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A least-squares finite
element method for
optimization and control
problems

Pavel B. Bochev∗ and Max D. Gunzburger†

1 Introduction
Optimization and control problems for systems governed by partial differential equa-
tions arise in many applications. Experimental studies of such problems go back
100 years [20]. Computational approaches have been applied since the advent of the
computer age. Most of the efforts in the latter direction have employed elementary
optimization strategies but, more recently, there has been considerable practical and
theoretical interest in the application of sophisticated local and global optimization
strategies, e.g., Lagrange multiplier methods, sensitivity or adjoint-based gradient
methods, quasi-Newton methods, evolutionary algorithms, etc.

The optimal control or optimization problems we consider consist of

• state variables, i.e., variables that describe the system being modeled;

• control variables or design parameters, i.e., variables at our disposal that can
be used to affect the state variables;

• a state system, i.e., partial differential equations relating the state and control
variables; and
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• a functional of the state and control variables whose minimization is the goal.

Then, the problems we consider consist of finding state and control variables that
minimize the given functional subject to the state system being satisfied. Here, we
restrict attention to linear, elliptic state systems and to quadratic functionals.

The Lagrange multiplier rule is a standard approach for solving finite-dimensional
optimization problems. It is not surprising then that several popular approaches to
solving optimization and control problems constrained by partial differential equa-
tions are based on solving optimality systems deduced from the application of the
Lagrange multiplier rule. In [8], least-squares finite element methods were used
to develop methods for the approximate solution of the optimality systems; see
also [18].

Penalty methods, another popular method for solving optimization problems,
have also been applied, albeit to a lesser extent, to problems such as those consid-
ered here. In particular, these algorithms enforce the partial differential equations
constraints by using well-posed least-squares functionals as penalty terms that are
added to the original cost functional. This type of penalty methods offers cer-
tain efficiency-related advantages compared to methods based on the solution of
the Lagrange multiplier optimality system either by Galerkin or least-squares fi-
nite element methods. Such least-squares/penalty methods have been used for an
optimal shape design problem [1], for controlling Stokes equations [7], for the Dirich-
let control of the Navier-Stokes equations [2, 4], and for optimal control problems
constrained by model first-order elliptic systems [19]. An extensive discussion of
least-squares/penalty methods is given in [9].

In this paper we discuss a new approach in which the cost functional is con-
strained by the least-squares functional. This approach is more effective than are
least squares/penalty methods. For the latter, one has methods that either require
the satisfaction of discrete stability conditions or are prone to locking; see, e.g., [10].
Using the new approach, one can define a method that avoids both of these unde-
sirable features. A more detailed discussion comparing these two approaches to
incorporating least-square principles into PDE constrained optimization problems
as well as the approach of [8] is given in [9].

The paper is organized as follows. In §2, we define an abstract quadratic
optimization and control problem constrained by linear, elliptic partial differential
equations. Then, in §3, we review results about least-squares finite element methods
for the approximate solution of the constraint equations. In §4, we present and
analyze the new approach that involves constraining the cost functional by the least-
squares functional. Finally, in §5, we provide a concrete example of the abstract
theory.

2 Quadratic optimization and control problems in
Hilbert spaces with linear constraints

We begin with four given Hilbert spaces Θ, Φ, Φ̂, and Φ̃ along with their dual spaces
denoted by (·)∗. We assume that Φ ⊆ Φ̂ ⊆ Φ̃ with continuous embeddings and that
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Φ̃ acts as the pivot space for both the pair {Φ∗,Φ} and the pair {Φ̂∗, Φ̂} so that we
not only have that Φ ⊆ Φ̂ ⊆ Φ̃ ⊆ Φ̂∗ ⊆ Φ∗, but also〈

ψ, φ
〉
Φ∗,Φ

=
〈
ψ, φ

〉bΦ∗,bΦ =
(
ψ, φ

)eΦ ∀ψ ∈ Φ̂∗ ⊆ Φ∗ and ∀φ ∈ Φ ⊆ Φ̂ , (1)

where (·, ·)eΦ denotes the inner product on Φ̃. Next, we define the functional

J (φ, θ) =
1
2
a1(φ− φ̂, φ− φ̂) +

1
2
a2(θ, θ) ∀φ ∈ Φ, θ ∈ Θ , (2)

where a1(·, ·) and a2(·, ·) are symmetric bilinear forms on Φ̂× Φ̂ and Θ×Θ, respec-
tively, and φ̂ ∈ Φ̂ is a given function. In the language of control theory, Φ is called
the state space, φ the state variable, Θ the control space, and θ the control variable.
In many applications, the control space is finite dimensional in which case θ is often
referred to as the vector of design variables. We note that often Θ is chosen to be a
bounded set in a Hilbert space but, for our purposes, we can consider the less gen-
eral situation of Θ itself being a Hilbert space. The second term in the functional
(2) can be interpreted as a penalty term1 which limits the size of the control θ.

We make the following assumptions about the bilinear forms a1(·, ·) and a2(·, ·):
a1(φ, µ) ≤ C1‖φ‖bΦ‖µ‖bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) ≤ C2‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ

a1(φ, φ) ≥ 0 ∀φ ∈ Φ̂

a2(θ, θ) ≥ K2‖θ‖2
Θ ∀ θ ∈ Θ ,

(3)

where C1, C2, and K2 are all positive constants.
Given another Hilbert space Λ, the additional bilinear forms b1(·, ·) on Φ× Λ

and b2(·, ·) on Θ× Λ, and the function g ∈ Λ∗, we define the constraint equation

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ . (4)

We make the following assumptions about the bilinear forms b1(·, ·) and b2(·, ·):

b1(φ, ψ) ≤ c1‖φ‖Φ‖ψ‖Λ ∀φ ∈ Φ, ψ ∈ Λ

b2(θ, ψ) ≤ c2‖θ‖Θ‖ψ‖Λ ∀ θ ∈ Θ, ψ ∈ Λ

sup
ψ∈Λ,ψ 6=0

b1(φ, ψ)
‖ψ‖Λ

≥ k1‖φ‖Φ ∀φ ∈ Φ

sup
φ∈Φ,φ 6=0

b1(φ, ψ)
‖φ‖Φ

> 0 ∀ψ ∈ Λ ,

(5)

where c1, c2, and k1 are all positive constants.

1The usage of the terminology “penalty term” in conjunction with the second term in (2) should
not be confused with the usage of that terminology in §1. In particular, the second term in (2)
has no connection with the terminology “least-squares/penalty” previously used.
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We consider the optimal control problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ . (6)

The following result is proved in, e.g., [8].

Theorem 1. Let the assumptions (3) and (5) hold. Then, the optimal control
problem (6) has a unique solution (φ, θ) ∈ Φ×Θ.

It is instructive to rewrite the functional (2), the constraint (4), and the opti-
mal control problem (6) in operator notation. To this end, we note that the bilinear
forms serve to define operators

A1 : Φ̂ → Φ̂∗, A2 : Θ → Θ∗, B1 : Φ → Λ∗,
B∗1 : Λ → Φ∗, B2 : Θ → Λ∗, B∗2 : Λ → Θ∗

through the following relations:

a1(φ, µ) = 〈A1φ, µ〉bΦ∗,bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) = 〈A2θ, ν〉Θ∗,Θ ∀ θ, ν ∈ Θ

b1(φ, ψ) = 〈B1φ, ψ〉Λ∗,Λ = 〈B∗1ψ, φ〉Φ∗,Φ ∀φ ∈ Φ, ψ ∈ Λ

b2(ψ, θ) = 〈B2θ, ψ〉Λ∗,Λ = 〈B∗2ψ, θ〉Θ∗,Θ ∀ θ ∈ Θ, ψ ∈ Λ .

(7)

Then, the functional (2) and the constraint (4) respectively take the forms

J (φ, θ) =
1
2
〈
A1(φ− φ̂), (φ− φ̂)

〉bΦ∗,bΦ +
1
2
〈A2θ, θ〉Θ∗,Θ ∀φ ∈ Φ, θ ∈ Θ (8)

and

B1φ+B2θ = g in Λ∗ (9)

and the optimal control problem (6) takes the form

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to B1φ+B2θ = g in Λ∗. (10)

Assumptions (3) and (5) imply that A1, A2, B1, B2, B∗1 , and B∗2 are bounded
with

‖A1‖bΦ→bΦ∗ ≤ C1, ‖A2‖Θ→Θ∗ ≤ C2, ‖B1‖Φ→Λ∗ ≤ c1,
‖B∗1‖Λ→Φ∗ ≤ c1, ‖B2‖Θ→Λ∗ ≤ c2, ‖B∗2‖Λ→Θ∗ ≤ c2

and that the operator B1 is invertible with ‖B−1
1 ‖Λ∗→Φ ≤ 1/k1. See [8] for details.

Note that, given θ ∈ Θ and g ∈ Λ∗, the assumptions in (5) about the bilinear form
b1(·, ·) imply that the constraint equation (9) may be solved for φ ∈ Φ to yield
φ = B−1(g −B2θ).
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3 Least-squares formulation of the constraint
equations

The constraint equations are given in variational form in (4) and in equivalent
operator form in (9). They may also be defined through a least-squares minimization
problem. Let D : Λ → Λ∗ be a self-adjoint, strongly coercive operator,2 i.e., there
exist constants cd > 0 and kd > 0 such that

〈Dλ,ψ〉Λ∗,Λ ≤ cd‖λ‖Λ‖ψ‖Λ and 〈Dλ, λ〉Λ∗,Λ ≥ kd‖λ‖2
Λ ∀λ, ψ ∈ Λ . (13)

Note that then kd ≤ ‖D‖Λ→Λ∗ ≤ cd and 1/cd ≤ ‖D−1‖Λ∗→Λ ≤ 1/kd. Let3

K(φ; θ, g) =〈
B1φ+B2θ − g,D−1(B1φ+B2θ − g)

〉
Λ∗,Λ

∀φ ∈ Φ, θ ∈ Θ, g ∈ Λ∗.
(14)

Given θ ∈ Θ and g ∈ Λ∗, consider the problem

min
φ∈Φ

K(φ; θ, g) . (15)

Clearly, this problem is equivalent to (4) and (9), i.e., solutions of (15) are solutions
of (4) or (9) and conversely. The Euler-Lagrange equation corresponding to the
problem (15) is given, in variational form, by

b̃1(φ, µ) = 〈g̃1, µ〉Φ∗,Φ − b̃2(θ, µ) ∀µ ∈ Φ , (16)

where

b̃1(φ, µ) =
〈
B1µ,D

−1B1φ
〉
Λ∗,Λ

=
〈
B∗1D

−1B1φ, µ
〉
Φ∗,Φ

∀φ, µ ∈ Φ (17)

b̃2(θ, µ) =
〈
B1µ,D

−1B2θ
〉
Λ∗,Λ

=
〈
B∗1D

−1B2θ, µ
〉
Φ∗,Φ

∀ θ ∈ Θ, µ ∈ Φ (18)

and
g̃1 = B∗1D

−1g ∈ Φ∗ . (19)
2In the sequel, we will also use the induced bilinear form

d(λ, ψ) = 〈Dλ,ψ〉Λ∗,Λ ∀λ, ψ ∈ Λ . (11)

The following results are immediate.

Proposition 2. Assume that the operator D is symmetric and that (13) holds. Then, the bilinear
form d(·, ·) is symmetric and

d(λ, ψ) ≤ cd‖λ‖Λ‖ψ‖Λ ∀λ, ψ ∈ Λ and d(λ, λ) ≥ kd‖λ‖2Λ ∀λ ∈ Λ . (12)

3Let R : Λ → Λ∗ denote the Reisz operator, i.e., we have that if υ = Rλ and χ = Rψ for
λ, ψ ∈ Λ and υ, χ ∈ Λ∗, then ‖λ‖Λ = ‖υ‖Λ∗ , ‖ψ‖Λ = ‖χ‖Λ∗ , and

(ψ, λ)Λ =< Rψ, λ >Λ∗,Λ=< χ,R−1υ >Λ∗,Λ= (υ, χ)Λ∗ .

Then, if one chooses D = R, the functional (14) reduces to K(φ; θ, g) = (B1φ + B2θ − g,B1φ +
B2θ − g)Λ∗ = ‖B1φ + B2θ − g‖2Λ∗ . Note that, in general, (14) can also be written as an inner
product, i.e., K(φ; θ, g) = (B1φ+B2θ − g,RD−1(B1φ+B2θ − g))Λ∗ .
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The following proposition shows that the bilinear forms b̃1(·, ·) and b̃2(·, ·) are con-
tinuous and the former is strongly coercive.

Proposition 3. Assume that (5) and (13) hold. Then, the bilinear form b̃1(·, ·) is
symmetric and there exist positive constants c̃1, c̃2, and k̃1 such that

b̃1(φ, µ) ≤ c̃1‖φ‖Φ‖µ‖Φ ∀φ, µ ∈ Φ

b̃2(θ, µ) ≤ c̃2‖µ‖Φ‖θ‖Θ ∀ θ ∈ Θ, µ ∈ Φ

b̃1(φ, φ) ≥ k̃1‖φ‖2
Φ ∀φ ∈ Φ .

(20)

Moreover, ‖g̃1‖Φ∗ ≤ c1
kd
‖g‖Λ∗ and the problem (16), or equivalently (15), has a

unique solution.

Proof. The symmetry of the bilinear form b̃1(·, ·) follows immediately from the
symmetry of the operator D. Since b1(φ, ψ) ≤ c1‖φ‖Φ‖ψ‖Λ for all φ ∈ Φ and
ψ ∈ Λ, we have that

〈B1φ, ψ〉Λ∗,Λ = b1(φ, ψ) ≤ c1‖φ‖Φ‖ψ‖Λ ∀φ ∈ Φ, ψ ∈ Λ

from which it easily follows that ‖B1φ‖Λ∗ ≤ c1‖φ‖Φ for all φ ∈ Φ. We then have
that

b̃1(φ, µ) =
〈
B1µ,D

−1B1φ
〉
Λ∗,Λ

≤ ‖D−1‖Λ→Λ∗‖B1φ‖Λ∗‖B1µ‖Λ∗ ≤
c21
kd
‖φ‖Φ‖µ‖Φ .

In a similar way, one shows that ‖B2θ‖Λ∗ ≤ c2‖θ‖Θ for all θ ∈ Θ and

b̃2(θ, µ) =
〈
B1µ,D

−1B2θ
〉
Λ∗,Λ

≤ c1c2
kd

‖θ‖Θ‖µ‖Φ .

Also in a similar way, the bound for ‖g̃1‖Φ∗ can be obtained.
Next, since supψ∈Λ,ψ 6=0(b1(φ, ψ)/‖ψ‖Λ) ≥ k1‖φ‖Φ for all φ ∈ Φ, we have that

‖B1φ‖Λ∗ = sup
ψ∈Λ,ψ 6=0

〈B1φ, ψ〉Λ∗,Λ
‖ψ‖Λ

= sup
ψ∈Λ,ψ 6=0

b1(φ, ψ)
‖ψ‖Λ

≥ k1‖φ‖Φ ∀φ ∈ Φ .

We then have that, with λ = D−1B1φ so that ‖B1φ‖Λ∗ ≤ ‖D‖Λ→Λ∗‖λ‖Λ,

b̃1(φ, φ) =
〈
B1φ,D

−1B1φ
〉
Λ∗,Λ

=
〈
Dλ, λ

〉
Λ∗,Λ

≥ kd‖λ‖2
Λ

≥ kd
‖D‖2

Λ→Λ∗
‖B1φ‖2

Λ∗ ≥
k2
1kd
c2d

‖φ‖2
Λ.

Thus, (20) holds with c̃1 = c21/kd, c̃2 = c1c2/kd, and k̃1 = k2
1kd/c

2
d.

The unique solvability of (16) then follows from the Lax-Milgram lemma.

As an immediate consequence of Proposition 3, we have that the least-squares
functional (14) is norm equivalent in the following sense.
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Corollary 4. Assume that (13) and the conditions on the bilinear form b1(·, ·) in
(5) hold. Then,

k̃1‖φ‖2
Φ ≤ K(φ; 0, 0) = b̃1(φ, φ) =

〈
B1φ,D

−1B1φ
〉
Λ∗,Λ

≤ c̃1‖φ‖2
Φ ∀φ ∈ Φ . (21)

For all µ ∈ Φ, we can rewrite (16) as
〈
B1µ,D

−1(B1φ+B2θ − g)
〉
Λ∗,Λ

= 0 or〈
B∗1D

−1(B1φ+B2θ − g), µ
〉
Φ∗,Φ

= 0 so that, in operator form, we have that (16)
is equivalent to

B̃1φ+ B̃2θ = g̃1 in Φ∗, (22)

where

B̃1 = B∗1D
−1B1 : Φ → Φ∗, and B̃2 = B∗1D

−1B2 : Θ → Φ∗. (23)

Note that (21) implies that the operator B̃1 = B∗1D
−1B1 in (22) is symmetric and

coercive even when the operator B1 in (9) is indefinite and/or non-symmetric; these
observations, of course, follow from the fact that the bilinear form b1(·, ·) is weakly
coercive (see (5)) while the bilinear form b̃1(·, ·) is strongly coercive (see (20)). It is
also easy to see that (22) has the same solutions as (9).

Discretization of (16), or equivalently of (22), is accomplished in the standard
manner. One chooses a subspace Φh ⊂ Φ and then, given θ ∈ Θ and g̃ ∈ Φ∗, one
solves the problem

b̃1(φh, µh) = 〈g̃1, µh〉Φ∗,Φ − b̃2(θ, µh) ∀µh ∈ Φh . (24)

Then, (21) and the Lax-Milgram and Cea lemmas immediately imply the following
results.

Proposition 5. Assume that (5) and (13) hold. Then, the problem (24) has a
unique solution and, if φ denotes the solution of the problem (16), or equivalently,
of (22), there exists a constant C > 0 whose value is independent of h, φ, and φh

such that
‖φ− φh‖Φ ≤ C infeφh∈Φ

‖φ− φ̃h‖Φ .

If {φj}Jj=1 denotes a basis for Φh, then the problem (24) is equivalent to the
matrix problem

B̃1
~φ = ~̃g0 , (25)

where ~φ is the vector of coefficients for φh, (B̃1)ij = b̃1(φi, φj) = 〈B̃1φi, φj〉Φ∗,Φ, and(
~̃g0

)
i
= 〈g̃1, φi〉Φ∗,Φ−b̃2(θ, φi) = 〈g̃1 − B̃2θ, φi〉Φ∗,Φ = 〈B∗1D−1g−B∗1D−1B2θ , φi〉Φ∗,Φ.
The following result follows easily from Proposition 3 and Corollary 4.

Corollary 6. Assume that (13) and the conditions on the bilinear form b1(·, ·) in
(5) hold. Then, the matrix B̃1 is symmetric positive definite and spectrally equivalent
to the Gramm matrix G, (G)i,j = (φi, φj)Φ.
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The main advantages of using a least-squares finite element method to solve
the constraint equation (9) are that the matrix B̃1 in (25) is symmetric and positive
definite even when the operator B1 in (9) is indefinite and/or non-symmetric, and
that the conforming finite element subspace Φh ⊂ Φ is not subject to any additional
discrete stability conditions.4 In incorporating the least-squares formalism into the
optimization setting of §2, we want to preserve these advantages.

In the sequel, we will also use the bilinear form

c(θ, ν) =
〈
B2ν,D

−1B2θ
〉
Λ∗,Λ

=
〈
B∗2D

−1B2θ, ν
〉
Θ∗,Θ

∀ θ, ν ∈ Θ (27)

and the function
g̃2 = B∗2D

−1g ∈ Θ∗. (28)

The following results are immediate.

Proposition 7. Assume that the operator D is symmetric and that (13) and the
condition on the bilinear form b2(·, ·) in (5) hold. Then, the bilinear form c(·, ·) is
symmetric and, for some constant Cc > 0,

c(θ, ν) ≤ Cc‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ and c(θ, θ) ≥ 0 ∀ θ ∈ Θ . (29)

Moreover, ‖g̃2‖Θ∗ ≤ c2
kd
‖g‖Λ∗ .

Associated with the bilinear form c(·, ·) we have the operator C = B∗2D
−1B2 :

Θ → Θ∗, i.e., c(θ, ν) = 〈Cθ, ν〉Θ∗,Θ for all θ, ν ∈ Θ.

4 Methods based on constraining by the
least-squares functional

A means for incorporating least-squares notions into a solution method for the
constrained optimization problem of §2 is to solve, instead of (6) or its equivalent
form (10), the bilevel minimization problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to min
φ∈Φ

K(φ; θ, g) . (30)

From (22), one sees that this is equivalent to the problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to B̃1φ+ B̃2θ = g̃ in Φ∗. (31)

4A direct, conforming Galerkin finite element discretization of (9) requires that the discrete
stability conditions 8>>>><>>>>:

sup
ψh∈Λ,ψh 6=0

b1(φh, ψh)

‖ψh‖Λ
≥ kh1 ‖φh‖Φ ∀φh ∈ Φh

sup
φh∈Φh,φh 6=0

b1(φh, ψh)

‖φh‖Φ
> 0 ∀ψh ∈ Λh ,

(26)

be satisfied.



“BochevGunzburger”
2005/7/6
pagei

i
i

i

i
i

i
i

Using a Lagrange multiplier µ ∈ Φ to enforce the constraint in (31) we obtain the
Euler-Lagrange equations

A1φ + B̃1µ = A1φ̂ in Φ∗

A2θ + B̃∗2µ = 0 in Θ∗

B̃1φ + B̃2θ = g̃1 in Φ∗,

(32)

for the saddle point {(φ, θ), µ} .
The problem (31) should be contrasted with the problem (10). Both (10) and

(31) involve the same functional J (·, ·), but are constrained differently. As a result,
the former leads to the optimality system (see [8])

A1φ + B1µ = A1φ̂ in Φ∗

A2θ + B∗2µ = 0 in Θ∗

B1φ + B2θ = g in Λ∗,

(33)

while the latter leads to the optimality system (32). Although both optimality sys-
tems are of saddle point type, their internal structures are significantly different.
For example, the operator B1 that plays a central role in (33) may be non-symmetric
and indefinte; on the other hand, the operator B̃1 = B∗1D

−1B1 that plays the analo-
gous role in (32) is always symmetric and positive definite whenever the assumptions
(5) and (13) hold.

Penalization can be used to facilitate the solution of the system (32). To this
end, we let D̃ : Φ → Φ∗ be a self-adjoint, strongly coercive operator, i.e., there exist
constants c̃d > 0 and k̃d > 0 such that

〈D̃µ, φ〉Φ∗,Φ ≤ c̃d‖µ‖Φ‖φ‖Φ and 〈D̃µ, µ〉Φ∗,Φ ≥ k̃d‖µ‖2
Φ. (34)

for all φ, µ ∈ Φ. Corresponding to the operator D̃, we have the symmetric, coercive
bilinear form

d̃(φ, µ) = 〈D̃µ, φ〉Φ∗,Φ ∀φ, µ ∈ Φ .

We then consider the penalized functional

J̃ε(φ, θ) = J (φ, θ) +
1
ε

〈
B̃1φ+ B̃2θ − g̃1, D̃

−1(B̃1φ+ B̃2θ − g̃1)
〉
Φ∗,Φ

and the unconstrained optimization problem

min
φ∈Φ, θ∈Θ

J̃ε(φ, θ) . (35)

The Euler-Lagrange equations corresponding to this problem are given by
(
A1 +

1
ε
B̃1D̃

−1B̃1

)
φε +

1
ε
B̃1D̃

−1B̃2θε = A1φ̂+
1
ε
B̃1D̃

−1g̃1 in Φ∗(
A2 +

1
ε
B̃∗2D̃

−1B̃2

)
θε +

1
ε
B̃∗2D̃

−1B̃1φε =
1
ε
B̃∗2D̃

−1g̃1 in Θ∗
(36)
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or 

(
A1 +

1
ε
B∗1D

−1B1D̃
−1B∗1D

−1B1

)
φε

+
1
ε
B∗1D

−1B1D̃
−1B∗1D

−1B2θε = A1φ̂+
1
ε
B∗1D

−1B1D̃
−1B∗1D

−1g in Φ∗(
A2 +

1
ε
B∗2D

−1B1D̃
−1B∗1D

−1B2

)
θε

+
1
ε
B∗2D

−1B1D̃
−1B∗1D

−1B1φε =
1
ε
B∗2D

−1B1D̃
−1B∗1D

−1g in Θ∗.

(37)
Letting µε = D̃−1(B̃1φε + B̃2θε − g̃1), it is easy to see that is (36) is equivalent to
the following regular perturbation of (32):


A1φε + B̃1µε = A1φ̂ in Φ∗

A2θε + B̃T2 µε = 0 in Θ∗

B̃1φε + B̃2θε − εD̃µε = g̃1 in Φ∗.

(38)

The systems (36) and (38) are equivalent, but their discretizations are not,
even if we use the same subspaces Φh ⊂ Φ and Θh ⊂ Θ to discretize both systems.
However, unlike the situation that occurs when one directly penalizes the cost func-
tional with a least squares functional (see [9]), the discretization of either (36) or
(38) will result in matrix systems (after elimination in the second case) that are
uniformly (with respect to h) positive definite without regard to (26).

4.1 Discretize-then-eliminate

Let {φj}Jj=1 and {θk}Kk−1, where J = dim(Φh) and K = dim(Θh), denote the
chosen basis sets for Φh and Θh, respectively. In addition to the matrix B̃1 defined
previously in (25), we define the matrices



(A1)ij = a1(φi, φj) for i, j = 1, . . . , J

(A2)k` = a2(θk, θ`) for k, ` = 1, . . . ,K

(B̃2)jk = b̃2(θk, φj) =
〈
B2θk, D

−1B1φj
〉
Λ∗,Λ

for k = 1, . . . ,K, j = 1, . . . , J

(D̃)ij = d̃(φi, φj) = 〈D̃φi, φj〉Φ∗,Φ for i, j = 1, . . . , J

and the vectors (~f)j = a1(φ̂, φj) for j = 1, . . . , J

(~g1)i = 〈g̃1, φi〉Φ∗,Φ =
〈
B1φi, D

−1g
〉
Λ∗,Λ

for k = 1, . . . ,K .
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Then, discretizing the equivalent weak formulation corresponding to (38) results in
the matrix problem5

A1 0 B̃1

0 A2 B̃T2
B̃1 B̃2 −εD̃




~φε

~θε

~µε

 =


~f

~0

~g1

 . (40)

The system (40) is symmetric and indefinite, but it is uniformly (with respect to
h) invertible without regard to (26). Indeed, we have that the matrices B̃1 and A2

are symmetric and positive definite whenever (3), (5), and (13) hold.
The vector of coefficients ~µε may be eliminated from (40) to yield

(
A1 +

1
ε
B̃1D̃−1B̃1

)
~φε +

1
ε
B̃1D̃−1B̃2

~θε = ~f +
1
ε
B̃1D̃−1~g1(

A2 +
1
ε
B̃T2 D̃−1B̃2

)
~θε +

1
ε
B̃T2 D̃−1B̃1

~φε =
1
ε
B̃T2 D̃−1~g1 .

(41)

Theorem 8. Let (3), (5), and (13) hold. Then, (40) has a unique solution φhε ∈ Φh,
θhε ∈ Θh, and µhε ∈ Φh. Moreover, if φ ∈ Φ, θ ∈ Θ, and µ ∈ Φ denotes the unique
solution of (30), or equivalently, of the optimization problem (6), then there exist a
constant C > 0 whose value is independent of ε and h such that

‖φ− φhε ‖Φ + ‖θ − θhε ‖Θ + ‖µ− µhε ‖Φ ≤ Cε
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)
+C

(
infeφh∈Φh

‖φε − φ̃h‖Φ + infeθh∈Θh

‖θε − θ̃h‖Θ + infeµh∈Φh
‖µε − µh‖Φ

)
.

(42)

It is usually the case that the approximation-theoretic terms on the right-hand
side of (42) satisfy inequalities of the type

infeφh∈Φh

‖φε − φ̃h‖Φ ≤ Chα, infeµh∈Φh
‖µε − µ̃h‖Φ ≤ Chα,

and
infeθh∈Θh

‖θε − θ̃h‖Θ ≤ Chβ ,

where α > 0 and β > 0 depend on the degree of the polynomials used for the spaces
Φh and Θh and the regularity of the solution φε, θε, and µε of (30). Combining
with (42) we have that

‖φ− φhε ‖Φ + ‖θ − θhε ‖Θ + ‖µ− µhε ‖Φ ≤ C(ε+ hα + hβ) (43)
5Discretization of the unperturbed system (32) yields the related discrete system0BB@

A1 0 eB1

0 A2
eBT2eB1

eB2 0

1CCA
0BB@

~φ

~θ

~µ

1CCA =

0BB@
~f

~0

~g1

1CCA . (39)
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so that if β ≥ α and one chooses ε = hα, one obtains the optimal error estimate

‖φ− φhε ‖Φ + ‖θ − θhε ‖Θ + ‖µ− µhε ‖Φ ≤ Cε = Chα . (44)

It is again important to note that the result (42) does not require that (26) is
satisfied and that locking cannot occur.

4.2 Eliminate-then-discretize

Alternately, one could discretize (36) to obtain

 A1 +
1
ε
K1

1
ε
K2

1
ε
KT

2 A2 +
1
ε
C̃


 ~φε

~θε

 =

 ~f +
1
ε
~̃g1

1
ε
~̃g2

 . (45)

The matrices A1 and A2 and the vector ~f are defined as before; we also have, in
terms of the basis vectors for Φh and Θh, that

(K1)ij = 〈B̃1φi, D̃
−1B̃1φj〉Φ∗,Φ = 〈B∗1D−1B1φi, D̃

−1B∗1D
−1B1φj〉Φ∗,Φ

(K2)jk = 〈B̃2θk, D̃
−1B̃1φj〉Φ∗,Φ = 〈B∗1D−1B2θk, D̃

−1B∗1D
−1B1φj〉Φ∗,Φ

(C̃)k` = 〈B̃2θk, D̃
−1B̃2θ`〉Φ∗,Φ = 〈B∗1D−1B2θk, D̃

−1B∗1D
−1B2θ`〉Φ∗,Φ;

and {
(~̃g1)j = 〈B̃1φj , D̃

−1g̃1〉Φ∗,Φ = 〈B∗1D−1B1φj , D̃
−1B∗1D

−1g〉Φ∗,Φ
(~̃g2)k = 〈B̃2θk, D̃

−1g̃2〉Φ∗,Φ = 〈B∗1D−1B2θk, D̃
−1B∗1D

−1g〉Φ∗,Φ .

Theorem 9. Let (3), (5), and (13) hold. Then, for 0 < ε ≤ 1, (45) has a unique
solution φhε ∈ Φh and θhε ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes the unique
solution of the optimization problem (6), then there exist a constant C > 0 whose
value is independent of ε and h such that

‖φ− φhε ‖Φ + ‖θ − θhε ‖Θ ≤ Cε
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)
+C

(
1 +

1
ε

)(
infeφh∈Φh

‖φε − φ̃h‖Φ + infeθh∈Θh

‖θε − θ̃h‖Θ

)
.

(46)

Clearly, (41) and (45) are not the same. However, the coefficient matrices
of both systems are symmetric and uniformly (with respect to h) positive definite
without regards to (26).
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5 Example: Optimization problems for the Stokes
system

We use the same concrete examples as in [8]. Consider the velocity-vorticity-pressure
formulation of the Stokes system:6

∇× ω +∇p+ θ = g

∇ · u = 0

∇× u− ω = 0

 in Ω, u = 0 on Γ,
∫

Ω

p dΩ = 0 (47)

and the functionals

Case I: J1(ω,θ) =
1
2

∫
Ω

|ω|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ (48)

Case II: J2(u,θ; û) =
1
2

∫
Ω

|u− û|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ , (49)

where Ω denotes an open, bounded domain in Rs, s = 2 or 3, with boundary Γ, u,
ω and p denote the velocity, vorticity, and pressure fields, respectively, θ denotes
a distributed control, and g and û are given functions. The optimization problems
we study are to find (u,ω, p,θ) that minimizes either the functional in (48) or (49),
subject to the Stokes system in the form (47) being satisfied.

5.1 Precise statement of optimization problems

We recall the space L2(Ω) of all square integrable functions with norm ‖·‖0 and inner
product (·, ·), the space L2

0(Ω) ≡ {q ∈ L2(Ω) :
∫
Ω
pdΩ = 0}, the space H1(Ω) ≡ {v ∈

L2(Ω) : ∇v ∈ [L2(Ω)]s}, and the space H1
0 (Ω) ≡ {v ∈ H1(Ω) : v = 0 on Γ}. A norm

for functions v ∈ H1(Ω) is given by ‖v‖1 ≡ (‖∇v‖2 + ‖v‖2
0)

1/2. The dual space of
H1

0 (Ω) is denoted by H−1(Ω). The inner product in H−1(Ω) is denoted by (·, ·)−1.
Note that we may define (·, ·)−1 = 〈·, (−∆)−1(·)〉H−1(Ω),H1(Ω) = (·, (−∆)−1(·)),
where ∆ : H1

0 (Ω) → H−1(Ω) denotes the Laplace operator with respect to Ω with
zero Dirichlet boundary conditions along Γ.

The corresponding spaces of vector-valued functions are denoted in bold face,
e.g., H1(Ω) = [H1(Ω)]s is the space of vector-valued functions each of whose com-
ponents belongs to H1(Ω). We note the following equivalence of norms [15]:

C̃1‖v‖2
1 ≤ ‖∇× v‖2

0 + ‖∇ · v‖2
0 ≤ C̃2‖v‖2

1 ∀v ∈ H1
0(Ω) (50)

for some constants C̃1 > 0 and C̃2 > 0.
Let Φ = Λ = H1

0(Ω) × L2(Ω) × L2
0(Ω) and Θ = L2(Ω) so that Φ∗ = Λ∗ =

H−1(Ω)× L2(Ω)× L2
0(Ω) and Θ∗ = L2(Ω). Let Φ̂ = Φ̃ = L2(Ω)× L2(Ω)× L2

0(Ω).
Then, Φ ⊂ Φ̂ = Φ̃ = Φ̂∗ ⊂ Φ∗. For φ = {u,ω, p} ∈ Φ, we define the norm

‖φ‖Φ =
(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2

6The reasons for using velocity-vorticity-pressure formulation of the Stokes equations instead
of, say, the standard primitive variable formulation, are discussed in [8].
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and likewise for the other product spaces.
We make the associations of

trial functions: φ = {u,ω, p} ∈ Φ, θ = {θ} ∈ Θ, λ = {v,σ, q} ∈ Λ ,
test functions: µ = {ũ, ω̃, p̃} ∈ Φ, ν = {θ̃} ∈ Θ, ψ = {ṽ, σ̃, r̃} ∈ Λ ,

data: g = {g,0, 0} ∈ Λ∗, φ̂ =
{( 0

û

)
,0, 0

}
∈ Φ̂

for Case I
for Case II .

We next define the bilinear forms

a1(φ, µ) =
{

(ω̃,ω) for Case I
(ũ,u) for Case II ∀φ = {u,ω, p} ∈ Φ̂, µ = {ũ, ω̃, p̃} ∈ Φ̂ ,

a2(θ, ν) = δ(θ, θ̃) ∀ θ = {θ} ∈ Θ, ν = {θ̃} ∈ Θ ,

b1(φ, ψ) = (ω,∇× ṽ)− (p,∇ · ṽ) + (∇× u− ω, σ̃)− (∇ · u, r̃)
∀φ = {u,ω, p} ∈ Φ, ψ = {ṽ, σ̃, r̃} ∈ Λ ,

b2(θ, ψ) = (θ, ṽ) ∀ θ = {θ} ∈ Θ, ψ = {ṽ, σ̃, r̃} ∈ Λ .

For g ∈ H−1(Ω), we also define the linear functional

〈g, ψ〉Λ∗,Λ = 〈g, ṽ〉H−1(Ω),H1
0(Ω) ∀ψ = {ṽ, σ̃, r̃} ∈ Λ .

The operators associated with the bilinear forms are then

A1 =

 0 0 0
0 I 0
0 0 0

 for Case I, A1 =

 I 0 0
0 0 0
0 0 0

 for Case II,

A2 = δI, B1 =

 0 ∇× ∇
∇× −I 0
−∇· 0 0

 , and B2 =

 I
0
0

 .

(51)

Note that B∗1 = B1.
It is now easily seen that the functionals J1(·, ·) and J2(·, ·; ·) defined in (48)

and (49), respectively, can be written in the form (2). Likewise, the Stokes system
(47) can be written in the form (4). Thus, the two optimization problems for the
Stokes system can both be written in the form (6), with J (·, ·) being either J1(·, ·)
or J2(·, ·) as appropriate.

Additional notation relevant to example problems

In §§3 and 4, additional bilinear forms, linear functionals, operators, and functions
are introduced. In the context of the optimization problems considered in this
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section, the bilinear forms (17), (18), (27), (11), and (34) are respectively given by

b̃1
(
{u,ω, p}, {ũ, ω̃, p̃}

)
=

(
∇× ω +∇p , ∇× ω̃ +∇p̃

)
−1

+
(
∇× u− ω , ∇× ũ− ω̃

)
+

(
∇ · u , ∇ · ũ

)
=

(
∇× ω +∇p , (−∆)−1(∇× ω̃ +∇p̃)

)
+

(
∇× u− ω , ∇× ũ− ω̃

)
+

(
∇ · u , ∇ · ũ

)
,

b̃2
(
{θ, {ũ, ω̃, p̃}

)
=

(
θ , ∇× ω̃ +∇p̃

)
−1

=
(
θ , (−∆)−1(∇× ω̃ +∇p̃)

)
,

c
(
{θ}, {θ̃}

)
=

(
θ, θ̃

)
−1

=
(
θ̃, (−∆)−1θ

)
,

d
(
{u,ω, p}, {ũ, ω̃, p̃}

)
= (u, ũ)−1 + (ω, ω̃) + (p, p̃)

=
(
(−∆)−1ũ , u

)
+ (ω, ω̃) + (p, p̃),

d̃
(
{u,ω, p}, {ũ, ω̃, p̃}

)
= d

(
{u,ω, p}, {ũ, ω̃, p̃}

)
.

We also have the linear functionals〈
g̃1, {ũ, ω̃, p̃}

〉
Φ∗,Φ

=
(
g , ∇× ω̃ +∇p̃

)
−1

=
(
g , (−∆)−1(∇× ω̃ +∇p̃)

)
=

(
∇× (−∆)−1g, ω̃

)
−

(
∇ · (−∆)−1g, p̃

)
〈
g̃2, {θ̃}

〉
Θ∗,Θ

=
(
g, θ̃

)
−1

=
(
g , (−∆)−1θ̃

)
=

(
(−∆)−1g, θ̃

)
and the operators and functions

B̃1 =


∇×∇×−∇∇· −∇× 0

−∇× I +∇× (−∆)−1∇× ∇× (−∆)−1∇

0 −∇ · (−∆)−1∇× −∇ · (−∆)−1∇

 ,

B̃2 =


0

∇× (−∆)−1

−∇ · (−∆)−1

 , D = D̃ =

 −∆ 0 0
0 I 0
0 0 I

 ,

g̃1 =

 0
∇× (−∆)−1g
−∇ · (−∆)−1g

 , and g̃2 = (−∆)−1g .

With these definitions, all of the methods discussed in the preceding sections can
be defined for the optimization problems considered in this section.
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Verification of hypotheses

In [8], the following results are proved.

Proposition 10. Let the spaces Φ, Φ̂, Θ, and Λ and the bilinear forms a1(·, ·),
a2(·, ·), b1(·, ·), and b2(·, ·) be defined as above. Then, the assumptions (3) and
(5) are satisfied with C1 = 1, C2 = δ, K2 = δ, c1 = 3, c2 = 1, and k1 =

min{1, C̃1}
/ (

2
√

max
{

1eC1
, C̃2

})
.

We also easily have the following result.

Proposition 11. Let the spaces Φ and Λ and the bilinear forms d(·, ·) and d̃(·, ·)
be defined as above. Then, (13) and (34) are satisfied with cd = c̃d = 1 and kd =
k̃d = 1

2 min{1, σ}, where σ denotes the smallest eigenvalue of −∆ with respect to Ω
with zero Dirichlet boundary conditions along Γ.

Having verified the assumptions (3), (5), (13), and (34) in the context of the
two optimization problems for the Stokes system, we have that all the results of
§§2–4 will apply to those systems.

5.2 Least-squares formulation of the constraint equations

Using the associations of spaces and variables defined in §5.1 as well as the operators
defined there, it is easy to see that the least-squares funtional (14) is given by, for
the example problems we are considering,

K
(
{u,ω, p};θ,g

)
= ‖∇ × ω +∇p+ θ − g‖2

−1 + ‖∇ × u− ω‖2
0 + ‖∇ · u‖2

0

=
(
∇× ω +∇p+ θ − g, (−∆)−1(∇× ω +∇p+ θ − g)

)
+‖∇ × u− ω‖2

0 + ‖∇ · u‖2
0 .

(52)

The Euler-Lagrange equation corresponding to the minimization of the least-
squares functional (52) is given by (16), which now takes the form: for given θ ∈
L2(Ω) and g ∈ H−1(Ω), find {u,ω, p} ∈ H1

0(Ω)× L2(Ω)× L2
0(Ω) such that

b̃1
(
{u,ω, p} , {ũ, ω̃, p̃}

)
=

〈
g̃1, {ũ, ω̃, p̃}

〉
Φ∗,Φ

− b̃2
(
{θ, {ũ, ω̃, p̃}

)
∀ {ũ, ω̃, p̃} ∈ H1

0(Ω)× L2(Ω)× L2
0(Ω) .

(53)

We then have the following results; see [5, 6].

Proposition 12. Let the spaces Φ, Φ̂, Θ, and Λ and the bilinear forms a1(·, ·),
a2(·, ·), b1(·, ·), and b2(·, ·) be defined as in §5.1. Let K(·, ·, ·; ·, ·) be defined by (52).
Then, we have the norm equivalence result

γ1

(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)
≤ K(u,ω, p;0,0) ≤ γ2

(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)
(54)
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for some constants γ1, γ2 > 0. Moreover, the bilinear form b̃1({·, ·, ·}, {·, ·, ·}) defined
in §5.1 is symmetric, continuous, and coercive and the problem (53) has a unique
solution; that solution is the unique minimizer of the least-squares functional (52).

Proof. The results follow immediately from Lemma 4 and Propositions 3 and 10.

To define least-squares finite element approximations of the constraint equa-
tions, we first choose conforming finite element subspaces Vh ⊂ H1

0(Ω), Wh ⊂
L2(Ω), and Sh ⊂ L2

0(Ω). We then minimize the functional in (52) over the sub-
spaces, or equivalently, solve the problem: for given θ ∈ L2(Ω) and g ∈ H−1(Ω),
find {uh,ωh, ph} ∈ Vh ×Wh × Sh such that

b̃1
(
{uh,ωh, ph} , {ũh, ω̃h, p̃}h

)
=

〈
g̃1, {ũh, ω̃h, p̃h}

〉
Φ∗,Φ

− b̃2
(
{θ, {ũh, ω̃h, p̃h}

)
∀ {ũh, ω̃h, p̃}h ∈ Vh ×Wh × Sh .

(55)

We then have the following results.

Proposition 13. Let Vh ⊂ H1
0(Ω), Wh ⊂ L2(Ω), and Sh ⊂ L2

0(Ω). Then, the
discrete problem (55) has a unique solution {uh,ωh, ph} ∈ Vh × Wh × Sh. Let
{u,ω, p} ∈ H1

0(Ω)× L2(Ω)× L2
0(Ω) denote the unique solution of (53). Then,

‖u− uh‖1 + ‖ω − ωh‖0 + ‖p− ph‖0

≤ C
(

infeuh∈Vh
‖u− ũh‖1 + infeωh∈Wh

‖ω − ω̃h‖0 + infeph∈Sh
‖p− p̃h‖0

)
.

(56)

Proof. The results follow in a straightforward manner from Proposition 12.

5.3 Discrete systems for the Stokes control problem

One can also, in a straightforward manner, use the notation introduced in §5.1 to
define the concrete discrete systems that correspond to the methods introduced in
§4. Here, we consider, in the context of the Stokes equations, the discrete system
defined by (41).

Let {uj}J1
j=1, {ωj}J2

j=1, {pj}
J3
j=1, and {θk}Kk=1 respectively denote basis sets for

the finite element spaces Vh ⊂ H1
0(Ω), Wh ⊂ L2(Ω), Sh ⊂ L2

0(Ω), and Θh ⊂ L2(Ω),
where Θh is the finite element space introduced to approximate the control θ.
Then, using the definitions given in §5.1 for the associated bilinear forms and linear
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functionals, the matrices and vectors appearing in (41) are given by:

A1 =

 A1,11 0 0

0 A1,22 0

0 0 0

 , B̃1 =


B̃1,11 B̃1,12 0

B̃T1,12 B̃1,22 B̃1,23

0 B̃T1,23 B̃1,33

 , B̃2 =


0

B̃2,21

B̃2,31

 ,

D̃ =

 D̃,11 0 0

0 I 0

0 0 I

 , ~f =


~f,1
~0

~0

 , and ~g1 =


~0

~g1,2

~g1,3

 ,

where(
A1,11

)
ij

=
{

0 (Case I)(
uj , ui

)
(Case II) for i, j = 1, . . . , J1,(

A1,22

)
ij

=
{ (

ωj , ωi

)
(Case I)

0 (Case II) for i, j = 1, . . . , J2,(
A2

)
k`

= δ
(
θ` , θk

)
for k, ` = 1, . . . ,K,(

B̃1,11

)
ij

=
(
∇× uj , ∇× ui

)
+

(
∇ · uj , ∇ · ui

)
for i, j = 1, . . . , J1,(

B̃1,12

)
ij

= −
(
ωj , ∇× ui

)
for i = 1, . . . , J1, j = 1, . . . , J2,(

B̃1,22

)
ij

=
(
∇× ωj , ∇× ωi

)
−1

+
(
ωj , ωi

)
for i, j = 1, . . . , J2,(

B̃1,23

)
ij

=
(
∇pj , ∇× ωi

)
for i = 1, . . . , J2, j = 1, . . . , J3,(

B̃1,33

)
ij

=
(
∇pj , ∇pi

)
−1

for i, j = 1, . . . , J3,(
B̃2,21

)
jk

=
(
θk , ∇× ωj

)
for j = 1, . . . , J2, k = 1, . . . ,K,(

B̃2,31

)
jk

=
(
θk , ∇pj

)
for j = 1, . . . , J3, k = 1, . . . ,K,(

D̃,11
)
ij

=
(
∇uj , ∇ui

)
for i, j = 1, . . . , J1,

(
~f,1

)
i
=

{
~0 (Case I)(
û , ui

)
(Case II) for i = 1, . . . , J1,(

~g1,2

)
i
=

(
g , ∇× ωi

)
−1

for i = 1, . . . , J2,(
~g1,3

)
i
=

(
g , ∇pi

)
−1

for i = 1, . . . , J3.

In this way, the matrix system (41) is completely defined.
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Theorem 8 implies that, if one uses continuous finite element spaces of degree
r for all variables and if one chooses ε = hr, then

‖u− uhε ‖1 + ‖ω − ωh
ε ‖0 + ‖p− phε ‖0 + ‖θ − θhε ‖0 = O(hr)

provided that the solution of the optimization problems we are considering in this
section are sufficiently smooth. One could use finite element spaces of one degree
lower for the approximations of the vorticity ω, the pressure p, and the control θ
than that used for the velocity u and still obtain the same error estimate. However,
one of the strengths of using least-squares finite element methods is that one can
use any conforming finite element spaces and, in particular, one can use the same
degree finite element spaces for all variables; we see that the methods introduced
here inherit this strength since they do not require the satisfaction of the discrete
stability conditions in (26).

5.4 Some practical issues arising in implementations

One difficulty that arises in the implementation discussed in §5.3 is caused by the
appearance of the H−1(Ω) norm in the least-squares functional (52). For example,
this leads to the appearance of the H−1(Ω) inner product in the definition of the
matrices and vectors that form the discrete system; see §5.3. The equivalence
relation (·, ·)−1 = (·, (−∆)−1·) is not of much help since, in general, one cannot
exactly invert the Laplace operator, even in the case of zero Dirichlet boundary
conditions. Fortunately, there are several approaches available for ameliorating
this difficulty; these are discussed in [8]; see also [3, 11, 12]. All the approaches
discussed in [8] can be applied to the methods introduced in this paper, with similar
comparative effectiveness; thus, here, we do not consider this issue any further.

A second issue that needs to be discussed is the conditioning of the discrete
systems. Actually, there are two issues here, i.e., the conditioning with respect to
either h as h → 0 or with respect to ε as ε → 0. First, let’s discuss the h → 0
issue. Least-squares finite element methods typically result in a “squaring” of op-
erators, e.g., the normal equations in the linear algebra context. This is clearly
indicated in (22) and (23) where one sees that the operator B̃1 that results from
applying the least-squares principle (15) to the constraint equations involves the
product of the operators B∗1 and B1. It is well known that “squaring” operators
can result in the squaring of the condition number of the corresponding matrices
one obtains after discretization. This is the principal reason for using first-order
formulations of the constraint equations, as was done for the Stokes equations in
§5.1. The idea here is that after “squaring” first-order operators, one obtains a
second-order operator so that the h-condition number of the resulting squared sys-
tem is hopefully similar to that for Galerkin formulations of second-order equations.
However, penalty formulations of optimal control problems can result in a second
“squaring” of operators. For example, look at (37); we see there operators such as
B∗1D

−1B1D̃
−1B∗1D

−1B1 which involves four copies of the operator B1. However,
that is not the whole story; that operator also involves two copies of the operator
D−1 and also the operator D̃−1. Given the nature of all these operators, it is not



“BochevGunzburger”
2005/7/6
pagei

i
i

i

i
i

i
i

at all clear that the h-condition number of the discrete systems of §§4 and 5.3 are
similar to those that result from a naive double “squaring” of first-order operators;
indeed, norm equivalence relations such as (21) and (54) can sometimes be used to
show that h-condition numbers for least-squares-based methods are no worse than
those for Galerkin-based methods.

The situation regarding the conditioning of the discrete systems as ε → 0 is
problematic for all penalty methods, even for those for which locking does not occur.
Note that to obtain a result such as (44), one chooses ε = hα; with such a choice,
ε is likely to be small. This situation can be greatly ameliorated by introducing
an iterated penalty method; see, e.g., [14] and also [13, 16, 17]. To this end, let

{~φε, ~θε, ~µε} denote the solution of (40) and set ~φ
(0)

= ~φε, ~θ
(0)

= ~θε, and ~µ(0) = ~µε.
Then, for n ≥ 1, we solve the sequence of problems

A1 0 B̃1

0 A2 B̃T2
B̃1 B̃2 −εD̃




~φ
(n)

~θ
(n)

~µ(n)

 =


~0

~0

−εD̃~µ(n−1)

 . (57)

Then, for any N > 0, we let

~φε,N =
N∑
n=0

~φ
(n)
, ~θε,N =

N∑
n=0

~θ
(n)
, and ~µε,N =

N∑
n=0

~µ(n) (58)

and we let φhε,N ∈ Φh, θhε,N ∈ Θh, and µhε,N ∈ Φh be the finite element functions
corresponding to the coefficients collected in the respective vectors in (58). Then,
instead of the estimate (43), one obtains the estimate (see, e.g., [14] and also [13,16])

‖φ− φhε,N‖Φ + ‖θ − θhε,N‖Θ + ‖µ− µhε,N‖Φ ≤ C(εN+1 + hα + hβ)

so that if β ≥ α and one chooses ε = hα/N+1, one obtains the optimal error estimate

‖φ− φhε,N‖Φ + ‖θ − θhε,N‖Θ + ‖µ− µhε,N‖Φ ≤ CεN+1 = Chα .

instead of (44). These estimates tell us that we make the error due to penalization
as small as we want in two ways: we can choose either ε sufficiently small or N
sufficiently large. Making the former choice, e.g., choosing N = 0 and ε = hα, can
lead to conditioning problems for the discrete systems since ε << 1. Making the
latter choice allows us obtain the same effect but with a much larger value for ε.

Note that ~µ(n) may be eliminated from (57) to yield a reduced system with

fewer unknowns. Thus, the iteration to compute the pairs {~φ
(n)
, ~θ

(n)
} for n =

0, 1, . . . , using reduced systems proceeds as follows. Let ~φ
(0)

= ~φε and ~θ
(0)

= ~θε,
where ~φε and ~θε denote the solution of (41), and then set

~g(0) = B̃1
~φ

(0)
+ B̃2

~θ
(0)

− ~g1 .
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Then, for n = 1, 2, . . . , solve the systems
(

A1 +
1
ε
B̃1D̃−1B̃1

)
~φ

(n)
+

1
ε
B̃1D̃−1B̃2

~θ
(n)

=
1
ε
B̃1D̃−1~g(n−1)

(
A2 +

1
ε
B̃T2 D̃−1B̃2

)
~φ

(n)
+

1
ε
B̃T2 D̃−1B̃1

~θ
(n)

=
1
ε
B̃T2 D̃−1~g(n−1).

In order to define the next iterate, we set

~g(n) = ~g(n−1) + B̃1
~φ

(n)
+ B̃2

~θ
(n)
.

6 Conclusions
In this paper, a new least-squares method for optimization and control problems was
formulated and analyzed. Instead of the more direct approach of penalizing the cost
functional by least-squares terms, they are used to reformulate the constraint. This
leads to a bilevel minimization problem with a number of attractive computational
properties.

Most notably, the new method preserves the desirable features of least-squares
methods such as being able to use discretization spaces for the state variables that
are not subject to inf-sup stability conditions. The optimality system of the bilevel
optimization problem can be solved by penalty methods without locking; this opens
up possibilities for the design of more efficient solution methods for optimization
and control problems constrained by PDEs.
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