizations that deviate from the stability rules laid down by
geometrical or variational means. There we will briefly consider three popular classes of
finite element methods that are designed to work in settings that violate these stability
rules.

To save space and time we do not quote a number of results and definitions concerning
Sobolev spaces and finite element approximation theory, and instead refer the reader to
the monographs [1], [8], [29] and [41] for more detailed information on these subjects.
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2 Variational approach to stability

This lecture will discuss variational methods for linear operator equations Au = f in
Hilbert spaces and conditions for their stable approximate solution. These abstract results
are then applied to study stability of finite element methods.

2.1 Variational methods

A classical variational method attempts to solve Au = f by turning it into a minimiza-
tion problem. The idea is to construct, if possible, a functional whose minimizer coincides
with the solution of the operator equation. Then, Au = f is approximated by computing
a minimizer out of a finite dimensional subspace. This minimizer is subject to a nec-
essary condition (Euler-Lagrange equation) which is conveniently expressed in terms of
bilinear forms and linear functionals. This setting is known as the classical Rayleigh-Ritz
principle. Another optimization setting arises when the minimum is constrained by some
linear constraint Λu = 0. In this case, constrained minimization can be converted to the
unconstrained problem of finding the saddle-points of a Lagrangian functional. Numerical
approximation is obtained by restriction of the saddle-point optimality system (which is
again given by a bilinear form and a linear functional) to finite dimensional subspaces for
the state variable and the Lagrange multiplier.

However, the term “variational method” is routinely applied to methods that are
not necessarily derived from optimization problems but still lead to equations expressed
in terms of bilinear forms and linear functionals. A standard way to derive the varia-
tional equations in this case is to require that the inner product of the residual Au − f
and any function from a suitable test space vanishes. This formal ”orthogonalization” ap-
proach and its modifications are known as Bubnov-Galerkin, Galerkin-Petrov, or Galerkin
method of weighted residuals. To summarize, a variational method involves three steps:

• first, a variational problem is set up either by association of Au = f with optimiza-
tion, or by a formal Galerkin orthogonalization;

• next, an approximation is effected by restricting the variational equation to a finite
dimensional subspace;

• last, a solution is computed by solving the ensuing finite dimensional equation.

The first step leads to a formal setting that can be described by a pair Hilbert spaces V1

and V2, a linear functional F : V2 7→ R, and a bilinear form Q(·; ·) : V1 × V2 7→ R. The
variational problem consists of finding u ∈ V1 such that

Q(u; v) = F (v) ∀v ∈ V2. (17)

The second step introduces a pair of finite dimensional subspaces V h
1 ⊂ V1 and V h

2 ⊂ V2

and restricts (17) to these spaces, i.e., we seek uh ∈ V h
1 such that

Q(uh; vh) = F (vh) ∀vh ∈ V h
2 . (18)
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Note that in (18) we have changed only the spaces but not the problem itself! This prop-
erty is a hallmark of (conforming) variational methods, and it has some far reaching conse-
quences for their stability and accuracy. Because a variational method computes solution
of the original problem using a ”smaller” space, we call such solutions quasi-projections.
When (17) is associated with unconstrained minimization of a positive quadratic func-
tional, then (18) defines a true inner product projection of the exact solution into V h

1 .
It is not hard to see that once bases for V h

1 and V h
2 are chosen, (18) is equivalent to a

linear algebraic system
Au = f . (19)

where A is a dim(V h
2 )× dim(V h

1 ) matrix, and u is a coefficient vector.
The space V1 (resp. V h

1 ) is called trial space and the space V2 (resp. V h
2 ) - test

space. The choice of these spaces is very important because it governs the well-posedness
of the variational problem and its discrete approximation. When V1 and V2 are finite
dimensional their choice is limited to the selection of the dimensions - any two spaces of
the same dimension are isomorphic. In infinite dimensions there is a much larger variety
of spaces and choosing a “good” space is not trivial. For example,

• choosing V1 to be a “large” space (e.g., functions with fewer derivatives) is good
for proving existence because there is an abundant supply of candidate solutions.
But choosing V1 too large may lead to non-uniqueness and may admit nonphysical
”spurious” modes that lead to instabilities.

• If V1 is “small” (nice, smooth functions), it is easier to show uniqueness, but we may
end up with a space that is too small to contain a solution. Also, a nice smooth
space may be difficult to approximate conformingly with simple functions such as
piecewise polynomials.

For the remainder of this section we will focus on conditions, expressed in terms of
bilinear forms, that will quantify what it means to have spaces that are not ”too small”,
not ”too large” but ”just right”. Because we seek the most general set of conditions that
ensure well-posedness of variational problems, initially we will not assume any connections
between the variational equation (17) and an optimization problem. Then we will show
how these conditions specialize to cases when variational equations can be associated with
optimization problems.

2.2 Variational methods in finite dimensions

Many results concerning variational problems can be motivated and explained by exam-
ining them in standard Euclidean spaces. In this setting operator equations are simply
linear systems of algebraic equations

Au = f (20)

where A is m × n real matrix, u ∈ Rn, is a vector of unknowns and f ∈ Rm is the right
hand side vector. Our plan is to solve (20) using a variational method and then to express
conditions for the well-posedness of (20) in the language of bilinear forms.
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To this end, we make the identifications V1 ≡ Rn and V2 ≡ Rm. A ”weak” Galerkin
variational formulation of (20) is to seek u ∈ V1 = Rn such that

vTAu = vT f ∀v ∈ V2 = Rm. (21)

The right hand side in (21) serves to define a linear functional F : V2 7→ R given by

F (v) = vT f ,

the left hand side in (21) defines a bilinear form on V1 × V2 given by

Q(u;v) = vTAu , (22)

and so (21) takes the abstract form of (17): seek u ∈ V1 such that

Q(u;v) = F (v) ∀v ∈ V2 . (23)

We will consider three types of matrices A for which (20) has a unique solution.
In each case the matrix properties that guarantee uniqueness will be translated into a
variational statement about the associated bilinear form in (21). Let us first assume that
A is invertible. Then A is square and has full row (or column) rank. The following lemma
gives a variational characterization of this property.

Lemma 1 Suppose that

max
v∈Rm

vTAu

(vTv)1/2
≥ C1(u

Tu)1/2 ; (24)

max
u∈Rn

vTAu

(uTu)1/2
≥ C2(v

Tv)1/2 . (25)

Then A−1 exists and (20) has a unique solution.

We leave the proof as an exercise. Using (22), conditions (24)-(25) can be written as

max
v∈V2

Q(u;v)

‖v‖V2

≥ C1‖u‖V1 , (26)

and

max
u∈V1

Q(u;v)

‖u‖V1

≥ C2‖v‖V2 , (27)

respectively. Forms that satisfy (26)-(27) are called weakly coercive. The main advantage
of (26)-(27) over the algebraic form (24)-(25) is that it expresses unique solvability of
(20) in terms of bilinear forms, norms and inner products, i.e., the fundamental objects
of Hilbert spaces. As a result, conditions (26)-(27) can be extended to arbitrary Hilbert
spaces.

Conditions (26)-(27) do not assume any special properties of A and so they represent
the most general criteria that guarantees the existence of A−1. If more is known about
A, these conditions can be specialized to reflect its structure. There are two important
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classes of matrices that persistently arise in applications across many disciplines and we
consider them next.

The first class contains matrices that are symmetric positive definite or real positive
definite5. The reader is asked to verify that for such matrices there exists a positive
constant C such that

uTAu ≥ CuTu ∀u ∈ Rn . (28)

This is precisely the variational quantification we are looking for, and which we immedi-
ately translate into the language of bilinear forms as

Q(u;u) ≥ C‖u‖2V1
, (29)

where Q(·; ·) is the form defined in (22). Bilinear forms that satisfy (29) are called
coercive or V-elliptic. Any coercive form trivially satisfies (26)-(27). Thus, coercivity
always implies weak coercivity but not vice versa. In terms of matrices this is equivalent
to the fact that every positive definite matrix is invertible, but not every invertible matrix
is positive definite.

The second class contains symmetric indefinite matrices with the following 2×2 block
structure (

K BT

B 0

)
. (30)

We assume that K and B are n × n and m × n matrices, respectively, and that m ≤ n.
The matrix in (30) is called Karush-Kuhn-Tucker (KKT) matrix and it arises in equality
constrained quadratic programs (QP); see [70, p.443]. Let Z denote a matrix whose
columns are a basis for the nullspace of B. The following lemma states sufficient conditions
for the KKT matrix to be nonsingular; see [70, p.445].

Lemma 2 Let B has full row rank, and assume that ZTKZ is positive definite. Then the
KKT matrix is nonsingular.

To translate this lemma into a variational statement let V = Rn, S = Rm. The matrices
K and B serve to define the forms

a(u,v) = vTKu and b(u,p) = pTBu

on V × V and S × V , respectively. Then, the linear system(
K BT

B 0

)
.

(
u
p

)
=

(
f
0

)
(31)

is equivalent to the variational problem: seek (u,p) ∈ V × S such that

a(u,v) + b(p,v) = F (v) ∀v ∈ V

b(r,u) = 0 ∀r ∈ S .
(32)

We leave it as an exercise for the reader to prove the following theorem.

5A matrix A is real positive definite if uT Au > 0 for any real-valued vector u. Equivalently, A is real
positive definite if (A + AT )/2 is positive definite.
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Theorem 1 Let a(·, ·) be coercive on Z × Z, where

Z = {u ∈ V | b(r,u) = 0 ∀r ∈ S}

and assume that

max
v∈V

b(p,v)

‖v‖V
≥ C‖p‖S . (33)

Then (32) has a unique solution.

With the identifications V1 = V2 = V × S;

Q({v,p}; {v, r}) = a(u,v) + b(p,v) + b(r,u) , (34)

and F ({v, r}) ≡ F (v) problem (32) takes the form of (23). One can show that the
assumptions on the forms a(·, ·) and b(·, ·) stated in Theorem 1 are sufficient to prove that
the form defined in (34) is weakly coercive; see the Exercises.

Let us briefly talk about the roles of test and trial spaces in the linear algebra setting.
The trial space V1 is simply the space of unknowns. The test space V2 has the same
dimension as the right hand side and so it corresponds to the number of equations.

When V2 is “larger” than V1 (dimV1 < dimV2) there are more equations than un-
knowns, the system Au = f is overdetermined, and there may be no solution that will
satisfy simultaneously all equations. If V2 is smaller than V1 (dimV1 > dimV2), the number
of equations is less than the number of unknowns and so Au = f will have infinitely many
solutions. As a result, a linear system is well-posed if and only if A has a full column rank
(implied by (26)) and dimV1 = dimV2 (implied by (27)). Thus, weak coercivity conditions
(26)-(27) enforce simultaneously a condition on the rank of A plus the correct “balance”
between test and trial spaces.

Of course, in infinite dimensional Hilbert spaces we cannot speak of numbers of un-
knowns and equations. The relative “sizes” of the spaces are then given by the inclusion
relations that may exist between them. When the Hilbert spaces are related to PDE’s
their “size” can be measured in terms of the regularity of the functions they contain.
A small space contains nice, smooth functions; a large space can include objects such
as generalized functions (distributions like the Dirac delta function). Finding “perfectly
balanced” test and trial spaces then requires a detailed knowledge of the PDE and its
weak form, and is a major part of setting up a well-posed variational problem.

2.3 Variational problems in Hilbert spaces

We turn attention to variational equations in Hilbert spaces and sufficient conditions for
their well-posedness, expressed in terms of bilinear forms.

2.3.1 Weakly coercive and coercive problems

The next definition extends (26)-(27) and (29) to forms in general Hilbert spaces.
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Definition 1 A bilinear form Q(·; ·) : V1 × V2 7→ R is called weakly coercive if

sup
v∈V2

Q(u; v)

‖v‖V2

≥ C2‖u‖V1 ∀u ∈ V1, (35)

sup
u∈V1

Q(u; v)

‖u‖V1

≥ C2‖v‖V2 ∀v ∈ V2. (36)

Let V1 ≡ V2. A bilinear form Q(·; ·) : V × V is called coercive if

Q(u;u) ≥ C2‖u‖2V ∀u ∈ V. (37)

The second condition (36) can be relaxed to

sup
u∈V1

Q(u; v)

‖u‖V1

> 0 ∀0 6= v ∈ V2. (38)

We note for future reference that (35) is equivalent to the statement that for any u ∈ V1

there exists v ∈ V2 such that

Q(u; v) ≥ C2‖u‖V1‖v‖V2 . (39)

Definition 2 A bilinear form Q(·; ·) : V1 × V2 7→ R is called continuous6 if

|Q(u; v)| ≤ C1‖v‖V2‖u‖V1 . (40)

Theorem 2 (Necas [8]) Given two Hilbert spaces V1 and V2, a linear functional F : V1 7→
R, and a bilinear form Q(·; ·) : V1 × V2 7→ R assume that

C.1 F is bounded;

C.2 Q(·; ·) is continuous;

C.3 Q(·; ·) is weakly coercive.

Then the variational problem: seek u ∈ V1 such that

Q(u; v) = F (v) ∀v ∈ V2 (41)

has a unique solution. Moreover,

‖u‖V1 ≤
1

C1

‖F‖. (42)

As a corollary to this powerful result we have the celebrated Lax-Milgram Lemma.

Corollary 1 (Lax-Milgram) Let V1 = V2 = V and assume C.1-C.2. If Q(·; ·) is coercive,
then problem (41) has a unique solution and (42) holds.

In finite dimensions the types of variational problems solved by Theorem 2 and Corollary
1 correspond to linear systems with a nonsingular matrix and a positive definite matrix,
respectively.

6In finite dimensions all bilinear forms are continuous.
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Approximation of weakly coercive and coercive problems. To solve a variational
problem we approximate the spaces where it is defined rather than the problem itself.
Thus, a variational equation and its conforming discretization represent the same problem
but posed on two different spaces. This has some very important consequences for the
well-posedness of the approximate equation. Because this equation is defined in terms of
exactly the same form as the problem it approximates, its well-posedness is governed by
exactly the same rules as the well-posednes of the original problem.

This fact greatly ”simplifies” the search for stable, uniquely solvable discrete problems
because one only needs to find a pair of finite dimensional subspaces of V1 and V2 for which
the form Q(·; ·) retains its continuity, coercivity or weak coercivity. Any pair of such
spaces will automatically produce a well-posed discrete problem whose solution depends
continuously on the data. Let us formalize these observations and then explain why we
still had to place ”simplify” in quotes.

Theorem 3 Assume that all hypotheses of Theorem 2 hold. Let V h
1 and V h

2 be two closed
subspaces of V1 and V2, respectively, and assume that

sup
vh∈V h

2

Q(uh; vh)

‖vh‖V2

≥ Ch
2 ‖uh‖V1 ∀uh ∈ V h

1 ; (43)

sup
uh∈V h

1

Q(uh; vh)

‖uh‖V1

≥ Ch
2 ‖vh‖V2 ∀vh ∈ V h

2 . (44)

Then, the approximate problem: seek uh ∈ V h
1 such that

Q(uh; vh) = F (vh) ∀vh ∈ V h
2 (45)

has a unique solution and

‖uh‖V1 ≤
1

C1

‖F‖. (46)

Furthermore, the approximation error u− uh can be estimated by

‖u− uh‖V1 ≤
(
1 +

C1

Ch
2

)
inf

wh∈V h
1

‖u− wh‖V1 . (47)

Proof.

1. Existence and uniqueness of uh follows immediately from Theorem 2.

2. Error estimate. Let u and uh denote the exact and the approximate solutions, respec-
tively, and let wh denote an arbitrary element of V h

1 . Then

‖u− uh‖V1 ≤ ‖u− wh‖V1 + ‖uh − wh‖V1 ∀wh ∈ V h
1 .

After taking an infimum over V h
1 the first term will produce the best approximation error,

and so (47) will follow if we can show that the second term above is bounded by the same
error. Because V h

2 ⊂ V2, the exact solution u satisfies

Q(u; vh) = F (vh) ∀vh ∈ V h
2 ,
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while for uh we have that

Q(uh; vh) = F (vh) ∀vh ∈ V h
2 .

Subtracting these equations gives the fundamental error orthogonality relation7

Q(u− uh; vh) = 0 ∀vh ∈ V h
2 . (48)

Adding and subtracting an arbitrary wh ∈ V h
1 in (48) yields the identity

Q(u− wh + wh − uh; vh) = Q(u− wh; vh)−Q(uh − wh; vh) = 0

or,
Q(uh − wh; vh) = Q(u− wh; vh).

From (40) (continuity of Q(·; ·))

Q(uh − wh; vh) ≤ C1‖u− wh‖V1‖vh‖V2 ∀wh ∈ V h
1 ,

or, assuming that vh 6= 0

Q(uh − wh; vh)
‖vh‖V2

≤ C1‖u− wh‖V1 ∀wh ∈ V h
1 .

Taking supremum over vh 6= 0 gives

sup
vh∈V h

2

Q(uh − wh; vh)
‖vh‖V2

≤ C1‖u− wh‖V1 ∀wh ∈ V h
1 ,

while from (43) (weak coercivity)

sup
vh∈V h

2

Q(uh − wh; vh)
‖vh‖V2

≥ Ch
2 ‖uh − wh‖V1 .

After combining the lower and the upper bound we have that

‖uh − wh‖V1 ≤
C1

Ch
2

‖u− wh‖V1 ∀wh ∈ V h
1 .

As a result,

‖u− uh‖V1 ≤
(
1 +

C1

Ch
2

)
‖u− wh‖V1 ∀wh ∈ V h

1 .

The estimate follows by taking infimum over the space V h
1 . 2

For coercive forms we have the following result.

7This relation is another reason to call uh a quasiprojection.
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Figure 2: The space V h
2 may not contain v.

Theorem 4 Assume all hypotheses of Lemma 1 (Lax-Milgram Lemma). Let V h denote
a closed subspace of V . Then the weak problem: seek uh ∈ V h such that

Q(uh; vh) = F (vh) ∀vh ∈ V h

has a unique solution,
‖uh‖V ≤ C‖F‖

and

‖u− uh‖V ≤
C1

C2

inf
wh∈V h

‖u− wh‖V . (49)

Some comments are now due regarding approximation of coercive and weakly coercive
problems.

• The approximating spaces V h
i , i = 1, 2, or V h are only assumed to be closed sub-

spaces of Vi or V ; they are not necessarily finite dimensional.

• The quantity infwh∈Wh ‖u − wh‖V1 , where W h stands for V h
1 or V h, is the best

approximation error out of V h
1 or V h. Approximations for which the error is bounded

by a constant times the best error are quasi-optimal. This is yet another reason to
call uh a quasi-projection. If Q(·; ·) is symmetric and coercive then it defines an
equivalent inner product and uh is a true projection of the exact solution.

• Continuity of Q(·; ·) is not included in the assumptions of Theorem 3 because it is
inherited by all conforming subspaces of Vi.

• Weak coercivity of Q(·; ·) must be included in the assumptions of Theorem 3 because
it is not inherited automatically by conforming subspaces of Vi. The inclusion
V h

1 ⊂ V1 implies that for any uh ∈ V h
1 there exists v ∈ V2 such that (see (39))

Q(uh; v) ≥ C2‖uh‖V1‖v‖V2 .

However, existence of v is only guaranteed in the larger space V2 and not in its
proper subspace V h

2 ; see Fig.2. As a result, Q(·; ·) may fail to be weakly coercive on
V h

1 and V h
2 , unless (43)-(44) have been explicitly imposed on these spaces. The fact

that the generalized inf-sup conditions are necessary and sufficient for stable and
accurate approximation of weakly coercive problems limits the choice of possible
discretization spaces to pairs that satisfy (43)-(44).
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• Coercivity of Q(·; ·) is, on the other hand, inherited on any closed subspace of V .
Therefore, stable and accurate approximation of coercive problems only requires
space conformity. This makes coercive problems much easier to approximate than
weakly coercive equations.

2.3.2 Indefinite variational problems

In this section we consider variational problems that are extensions of the KKT linear
system (31) to infinite dimensions. Given a pair of Hilbert spaces V and S, a bilinear
form a(·, ·) : V × V 7→ R, a bilinear form b(·, ·) : V × S 7→ R, and a bounded linear
functional F (v) : V 7→ R we consider the problem: seek u ∈ V and p ∈ S such that

a(u, v) + b(v, p) = F (v) ∀v ∈ V (50)

b(u, q) = 0 ∀q ∈ S. (51)

In Section 3.2 we will see that this kind of variational problems is typical for saddle-point
optimality conditions arising from the application of Lagrange multiplier techniques. Next
theorem is an analogue of Theorem 1 and was established by F. Brezzi in his seminal paper
[21].

Theorem 5 Let
Z = {v ∈ V | b(v, q) = 0 for all q ∈ S}. (52)

Assume that a(·, ·) is continuous on V × V and coercive on Z × Z, i.e.,

|a(u, v)| ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V (53)

a(u, u) ≥ γa‖u‖2V ∀u ∈ Z. (54)

Problem (50)-(51) has a unique solution if and only if 8

|b(u, p)| ≤ Cb‖u‖V ‖p‖S ∀u ∈ V, p ∈ S (55)

sup
v∈V

b(v, p)

‖v‖V
≥ γb‖p‖S ∀p ∈ S. (56)

For a proof of this result we refer the reader to [41, p.57]. As an aside note, (56) is
equivalent to the statement that for every p ∈ S there exists v ∈ V such that

b(v, p) ≥ γb‖v‖V ‖p‖S. (57)

With the identifications V1 = V2 = V × S;

Q({v, p}; {v, q}) = a(u, v) + b(p, v) + b(q, u) , (58)

8Condition (56) is often referred to as the inf-sup condition because of the equivalent form

inf
p∈S

sup
v∈V

b(v, p)
‖p‖S‖v‖V

≥ γb,

see [23], [41] or [43].
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and F ({v, q}) ≡ F (v) problem (50)-(51) takes the form of (23) (compare with (32)). One
can show that the assumptions on the forms a(·, ·) and b(·, ·) contained in Theorem 5 are
sufficient to prove that the form defined in (58) is weakly coercive.

Problem (50)-(51) can be reduced to a coercive problem on Z ×Z by noting that any
solution u of (50)-(51) must be in Z. Therefore, any u that solves (50)-(51) will solve the
variational equation: seek u ∈ Z such that

a(u, v) = F (v) ∀v ∈ Z . (59)

If all assumptions of Theorem 5 hold for a(·, ·), then (59) will have a unique solution. In
the next section we will see why (59) is not necessarily a better problem to solve than
(50)-(51).

Approximation of indefinite problems. To approximate (50)-(51) we consider a
pair of subspaces V h ⊂ V and Sh ⊂ S. We also have the discrete kernel subspace

Zh = {vh ∈ V h | b(vh, qh) = 0 ∀qh ∈ Sh}. (60)

The discrete problem is: seek uh ∈ V h and ph ∈ Sh such that

a(uh, vh) + b(vh, ph) = F (vh) ∀vh ∈ V h (61)

b(uh, qh) = 0 ∀qh ∈ Sh. (62)

Problem (61)-(62) is a restriction of the weakly coercive equation (50)-(51). Since weak
coercivity is not inherited automatically on V h and Sh, well-posedness of (61)-(62) re-
quires discrete spaces that verify the generalized inf-sup conditions of Theorem 3. These
conditions are specialized to indefinite problems in the next theorem.

Theorem 6 Let all assumptions of Theorem 5 hold for the forms a(·, ·) and b(·, ·). As-
sume that a(·, ·) is coercive on Zh × Zh:

a(uh, uh) ≥ γha‖uh‖2V ∀uh ∈ Zh, , (63)

and that there exists γhb > 0 such that

sup
vh∈V h

b(vh, ph)

‖vh‖V
≥ γhb ‖ph‖S ∀ph ∈ Sh , (64)

that is the inf-sup condition holds for the discrete pair (V h, Sh). Then,

1. Zh is nonempty;

2. there exists a unique pair (uh, ph) that solves (61)-(62);

3. we have the error bound

‖u− uh‖V ≤ K11 inf
vh∈Sh

‖u− vh‖V +K12 inf
qh∈Sh

‖p− qh‖S (65)

21



Figure 3: Zh may not be a subspace of Z.

‖p− ph‖S ≤ K21‖u− uh‖V +K22 inf
qh∈Sh

‖p− qh‖S (66)

where

K11 =

(
1 +

Ca
γha

+
CaCb
γhaγ

h
b

)
, K12 =

Cb
γha
δ(Z,Zh),

K21 =
Cb
γhb
, K22 =

(
1 +

Cb
γhb

)
,

and
δ(Z,Zh) = sup

zh∈Zh

inf
z∈Z
‖z − zh‖V .

Remark 1 If Zh ⊂ Z the distance δ(Z,Zh) between these two spaces is zero and the
estimate for uh uncouples from the error of ph

‖u− uh‖V ≤ K11 inf
vh∈Sh

‖u− vh‖V .

In this case, the error of uh depends only on the approximation properties of V h.

Remark 2 The error estimate for ph cannot be uncoupled from that of uh even if Zh ⊂ Z.
As a result, approximation of this variable always depends on the approximation properties
of both V h and Sh.

Remark 3 The constants in the estimate for uh are proportional to 1/γhb , and the con-
stants in the estimate for ph - to 1/(γhb )

2. For some spaces the discrete inf-sup condition
may hold with γhb → 0 as h→ 0. Such spaces lead to unstable discretizations and possible
loss of convergence.

To conclude this section let us expound on the reasons why the coercive equation (59)
may not be easier to approximate than the weakly coercive problem (50)-(51). To reap
the benefits afforded by the coercivity of a(·, ·) requires a conforming subspace Zh of Z.
Then the problem: seek uh ∈ Zh such that

a(uh, vh) = F (vh) ∀vh ∈ Zh (67)
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will be well-posed. The problem with this approach is that a conforming Zh may be as
difficult to construct as to find a pair (V h, Sh) that satisfies the discrete inf-sup condition
(64). To appreciate this, note that even if V h and Sh are a stable pair, the space Zh

defined in (60) is not necessarily a subspace of Z; see Fig.3.

2.4 Exercises

1. Show that if A is symmetric and positive definite or real positive definite there exists
a constant C that may depend on the space dimension, and such that (28) holds.

2. Prove that (21) is equivalent to (20).

3. Prove that (24)-(25) imply that A is a square nonsingular matrix.

4. Assume that Q(·; ·) is coercive on V ×V and let V h denote a proper subspace of V .
Prove that the form is also coercive on V h × V h.

5. Let all assumptions of Lemma 1 hold. Prove that the form defined in (34) is weakly
coercive.

3 Stability of finite element discretizations

Finite elements are variational methods that use piecewise polynomial subspaces defined
with respect to some tessellation of the computational domain into simple geometrical
shapes. This choice of approximating subspaces has been one of the main reasons for
their practical appeal. First, finite element spaces are spanned by locally supported,
piecewise polynomial functions and so they lead to the generation of sparse algebraic
systems. Second, the finite element paradigm allows for almost automatic generation of
high order methods in arbitrary, unstructured meshes.

Because finite elements are a variational method, all their fundamental properties, in-
cluding well-posedness of the discrete equations, are governed by the variational principles
embedded in their foundations. Brezzi and Fortin point out that (see [23, p.3])

a finite element method can only be considered in relation with a variational
principle and a functional space. Changing the variational principle and the
space in which it is posed leads to a different finite element approximation.

In this section we study the impact of different variational principles upon the finite
element method.

3.1 FEM in unconstrained minimization setting

Consider the convex, quadratic functional

J(φ; f) =
1

2

∫
Ω

|∇φ|2 dΩ−
∫

Ω

fφ dΩ (68)
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and the minimization principle
min

φ∈H1
0 (Ω)

J(φ; f) , (69)

where f is a given function and H1
0 (Ω) denotes the space of functions that have square

integrable first derivatives and that vanish on the boundary of the given domain Ω. The
first-order necessary condition for the optimization problem (69) requires the first varia-
tion of the functional (68) to vanish. Therefore, the minimizer φ ∈ H1

0 (Ω) of (68) satisfies
the variational equation

Qr(φ;ψ) = F (ψ) ∀ψ ∈ H1
0 (Ω) , (70)

where

Qr(φ;ψ) =

∫
Ω

∇φ · ∇ψ dΩ and F (ψ) =

∫
Ω

fψ dΩ . (71)

This equation has a connection with a familiar PDE problem. To see this connection, we
integrate by parts in (70) to obtain

0 =

∫
Ω

(∇φ · ∇ψ − fψ) dΩ = −
∫

Ω

ψ(4φ+ f) dΩ , (72)

where we have assumed that φ is sufficiently smooth to justify the above integration. Since
ψ is arbitrary, it follows that any sufficiently smooth9 minimizer of J(·; f) is a solution of
the familiar Poisson problem

−4φ = f in Ω and φ = 0 on Γ , (73)

The differential equation follows from (72) and the boundary condition (on the boundary
Γ of Ω) from the fact that all admissible states are constrained to vanish on the boundary.

The correspondence between solutions of partial differential equations and uncon-
strained minimization problems is not unusual. Many physical phenomena are governed
by energy principles which postulate that admissible states of the system are minimizers
of some convex, quadratic energy functional. In this case, the optimization problem is
the primary model of the physical process while the PDE problem is a strong (pointwise)
expression of the first-order optimality condition.

A convex, quadratic energy functional defines an energy norm |||·||| and an energy inner
product ((·, ·)) on its admissible space. This is the single, most important characteristic
of unconstrained energy minimization. In our case, the admissible set is given by the
Sobolev space H1

0 (Ω). The expression

J(ψ; 0) =
1

2

∫
Ω

|∇ψ|2dΩ ≡ 1

2
|ψ|21

9One appealing feature of the unconstrained energy minimization formulation is that every classical,
i.e., twice continuously differentiable, solution of the Poisson equation is also a solution of the minimization
problem (69) but the latter admits solutions which are not classical solutions of (73). These non-classical
solutions of (69) are referred to as weak solutions of the Poisson problem.
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and the form Qr(·; ·) serve to define an equivalent norm and inner product on H1
0 (Ω),

respectively, i.e., for the problem (69)

|||φ||| ≡ J(φ; 0)1/2 and ((φ, ψ)) ≡ Qr(φ;ψ) .

The norm-equivalence of (68) is a direct consequence of the Poincaré inequality

λ‖ψ‖0 ≤ |ψ|1 ∀ψ ∈ H1
0 (Ω) ,

where λ is a constant whose value depends only on Ω and ‖ · ‖0 denotes the standard
norm for L2(Ω). The inner product equivalence

(1 + λ−2)−1‖ψ‖21 ≤ Qr(ψ;ψ) and Qr(φ;ψ) ≤ ‖φ‖1‖ψ‖1 (74)

follows from the identity |φ|21 = Qr(φ;φ) and the Cauchy inequality. Note that (74)
implies coercivity of Qr(·; ·) on H1

0 (Ω)×H1
0 (Ω).

Consider now the implications from the connection between (73) and (69) for the finite
element solution of the Poisson equation. A finite element solution of (73) begins with
rewriting this problem into a weak, variational form, essentially reversing the process
through which we obtained (73) from (70). Then we choose a finite dimensional subspace
Xh of H1

0 (Ω) and determine the finite element approximation from the weak problem (70)
restricted to Xh, i.e.,

seek φh ∈ Xh such that Qr(φ
h;ψh) = F (ψh) ∀ψh ∈ Xh . (75)

Because (74) remains true for any subspace of H1
0 (Ω) the form Qr(·; ·) is coercive on

Xh×Xh. Theorem 4 then asserts that (75) is a well-posed problem. Since Qr(·; ·) is also
an inner product, (75) defines an orthogonal projection of φ onto Xh with respect to the
inner product ((·, ·)). To see this, note that

((φ, ψh)) = F (ψh) ∀ψh ∈ Xh

and
((φh, ψh)) = F (ψh) ∀ψh ∈ Xh

so that
((φ− φh, ψh)) = 0 ∀ψh ∈ Xh .

Therefore, φh minimizes the energy norm of the error

|||φ− φh||| = inf
ψh∈Xh

|||φ− ψh||| ,

and, using the bounds in (74), we also have the quasi-optimal error estimate in the norm
of H1

0 (Ω):
‖φ− φh‖1 ≤ C inf

ψh∈Xh
‖φ− ψh‖1 .

As a result, a finite element for (73) is always guaranteed to compute the best possible
approximation out of Xh. A different way to say this is that the finite element solution
φh is the unique minimum of (68) out of Xh.
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Recall that variational methods approximate the space and not the problem itself.
Thus, the only difference between (70) and (75) is that the latter is posed over a finite
dimensional subspace. But all bilinear forms in finite dimensional spaces are engendered
by matrices and we can conclude that (75) is a linear algebraic system. Given a basis
{φi}Ni=1 for Xh, this system has the form

Ax = f , (76)

where Aij = ((φi, φj)) = Qr(φi;φj), fi = F (φi), and xj = ξj with ξj denoting the coeffi-

cients in the expansion of φh in terms of the basis, i.e., φh =
∑N

i=1 ξiφi. From (71) and
(74), it follows that A is symmetric and positive definite matrix. In addition, the equiva-
lence between the energy inner product ((·, ·)) and the standard inner product on H1

0 (Ω)
implies the spectral equivalence between A and the Gramm matrix of {φi}Ni=1 with respect
to the H1

0 (Ω)-inner product. This fact is useful for the design of efficient preconditioners
for (76).

To summarize, when PDE problems are associated with unconstrained optimization
of convex, quadratic energy functionals,

• the discrete problems have unique and stable solutions;

• the approximate solutions minimize an energy functional on the trial space so that
they represent, in this sense, the best possible approximation;

• the linear systems used to determine the approximate solutions have symmetric and
positive definite coefficient matrices;

• these matrices are spectrally equivalent to the Gram matrix of the trial space basis
in the natural norm of H1

0 (Ω).

3.2 FEM in constrained optimization setting

Consider the quadratic functional

J(v; f) =
1

2

∫
Ω

|∇v|2 dΩ−
∫

Ω

f · v dΩ (77)

and the minimization problem

min
v∈H1(Ω)

J(v; f) subject to ∇ · v = 0 in Ω , (78)

where H1
0(Ω) is the vector analog of H1

0 (Ω). We proceed to introduce the Lagrange
multiplier p, the Lagrangian functional

L(v, q; f) = J(v; f)−
∫

Ω

q∇ · v dΩ , (79)

and the unconstrained problem of determining saddle points of L(v, q; f). The first-order
necessary conditions are equivalent to the weak problem:
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seek (u, p) ∈ H1
0(Ω)× L2

0(Ω) such that∫
Ω

∇u : ∇v dΩ−
∫

Ω

p∇ · v dΩ =

∫
Ω

f · v dΩ∫
Ω

q∇ · u dΩ = 0

(80)

for all (v, q) ∈ H1
0(Ω)× L2

0(Ω).

If solutions to the constrained minimization problem (78) or, equivalently, of (80), are
sufficiently smooth, then, using integration by parts, one obtains without much difficulty
the Stokes equations

−4u +∇p = f and ∇ · u = 0 in Ω ,

u = 0 on Γ ,
(81)

where u is the velocity and p is the pressure. Thus, (80) is a weak formulation of the
Stokes equations. Conversely, the Stokes equations give the strong optimality system for
(79).

A second example of a constrained minimization problem is provided by the functional

J(v) =
1

2

∫
Ω

|v|2 dΩ ,

the linear constraint
∇ · v = f ,

and the minimization problem

min J(v) subject to ∇ · v = f , (82)

where the minimization is effected over a suitable function space. Such problems arise in
many applications; for example, in fluid mechanics, (82) is known as the Kelvin principle
and, in structural mechanics (where u is a tensor), as the complimentary energy principle;
see [23, p.17]. Again, we use a Lagrange multiplier ψ to enforce the constraint and consider
the Lagrangian functional

L(w, ψ; f) =
1

2

∫
Ω

|w|2 dΩ−
∫

Ω

ψ(∇ ·w − f) dΩ ,

The optimality system obtained by setting the first variations of L(v, ψ; f) to zero is given
by

seek (v, φ) ∈ H(Ω, div )× L2(Ω) such that∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ = 0∫
Ω

ξ∇ · v dΩ =

∫
Ω

fξ dΩ

(83)
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for all (w, ξ) ∈ H(Ω, div )× L2(Ω).

If solutions of (83) are sufficiently smooth we see that

∇ · v = f and v +∇φ = 0 in Ω

φ = 0 on Γ .
(84)

Problem (84) is the first-order Poisson equation that we first encountered in Section 1.3.
Problem (83) is the second weak equation from the list of the four weak forms (13)-(16).
If V ≡ H(Ω, div ), S ≡ L2(Ω),

a(v,w) =

∫
Ω

v ·w dΩ and b(φ,v) =

∫
Ω

φ∇ · v dΩ ,

then problem (83) takes the form of (50)-(51). The correspondence between solutions of
partial differential equations and constrained optimization problems is also not unusual.
In this case the PDE expresses the first-order optimality condition for the saddle-point
optimization problem.

Let us now discuss the consequences from the association between a PDE and a saddle-
point optimality system. Problems (80) and (83) have the abstract structure of (50)-(51).
Therefore, their well-posedness is governed by the assumptions in Theorem 5 which, as
we recall, specializes the more general Theorem 2 to saddle-point variational problems.
This also means that (80) and (83) are only weakly coercive and that their finite element
approximations are subject to the assumptions stated in Theorem 6.

Consider for example a mixed method for (83). To approximate this problem we
choose a pair of subspaces V h ⊂ H(Ω, div ) and Sh ⊂ L2(Ω) and then restrict (83) to
V h × Sh. The problem

seek (φh,wh) ∈ Sh × V h such that∫
Ω

wh · uh dΩ +

∫
Ω

φh∇ · uh dΩ = 0∫
Ω

(∇ ·wh)ξh dΩ =

∫
Ω

fξh dΩ

(85)

for all (ξh,uh) ∈ Sh × V h

is of the same type as the abstract problem (61)-(62). Consequently, it will not be a stable
and accurate approximation of (83) unless

1. the form a(·, ·) is coercive on Zh;

2. the form b(·, ·) verifies the discrete inf-sup condition (64).

The single most important consequence from this fact is that we cannot choose the ap-
proximating spaces for the variables independently from each other. What is even more
troublesome, the rather abstract nature of (64) doesn’t provide any clues to as what might
constitute a promising pair of spaces (V h, Sh). We will revisit these questions in Section
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7. Another consequence is that the discrete problem now corresponds to the indefinite
linear system (30). Such linear systems are more difficult to solve than the symmetric
and positive definite systems arising from unconstrained optimization.

In summary, we see that whenever a partial differential equation problem is associated
with constrained optimization problem,

• the discrete equations have unique and stable solutions only if the approximating
spaces satisfy restrictive stability conditions;

• the approximate solutions are constrained projections rather than inner-product
orthogonal projections;

• the linear systems used to determine the approximate solutions have symmetric but
indefinite coefficient matrices.

3.3 Galerkin principles

In sections 3.1-3.2 we saw examples of PDE problems that can be associated with opti-
mization problems. However, many PDE’s are not related to optimization. The conser-
vation law (4) from §1.1 is one such example. For this problem the differential equation is
obtained from an integral conservation statement; see [61, p.17], and does not represent
a strong form of an optimality condition.

In such cases finite element methods use formal residual orthogonalization to derive
the variational equations. Each partial differential equation is multiplied by suitable
testing function, integrated over the domain and then integrated by parts to equilibrate
the derivatives. This procedure is often called a weighted residual method. When test and
trial functions belong to the same spaces we speak of Galerkin principles, when they are
drawn from different spaces the principle is called Petrov-Galerkin.

It is clear that any PDE equation, either related or unrelated to optimization, can
be treated by a weighted residual method. Because of this universality, formal residual
orthogonalization has been the natural choice in extending finite elements beyond differ-
ential equations problems associated with optimization principles. If, on the other hand
the PDE is associated with optimization, we have already seen that Galerkin principles
will recover the optimality system.

Let us consider some examples of PDE problems not associated with optimization. A
simple example is provided by the Helmholtz equation problem

−4φ− k2φ = f in Ω and φ = 0 on Γ . (86)

Using the formal Galerkin procedure we find the weak formulation of (86) to be∫
Ω

(∇φ · ∇ψ − k2φψ) dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ H1
0 (Ω) . (87)

Note that the bilinear form on the left-hand side of (87) is symmetric but, if k2 is larger
than the smallest eigenvalue of −4, it is not coercive, i.e., it does not define an inner
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product on H1
0 (Ω)×H1

0 (Ω). As a result, proving the existence and uniqueness10 of weak
solutions is not so simple a matter as it is for the Poisson equation case.

Another example is provided by the convection-diffusion-reaction problem

−ε4φ+ b · ∇φ+ cφ = f in Ω and φ = 0 on Γ (88)

and the companion reduced problem

b · ∇φ+ cφ = f in Ω and φ = 0 on Γ− , (89)

where b is a given vector-valued function, c is a given scalar-valued function, and Γ−
denotes the inflow portion of Γ, i.e., the portion of Γ for which b ·n < 0, where n denotes
the outward unit normal vector.11 Again, following a standard Galerkin procedure for
(88) results in the Galerkin weak formulation∫

Ω

(
ε∇φ · ∇ψ + ψb · ∇φ+ cφψ

)
dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ H1
0 (Ω) . (91)

For (89), the formal Galerkin process does not even require integration by parts and
reduces to multiplication by a test function and integration:∫

Ω

(
ψb · ∇φ+ cφψ

)
dΩ =

∫
Ω

fψ dΩ . (92)

Now the bilinear forms on the left-hand side of (91) and (92) are neither symmetric nor
coercive.

A nonlinear example of a problem without a minimization principle, but for which a
weak formulation may be defined through a Galerkin method, is the Navier-Stokes system
for incompressible, viscous flows given by

−4u + u · ∇u +∇p = f and ∇ · u = 0 in Ω ,

u = 0 on Γ ,
(93)

where u and p denote the velocity and pressure fields and the constant ν denotes the
kinematic viscosity. A standard weak formulation analogous to (80) but containing an
additional nonlinear term is given by

seek (u, p) ∈ H1
0(Ω)× L2

0(Ω) such that

10In fact, solutions of (86) or (87) are not always unique.
11Alternatively, (88) can be stated in conservative form as

−∇ · σ(φ) + cφ = f in Ω and φ = 0 on Γ (90)

where σ(φ) = σD(φ) + σC(φ) is the total flux function and

σD(φ) = ε∇φ and σC(φ) = −bφ

denote the diffusive and convective fluxes, respectively, and we have assumed that b is solenoidal. The
reduced problem is obtained when the diffusive flux is zero.
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ν

∫
Ω

∇u : ∇v dΩ +

∫
Ω

p∇ · v dΩ +

∫
Ω

u · ∇u · v dΩ =

∫
Ω

f · v dΩ (94)∫
Ω

µ∇ · u dΩ = 0 (95)

for all (v, µ) ∈ H1
0(Ω)× L2

0(Ω).

Despite the close resemblance between (80) and (94)–(95), these two problems are
strikingly different in their variational origins. Specifically, the second problem does not
represent an optimality system, i.e., there is no optimization problem associated with
these weak equations. As a result, (94)–(95) cannot be derived in any other way but
through the Galerkin procedure described above.

Problems (87), (91), (92) and (94)–(95) demonstrate how versatile Galerkin principles
can be. However, this versatility exacts a toll on the requirements for the well-posedness of
the weak problems and on the quality of the companion finite element algebraic equations.

Without an association with an optimization problem variational equations will default
to the most general case of Theorem 2. This means that very little can be said about
the structure of the ensuing finite element algebraic equations. It also means that well-
posedness of the discrete equations is subject to all assumptions stated in Theorem 3, most
notably, the discrete inf-sup conditions (43)–(44). The unpleasant consequence is that
naively defined finite element methods that do not account for the fact that conformity
is not enough to guarantee stability in the weakly coercive setting will fail.

The two problems (88) and (89) provide a textbook example of settings for which
straightforward Galerkin methods lead to serious numerical difficulties for finite element
methods. When ε is small compared to the grid spacing h (or zero as is the case for (89)),
finite element solutions will develop spurious oscillations whenever the exact solution is
not globally smooth or worse, may not even be well defined. This phenomena can be
understood by inspecting the stability estimate

√
ε‖∇φ‖0 + ‖φ‖0 ≤ C‖f‖0

which shows that for ε small (or zero), control over the gradients exercised by the varia-
tional problem is very weak (or completely missing), see e.g., [58], or [59, Ch.9].

3.4 Summary

The examples given in §3.1–§3.3 show that theoretical and practical difficulties in defining
a finite element method and solving the corresponding algebraic systems increase as their
variational foundation becomes more and more estranged from that of a true inner product
projection. This is the price one pays for the increasing generality of the applicability of
the methods we considered as we moved from §3.1 to §3.3.

Constrained optimization problems lead to saddle point problems and restrictive sta-
bility conditions on the finite element spaces. If a problem possesses no associated opti-
mization principle so that one is led to the formal Galerkin method, then things can get
even worse.
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Rayleigh-Ritz mixed Galerkin Galerkin

associated
optimization unconstrained constrained none

problem
properties of inner symmetric none

bilinear product but in
form equivalent indefinite general

requirements inf-sup two
for existence/ none compatibility inf-sup
uniqueness condition conditions

requirements conformity conformity and
on discrete conformity and discrete two discrete

spaces inf-sup condition inf-sup conditions
properties symmetric, symmetric indefinite,
of discrete positive but not
problems definite indefinite symmetric

Table 1: Comparison of different settings for finite element methods in their most general
sphere of applicability.

In both cases, i.e., for weakly coercive and saddle-point problems, we also face the task
of finding stable pairs of test and trial spaces. The inf-sup conditions stated in Theorem 3
and Theorem 6 are not very helpful here. While these conditions completely characterize
stable variational principles they refuse to provide any clues about the distinguishing
characteristics of the spaces that may verify them.

A summary of the comparative features of finite element methods is given in Table 1,
where the methods are classified according to the nature of the associated optimization
problem, if there is one.
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4 A geometric approach to stability of discretizations

PDE’s offer convenient and powerful formalism to encode physical phenomena in terms
of field functions. We saw that a PDE may be obtained from an optimization prob-
lem, or a conservation statement expressed in integral form. Because PDE’s have been
so widespread in science and engineering, we often tend to forget that besides the field
equations formalism, there also exist global quantities that can be used equally well to
describe the physics. In fact, many important models have been initially formulated in
terms of such global quantities. For example, Maxwell stated the laws of electromagnet-
ics using current, charge, electric and magnetic fluxes, electromotive force (EMF), and
magnetomotive force, rather than field representations and differential equations.

In practice, what we can measure about a given field is not the field itself, but some
global quantity such as the work of the field along a path, or the electromotive force
along a curve, or the flux of a magnetic field through a surface. Thus, our information
about the fields is expressed by numbers (the measurements) that are associated with
geometrical objects in space (the lines, curves, surfaces and volumes where we measure).
The field function then is a mathematical abstraction that represents a measurement over
an infinitesimal region.

Mappings from oriented geometrical objects to real numbers are called differential
forms. We can think of differential forms as field functions with attached measuring
devices that return global physical quantities when swept over the appropriate regions in
space. The process of the actual measurement can then be formalized through the notion
of integration of differential forms.

Until recently importance of differential forms and geometrical viewpoints has not
been fully appreciated in numerical PDE’s. One notable exception is computational elec-
tromagnetics where, starting with the pioneering work of Bossavit [16], [17], and [18],
there has been a tremendous interest in geometrical approaches to discretization. A com-
prehensive account of the recent work in this direction can be found in [74].

Perhaps one reason for the limited interest in geometrical aspects of discretization for
PDE’s is the fact that in most cases (electromagnetics being again the notable exception)
PDE’s can be studied, understood and approximated without invoking the language of
differential forms. In contrast, Hamiltonian mechanics cannot be understood without
differential forms and numerical methods there have exploited differential geometry ideas
for quite a while; see e.g., [12] for a discussion of simplectic integration methods.

4.1 Exterior forms

We begin with a review of exterior forms and operations between them. Our presentation
follows [7].

Definition 3 An exterior form of degree k, k ≤ n or a k−form, is a mapping

ω : Rn × . . .Rn︸ ︷︷ ︸
k

7→ R ,

that is k-linear and antisymmetric:

ω(. . . , αξ′ + βξ”, . . .) = αω(. . . , ξ′, . . .) + βω(. . . , ξ”, . . .) ;
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ω(ξi1 , . . . , ξik) = (−1)ν

where

ν =

{
0 if (i1, i2, . . . , ik) is even

1 if (i1, i2, . . . , ik) is odd

The set of all k−forms is a linear space with dimension Ck
n. Given a k−form ωk and

l−form ωl we define an operation between them as follows.

Definition 4 Exterior multiplication. The exterior product ωk∧ωl is the (k+ l)-form
whose value on the k+ l vectors ξ1, . . . , ξk, . . . , ξk+l is computed according to the formula

ωk ∧ ωl =
∑

(−1)νωk(ξi1 , . . . , ξik)ωl(ξj1 , . . . , ξjl)

where i1 < . . . < ik; j1 < . . . < jl is a permutation of the indices (1, 2, . . . , k + l) and

ν =

{
0 if permutation is even

1 if permutation is odd
.

To compute the exterior product we take all possible partitions of the k + l vectors into
groups of k and l vectors. For each partition we compute the values of ωk and ωl on
each group of k and l vectors and multiply them. This gives one term in the sum above.
This term enters with + or − sign depending on whether the order of the k + l vectors
represents an even or an odd permutation.

For example, the exterior product of k 1-forms is a k−form whose value on (ξ1, . . . , ξk)
is computed as

(ω1
1 ∧ ω2

1 ∧ . . . ∧ ωk1)(ξ1, . . . , ξk) =

∣∣∣∣∣∣∣
ω1

1(ξ1) . . . ωk1(ξ1)

. . . . . . . . .

ω1
1(ξk) . . . ωk1(ξk)

∣∣∣∣∣∣∣ .
Let us consider some examples of exterior forms and their multiplication in R3. There

we have 1, 2 and 3-forms and for completeness, we associate a 0-form with an arbitrary
constant.

1-forms. A 1-form is a 1-linear mapping R3 7→ R, i.e., it is a linear functional. The set
of all 1-forms is a linear space that is dual to R3, and is denoted by (R3)∗. The dimension
of this space equals C1

3 = 3. Let (x1,x2,x3) be a basis in R3. Given a vector ξ with
coordinates (ξ1, ξ2, ξ3) relative to this basis, we can write ξ as

ξ = ξ1x1 + ξ2x2 + ξ3x3 .

Then, we can make the association
xi 7→ ξi
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Figure 4: 1-, 2- and 3-forms in R3

between basis vectors and coordinates relative to these basis vectors. This association
establishes xi as an 1-form that returns the ith coordinate of the vector to which it is
applied:

xi(ξ) = ξi .

The 1-forms xi are called basic because they span the dual space (R3)∗, i.e., every 1-form
can be represented as

ω1(ξ) = α1x1(ξ) + α2x2(ξ) + α3x3(ξ) .

This shows that every 1-form can be associated with a vector a = (α1, α2, α3) in R3 so
that

ω1(ξ) = aTx(ξ) ,

where x(ξ) = (x1(ξ),x2(ξ),x3(ξ)). When xi is the canonical basis in R3 this is simply
the dot product aTξ. If a represents a force field, this dot product gives the work of this
force field on the displacement ξ, see Fig. 4.

The exterior product of two 1-forms ω1
1, ω

2
1 is the 2-form

(ω1
1 ∧ ω2

1)(ξ1, ξ2) =

∣∣∣∣∣ ω1
1(ξ1) ω2

1(ξ1)

ω1
1(ξ2) ω2

1(ξ2)

∣∣∣∣∣ . (96)

To find a geometrical interpretation of this formula consider the mapping ω : R3 7→ R×R
defined by

ξ 7→

(
ω1

1(ξ)

ω2
1(ξ)

)
.

This mapping transforms the parallelogram (ξ1, ξ2) into the parallelogram (ω(ξ1),ω(ξ2)).
Formula (96) gives the area of this parallelogram, i.e., the value of the exterior product
ω1

1 ∧ ω2
1 is the oriented area of the image of (ξ1, ξ2) in the ω1

1, ω
2
1 coordinate frame.

2-forms. A 2-form is a bilinear and skew-symmetric mapping R3 × R3 7→ R:

ω2(ξ1, ξ2) = −ω(ξ2, ξ1).
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The set of all 2-forms is a real vector space with dimension C2
3 = 3. We leave it as an

exercise to show that every 2-form in R3 can be expressed as

ω2 = α1x2 ∧ x3 + α2x3 ∧ x1 + α3x1 ∧ x2 , (97)

where xi are the basic 1-forms. Therefore,

(x1 ∧ x2,x2 ∧ x3,x3 ∧ x1)

is a basis in the space of 2-forms. From (96) we see that xi∧xj is the area of the projection
onto the (xi,xj) coordinate plane.

From (97) we also see that every 2-form can be associated with a vector a = (α1, α2, α3)
in R3. Then, we can write 2-forms as formal triple vector products

ω2(ξ1, ξ2) = a · x(ξ1)× x(ξ2) .

When xi is the canonical basis in R3 this is the usual triple product a · ξ1 × ξ2. If a
represents a uniform velocity field of a fluid, this triple product gives the flux of the fluid
through the parallelogram spanned by ξ1 and ξ2, see Fig. 4.

3-forms. A 3-form in R3 is a trilinear, antisymmetric mapping R3×R3×R3 7→ R. The
set of all 3-forms is a linear space with dimension C3

3 = 1. A basis for this space is given
by the triple product

x1 ∧ x2 ∧ x3,

and so every 3-form can be expressed as ω3 = αx1 ∧ x2 ∧ x3. Therefore

ω3(ξ1, ξ2, ξ3) = α

∣∣∣∣∣∣∣
x1(ξ1) x2(ξ1) x2(ξ1)

x1(ξ2) x2(ξ2) x2(ξ2)

x1(ξ3) x2(ξ3) x2(ξ3)

∣∣∣∣∣∣∣ .
If xi = ei is the canonical basis in R3, then

ω3(ξ1, ξ2, ξ3) = α(ξ1 · ξ2 × ξ3)

is the oriented volume of the parallelepiped spanned by ξ1, ξ2 and ξ3, multiplied by α;
see Fig.4.

Exterior forms in R3 have some special properties that do not exist in other dimensions.
Let xi denote an orthonormal basis in R3. With every vector a ∈ R3 we can associate the
1-form

ωa
1 = a1x1 + a2x2 + a3x3 , (98)

and the 2-form
ωa

2 = a1x2 ∧ x3 + a2x3 ∧ x1 + a3x1 ∧ x2 . (99)

Then, the exterior product of two 1-forms ωa
1 and ωb

1 is the vector product in R3:

ωa
1 ∧ ωb

1 = ωa×b
2 , (100)
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Figure 5: Manifold M and its tangent manifold at x

and the exterior product of ωa
1 and ωb

2 is the dot product:

ωa
1 ∧ ωb

2 = (aTb)x1 ∧ x2 ∧ x3 = ωaT b
3 .

These properties do not exists in other space dimensions. The reason is that only in R3 the
space of all 2-forms is isomorphic to R3 itself, i.e., every 2-form on R3 can be associated
with a vector in R3. For n 6= 3, C2

n 6= n and 2-forms are isomorphic to RC2
n 6= Rn.

To put it differently, vector calculus can only work in R3. There’s no natural way of
defining vector products in higher dimensions. The reason we have a well-defined vector
product in R3 is precisely because of the property (100), i.e., the fact that 2-forms can be
identified with vectors in R3.

4.2 Differential forms

Exterior forms operate on groups of vectors in the Euclidean space. Differential forms
do the same thing, except that they draw their arguments from tangent spaces TM
to differentiable manifolds M . Locally, a differentiable k−manifold embedded in Rn is
defined by the n− k equations

fi(x) = 0 i = 1, . . . , n− k ,

where f1, ..., fn−k are smooth functions Rn 7→ R such that ∇fi are linearly independent.
The tangent space at the point x ∈M is defined by

TMx = (span{∇f1, . . . ,∇fn−k})⊥ .

A differentiable manifold M and its tangent space at x are shown on Fig.5. The union
of all tangent spaces TM = ∪x∈MTMx is called tangent bundle of M . In what follows we
restrict attention to M = Rn.

Definition 5 A differential k−form ωk|x at a point x ∈ M is an exterior k-form on
TMx. If such a form ωk is given at every point x ∈ M , and if it is differentiable, it is
called k−form on M . A differential 0-form is a function on M . The set of all k-forms
on M will be denoted by W k(M).
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Figure 6: Differential k−form on M is an exterior k−form on TMx.

This definition is illustrated on Fig.6. We can think of differential forms as being composed
from two separate parts. One is an exterior form that operates on vectors from TMx just
like any exterior form would. The second part is a function that modifies the value
returned by the exterior form depending on the point x. A 0-form only has a ”functional”
part because it doesn’t accept vector arguments. This intuitive interpretation can be
formalized, and one can prove; see [7, p.177], that any k-form on Rn has the representation

ωk =
∑
i1<...ik

ai1,...,ik(x)dxi1 ∧ . . . ∧ dxik , (101)

where ai1,...,ik(x) are smooth functions and dxi are the basic differential 1-forms on TMx.
We will call the set of functions {ai1,...,ik(x)} a proxy of the k-form ωk.

Exterior product is extended to differential forms in an obvious manner from the
multilinear case. The reader is asked to verify that for k + l ≤ m = dimM the product
ωk ∧ ωl defines a (k + l)-form on M and that

ωk ∧ ωl = (−1)klωl ∧ ωk . (102)

Example 1 Evaluation of differential forms. Let M = R2,

ω1 = x2dx1 − x1dx2 and ω2 = (x1 + x2
2)dx1 ∧ dx2 .

We compute ω1 for ξ2 shown on the left side in Fig.7 as follows. For this vector x = (1, 1)
and12 dx1(ξ) = dx2(ξ) = 1. Therefore,

ω1(ξ2) = 2− 2 = 0.

For ω2 we take the pair (ξ2,η2) from the right side in Fig.7. Now x = (2, 1), x1 +x2
2 = 3,

and

dx1 ∧ dx2(ξ2,η2) =

∣∣∣∣∣ dx1(ξ1) dx2(ξ2)

dx1(η2) dx2(η2)

∣∣∣∣∣ =

∣∣∣∣∣ 1 1

−1 1

∣∣∣∣∣ = 2 ,

and so, ω2(ξ2,η2) = 6.

12Remember that dxi act just like regular exterior basic forms, except that they operate on TMx. In
this case TMx = R2. Therefore, dxi(ξ) simply returns the ith coordinate of ξ.
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Figure 7: Vectors for Example 1.

4.2.1 Integration

Differential k−forms can be integrated over k−dimensional manifolds. The integral is
defined in the usual manner by dividing the manifold into small pieces and taking the
limit of the partial sums. The role of the pieces is played by oriented cells arranged in
chains. The formal definition of an integral of a k-form over k-manifold is rather technical
and will not be presented here. For details we refer the reader to [7, p.181]. However, the
notions of a chain and a cell are important for approximation and discretization and we
review them next.

Cells and chains Let M be an n-dimensional manifold. A k−cell K of M is the triple13

(K̂, f, δ) where K̂ is a convex polyhedron in Rk; f is a differentiable map f : K̂ 7→ M
and δ denotes orientation on Rk.

Definition 6 A k-chain on a manifold M is a finite collection of k-cells K1, ..., Kr with
multiplicities m1, ...,mr. We write

Ck =
r∑
i=1

miKi .

If K is a k-cell its boundary forms a (k − 1)-chain, denoted by ∂K. The (k − 1)-cells
Ki of the boundary chain are the triples (K̂i, fi, δi), where K̂i are the (k− 1)-dimensional
faces of K̂ with orientations δi and fi are maps fi : K̂i 7→ Rk. The orientations δi are
chosen so as to match the orientation of a given coordinate frame in Rk. Each cell is taken
with multiplicity one, i.e.,

∂K =
∑

Ki .

The boundary of a k−chain is

∂Ck =
r∑
i=1

mi∂Ki .

13It is worth pointing out that the definition of a cell as the image of a standard convex polyhedron
resembles a lot the definition of a finite element as the image of a standard reference element; see Ciarlet
[29, p.78]
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Figure 8: ∂∂K = 0

Figure 9: Boundary of a chain of four squares.

A fundamental property of the boundary operator is that

∂∂Ck = 0 (103)

for any k-chain.

Example 2 Boundary of a boundary is zero. Consider a 3-chain consisting of one
hexahedral 3-cell K. The boundary ∂K of this cell contains the six faces of K with
orientation provided by the outward normal to each face. The boundary of each face
consist of 4 edges. Therefore, ∂∂K is a chain of edges, where each edge of K enters twice
with opposite multiplicities and so ∂∂K = 0; see Fig.8.

Example 3 Boundary of a chain of quads. Consider the 2-chain C2 of 4 quadri-
laterals Qi shown on Fig.9. The boundary ∂C2 is sum of the boundaries ∂Qi of each
quadrilateral, i.e., their edges. If an edge is shared by two quadrilaterals it enters the sum
twice with opposite multiplicities. The boundary thus contains only the edges that are not
shared by two quads; see Fig.9.

Definition 7 Integral of a k−form over a k−chain. Let Ck =
∑r

i=1miKi.∫
Ck

ωk =
r∑
i=1

mi

∫
Ki

ωk . (104)
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4.2.2 Exterior derivative

Exterior derivative takes a k-form into a (k+1)-form on the same manifold. The definition
we are about to give can be motivated by the following example.

Let a be a smooth vector field in R3. In vector calculus texts divergence of a is
normally defined as a formal dot product of the ∇ operator and a, i.e.,

div a ≡ ∇ · a =
∂a1

∂x1

+
∂a2

∂x2

+
∂a3

∂x3

.

Divergence can also be defined in a completely coordinate-independent way. Consider a
point x and a cube K that contains the point. Then14

div a(x) = lim
ε7→0

∫
∂K

a · n dS

Vol(εK)
. (105)

Therefore, for small K

F (∂K) ≡
∫
∂K

a · n dS = div a(x)[Vol(εK)] + o(Vol(εK)) ,

i.e., divergence is the leading order term in the flux F (∂K). Exterior derivative of a k-
differential form is defined following the same template: it is the leading multilinear term
of the ”flux”, i.e., the integral of the form, computed on the boundary of a (k + 1)-cell.
Note that this is consistent with the requirement that p-forms are integrated on p-chains.

Definition 8 The exterior derivative dωk of ωk is the principal multilinear part of the
flux of ωk over the boundary ∂K of the (k + 1)-cell K, i.e.,

dω(x) = lim
ε7→0

Fω(∂K)

Vol(εK)
(106)

where the flux is given by

Fω(∂K) =

∫
∂K

ωk .

It can be shown that dωk is indeed a (k + 1)-form and that (106) does not depend on
the choice of K. If ωk is given by (101), then (see [7, p.190])

dωk =
∑
i1<...ik

dai1,...,ik(x) ∧ dxi1 ∧ . . . ∧ dxik . (107)

This formula gives a coordinate dependent representation of the exterior derivative. A
fundamental property of d, that can be easily checked using (107), is that

ddω = 0 (108)

14We will see later that such coordinate independent definitions of the gradient, curl and divergence
form the basis for the mimetic finite difference operators introduced by M. Shashkov and M. Hyman [53]
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for any differential form. Another important property, that can be easily verified using
(107), is that

d(ωk ∧ ωl) = (dωk) ∧ ωl + (−1)kωk ∧ (dωl) . (109)

The unifying power of differential form abstraction is demonstrated in the next theo-
rem. It merges the Newton-Leibniz Theorem, Stokes’s Circulation Theorem, and Gauss’s
Divergence Theorem in one simple and elegant formula.

Theorem 7 For any ω ∫
∂C

ω =

∫
C

dω . (110)

As a corollary to this theorem and (109) we can prove the integration by parts formula∫
∂C

ωk ∧ ωl =

∫
C

(dωk) ∧ ωl + (−1)k
∫
C

ωk ∧ (dωl) . (111)

4.2.3 Duality

Consider a form ωp and a chain Cp =
∑

imiK
p
i . We can ”sample” ω on the cells of the

chain by assigning to each cell the flux Fω(K
p
i ). The association

Cp −→

{∫
Kp

i

ωp

}
(112)

between a p-form and its ”sample” on a p-chain defines a mapping called cochain and
denoted by C∗p . The cochain can be thought of as an approximation or a representation
of the differential form on a chain. It is approximate because the chain is finite and allows
us to ”sample” the form only at a finite number of configurations. The cochain is also
dual to the chain because, using formula (104), it assigns to Cp a number, representing
the global ”flux”. We express this duality relation by writing

(Cp, C
∗
p) = F (ωp) .

Consider now a form ωp, its differential dωp, a chain C(p+1) and its boundary chain

∂C(p+1) = Cp =
∑
i

miK
i
p .

Let C∗p and C∗(p+1) denote the co-chains of ∂C(p+1) and C(p+1), respectively. From the
Stokes formula it follows that

(∂C(p+1), C
∗
p) =

∫
∂C(p+1)

ωp =

∫
C(p+1)

dωp = (C(p+1), C
∗
(p+1)) .

This identity serves to define an operator

d : C∗p 7→ C∗(p+1) (113)
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Figure 10: kth cohomology group.

called coboundary. In terms of this operator,

(∂C(p+1), C
∗
p) = (C(p+1), dC

∗
p) .

We can justify the use of the exterior derivative symbol by writing formally the Stokes
theorem as

(∂C, ω) = (C, dω) .

4.2.4 De Rham co-homology

A differential form ω is called closed if dω = 0. From (108) it is clear that every differential
dω of a k-form is a closed (k + 1)-form. We call such forms exact. However, it turns out
that there are closed forms that are not differentials. The ”discrepancy” between closed
forms and differentials can be measured by the dimension of the factor space

Hk
M = ker{d,W k(M)}/(dW k−1(M)) (114)

called k-th cohomology group of the manifold M ; see Fig.10. The dimension of this space
is called k-th Betti number of M , bk. The Betti numbers are topological invariants of
M . If M = Rn, then all closed forms are differentials. The same property is true for
contractible and star-shaped regions15. This result is known as the Poincare lemma; see
e.g., [73, p.69].

Theorem 8 Poincare lemma. If M is star-shaped and ωk ∈ W k(M), k > 0 is closed,
then ωk = dω(k−1) for some ω(k−1) ∈ W (k−1)(M).

Structures consisting from spaces and an operator L between them that has the prop-
erty LL ≡ 0 are called homological complexes. The homological complex consisting of
differential formsW k(M) and the operator d is called De Rham complex. In R3 De Rham’s
complex contains the forms W 0(M), W 1(M), W 2(M), and W 3(M). If M is contractible,
or star-shaped, then the sequence

R ↪→ W 0(M)
d7−→ W 1(M)

d7−→ W 2(M)
d7−→ W 3(M) 7−→ 0 (115)

15A region M is star-shaped if there exists a point x∗ ∈ M such that if x ∈ M is arbitrary, the point
x∗ + λ(x − x∗) is in M for all 0 ≤ λ ≤ 1. The formal definition of contractible M is more involved.
Important example that will be sufficient for us are simply connected regular domains with connected
boundary.
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is exact, i.e., the closed forms in W 0(M) are the constants and all closed forms in W k(M),
k = 1, 2, 3 are differentials of (k − 1)-forms. Therefore, for contractible and star-shaped
regions b0 = 1 and b1 = b2 = 0.

Note that for any 3-form in R3 we have that dω3 = 0. Therefore, W 3(M) contains only
closed forms. The last link in (115), i.e., W 3(M) 7−→ 0, means that for regions without
peculiarities all forms in W 3(M) are in fact differentials, that is exact forms. But this
also means that d is a surjective map from W 2(M) into W 3(M).

4.2.5 Hodge star operator

A manifold M can be endowed with a metric γ, that is a quadratic positive definite and
symmetric form. The properties of differential forms discussed so far do not depend on
the choice of this metric.

The Hodge ∗γ-operator is a mappingW k(M) 7→ Wm−k(M) that depends on the metric
selection on M . For a precise definition of this operator we refer to [73, p.356]. For the
Euclidean metric the action of ∗ on the basic forms is given by (see [80, p.30])

∗1 = dx1 ∧ dx2 ∧ dx3 ,

∗dx1 = dx2 ∧ dx3; ∗dx2 = dx3 ∧ dx3; ∗dx3 = dx1 ∧ dx2 ,

∗(dx1 ∧ dx2) = dx3; ∗(dx2 ∧ dx3) = dx1; ∗(dx3 ∧ dx1) = dx2 ,

and
∗(dx1 ∧ dx2 ∧ dx3) = 1 ,

where 1 is the proxy of 0-forms. The Hodge operator defines an inner product on W k(M)
according to

< ω1
k, ω

2
k >=

∫
M

∗γω1
k ∧ ω2

k .

Finally, we note that the Hodge operator can be used to connect two copies of an exact
sequence into the following structure:

W 0(Ω)
d−→ W 1(Ω)

d−→ W 2(Ω)
d−→ W 3(Ω)

∗ l ∗ l ∗ l ∗ l

W 3(Ω)
d←− W 2(Ω)

d←− W 1(Ω)
d←− W 0(Ω)

(116)

4.3 Exercises

1. Prove that xi ∧ xj = 0 for i 6= j.

2. Show that ωij2 = xi ∧ xj, i < j is a basis for the space of all 2-forms.

3. Compute ω1 = dx1 and ω2 = dx1 ∧ dx2 for the vectors shown on Fig.7.

4. Prove (108).

5. Prove (102).
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5 Differential forms and PDE structure

In this section we use differential forms to describe the structure of second order PDE’s.
We will consider manifolds that are open and bounded regions Ω in R3 with smooth
boundaries ∂Ω. We note that in this case TΩx is isomorphic to R3. To simplify matters
we fix the basis in R3 to be the Cartesian triple (e1, e2, e3). Finally, we assume that Ω is
contractible or star-shaped so that the De Rham complex

R ↪→ W 0(Ω)
d7−→ W 1(Ω)

d7−→ W 2(Ω)
d7−→ W 3(Ω) 7−→ 0 (117)

is exact.

5.1 Differential forms in R3 and their proxies

Recall that in three dimensions 1 and 2 exterior forms were isomorphic to R3 and that
every vector a ∈ R3 engendered the forms ωa

1 and ωa
2 according to (98)-(99). A similar

connection exists between vector fields in R3 and differential forms. With a smooth vector
field

a(x) = a1(x)e1 + a2(x)e2 + a3(x)e3 ,

we can associate the 1-form

ωa
1 = a1(x)dx1 + a2(x)dx2 + a3(x)dx3 , (118)

and the 2-form

ωa
2 = a1(x)dx2 ∧ dx3 + a2(x)dx3 ∧ dx1 + a3(x)dx1 ∧ dx2 . (119)

Therefore, vector fields in R3 serve as proxies for 1 and 2-forms. The proxies of 0 and
3-forms are scalar functions. If φ is a smooth function, then the 0-form ωφ0 is the function
φ itself, and the 3-form ωφ3 is given by

ωφ3 = φ(x)dx1 ∧ dx2 ∧ dx3 . (120)

5.1.1 Exterior derivative and grad, div and curl.

We show that exterior differentiation of a form in R3 corresponds to the application of
grad, curl or div to its proxy.

Lemma 3 Let φ and a be a given function and a vector field defined on Ω. Then,

dωφ0 = ω∇φ1 , (121)

dωa
1 = ω∇×a

2 , (122)

and
dωa

2 = ω∇·a3 . (123)
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Proof. Consider the 0-form ωφ0 . From (107)

dω0 = dφ =
∂φ

∂x1

dx1 +
∂φ

∂x2

dx2 +
∂φ

∂x3

dx3 .

Using the association (118) between a 1-form and a vector field we obtain (121).
Next, consider ωa

1 . According to (107) its exterior derivative is

dωa
1 = da1(x) ∧ dx1 + da2(x) ∧ dx2 + da3 ∧ (x)dx3

=

(
∂a1

∂x2

dx2 +
∂a1

∂x3

dx3

)
∧ dx1 +

(
∂a2

∂x1

dx1 +
∂a2

∂x3

dx3

)
∧ dx2

+

(
∂a3

∂x1

dx1 +
∂a3

∂x2

dx2

)
∧ dx3

=

(
∂a3

∂x2

− ∂a2

∂x3

)
dx2 ∧ dx3 +

(
∂a1

∂x3

− ∂a3

∂x1

)
dx3 ∧ dx1

+

(
∂a2

∂x1

− ∂a1

∂x2

)
dx1 ∧ dx2 .

The coefficients multiplying the basic 2-forms are exactly the components of ∇×a, which
proves (122).

Finally, we use (107) to compute the exterior derivative of ωa
2 :

dωa
2 = da1(x) ∧ dx2 ∧ dx3 + da2(x) ∧ dx3 ∧ dx1 + da3(x) ∧ dx1 ∧ dx2

=

(
∂a1

∂x1

+
∂a2

∂x2

+
∂a3

∂x3

)
dx1 ∧ dx2 ∧ dx3

= (∇ · a) dx1 ∧ dx2 ∧ dx3 .

2

It is now clear that the familiar vector calculus identities

∇× (∇φ) = 0 and ∇ · (∇× a)

simply represent the fundamental identity dd = 0 in terms of the proxy fields. Also,
specialized to proxies, the Stokes theorem (110) gives

φ(p)− φ(q) =

∫
l

∇φ dl where p− q = ∂l ; (124)∫
l

a · t dl =

∫
S

(∇× a) · ndS where l = ∂S (125)

and ∫
S

a · n dS =

∫
V

∇ · a dV where S = ∂V . (126)

We also have the analogue of Poincare’s lemma for the proxies.
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Theorem 9 Let a, b and φ denote two smooth vector fields and a smooth function in a
star-shaped domain Ω. If

∇× a = 0 and ∇ · b = 0 ,

then there exist smooth vector fields c, d and a smooth function ψ, such that

a = ∇ψ
b = ∇× c

φ = ∇ · d .

5.2 A differential De Rham complex in R3

From (117) we obtain the differential complex

R ↪→ C∞(Ω)
∇7−→ C∞(Ω)

∇×7−→ C∞(Ω)
∇·7−→ C∞(Ω) 7−→ 0 , (127)

by replacing forms with proxies. This complex is also exact (a fact that can be inferred
directly from the vector calculus version of Poincare’s lemma (Theorem 9)).

Remark 4 The sequence (127) will not be exact when Ω has topological peculiarities such
as holes and cycles. The values of the Betti numbers for such domains are related to the
kind and type of peculiarities:

b0 = dim
[
ker(grad , C∞(Ω))

]
gives the number of the connected components in Ω;

b1 = dim ker
[
(curl ,C∞(Ω))/grad (C∞(Ω)

]
is the number of cycles (loops) in Ω, and

b2 = dim ker
[
(div , C∞(Ω))/curl (C∞(Ω)

]
gives the number of holes.

Remark 5 The number χ(Ω) = b0 − b1 + b2 − b3 is called Euler-Poincare constant of Ω.
It is a generalization of the famous Euler-Poincare formula

Nodes− Edges + Faces− Tetrahedrals = const

for any simplicial mesh of a given domain Ω ⊂ R3.
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5.2.1 L2-based De Rham complex.

In PDE’s one has to account for various boundary conditions. We will consider a simple
situation wherein the boundary of Ω consists of a single smooth piece denoted by Γ. We
will also switch to L2 based proxies because of the importance of Sobolev spaces in PDE
analysis. Let H(Ω,grad ), H(Ω, curl ), and H(Ω, div ) denote spaces of square integrable
functions whose gradients, curls and divergences are also square integrable. As usual,
the space of all square integrable functions on Ω is denoted by L2(Ω). The De Rham
differential complex

R ↪→ H(Ω,grad )
∇7−→ H(Ω, curl )

∇×7−→ H(Ω, div )
∇·7−→ L2(Ω) 7−→ 0 , (128)

is an exact sequence of spaces. If we incorporate the boundary conditions in the spaces,
the domains of the gradient, curl and divergence, relative to Γ are

H0(Ω,grad ) = {φ ∈ H(Ω,grad ) |φ = 0 on Γ}, (129)

H0(Ω, curl ) = {u ∈ H(Ω, curl ) |u× n = 0 on Γ}, (130)

H0(Ω, div ) = {u ∈ H(Ω, div ) |u · n = 0 on Γ}, (131)

These spaces define a De Rham differential complex relative to Γ:

R ↪→ H0(Ω,grad )
∇7−→ H0(Ω, curl )

∇×7−→ H0(Ω, div )
∇·7−→ L2

0(Ω) 7−→ 0 . (132)

This complex is also an exact sequence. The assumptions made about Ω imply that the
last link in (128) and (132) is surjective.

5.3 Encoding the PDE structure: Tonti diagrams

Let (117) be an exact sequence that corresponds to the differential De Rham complex
(128). We can connect two copies of this sequence by the Hodge operator as we already
did in (116):

W 0(Ω)
d−→ W 1(Ω)

d−→ W 2(Ω)
d−→ W 3(Ω)

l l l l

W 3(Ω)
d←− W 2(Ω)

d←− W 1(Ω)
d←− W 0(Ω)

(133)

We will call the structure in (133) a primal-dual complex. It can be traversed along its
horizontal and vertical links, which corresponds to application of the exterior derivative
or the Hodge operator, respectively. In this manner we can obtain different diagrams
relating primal and dual forms.

Consider the three diagrams obtained by taking the two columns on the left,

W 0(Ω)
d−→ W 1(Ω)

l l

W 3(Ω)
d←− W 2(Ω)

(134)
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the two columns in the middle

W 1(Ω)
d−→ W 2(Ω)

l l

W 2(Ω)
d←− W 1(Ω)

(135)

and the two rightmost columns:

W 2(Ω)
d−→ W 3(Ω)

l l

W 1(Ω)
d←− W 0(Ω)

. (136)

In turns out that these three diagrams can be used to encode the structure of all linear
second order elliptic, parabolic and hyperbolic PDE’s in three dimensions; see [46] for
more details and examples with mixed boundary conditions. Throughout the literature
such symbolic representations appear under a variety of names and graphical formats.
For example, Mattiussi [65] calls them factorization diagrams. We will also use the term
Tonti diagrams after E. Tonti who first used graphical representations not dissimilar to
(134)-(136) in [76] (see also [77], [24]).

In what follows we will focus on the elliptic case and refer to Hiptmair [46], for factor-
ization diagrams of parabolic and hyperbolic equations. The three elliptic equations that
correspond to (134)-(136) can be represented by a single Tonti diagram as

ω(k−1)
d−→ (−1)kωk

∗α ↓ ↓ ∗β
f −ωn−(k−1)

d←− ω(n−k)

(137)

where k = 1, 2, 3 and f is a given source term. The diagram in (137) is more than just an
elegant way to represent equations. Using (137) and the properties of d we can infer many
facts about the invariants of the equation. Another fundamental aspect of this diagram
is that it separates topological from metric relationships in the problem. The primal and
the dual equations

dω(k−1) = (−1)kωk and dωn−k = −ωn−(k−1) + f , (138)

correspond to horizontal links in (133), i.e., they do not involve any metric relationships.
These equations are called topological field equations in [75], and equilibrium equations
in [46]. Note that the equilibrium equations are completely unrelated as they express
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topological relations that exist independently of each other on the primal and the dual
complexes. What connects them are the two equations

ωn−(k−1) = (∗α)ω(k−1) and ωn−k = (∗β)ωk (139)

that define ”constitutive” relations between the primal and the dual forms using the
Hodge operator.

Let us consider the case k = 1 and convince ourselves that (137) does indeed recover a
familiar PDE problem. The primal equation involves the forms ωφ0 and ωv

1 with proxies φ
and v, respectively. The dual equation uses the forms ωw

2 and ωψ3 with proxies w and ψ,
respectively. Finally, expressed in terms of the proxies, the action of the Hodge operators
amounts to a scaling of the fields connected by a constitutive equation. As a result,
translating (137) into proxy equations gives the diagram

φ
∇−→ −v

ψ = αφ ↓ ↓ w = βv

f −ψ ∇·←− w

(140)

where for simplicity we have assumed constant “material” properties. Therefore, in terms
of proxies the horizontal links in (137) correspond to the differential equations16

∇φ = −v and ∇ ·w = −ψ + f ,

while the vertical links provide the constitutive relations

ψ = αφ and w = βv .

Using the constitutive equations we can eliminate either the dual or the primal proxy
fields. In the former case we obtain the first-order system

∇ · βv + αφ = f and v +∇φ = 0 in Ω

φ = 0 on Γ .
(141)

If we proceed to further eliminate v from (141), the result is the second order problem

−∇ · β∇φ+ αφ = f . (142)

For β = 1 and α = 0 the problem (142) and the system (141) are exactly the Poisson
equation (10) and its first-order form (11).

We leave it as an exercise for the reader to convert the cases k = 2, 3 to PDE’s in
terms of the proxy fields and to carry out the elimination. The result is a curl-curl and
grad-div type second order PDE’s.

16In [65] Mattiussi refers to the first equilibrium equation as the kinematic equation and calls the second
one balance equation.

50



6 Application to discretization of PDE’s

Tonti diagrams are a succinct representation tool for encoding PDE structure. If we agree
that preserving this structure is important, or at least not harmful for the approximation
of the PDE, then compatible discretization can be viewed as the process of creating dis-
crete analogues of Tonti diagrams. Such a discretization paradigm requires two principal
ingredients:

1. two sets {W k
h (ω)} and {Ŵ k

h (Ω)} of primal and dual discrete differential forms that

are exact with respect to the operations dh and d̂h;

2. a discrete Hodge operator

∗hk : W k
h (ω) 7→ Ŵ

(n−k)
h (Ω)

that connects the primal and the dual spaces.

We will see that stable and conforming discretizations of problems like (141) do ad-
here to this paradigm, regardless of the particular method chosen to define the algebraic
equations. In other words,

strategies that are able to account for the structure of the PDE encoded by its
Tonti diagram lead to stable FD, FV and FE methods.

In contrast, discretizations that violate one or more tenets of this paradigm are not in-
herently stable and require stabilizing modifications in order to work.

Bossavit was among the first to realize this in the context of finite element discretiza-
tions of the Maxwell’s equations; see [16], [17] and [18]. In terms of our diagrams this is
the middle section of (133), i.e, the case k = 2 in (137). This work was followed by Mat-
tiussi who in [65] used ”factorization” diagrams, essentially equivalent to the diagrams
presented here, to study FE, FV and FD methods for thermostatics, i.e., a problem whose
structure is encoded by (137) for k = 1. Further development and generalization of these
ideas was provided by Hiptmair in his fundamental work on discrete Hodge operators [46].

Our presentation will draw upon these and other sources with the primary goal being
to expose the common structural properties of compatible discretizations. Thus, at the
moment we will intentionally leave the definition of {W k

h (ω)}, dh, {Ŵ k
h (Ω)}, and d̂h vague

and return to it whenever we discuss particular examples.

6.1 Compatible discretization

Let n(k) and n̂(k) denote the dimensions of W k
h (ω) and Ŵ k

h (ω), respectively. Since ∗hk
is a mapping between two finite dimensional spaces it must have the form of a matrix
relation. Hiptmair pointed out in [46], that a generic form of this operator is given by the
equation

Mωhk = Kω̂h(n−k)
where M is n(k)×n(k) symmetric ”mass” matrix and K is a rectangular n(k)× n̂(n− k)
matrix. Using {W k

h (ω)}, {Ŵ k
h (Ω)} and the discrete Hodge operator we define the discrete

primal-dual complex

51



W 0
h (Ω)

dh−→ W 1
h (Ω)

dh−→ W 2
h (Ω)

dh−→ W 3
h (Ω)

∗h0 ↓ ∗h1 ↓ ∗h2 ↓ ∗h3 ↓

Ŵ 3
h (Ω)

d̂h←− Ŵ 2
h (Ω)

d̂h←− Ŵ 1
h (Ω)

d̂h←− Ŵ 0
h (Ω)

(143)

Each one of the primal and dual sequences in (143) is a model for a ”discrete vector
calculus” where many results such as the Stokes formula (110) hold true exactly. Then,
a compatible discretization of a problem represented by the Tonti diagram (137) can be
defined by a discrete version of this diagram built on the discrete complex (143):

ωh(k−1)

dh−→ (−1)kωhk

∗h(k−1) ↓ ↓ ∗hk
f −ωhn−(k−1)

d̂h←− ωh(n−k)

(144)

The diagram (144) represents a generic discretization template that maps the PDE struc-
ture onto discrete spaces. An important feature of this template is that the discrete
equilibrium equations will be satisfied exactly as long as W k

h (ω) and Ŵ k
h (ω) are exact

with respect to dh and d̂h. This means that any discretization based on (144) will also
imitate the conservation properties that are inherent to (137).

6.1.1 Discrete differential forms

We present examples of discrete differential complexes that commonly arise in the dis-
cretization of PDE’s. Our main interest is in discretization techniques that involve par-
titioning of Ω into small subdomains. Thus, we will assume that Ω can be represented
exactly by a family of 3-chains, parametrized by h:

Ω = Ch
3 =

∑
miKi .

The number h−1 is assumed to be proportional to the number of the 3-cells Ki in the
chain, not counting their multiplicities.

Cochain complex. The first example of a discrete differential complex uses co-chains
to approximate differential forms. It is representative of the type of discretization that
one encounters in finite difference and finite volume methods. We call this type of dis-
cretizations direct because they arise from approximation of forms rather than their field
proxies. As a result, the fields in direct discretizations are represented in a ”cell-wise”
sense by values assigned to the p-cells of Ch

3 .
To fix ideas let Ω be the unit cube K3 in R3 and let Ch

3 = K3. Therefore, our chain
contains only one 3-cell, six 2-cells (the faces K2

i ), twelve 1-cells (the edges K1
i ) and

eight 0-cells (the nodes K0
i ). We number and orient the 0,1,2-cells as shown on Fig.11,

and assume “source” orientation for K3 The orientations are important for the correct
calculation of the boundary and co-boundary operators. For example,

∂K3 = −K2
1 +K2

2 +K2
3 −K2

4 −K2
5 +K2

6 ,
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Figure 11: Numbering and orientation of 0,1 and 2-cells in a hexahedral.

the boundary of the bottom face is

∂K2
1 = K1

1 +K1
2 −K1

3 −K1
4 ,

the boundary of the top face is

∂K2
2 = K1

9 +K1
10 −K1

11 −K1
12 ,

the boundary of the sixth edge is

∂K1
6 = K0

2 −K0
6 ,

and similarly for the rest of the cells.
A form ωp is represented on C3

h by its ”fluxes”

Fω(K
p
i ) =

∫
Kp

i

ωp

defined on the p-cells. These fluxes generate a finite dimensional set

W p
h = {Fω(Kp

i )}

which we earlier identified with the p-cochain. Thus, we have four sets W p
h that approx-

imate differential forms of orders 0,1,2 and 3 on the chain C3
h. Now it is necessary to

define an operator dh : W p
h 7→ W

(p+1)
h that will represent exterior differentiation on the

cochain complex. To define this operator we apply the Stokes formula (110). Let K
(p+1)
i

be a p-cell, p = 0, 1, 2 and let

∂K
(p+1)
i =

∑
j

mjK
p
j ,

be the boundary of this cell. Then, by (110)∫
K

(p+1)
i

dωp =

∫
∂K

(p+1)
i

ωp . (145)
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Both the form and its derivative are represented on the chain by their fluxes:

ωp 7→ {Fω(Kp
i )} and dωp 7→ {Fdω(K(p+1)

i )} .

Therefore, (145) can be restated as

Fdω

(
K

(p+1)
i

)
=

∫
K

(p+1)
i

dωp =

∫
∂K

(p+1)
i

ωp =
∑
j

mj

∫
Kp

j

ωp =
∑
j

mjFω(K
p
j ) .

Therefore, the action of the exterior derivative on W p
h is given by

d{Fω(Kp
i )} =

∑
j

mjFω(K
p
j ) 7−→ K

(p+1)
i . (146)

where Kp
j are the boundary cells of K

(p+1)
i . This formula provides us with a well-defined

operator dh : W p
h 7→ W

(p+1)
h . This operator coincides with the coboundary operator. We

also note that dhdh = 0, as desired from an exterior derivative.
Obviously, dh can be expressed in matrix form. The rows of the matrix that represents

dh : W p
h 7→ W

(p+1)
h will contain the multiplicities of the boundary pieces that form a

(p + 1)-cell. For example, for the chain in Fig.11, dh : W 1
h 7→ W 2

h is given by the 6 × 12
matrix

C =



1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 −1 −1

1 0 0 0 −1 1 0 0 −1 0 0 0

0 0 1 0 0 0 1 −1 0 0 −1 0

0 0 0 1 −1 0 0 1 0 0 0 −1

0 1 0 0 0 −1 1 0 0 −1 0 0


This matrix corresponds to a curl. The mapping dh : W 2

h 7→ W 3
h is given by the 1 × 6

matrix
D =

(
−1 1 1 −1 −1 1

)
,

which corresponds to divergence. It is easy to see that DC ≡ 0. The matrix C is the
edge-face mesh incidence matrix, and D is the face-cell incidence matrix. We also have the
node-edge matrix G with the property CG = 0. This matrix represents dh : W 0

h 7→ W 1
h .

G, C and D depend only on the mesh connectivity and they will not change if the chain
is deformed without changing its connectivity.

The strategy outlined above can be extended to chains of more than one 3-cell in an
obvious manner. The W p

h spaces are defined by the p-cochains, i.e., they represent forms
by their fluxes on the p-cells. The coboundary operator then serves to define an exterior
differentiation for W p

h . It is also clear that this type of construction does not depend on
the particular kind of cells used to form the chain.

Another important observation about the spaces and operations defined by cochains
and coboundary operators is their complete metric independence. The definition of the
exterior derivative depends only on the chain connectivity and not on the shapes of the
cells in the chain. Thus, a deformation of the space that leaves the mesh connectivity
intact will not change the definition of the exterior derivative. However, if a cell is broken
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Figure 12: Mimetic complex.

into several smaller cells, or if new cells are added to the chain, d will change to a new
operator.

For discretizations based on meshing, i.e., representation of the domain by finite chains,
approximation of differential forms by cochains is almost an automatic choice. Its wide
applicability to describe FE, FV and FD schemes was perhaps first realized and exploited
by Mattiussi in [65]. In a recent work by Gross and Kotiuga [42], simplicial cochains
and duality were used to develop a data structure for tetrahedral finite element meshes.
Because of the universality of this principle it can be found either implicitly or explicitly
in many existing discretization schemes. Examples of implicit applications are the direct
discretization methods for electromagnetics [68], [69], mimetic methods [52], [53] and
methods such as Yee’s FDTD scheme [83] and FIT methods; see [79]. Methods that rely
explicitly on differential forms formalism are usually dubbed ”lattice vector calculus”, or
”lattice theories”, see [72], [75], [74], and the references therein. Below we consider one
popular example of implicit application of differential forms in discretizations of PDE’s.

Mimetic complex. Mimetic finite differences (see [53], [54], [52], and [55]) provide a
”discrete vector calculus” structure on logically rectangular grids or unstructured tetra-
hedral meshes. They can be considered as a particular example of the cochain complex
discussed above.

A mimetic complex on a hexahedral mesh consists of four finite dimensional spaces,
denoted by HN , HL, HS and HC, respectively, and operators

GRAD : HN 7→ HL, CURL : HL 7→ HS, DIV : HS 7→ HC .

The spaces HN and HC are used to represent scalar functions by their nodal and cell
center values respectively. HL and HS represent vector fields by their projections to the
edges and to the normals to the faces of the mesh, respectively; see Fig.12. Thus, mimetic
variables are ”samples” of the proxy fields rather than fluxes.

Mimetic operators are defined using the coordinate-independent characterizations

l · gradφ(x) = lim
Length(l) 7→0

∫
∂l

φ dl

Length(l)
,

n · curl a(x) = lim
Area(S) 7→0

∫
∂S

a · t dl

Area(S)
,
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div a(x) = lim
Vol(K) 7→0

∫
∂K

a · n dS

Vol(K)
,

of the gradient, curl and divergence. For example, on a hexahedral K3 with faces num-
bered as in Fig.11,

DIV|K3 =
1

Vol(K3)

(
− A1a1 + A2a2 + A3a3 − A4a4 − A5a5 + A6a6

)
where ai is the component of an HS vector on face K2

i and Ai is the area of this face.
The connection between the mimetic divergence and the coboundary operator is clear. If

V = Vol(K3) and A = diag (A1, A2, A3, A4, A5, A6)

we have that
V(DIV) = D A ,

where D is the face-cell incidence matrix defined earlier. The matrices A and V represent
the cell measures that are needed for the conversion of the mimetic variables to fluxes.
The mimetic CURL is related to C by a similar formula. Note that if mimetic variables
are redefined to represent fluxes, then definition of mimetic operators will coincide with
the coboundary. In this case GRAD, CURL and DIV will coincide with G, C and D,
respectively.

Finally, it is not hard to verify that

HN
GRAD7−→ HL

CURL7−→ HS
DIV7−→ HC (147)

is an exact sequence. This is equivalent to a validity of Poincare lemma (CURL a = 0
iff a = GRADφ, and DIV a = 0 iff a = CURLb), and a Stokes theorem in the mimetic
complex; see [55].

Whitney complex. Cochains and mimetic differences are examples of direct discretiza-
tions of differential forms. They replace a p-form by its p-cochain using either a sampling
of its p-fluxes or its p-proxies on a p-chain. For direct discretizations proxy fields can
be identified with ”grid” functions that live on the p-cells of the mesh but are otherwise
undefined. Also, in direct discretizations the action of the exterior derivative on p-forms
is replaced by the action of coboundary on p-cochains.

A functional approach does not replace a p-form by a p-cochain. It uses the cochain
to define a finite expansion of the proxy field in terms of some simple basis functions.
Therefore, a functional approach does lead to an internal (conforming) approximation
of W p(Ω) in the sense that it creates a proper subspace W p

h (Ω) ⊂ W p(Ω) of differential
forms. A fundamental consequence from this fact is that the resulting discrete spaces
inherit the exterior differentiation from W p(Ω). This approach is representative of the
type of discretization that arises from the application of finite element techniques.

As an example of a functional approximation we will consider the Whitney complex.
This complex is defined on n-simplices and below we briefly review some of the relevant
notions.
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1-simplex 2-simplex 3-simplex

vertex

face

Figure 13: n-simplices in 1D, 2D and 3D

Definition 9 n-simplex. A set of n + 1 points {zi}n+1
i=1 in Rn is called n-simplex if the

matrix 
z1,1 z1,2 z1,3 . . . z1,n z1,n+1

z2,1 z2,2 z2,3 . . . z2,n z2,n+1

. . . . . . . . . . . . . . . . . .
zn,1 zn,2 zn,3 . . . zn,n zn,n+1

1 1 1 . . . 1 1


is non-singular.

The points zi are called vertices of the simplex. Fig.13 shows examples of 1,2 and 3-
simplices. An n-simplex induces a local barycentric coordinate system.

Definition 10 Let x ∈ Rn and let Kn be an n-simplex with vertices {zi}n+1
i=1 . The unique

solution {λi(x)}n+1
i=1 of the linear system

λ1z1,1 + . . .+ λn+1z1,n+1 = x1

λ1z2,1 + . . .+ λn+1z2,n+1 = x2

. . . . . . . . . (148)

λ1zn,1 + . . .+ λn+1zn,n+1 = xn

λ1 + . . .+ λn+1 = 1 .

is called barycentric coordinates of x relative to Kn.

From (148) we see that

n+1∑
i=1

λi(x) = 1 and x =
n+1∑
i=1

λi(x)zi .

Other properties of barycentrics are that

• λi are linear functions of x:

λi(
m∑
j=1

αjxj) =
m∑
j=1

αjλi(xj); (149)
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• each barycentric equals 1 at exactly one vertex and is zero at all other vertices:

λi(zj) = δij. (150)

In [82] Whitney used barycentric coordinates to define differential forms on simplices.
He associated 0-forms with λi. Then, for an arbitrary k-simplex {zi}k+1

i=1 he defined the
k-form

ωk = k!
k+1∑
j=1

(−1)j−1(λm) dλ1 ∧ . . . dλm−1 ∧ dλm+1 ∧ . . . ∧ dλk .

In three dimensions the Whitney forms associated with the nodes K0
i , edges K1

ij, faces
K2
ijk and tetrahedrals K3

ijkl are

ω0 = λi

ω1 = λidλj − λjdλi
ω2 = 2(λidλj ∧ dλk + λjdλk ∧ dλi + λkdλi ∧ dλj)
ω3 = 6(λidλj ∧ dλk ∧ dλl + . . .+ λldλi ∧ dλj ∧ dλk)

The proxies associated with these forms are given by (see the Exercises)

w0 7−→ λi

w1 7−→ λi∇λj − λj∇λi
w2 7−→ 2(λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj)
w3 7−→ 6Vol(K3

ijkl)

These proxies span functional spaces W p
h (Ω) which we will identify with the Whitney

complex of differential forms. The space W 0
h (Ω) turns out to be exactly the Lagrangian

nodal finite element space P 1 on tetrahedrals that has been in the arsenal of finite element
methods since their inception. The space W 3

h (Ω) is also familiar - it contains functions
that are constants on each tetrahedral. The remaining two members of the Whitney
complex also correspond to finite element spaces, although they were introduced to the
finite element community much later.

The Whitney spaceW 2
h (Ω) was rediscovered in 1977 by Raviart and Thomas [71] in R2.

The space W 1
h (Ω) was rediscovered in 1980 by Nedelec [66]. This explains the popular

monikers Raviart-Thomas (RT) and Nedelec spaces that are widely used in the finite
element community. Another popular term is face and edge elements that is derived from
the locations of the degrees of freedom for these spaces. These locations are consistent
with the fact that edge elements are proxies of 1-forms and face elements are proxies of
2-forms. Originally RT and Nedelec elements were given in coordinate-dependent forms
as

ax + b and a× x + b ,

respectively. From these formulas it is not very easy to make a connection between face
and edge elements and 2 and 1-forms. This connection was made in 1984 by R. Kotiuga
in his thesis [60].
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Because each Whitney space is a proper subspace of some differential forms space,
W p
h (Ω) simply inherits the exterior derivative from the former. As a result, the Whitney

complex

R ↪→ W 0
h (Ω)

∇7−→ W 1
h (Ω)

∇×7−→ W 2
h (Ω)

∇·7−→ W 3
h (Ω) 7−→ 0 , (151)

is exact and provides conforming approximation of the L2-based differential De Rham
complex (128). In finite elements transition from infinite dimensional spaces to their
conforming subspaces is effected by interpolation operators I0

h : H(Ω,grad ) 7→ W 0
h (Ω),

I1
h : H(Ω, curl ) 7→ W 1

h (Ω), I2
h : H(Ω, div ) 7→ W 2

h (Ω), and I3
h : L2(Ω) 7→ W 3

h (Ω). These
operators are defined by the degrees of freedom in each space. I0

h is the standard Lagrange
nodal interpolant. I3

h is the L2 orthogonal projection into the piecewise constant space.
The other two interpolants project fields by using as degrees of freedom their circulations
along the edges and fluxes across the faces of the simplicial mesh. These interpolants
connect the Whitney complex and (128) in a structure

H(Ω,grad )
∇−→ H(Ω, curl )

∇×−→ H(Ω, div )
∇·−→ L2(Ω)

↓ ↓ ↓ ↓

W 0
h (Ω)

∇−→ W 1
h (Ω)

∇×−→ W 2
h (Ω)

∇·−→ W 3
h (Ω)

(152)

that resembles the primal-dual complex (133). This structure forms a commuting diagram
in the sense that in it applications of interpolation and differentiation commute. It turns
out that this diagram embodies the stability conditions required by finite element methods
based on stationary variational principles (mixed methods).

Analogues of the Whitney complex that have the same commuting diagram property
exist for other types of elements, including hexahedrals, prisms, and pyramids; see [67],
[78]; [23], and [13] for some examples. Exact sequences of hp finite elements were developed
by Demkowicz et.al. [30], and in [45] Hiptmair formulated a general method for building
exact sequences of affine finite element spaces.

One may wonder why it took so long for the finite element community to embrace shape
functions other than the traditional Lagrangian nodal elements, when at the same time
staggered discretizations were prevalent in electromagnetics, conservation laws and fluid
dynamics. Perhaps the main cause is that finite elements were conceived in a continuum
mechanics setting as a Rayleigh-Ritz approximation defined over piecewise polynomial
spaces. There, nodal elements are the appropriate tool to approximate displacements
and forces. However, this made finite elements ”node”-centric and delayed their success
in settings where nodal elements are not appropriate. On the positive side, the troubles
experienced by finite elements in such settings provided the impetus for the explosive
development of alternative formulations such as stabilized Galerkin methods, least-squares
finite elements and Discontinuous Galerkin methods.
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6.1.2 Exercises

1. Write the matrix G that represents d : W h
0 7→ W h

1 on the chain from Fig.11 and
verify that CG = 0.

2. Find matrices G, C and D for a chain consisting of two hexahedrals.

3. Find matrices G, C and D for a chain consisting of one 3-simplex.

4. Show that
λidλj − λjdλi = ω

(λi∇λj)
1 − ω(λj∇λi)

1

i.e., the proxy of ω1 is indeed λi∇λj − λj∇λi.

5. Verify the formula for the proxy of ω2. Hint: show that

λidλj ∧ λk = ω
(λi∇λj×∇λk)
2 .

6. Draw λi∇λj and λi · ∇λj ×∇λk.

6.2 Discretization patterns

In the realization of the compatible discretization paradigm (144) finite element, finite
volume and finite difference methods rely upon different types of discrete differential com-
plexes. Internal (conforming) approximations are typical for finite elements, while finite
volume and finite difference methods use direct approximations related to the cochain
complex. Notwithstanding the technical distinctions between these methods, realizations
of (144) fall into two broad patterns which we call, following Hiptmair [46], primal-dual
and elimination, respectively. These patterns are discussed next, using specific examples
of discretization techniques to illustrate them. To highlight the perseverance of (144)
across compatible discretizations we use the same model problem (84) throughout the
discussion. The generic compatible discretization of this problem is given by the factor-
ization diagram

φh
∇h

−→ −vh

ψh = (∗h0,α)φh ↓ ↓ wh = (∗h1,β)vh

f −ψh (∇·)h

←− wh

(153)

6.3 Primal-dual pattern

In a primal-dual method we implement the two equilibrium equations using two separate
(but not necessarily distinct) differential complexes. Therefore, each horizontal link in
(153) lives in its own complex and is connected to the other link by a discrete Hodge
operator. This also means that we have two sets of variables to approximate.
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Figure 14: Primal-dual grids: Voronoi-Delauney (left), PEBI (center); Median Bisector
(right).

Figure 15: Discretization on topologically dual grids: grid fragment (left) and discrete
Hodge operator (right)

6.3.1 Methods on dual grids

In principle, the two differential complexes can be defined on completely unrelated meshes.
In practice, the two meshes cannot be too different because their approximation properties
must remain close. One important example arises in methods that use topologically dual
grids. In such grids each p-cell from the primal mesh corresponds to a (n− p)-cell on the
dual mesh; see [46] for a precise definition.

As a result, in topologically dual grids primal and dual variables enjoy a one-to-one
relationship. Examples of such grids are Voronoi-Delauney triangulations, and perpendic-
ular bisector grids on rectangles shown in Fig.14. Note that in the former case the primal
grid is simplicial while the dual one is not. Not every primal-dual grid combination is
topologically dual. The median bisector grid, shown in Fig.14, is one example.

To illustrate implementation of (153) on topologically dual grids consider the fragment
of the grid complex shown in Fig.15. In this case the primal and the dual grids consist of
the same type of rectangular cells and the one-to-one relationship is given by

primal node ←→ dual cell center

primal edge ←→ dual face
(154)

We implement (153) using this grid complex as follows. The primal equation is placed on
the primal mesh where φ and v are approximated by W 0

h and W 1
h spaces, respectively.

There, for each primal edge K1
ij with nodes K0

i , K
0
j and ∂K1

ij = K0
i − K0

j , we have the
discrete equation

−vhij = φhi − φhj .
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The dual equation is placed on the dual mesh where w and ψ are approximated by Ŵ 2
h

and Ŵ 3
h , respectively. If the dual cell is oriented so that ∂K̂ = K2

R−K2
L+K2

T −K2
B, then

on this cell we have the equation

fh − ψh
K̂

= wh
R −wh

L + wh
T −wh

B .

Thanks to (154) each primal variable corresponds to a dual one and the two equations
are connected by the constitutive relations

ψh
K̂

= αφhi and wh
K̂2 = βvhK1 .

i.e., the discrete Hodge operator amounts to simple scaling of the primal variables. Using
this relations we could have eliminated, say the dual variables, to obtain a set of equations
in terms of φh and vh only. These equations are representative of the type of equations one
gets from the box integration co-volume method, or a staggered finite difference method.
We see that in these methods the placement of the variables is implicitly guided by the
structure of the first-order Poisson equation revealed in (153).

6.3.2 Primal-dual finite element method

A notable advantage of topologically dual meshes is the simplicity of the discrete Hodge
operator. The fact that each primal variable has a corresponding dual variable provides
for a clear-cut, unambiguous connection between the two equilibrium equations. However,
topological duality exacts a toll on the generality of the mesh. For example, if the primal
mesh consists of unstructured quadrilaterals or hexahedrals, the dual median bisector
mesh is not topologically dual. In Voronoi-Delauney partitions one has also to impose
conditions on the dihedral angles in order to ensure that each primal tetrahedral node lies
in exactly one co-volume; see [68], [69].

As a result, when problem and domain features call for highly unstructured meshes, the
use of topologically dual grids may become unfeasible. In such cases a viable alternative
is to consider the use of the same differential complex for both equilibrium equations.
Below we illustrate this idea using the Whitney complex (151).

To implement the primal equation in (153) we choose W 0
h (Ω) to approximate φ and

W 1
h (Ω) to approximate v. To implement the dual equation we use W 2

h (Ω) for w and
W 3
h (Ω) for ψ. In other words, φ and v are approximated by nodal and edge (Nedelec)

elements, while w and ψ are approximated by face (RT) and discontinuous elements.
In contrast to a primal-dual method now all variables live in the same complex albeit

in different parts. As a result, these variables cannot be connected by the same bijective
relationship enjoyed by the topologically dual grids. The algebraic reason for this is clear
- dimensions of Whitney spaces equal the numbers of nodes, edges, faces and cells in
the mesh and these are different from each other. From a functional perspective the
absence of a simple one-to-one relationship between different Whitney spaces is caused
by the different continuity properties of these spaces. The nodal space W 0

h (Ω) contains
continuous functions and serves as a domain for the gradient. The space W 1

0 (Ω) is curl-
conforming and contains functions that are continuous along the edges but can jump across
the faces. In contrast, the face element space contains functions that are continuous across
the faces but may jump along the edges of the mesh.
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Thus, the price that we have pay for the ability to use arbitrary grids is reflected in the
lack of a ”free” discrete Hodge operator. To connect the primal and the dual components
of (153) it is now necessary to define this operator in some way. We propose to do this
by using a least-squares minimization process that penalizes the discrepancy between the
primal and the dual fields. The equilibrium equations then become linear constraints
that must be satisfied by the minimizers of this functional. Therefore, we are led to the
constrained optimization problem:

seek (φh,vh,wh, ψh) in W 0
h (Ω)×W 1

h (Ω)×W 2
h (Ω)×W 3

h (Ω) such that

J (φh,vh,wh, ψh) =
1

2

(
‖ψh − αφh‖20 + ‖wh − βvh‖20

)
7→ min (155)

subject to

∇φh = −vh and ∇ ·wh = −ψh + f . (156)

In this problem the discrete Hodge operators

(∗h0,α) : W 0
h (Ω) 7→ W 3

h (Ω) and (∗h1,β) : W 1
h (Ω) 7→ W 2

h (Ω)

are defined implicitly via the optimization process. We can think of these operators
as being least-squares projections from nodal to discontinuous and from edge to face
elements, respectively.

It is possible to solve (155)-(156) by using Lagrange multipliers to enforce the con-
straints. However, a better strategy, that also reduces the number of variables, is to note
that the constraint equations can be satisfied exactly in the spaces chosen for φh, vh, ψh

and wh. Therefore, we can use the equilibrium equations to eliminate ψh and vh, and to
obtain a least-squares minimization problem in terms of φh and wh only:

min
W 0

h×W
2
h

1

2

(
‖f −∇ ·wh − αφh‖20 + ‖wh + β∇φh‖20

)
. (157)

The least-squares problem (157) represents a realization of (153) with a particular choice
for the discrete Hodge operator. An interesting feature of (157) is the cross-elimination
pattern that leads to a problem expressed in terms of one primal and one dual variable.
In the next section we will see examples of a different elimination strategy that results in
a mixed finite element method. Problem (157) remains meaningful for α = 0 as well.

Remark 6 The minimization problem (157) was first proposed by Jesperson in [56] and
subsequently used by many others in the least-squares community; see [27], [57], [25].
However, these references adopt a ”node-centric” point of view and implement (157), or
some augmented versions of it, using nodal elements, i.e., W 0

h (Ω), for the approximation
of all unknowns. Our example shows that with a simple change in spaces the least-squares
formulation can be turned into a compatible discretization. This least-squares method is
conservative in the sense that the computed least-squares solution satisfies the equilibrium
equations (156) exactly.
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6.4 Elimination pattern

In primal-dual methods both equilibrium equations are satisfied exactly because they
occupy the correct locations on logically distinct discrete differential complexes. This
is a sensible choice when we trust the equilibrium equations more than the constitutive
relations and seek to preserve the qualitative features of the model. For instance, in a
Darcy flow we would have the constitutive relation

w =
κ

µ
v ,

where κ and µ are permeability and viscosity of the medium, respectively. Their val-
ues may be known only approximately and there’s no reason to enforce such uncertain
information firmly in the model. A method like (155) can maintain exactness on the
equilibrium side while relaxing imprecise constitutive relation.

When we trust both the equilibrium equations and the constitutive relation, topologi-
cally dual meshes are the best choice because they allow to maintain all three relationships
exactly. But if such a mesh is not feasible, and we still want to satisfy the constitutive
relation, one of the equilibrium equations must be sacrificed. The reason is that a single
mesh cannot support all three relations at the same time, a fact that we have already
discussed in the context of Whitney spaces.

We can decide which equilibrium equation to relax based on the modeling goals. If a
”kinematic” relationship like ∇φ = −v is considered less important than preserving the
mass balance in ∇ · w = f , then we can proceed to eliminate the primal variables from
(153). This type of methods is illustrated next.

6.4.1 Mixed finite element method

We want to implement (153) using the Whitney complex. The goal is to enforce exactly
the balance equation in (140) (the bottom link in this diagram), and the constitutive
relation (the two vertical links in (140)) The first task can be accomplished by using
W 2
h (Ω) and W 3

h (Ω) to approximate w and ψ, respectively. The two constitutive relations
are enforced strongly by the elimination of the primal variables:

φ =
1

α
ψ and v =

1

β
w .

After elimination, the factorization diagram takes the form

ψh

α
∇h=?. . . . . . −wh

β

φh = ψh/α ↑ ↑ vh = w/β

f −ψh (∇·)←− wh

. (158)

The absence of an h in the derivative designation along the bottom link indicates that this
equation is exact. The dotted line and the question mark along the top link signify the
fact this link has been broken in the sense that exterior differentiation acts in the ”wrong”
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direction relative to W 3
h (Ω) and W 2

h (Ω). Indeed, elimination of the primal variables has
led to approximation of the 0-form φ by the 3-form ψh/α, and the 1-form v by the 2-
form wh/beta. This combination of spaces is inconsistent with the action of the exterior
derivative as a mapping from p-forms into (p+ 1) forms. In finite elements we also speak
of non-conforming discretizations. The space W 3

h (Ω), used for φ, is only a subspace of
L2(Ω) and not H(Ω,grad ) and the action of the gradient is not determined there.

In finite elements this situation is circumvented by recasting the offending equation
into a weak form, i.e., by shifting the derivative to the other variable using integration by
parts. If we now write both equations in weak form, as is the custom in finite elements,
we obtain the variational equation:

seek (wh, ψh) ∈ W 2
h (Ω)×W 3

h (Ω) such that∫
Ω

wh · uh dΩ +

∫
Ω

ψh∇ · uh dΩ = 0∫
Ω

(∇ ·wh)ξh dΩ =

∫
Ω

(f + ψh)ξh dΩ

(159)

for all (uh, ξh) ∈ W 2
h (Ω)×W 3

h (Ω).

It is easy to see that the second equation in (159) is a simple algebraic relation. A basis
function for W 3

h (Ω) is a piecewise constant that equals one on one element and zero on
all other elements. As a result, we can write the second equation as∫

K

∇ ·wh dΩ =

∫
K

f + ψh dΩ , ∀K ⊂ Ch
3 .

This is equivalent to
∇ ·wh = fh + ψh ,

where fh is the L2 projection of the source term into W 3
h (Ω).

6.4.2 Mixed mimetic method

It is instructive to compare the mixed finite element method (159) with a mimetic scheme
based on the same elimination of the primal variables. Assuming that we have eliminated
φ and v a mimetic scheme that maintains the exact balance equation will use HS to
approximate w and HC to approximate ψ. This puts us in a situation much like the one
depicted in (158), in fact we can draw almost the same factorization diagram but set in
mimetic spaces:

ψh

α
?. . . . . . −wh

β

φh = ψh/α ↑ ↑ vh = wh/β

f −ψh DIV←− wh

(160)

The question mark again signifies the absence of a natural mimetic operator that will act
as an exterior derivative from HC to HS. Mimetic methods solve this problem using a
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trick that is very similar to the one employed by finite elements. The difference is that
missing operator, denoted by GRAD, is defined to be the adjoint of DIV, i.e., ”integration
by parts” is carried with respect to the mimetic inner product rather than the L2 inner
product. At first, this difference may seem superficial since finite element bases also induce
a discrete inner product. However, the finite element inner product becomes undefined for
degenerate cells because the mapping between computational and reference frames breaks
down, while a mimetic inner product can still be defined for such cases; see [54]. This
procedure can be repeated for GRAD and CURL so as to define their adjoint mimetic
counterparts DIV : HL 7→ HN and CURL : HS 7→ HL; see [54].

To summarize, we have the original mimetic complex

HN
GRAD7−→ HL

CURL7−→ HS
DIV7−→ HC

and its ”adjoint” counterpart

HN
DIV←− HL

CURL←− HS
GRAD←− HC .

Using these two complexes we obtain the mimetic ”factorization” diagram

ψh

α

GRAD−→ −wh

β

φh = ψh/α ↑ ↑ vh = w/β

f −ψh DIV←− wh

(161)

that defines a ”mixed” mimetic method for (84). For more details about this method and
its properties we refer to [39].

7 Application to stability of discretizations

Let us examine again the weak problem

seek (v, φ) ∈ H(Ω, div )× L2(Ω) such that∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ = 0∫
Ω

ξ∇ · v dΩ =

∫
Ω

fξ dΩ

(162)

for all (w, ξ) ∈ H(Ω, div )× L2(Ω).

and its mixed finite element discretization

seek (vh, φh) ∈ V h × Sh such that
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∫
Ω

vh ·wh dΩ−
∫

Ω

φh∇ ·wh dΩ = 0∫
Ω

ξh∇ · vh dΩ =

∫
Ω

fξh dΩ

(163)

for all (wh, ξh) ∈ V h × Sh.

We were led to (163) by three different paths:

• in Section 1.3 a Galerkin principle gave us (162) as one of the possible weak forms
of (11) and (163) as a discretization of this form;

• in Section 3.2 we derived (162) and (163) from a saddle-point optimization problem
and its first-order necessary condition;

• in Section 6.4.1 we obtained (163) from a factorization diagram that expressed (84)
in terms of differential forms.

Stability of a Galerkin formulation is governed by the two generalized inf-sup condi-
tions (43)-(44) in Theorem 3. The very general nature of these conditions makes them a
poor guide for the identification of potential stable pairs of finite element spaces. Stability
of a saddle-point approximation is governed by the conditions stated in Theorem 6. These
conditions are more specific than those stated in Theorem 3. Thus, by accounting for an
important variational aspect of (162) we were able to obtain a more precise characteriza-
tion of the well-posedness of (163). Unfortunately, this doesn’t make the task of finding
stable spaces anymore easier because (64) remains rather vague about the traits that
must be present in such spaces. As a result, for many years the search for stable elements
was conducted by a trial and error approach, wherein a list of candidate spaces would
be drafted and checked against the inf-sup condition. Perhaps, the best example that
illustrates the limitations of this approach is linear elasticity where stable pairs eluded
researchers for well over three decades; see [6].

It turns out that there exists a fundamental connection between the topological prop-
erties encoded in a DeRham complex and stability of mixed approximations to stationary
problems. The single most important consequence from this fact is that knowledge of
the complex’s structure can be used to identify finite element spaces that will provide
stable and accurate approximations of saddle-point problems. This connection was used
by Arnold and Winther [5] to resolve the long standing problem of finding stable finite
element spaces for elasticity.

Below we will use the Kelvin principle and the associated first-order Poisson problem
to illustrate the correlation between numerical stability of stationary problems and dif-
ferential complexes. We begin with the commuting diagram property of [31] and then
proceed to discuss the grid decomposition property of Fix et. al. [36].
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7.1 The commuting diagram property

Let us first show that (162) is a well-posed problem. We need to verify the assumptions
of Theorem 5 for V = H(Ω, div ), S = L2(Ω),

a(v,w) =

∫
Ω

v ·w dΩ and b(φ,v) =

∫
Ω

φ∇ · v dΩ .

In this case
Z = {v ∈ H(Ω, div ) |∇ · v = 0 in L2(Ω)} ,

and for any v ∈ Z we have that

a(v,v) = ‖v‖20 = ‖v‖2
H(Ω,div )

.

Therefore, a(·, ·) is coercive on Z×Z and (54) is verified. However, a(·, ·) is not coercive on
all of V ! To check the inf-sup condition (56) note that divergence is surjective17 mapping
H(Ω, div ) 7→ L2(Ω). Thus, given φ ∈ L2(Ω) there exists vφ ∈ H(Ω, div ) such that

∇ · vφ = φ and ‖vφ‖H(Ω,div )
≤ C‖φ‖0 .

This proves (56) because

sup
v∈H(Ω,div )

b(φ,v)

‖v‖
H(Ω,div )

≥ b(φ,vφ)

‖vφ‖H(Ω,div )

=
‖φ‖20

‖vφ‖H(Ω,div )

≥ 1

C
‖φ‖0 .

Next we turn attention to (163) with V h ≡ W 2
h (Ω) and Sh ≡ W 3

h (Ω). The finite
element interpolant I2

h : H(Ω, div ) 7→ W 2
h (Ω) is given by∫

∂K

I2
h(v) · n dS =

∫
∂K

v · n dS .

One can show; see [23, p.125], that this interpolant is well-defined and that

‖I2
hv‖H(Ω,div )

≤ C‖v‖
H(Ω,div )

∀v ∈ H(Ω, div ) . (164)

For I3
h : L2(Ω) 7→ W 2

h (Ω) we consider the L2 projection∫
Ω

(I3
hφ)ξh dΩ =

∫
Ω

φξh dΩ ∀ξh ∈ W 3
h (Ω) .

Using these definitions it is possible to show that

∇ · (I2
hv) = I3

h(∇ · v) , (165)

17This fact follows directly from the exactness of the De Rham complex where divergence corresponds
to the last operator in the sequence. For domains without peculiarities we know that the last operator
has to be a surjective mapping. For a direct proof see [23, p.136].
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that is, the diagram

H(Ω, div )
∇·−→ L2(Ω)

I2
h ↓ ↓ I3

h

W 2
h (Ω)

∇·−→ W 3
h (Ω)

(166)

commutes. This fact has been first pointed out by Douglas and Roberts in [31].
The commuting diagram connects the factorization diagram (140) of the first-order

Poisson equation with the factorization diagram (153) of its compatible discretization.
Note that this connection is established between the two balance equations in these di-
agrams. The fundamental meaning of (165) is that the discrete balance equation is the
same as the interpolated balance equation. This is not a coincidence because we ob-
tained (163) by choosing the balance equation over the kinematic equation, i.e., this weak
problem is div-conforming rather than grad-conforming.

We will now show that the relationship between the two balance equations encoded
in (166) is sufficient to guarantee stability of the discrete problem (163). The following
Lemma will prove essential for this purpose. It is a simplified version of Proposition 2.8,
[23, p.58].

Lemma 4 Assume that (V, S) is a pair of spaces such that the continuous inf-sup con-
dition (56) is satisfied and let (V h, Sh) denote a pair of their finite element subspaces.
The discrete inf-sup condition (64) holds for the pair (V h, Sh) if there exists a family of
uniformly continuous operators

Πh : V 7→ V h

such that {
b(Πhv − v, qh) = 0 ∀qh ∈ Sh

‖Πhv‖V ≤ C‖v‖V ∀v ∈ V
. (167)

Proof. Since (V, S) verifies (56) and Sh ⊂ S, from (57) it follows that for any given
qh ∈ Sh there exists vq ∈ V such that

b(vq, q
h) ≥ γb‖vq‖V ‖qh‖S.

Let
vhq := Πhvq .

Then, using the assumptions in (167) it is easy to see that

b(vhq , q
h) = b(Πhvq, q

h) = b(vq, q
h)

≥ γb‖vq‖V ‖qh‖S ≥
γb
C
‖Πhvq‖V ‖qh‖S =

γb
C
‖vhq ‖V ‖qh‖S

The last inequality verifies the inf-sup condition for (V h, Sh) with γhb = γb/C. 2

We are now ready to show that the commuting diagram property (166) implies that
(163) is well-posed. The first assumption of Theorem 6 is that a(·, ·) is coercive on

Zh = {vh ∈ W 2
h (Ω) | b(vh, ξh) = 0 ∀ξh ∈ W 3

h (Ω)} .
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W 2
h (Ω) andW 3

h (Ω) are the last two spaces in the Whitney sequence. Because this sequence
is exact it follows that divergence is surjective mapping W 2

h 7→ W 3
h and, thus

∇ · (W 2
h ) = W 3

h .

In other words, the relationship between the last two spaces in the exact sequence (128)
is reproduced by the last two members of the Whitney complex (151). This immediately
implies the inclusion Zh ⊂ Z, a property that is not valid for arbitrary choices of V h and
Sh. Remark 1 states that in this case the error estimate for vh uncouples from that for
φh.

This inclusion also suffices to prove the first assumption in Theorem 6 because we
already know that a(·, ·) is coercive on Z ×Z, and since coercivity is inherited on proper
subspaces it follows that a(·, ·) is also coercive on Zh × Zh.

To prove the inf-sup condition (64) note that the commuting diagram property (165)
can be stated as ∫

Ω

ξh∇ · I2
hv dΩ =

∫
Ω

ξh∇ · v dΩ ∀ξh ∈ W 3
h .

This is equivalent to ∫
Ω

ξh
(
∇ · I2

hv −∇ · v
)
dΩ = 0

and together with (164) it means that (167) holds for I2
h. The inf-sup condition now

follows from Lemma 4.

7.2 The grid decomposition property

So far our experience indicates that a compatible (and stable!) discretization of the Kelvin
principle seems to exclude nodal representations of the vector variable v. This can be
explained by the fact that v is a proxy field of a 2-form and in both direct and functional
approximations the order of the form determines where to store its discrete representation.
For 0-forms this location is at the nodes, for 1-forms it is at the edges, and for 2-forms it
is on the faces.

Thus, an interesting question is whether or not there exists a stable discretization of
the Kelvin principle that uses nodal representation of v. The answer to this question is
affirmative and was given in a seminal paper by Fix et. al. in 1981, see [36].

In this paper they considered approximation of the Kelvin principle by a pair (V h, Sh)
where V h is a subspace of H1(Ω), i.e., a nodal C0 finite element space, and Sh = ∇· (V h).
For example, if V h is a piecewise linear space, then Sh is contained in the space of all
piecewise constant functions. By construction this pair guarantees that divergence is a
surjective map V h 7→ Sh. However, this by itself is clearly not enough to make (163)
stable because it doesn’t guarantee that the inf-sup condition will hold with a constant
independent of the mesh size.

The main result of [36] was to prove that for such pairs of spaces the weak problem
(163) will be stable if and only if the nodal space V h satisfies the following property:

for every vh ∈ V h there exist uh,wh ∈ V h such that

vh = uh + wh
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Figure 16: Criss-cross grid.

and

∇ ·wh = 0,

∫
Ω

uh ·wh dΩ = 0, ‖uh‖0 ≤ C‖∇ · vh‖−1.

These three conditions constitute the grid decomposition property, or GDP. GDP implies
that V h can approximate well the nullspace of the divergence operator. In other words,
V h has a sufficiently large supply of vector fields that are exact curls. In [36] it was also
shown that the criss-cross grid; see Fig. 16, has the grid decomposition property in 2D.
Unfortunately, to this day there are no other known examples of grids that satisfy GDP.

Note that by virtue of its position in the Whitney complex the space W 2
h (Ω) has

exactly the same properties as a space V h that satisfies GDP: first, divergence maps it
surjectivly into W 3

h (Ω), and second, it contains a large subspace that consists of exact
curls of W 1

h (Ω) fields. As a result, by assuming that GDP holds for V h, and by enforcing
surjection explicitly, we obtain a pair of spaces (V h, Sh) that behaves just like a pair of
spaces from a discrete exact sequence, which we know is sufficient to prove the inf-sup
condition. The unique property of this pair is that V h is a C0 nodal finite element space.

This result is yet another example of how the properties of differential complexes
inevitably surface in stable discretizations. Even though the authors of [36] were not
aware of the connection between their grid decomposition property and the De Rham
cohomology, they have formulated conditions that implicitly forced the finite element
spaces into the correct topological relationship.

8 Finite element alternatives

Compatible discretizations imitate the intrinsic structure of PDE problems and, as a
result, they lead to algebraic problems that are elegant and truthful representations of
this structure in finite dimensions. The main appeal of such discretizations is in their
ability to reproduce, in a finite dimensional setting, fundamental properties of the original
PDE model that stem from that intrinsic structure.
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There are however, some penalties associated with maintaining a high degree of struc-
tural fidelity in a discretization. Stability of compatible discretizations is contingent upon
carefully balanced relationships between the discrete spaces on one hand and these spaces
and the continuous problem on the other hand. Commuting diagrams, or grid decompo-
sition properties that symbolize these relationships easily break down once the ”wrong”
spaces or grids are inserted.

The reasons to use the ”wrong” spaces are first and foremost practical. Compatible
discretizations impose rigid constraints on the spaces and operators between them. In a
finite element setting this means that different fields will be approximated by different
spaces, with different polynomial degrees and, perhaps defined with respect to different
triangulations of the same region. This complicates finite element data structures and
makes refinement more difficult because it is not easy to sustain the delicate relationships
between the spaces when, e.g., hanging nodes are introduced. Refinement may also call
for higher polynomial degrees on adjacent elements. Again, to maintain an exact se-
quence under such refinement policy is not simple; see for example [30]. Then, there’s the
node-centric viewpoint that dominated finite elements for quite a long time and that led
to tremendous investments in simulation infrastructures based on Lagrangian elements.
Reuse of these infrastructures has serious appeal and cannot be easily dismissed.

For these and perhaps many other reasons, methods that do not adhere to the struc-
tures imposed by the PDE, but achieve stability by some other means, have always at-
tracted significant attention from researchers and practitioners alike. In this section we
consider three examples of such relaxed discretizations that have become a focus of inten-
sive research efforts in the last two decades.

The main difference between a compatible and a relaxed discretization is in the way
they treat the structure of the given PDE problem. For a compatible discretization
this structure is axiomatic and completely governs the design of the associated discrete
configuration. In contrast, in a relaxed discretization the finite dimensional structure has
been already predetermined (usually by factors not related to the problem on hand) and
it is the problem that must be adapted to this structure. This adaptation usually takes
the form of stabilization, wherein the original problem is modified to one that is stable, or
least-squares optimization, wherein the problem is embedded into a completely new one.

We now embark on a brief excursion into the realm of these methods, using finite
elements as a backdrop for our discussion. For a model problem we choose again the
Kelvin principle and the associated first-order Poisson problem, thereby providing for a
side by side comparison and contrast with the compatible methods discussed earlier.

8.1 Stabilization

The choice of V h = W 2
h (Ω) and Sh = W 3

h (Ω) in (163) gives a compatible discretization of
(162). This combination of spaces satisfies the inf-sup condition and leads to a well-posed
discrete equation. But it provides a discontinuous approximation for φ and requires a
face based finite element assembly. Suppose that instead, we insist on a continuous φh

and prefer to use standard nodal assembly. A pair of spaces that meets these demands is
given by V h = [W 0

h (Ω)]n and Sh = W 0
h (Ω). We call this pair superconforming because it

replaces the third and the last members of the Whitney sequence by the first one which
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is a proper subspace of the ”stronger” space H(Ω,grad ).
Consider now an alternative scenario where it is known in advance that solution of

(162) will call for an extensive unstructured refinement of the mesh and highly anisotropic
refinement in the polynomial degrees on each element. In this case numerical solution
will be facilitated by discontinuous approximations in both v and φ. A pair of spaces
that meets this goal is V h = [W 3

h (Ω)]n and Sh = W 3
h (Ω). We call this pair of spaces

subconforming because it replaces W 2
h (Ω) by the last member of the Whitney complex

which is a proper subspace of the ”weakest” space L2(Ω).
Both the superconforming and the subconforming pairs do not satisfy the inf-sup con-

dition and are unstable. There are however some important differences between these two
pairs. The superconforming pair imposes more interelement continuity on the candidate
solutions than required by the weak formulation of (162). In contrast, the subconforming
pair of spaces completely relaxes interelement continuity of the candidate solutions so
that (162) cannot be even restricted to these spaces without some additional preparation.

From the variational perspective, stability occurs when the sizes of test and trial spaces
are matched so as to verify the necessary inf-sup conditions. From this vantage point loss
of stability in superconforming approximation is caused by the “shrinking” of the spaces,
while for subconforming methods the reason is the excessive “enlargement”. From the
geometrical perspective the reason for the loss of stability in both cases is in the breakup
of the factorization diagram.

These two scenarios describe the settings that have led to stabilized Galerkin methods
and Discontinuous Galerkin methods, respectively. Next we turn attention to these two
classes of methods and show how each one of them responds to the loss of stability due
to the space selection.

8.1.1 Stabilized Galerkin methods

Stabilized Galerkin methods were pioneered by Hughes et. al. in [47] for convection
dominated problems (see also [58] for analysis and [48] for modifications of the original
SUPG method). Subsequently, these methods were extended to stationary problems with
particular emphasis on incompressible fluid flows; see [49], [50], [32], [22], [38], [10] and
the references therein. The method we are about to discuss appeared very recently in
[63] in the context of a Darcy flow problem. We will present this method in a simplified
setting that matches our model problem (162).

There exists an important and fundamental distinction in the way stabilization works
for advection dominated problems and stationary problems, such as (162), even thought
the terms that effect the stabilization appear to be of the same kind. In the former case,
stabilization adds artificial dissipation. For stationary problems it amounts to penalization
of a Lagrangian functional by a norm of the Lagrange multiplier. The main thrust in
the application of this idea has always been to enable stable approximations of saddle-
point problems by standard continuous nodal finite element spaces, including equal order
interpolation, without incurring the penalty error. This places stabilized methods on the
superconforming side of our taxonomy.
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Let us now discuss how to stabilize the Lagrangian functional

L(w, ψ; f) =
1

2

∫
Ω

|w|2 dΩ−
∫

Ω

ψ(∇ ·w − f) dΩ , (168)

that was associated with the Kelvin principle (82), so that it will work for superconforming
pairs of spaces. First, we will try to guess the appropriate penalty term and then we’ll
deal with the penalty error. An ad hoc argument to aid our guess is as follows. A
superconforming approximation of the Lagrange multiplier ψ has more regularity than
(168) can handle. Indeed, if ψ is approximated by a subspace of H(Ω,grad ), we must be
able to control its gradient. A formulation based on (168) is too weak to do that because
the Galerkin bilinear form associated with (162)

QG({φ,v}; {ψ,w}) =

∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ +

∫
Ω

ψ∇ · v dΩ ,

does not provide any control over ∇φ.
To strengthen (168) we penalize by ∇ψ:

Lδ(w, ψ; f) =
1

2

∫
Ω

|w|2 dΩ−
∫

Ω

ψ(∇ ·w − f) dΩ− δ
∫

Ω

|∇ψ|2 dΩ . (169)

The penalty term is subtracted because (168) is maximized with respect to ψ. The first-
order optimality system for (169) is

seek (v, φ) ∈ H(Ω, div )×H(Ω,grad ) such that∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ = 0∫
Ω

ψ∇ · v dΩ + δ

∫
Ω

∇ψ · ∇φ dΩ =

∫
Ω

fψ dΩ

(170)

for all (w, ψ) ∈ H(Ω, div )×H(Ω,grad ).

With (170) we associate the penalized Galerkin bilinear form

QPG({φ,v}; {ψ,w}) =

∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ +

∫
Ω

ψ∇ · v dΩ + δ

∫
Ω

∇ψ · ∇φ dΩ .

It is an easy matter to show that

QPG({φ,v}; {φ,v}) = ‖v‖20 + δ‖∇φ‖20 ,

i.e., the penalized form is coercive and controls theH1 seminorm of φ. Note that coercivity
norms are consistent with the fact that v represents the gradient of φ. Accordingly, (170)
is not subject to an inf-sup stability condition and can be approximated by any pair of
finite element subspaces. The price that (170) pays for this flexibility is the penalty error
that will be incurred by its solutions.

A key observation that became the hallmark of stabilized Galerkin methods is that
penalty errors can be avoided by using consistent terms to effect the regularization in
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(169). A consistent term is one that vanishes on all sufficiently smooth solutions. In the
present case the relevant term is provided by the L2 norm of the ”kinematic” equation
∇φ + v = 0. Subtracting this term form (168) with δ = 1/4 gives the consistently
regularized Lagrangian functional

Lδ(w, ψ; f) =
1

2

∫
Ω

|w|2 dΩ−
∫

Ω

ψ(∇ ·w − f) dΩ− 1

4

∫
Ω

|∇ψ + v|2 dΩ . (171)

The optimality system for (171) is given by

seek (v, φ) ∈ H(Ω, div )×H(Ω,grad ) such that∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ− 1

2

∫
Ω

(
∇φ+ v

)
w dΩ = 0∫

Ω

ψ∇ · v dΩ +
1

2

∫
Ω

(
∇φ+ v

)
· ∇ψ dΩ =

∫
Ω

fψ dΩ

(172)

for all (w, ψ) ∈ H(Ω, div )×H(Ω,grad ).

This problem is associated with the Galerkin-Least-Squares bilinear form

QGLS({φ,v}; {ψ,w})

=

∫
Ω

v ·w dΩ−
∫

Ω

φ∇ ·w dΩ +

∫
Ω

ψ∇ · v dΩ +
1

2

∫
Ω

(
∇φ+ v

)
·
(
∇ψ + w

)
dΩ .

It is easy to see that

QGLS({φ,v}; {φ,v}) =
1

2

(
‖v‖20 + ‖∇φ‖20

)
and so the Galerkin-Least-Squares form has the same stability properties as the penal-
ized Galerkin form. As a result, (172) can be approximated by any pair of conforming
subspaces. The main difference between (170) and (172) is that the latter is a consistent
formulation and its solutions will not incur penalty error.

A stabilized method based on (172) was introduced in [63] for a Darcy flow problem.
The term least-squares that we used in reference to this method comes from the form of
the penalty term used in (171).

8.1.2 Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods have had a long and distinguished career in non-
linear hyperbolic problems and to a lesser extent in elliptic problems such as the Kelvin
principle that we use as our primary example. For a comprehensive historical survey, the
reasons why DG development for elliptic problems lagged behind, and a taxonomy of DG
methods for (84) we refer to [4].

Conceptually, the origins of DG in elliptic problems can be traced back to the classical
interior penalty method of M. Wheeler [81] and the work of D. Arnold in [3] (see also [9]
for related ideas).
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Interior penalty methods are based on the observation that interelement continuity can
be removed from the finite element spaces and imposed weakly by a modification of the
variational problem. The same idea serves as a basis for numerous domain decomposition
methods, including the FETI (Finite Element Tearing and Interconnecting) family of
algorithms; see [33].

For an illustration let us consider a DG formulation for the first-order Poisson equa-
tion (84). First we observe than neither one of the weak formulations (13)-(16), or (162),
discussed so far is meaningful for the subconforming pair of spaces V h = [W 3

h (Ω)]n and
Sh = W 3

h (Ω). Therefore, to use these spaces we’ll have to build the variational formu-
lation from scratch and in a manner that takes into account explicitly the finite element
partition of the domain Ω into finite elements K. This is very different from the case
of superconforming approximation where any one of the weak formulations (13)-(16), or
(162) would have worked.

To this end we assume that Th = Ch
3 is a given triangulation of Ω. We multiply each

equation in (84) by a test function and then integrate these equations by parts over each
element K ∈ Th. The result is∫

K

v ·w dV −
∫
K

φ∇ ·w dV =

∫
∂K

φw · nK dS

−
∫
K

∇ξ · v dV =

∫
K

fξ dΩ +

∫
∂K

ξ v · nK dS
(173)

This weak problem serves as a foundation for a DG method introduced by Cockburn and
Shu in [28]. In this method we

seek (vh, φh) ∈ [W 3
h (Ω)]n ×W 3

h (Ω) such that∫
K

vh ·wh dV −
∫
K

φh∇ ·wh dV =

∫
∂K

φ̂hK w · nK dS

−
∫
K

∇ξh · vh dV =

∫
K

fξh dΩ +

∫
∂K

ξh v̂hK · nK dS
(174)

for all K ∈ Th and (wh, ξh) ∈ [W 3
h (Ω)]n ×W 3

h (Ω).

To close the definition of the DG method, the fluxes v̂hK and φ̂hK must be specified in
terms of the variables vh, φh and the boundary conditions.

The choice of the fluxes is a very delicate issue in DG methods because they are
responsible for gluing together the solution from the disjoint pieces on each element. It is
clear that without the fluxes (174) is neither stable nor consistent and so, their role is to
both stabilize and provide consistency. From this point of view (174) is also a stabilized
formulation, albeit quite different from the stabilized Galerkin methods considered earlier.
In addition, flux definitions can affects the sparsity and the the symmetry of the stiffness
matrix. For a detailed list of flux definitions and the ensuing DG methods we refer to [4].

8.2 Least-squares optimization

We have already encountered an example of a least-squares optimization problem in Sec-
tion 6.3.2. There the least-squares functional (155) served to define a weak discrete Hodge
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operator. The final least-squares formulation (157), implemented with the appropriate
members of the Whitney sequence, represented a compatible discretization which pre-
served the equilibrium and kinematic equations and relaxed the constitutive relation.

Least-squares methods were however, conceived in a completely different manner that
had nothing to do with factorization diagrams or differential complexes. For a historical
perspective and review of recent developments we refer to [14] while here we will focus
only on least-squares for (84).

Least-squares finite element methods were motivated by the same considerations as
stabilized Galerkin methods. Their primary goal was to circumvent inf-sup stability con-
ditions in saddle-point problems and to enable the use of arbitrary combinations of stan-
dard C0 Lagrangian finite element spaces. Thus, (157) would be considered by many
least-squares purists as an aberration because it uses the very same face elements a least-
squares formulation is supposed to avoid. We will return to this in a moment. The prin-
cipal difference between stabilized and least-squares methods is in the way they approach
this task. A stabilized method retains the original variational principle but modifies it
by ”strengthening” the variational form. As we saw in (171), very often this stabilization
is effected by using least-squares type terms. Thus, many stabilized Galerkin methods
can be viewed as a weighted average of a standard Galerkin principle and a least-squares
optimization principle.

A least-squares method completely discards the original variational principle and con-
structs a new one by using the idea of residual minimization. This idea is in a sense
orthogonal to the formal residual orthogonalization of Galerkin principles and has the
same universal applicability. As a result, least-squares principles can be applied to virtu-
ally any PDE equation problem, with or without an associated variational principle.

A least-squares method for (84) is given by:

seek (v, φ) ∈ H(Ω, div )×H0(Ω,grad ) such that

J(v, φ) ≤ J(w, ψ) (175)

for all (w, ψ) ∈ H(Ω, div )×H0(Ω,grad )

and where

J(w, ψ) =
1

2

(
‖f −∇ ·w‖20 + ‖w + β∇ψ‖20

)
. (176)

The minimizers of (176) are subject to a necessary minimum condition that can be ex-
pressed as

seek (v, φ) ∈ H(Ω, div )×H0(Ω,grad ) such that

QLS({v, φ}; {w, ψ}) = F ({w, ψ}) (177)

for all (w, ψ) ∈ H(Ω, div )×H0(Ω,grad )

where

QLS({v, φ}; {w, ψ}) =

∫
Ω

(∇ · v)(∇ ·w) dΩ +

∫
Ω

(∇φ+ v) · (∇ψ + w) dΩ
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and

F ({w, ψ}) =

∫
Ω

f∇ ·w dΩ .

This setting was first used in a least-squares method by Jesperson in 1977; see [56]. For
some of the founding work in this area we refer to Fix et. al. [34], [35], and [37]; Bramble
et. al. [19] and [20]; more recent references are [27], [57], [25] and [26].

One can prove that (see, e.g., [25])

QLS({v, φ}; {v, φ}) ≥ C
(
‖v‖2

H(Ω,div )
+ ‖φ‖2H(Ω,grad )

)
and that F (·) is a continuous functional H(Ω, div ) × H0(Ω,grad ) 7→ R. As a result,
Lax-Milgram lemma can be used to show that (177) is a well-posed variational problem
that has a unique solution. This is where the main appeal of least-squares principles lies:
we were able to formulate a Rayleigh-Ritz principle for a problem that was originally
associated with saddle-point optimization.

Once the Rayleigh-Ritz framework is established, discretization can proceed by us-
ing any combination of conforming finite element subspaces V h ⊂ H(Ω, div ) and Sh ⊂
H0(Ω,grad ). The form QLS(·; ·) is guaranteed to be coercive on any such pair of spaces
and, as a result, the discrete problem

seek (vh, φh) ∈ V h × Sh such that

QLS({vh, φh}; {wh, ξh}) = F ({wh, ξh}) (178)

for all (wh, ξh) ∈ V h × Sh

will have a unique solution. One can show that this solution converges to the exact
solution of (84) at the best possible rate.

An important remark that we wish to make at this point is that (178) is well-posed
for any pair of conforming subspaces of H(Ω, div )×H0(Ω,grad ), including the the pair
(W 2

h (Ω),W 0
h (Ω), i.e., the pair used in (157). This means that while not in the mainstream

of least-squares methods, the compatible version (157) is a bona fide least-squares method.

9 Closing remarks

One of the fundamental reasons for the tremendous success of finite element methods
has been their reliance upon variational principles and the existing connection between
variational principles and quasi-projections.

Variational principles are a powerful tool for stability and error analysis, and indeed,
they have remained unsurpassed in their ability to generate sharp error estimates. Other
discretization methods have freely borrowed ideas and techniques from finite elements
in order to carry out convergence and error analysis; see e.g., [11] for an example from
mimetic methods. The power of variational tools have been also noted in adaptivity
where recasting, e.g., a finite volume scheme as a Petrov-Galerkin method allows to take
advantage of adjoint formulations for the error estimation.
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Nevertheless, there are certain limitations as to how much one can accomplish by re-
lying on variational principles alone. The aforementioned example from linear elasticity,
where for over three decades stable finite element spaces eluded researchers and practi-
tioners, is one good example. Also, variational methods remain taciturn about the causes
for the remarkable similarities between stable and unstable discretizations across virtually
all discretization platforms.

This is where geometrical modeling ideas based on differential forms, differential com-
plexes and factorization diagrams become an indispensable tool. Geometrical modeling
possesses an extraordinary ability to codify and express fundamental topological prop-
erties of PDE’s in a simple and unified manner. This in turn provides the springboard
for an unified stability and error analysis of seemingly distinct discretization methods.
Recently, there has been a significant effort to bring these tools either explicitly or im-
plicitly to the mainstream of numerical PDE’s, most notably by Bossavit [18], Hiptmair
[46], Shahskov and Hyman [53],[54], Teixeira [74] and many others. Nicolaides [68] and
[69] has also demonstrated that error analysis can be developed directly in the setting of
the exact sequence by using only the orthogonal decomposition property. Hiptmair have
followed in [46] by a formal analysis entirely based on differential form formalism.

It is safe to say that in the coming years geometrical modeling and compatible dis-
cretizations will be an increasingly important tool in numerical simulations. Differential
complexes are expected to play key role in the identification of stable discretizations of
the Einstein equations of relativity and simulations of black hole collisions; see [2]. These
complexes also turn out to be of prime importance in the design of algebraic solvers be-
cause compatible discretizations propagate the PDE structure to the associated algebraic
problem; see [15] and [40]. Finally, by revealing the structure of PDE problems, differen-
tial complexes also serve to provide us with better understanding of the design principles
that must be incorporated in alternative stabilized Galerkin, discontinuous Galerkin and
least-squares types of methods.
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