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76 P. BOCHEV, M. GUNZBURGERreduce an equivalent integral form of the equations to an algebraic sys-tem by breaking down the computational domain into a �nite numberof cells (volumes) and approximating the boundary 
uxes by polynomi-al expressions. Finally, �nite element methods transform the PDE intoan equivalent variational equation and then restrict this equation to a�nite-dimensional function space. While in some cases all three methodslead to exactly the same reduced model, historically adherents of eachdiscretization approach placed the main focus of their research on thedistinctions rather than on the similarities between the three.Recently, researchers have focused more attention on the fact thatregardless of which particular reduction approach is used, stable and ac-curate discretizations of many PDE problems share more than an ac-cidental similarity with each other. This similarity becomes even moreobvious when one adopts the formalism of exterior calculus and di�eren-tial forms and uses them to express the PDE equation problem. Then,one quickly realizes that successful discretizations of the problem try tomimic the abstract structure revealed by di�erential forms by using aparallel system of discrete di�erential forms.Bossavit [6{8] was among the �rst to recognize the importance of theseconnections in the context of computational electromagnetics. His workspurred further research activity that revealed fundamental connectionsbetween, e.g., stability conditions in mixed methods [11{13] and discretedi�erential form structures [2, 4] and led to the further development oftools for and understanding of compatibility in discretization processes [5,10, 15, 20, 26]. Similar developments occurred in �nite di�erence methods[17{19] and �nite volume methods [21, 22].In this paper, we consider a general framework for compatible dis-cretizations of second-order elliptic PDEs. Our starting point is a fac-torization diagram (see [6, 16, 27, 28] among others) that breaks downthe second-order PDE into a set of metric-independent primal and dualequilibrium relations augmented by a set of metric-dependent constitu-tive laws. To solve the PDE problem, we consider a four-�eld constrainedoptimization approach in which the error in the constitutive laws is min-imized subject to the equilibrium equations. The optimization problemis discretized using an exact sequence of �nite-dimensional spaces. Weshow that, depending on the choices made for the approximation of thevarious �elds, one recovers many familiar methods. Included among theseare a mixed-type and Ritz-like �nite element methods that can be asso-ciated with the use of the constitutive laws and/or one of the equilibrium



COMPATIBLE DISCRETIZATIONS 77equations to eliminate the primal or dual variables.Our main focus is on another kind of formulationwhere the eliminationof variables in the four-�eld problem is e�ected by using the equilibriumequations alone. Under certain assumptions on the equilibrium equations,this elimination method reduces the four-�eld constrained optimizationproblem to a two-�eld unconstrained minimization problem. The latterinvolves one primal and one dual variable and can be shown to combinethe best properties of the other elimination methods. Its discretizationalso leads to symmetric and positive de�nite algebraic systems that areeasier to solve than some of the systems arising with the other eliminationchoices. A remarkable fact about the reduced two-�eld problem is thatit remains meaningful even if some of the assumptions necessary for theinitial elimination process are not satis�ed.The idea of using constitutive error minimization was perhaps �rstsuggested by Bossavit [6] for magnetostatics problems; see also [1] for asimilar approach applied to the full Maxwell equations using vector po-tentials. It was further developed in the magnetostatics setting in [9] andanalyzed for the two-dimensional case in [23]. These works focus on thesolution of the constrained optimization problem by Lagrange multipli-ers rather than elimination, and consider the �eld-based formulation asbeing separate from mixed and Ritz-like methods. The approach adoptedin this paper allows us to show that minimization of the constitutive er-ror is in fact the most general variational setting that, depending on thediscretization choices, defaults to three basic schemes { a mixed type, aRitz type, and a least-squares type.2. Quotation of results2.1. Exterior and di�erential forms.We recall [3] that, in n dimensions, an exterior form of degree k, k 6 n,or a k�form, is a mapping! : Rn� : : :�Rn| {z }k 7! Rthat is k�linear and antisymmetric:!(: : : ; ��0 + ��00; : : : ) = �!(: : : ; �0; : : : ) + �!(: : : ; �00; : : : )and!(�i1 ; : : : ; �ik) = (�1)� ; where � = ( 0 if (i1; i2; : : : ; ik) is even1 if (i1; i2; : : : ; ik) is odd:



78 P. BOCHEV, M. GUNZBURGERThe set of all k�forms is a linear space with dimension �nk�.Exterior forms operate on groups of vectors in Euclidean space. Dif-ferential forms do the same thing, except that they draw their argumentsfrom tangent spaces TM to di�erentiable manifoldsM . Locally, a di�er-entiable k�manifold embedded in Rn is de�ned by the n � k equationsfi(x) = 0 i = 1; : : : ; n� k ;where f1; : : : ; fn�k : Rn 7! R are smooth functions such that rfi arelinearly independent. The tangent space at the point x 2 M is de�nedby TMx = (spanfrf1; : : : ;rfn�kg)?:The union of all tangent spaces TM = [x2MTMx is called the tangentbundle of M . In what follows, we restrict attention to M = Rn. A di�er-ential k�form !kjx at a point x 2 M is an exterior k-form on TMx. Ifsuch a form !k is given at every point x 2 M and if it is di�erentiable,it is called k�form on M . A di�erential 0{form is a function on M . Theset of all k{forms on M will be denoted by W k(M ).We recall the operators ^ : W k � W l 7! W k+l for k + l 6 n andd :W k 7!W k+1 for k = 0; 1; : : : ; n� 1 with the properties that!k ^ !l = (�1)kl!l ^ !k ;dd ! = 0 ;and, if k + l < n,d(!k ^ !l) = (d!k) ^ !l + (�1)k!k ^ (d!l) : (1)Integration of a k�form on a k�cell is another fundamental operationthat illustrates the power of di�erential form abstraction. It allows themerging of the Newton-Leibniz theorem, the Stokes circulation theorem,and the Gauss divergence theorem into one simple, elegant formula:for any ! 2 W k(M ) and a k-cell C, Z@C ! = ZC d! : (2)As a corollary to this theorem and (1), we have, for k + l + 1 = n, theintegration by parts formulaZ@C !k ^ !l = ZC (d!k) ^ !l + (�1)k ZC !k ^ (d!l) : (3)



COMPATIBLE DISCRETIZATIONS 79In what follows, we will use the symbol d� to denote the \dual" operatord� = (�1)n�ld (4)so that (3) takes the formZ@C !k ^ !l = ZC (d!k) ^ !l � ZC !k ^ (d�!l):2.2. De Rham co-homology and the Hodge star operator.Structures consisting of spaces and an operator L between them thathas the property LL � 0 are called homological complexes. The homo-logical complex consisting of di�erential forms W k(M ) and the operatord is called the De Rham complex. In R3, the De Rham complex containsthe forms W 0(M ), W 1(M ), W 2(M ), and W 3(M ). If M is contractibleor star-shaped, then the sequenceR ,!W 0(M ) d7�!W 1(M ) d7�!W 2(M ) d7�!W 3(M ) 7�! 0 (5)is exact, i.e., the closed forms in W 0(M ) are the constants and all closedforms inW k(M ), k = 1; 2; 3, are di�erentials of (k�1){forms. Therefore,for contractible and star-shaped regions, the Betti numbers are b0 = 1and b1 = b2 = 0; see [7].Note that for any 3{form in R3, we have that d!3 = 0. Therefore,W 3(M ) contains only closed forms. The last link in (5), i.e.,W 3(M ) 7�!0, means that for regions without peculiarities, all forms in W 3(M ) arein fact di�erentials, i.e., they are exact forms. But this also means thatd is a surjective map from W 2(M ) into W 3(M ).For simplicity, in what follows we assume that M � 
 � R3 is con-tractible or star-shaped so that the De Rham complex (5) is exact. Inthree dimensions, every 1 and 2{form can be associated with a vector�eld according to!u1 = u1(x)dx1 + u2(x)dx2 + u3(x)dx3and !u2 = u1(x)dx2 ^ dx3 + u2(x)dx3 ^ dx1 + u3(x)dx1 ^ dx2 ;respectively. If � is a smooth function, then the 0{form !�0 is the function� itself, and the 3{form !�3 is given by!�3 = �(x)dx1 ^ dx2 ^ dx3 :



80 P. BOCHEV, M. GUNZBURGERUsing these identi�cations, it is easy to see thatd!�0 = !r�1 ; d!u1 = !r�u2 ; and d!u2 = !r�u3 ; (6)i.e., exterior di�erentiation of a 0; 1; 2�form is equivalent to application ofthe gradient, curl, and divergence operators, respectively, to its associatedscalar or vector �eld.A manifold 
 can be endowed with a metric, i.e., a quadratic, positivede�nite, symmetric form. The properties of di�erential forms discussedso far do not depend on the choice of this metric. The Hodge{�k operatoris a mapping W k(
) 7! Wn�k(
) that depends on the metric selectionon 
. For a precise de�nition of this operator, we refer to [25, p. 356].For the Euclidean metric, the action of �k on the basic forms is given by(see [29, p. 30]) �01 = dx1 ^ dx2 ^ dx3 ;�1dx1 = dx2 ^ dx3; �1dx2 = dx3 ^ dx3; �1dx3 = dx1 ^ dx2 ;�2(dx1 ^ dx2) = dx3; �2(dx2 ^ dx3) = dx1; �2(dx3 ^ dx1) = dx2 ;and �3(dx1 ^ dx2 ^ dx3) = 1 :To understand the action of this operator, it is convenient to think of k{forms as scalar or a vector function with attachments that can measurek{cells. Then, we can view the Hodge{* operator as a device that leavesthe function unchanged but swaps its k-measure for an n � k{measure.Since the sum of the orders of a k{form and its image under the Hodge{*is always n, the Hodge operator can be used to de�ne an inner producton W k(
) according to(!1k; !2k)0 = Z
 �k!1k ^ !2k : (7)In this paper, we will consider forms whose associated scalar and vector�elds are L2 functions. With this in mind, we introduce the spacesW k(d;
) = f! 2W k(
) j k!k20 + kd!k20 <1g ;where k � k0 is the norm induced by (7). In view of (6), it is clear that fork = 0; 1; 2, the spaces W k(d;
) respectively coincide with the Sobolevspaces H(
;grad), H(
; curl), and (
; div) of square integrable func-tions whose gradient, curl, and divergence are also square integrable.



COMPATIBLE DISCRETIZATIONS 81The space W 3(d;
) is simply L20(
). Under the hypotheses on 
, thesequenceR ,!H(
;grad) r7�! H(
; curl) r�7�! H(
; div) r�7�! L20(
) 7�! 0 (8)is exact. We call (8) De Rham di�erential complex.For PDEs, one has to account for various boundary conditions. Wewill consider a simple situation wherein the boundary of 
 consists oftwo smooth, disjoint pieces � and ��. If we incorporate the boundaryconditions in the spaces, the domains of the gradient, curl, and diver-gence, relative to �, areH0(
;grad) = f� 2 H(
;grad) j � = 0 on �gH0(
; curl) = fw 2 H(
; curl) j w � n = 0 on �gH0(
; div) = fw 2 H(
; div) j w � n = 0 on �g :These spaces de�ne a De Rham di�erential complex relative to �:R ,! H0(
;grad) r7�! H0(
; curl) r�7�! H0(
; div) r�7�! L20(
) 7�! 0 :(9)The dual De Rham complex is de�ned relative to �� and involves the\dual" operators r� = �r�, (r�)� = r� and (r�)� = �r. The do-mains of these operators are the Sobolev spaces H�0 (
; div), H�0 (
; curl),and H�0 (
;grad), where, e.g. H�0(
;grad) = f� 2 H(
;grad) j � =0 on ��g.The De Rham complex (9) and its dual form exact sequences. Wenote for further reference that the last links in these two complexes aresurjective. In what follows, we will use the simpler notationW k(d;
) andW k;�(d�;
) to denote the spaces in the De Rham complex and its dual.Here, d� is the operator de�ned in (4).2.3. Factorization diagrams.Consider the exact sequence fW k(d;
)g and its dual fW k;�(d�;
)g.The Hodge{* operator connects the two sequences into the followingstructure:W 0(d;
) d�! W 1(d;
) d�! W 2(d;
) d�! W 3(d;
)�0 # �1 # �2 # �3 #W 3;�(d�;
) d� �W 2;�(d�;
) d� �W 1;�(d�;
) d� �W 0;�(d�;
) (10)



82 P. BOCHEV, M. GUNZBURGERWe will call (10) a primal-dual complex. For simplicity, we will usebold face roman letters to denote forms from the primal complex andbold face Greek letters for the forms in the dual complex.The primal-dual complex can be traversed along its horizontal andvertical links, which correspond to the application of the exterior deriva-tive or a Hodge operator, respectively. In this way we can obtain di�erentdiagrams relating primal and dual forms. In this paper, we focus on thediagrams W k�1(d;
) d�! W k(d;
)�k�1 # �k #Wn�(k�1);�(d�;
) d� �Wn�k;�(d�;
) (11)where k = 1; 2; or 3. Each diagram in (11) represents a second-orderelliptic boundary value problem by virtue ofu d�! av f�k�1 # # �k� ��� d� � � (12)where (u;v) 2 W k�1(d;
) �W k(d;
) and (�;�) 2 Wn�k+1;�(d�;
) �Wn�k;�(d�;
) are the primal and dual variables, respectively, f and �are additive data functions, and a and � are multiplicative, non-negativedata functions with at least one of them being positive. Homogeneousboundary conditions on the primal and dual variables are already includ-ed in the de�nition of the spaces and need not appear explicitly in (12).The use of constructs like (11) or (12) to represent physical models waspioneered by Tonti [27, 28] and further popularized by Bossavit [6], Hipt-mair [16], and many others. For further details and more examples, werefer to [7, 16, 20, 26].Remark 1. A diagram such as (12) re
ects the fact that, in many cases,a physical quantity can be described in two complementary ways. Con-sider, for example, the 
ow of a 
uid in a pipe. We can either measurethe velocity of the 
uid along a line or measure its 
ux across a cross-section of the pipe. In the �rst case, we are using a 1{form descriptionfor the 
ow, while the second case describes the same phenomena using a2-form. Then, the Hodge-� operator is the facility that enables conversionbetween the two descriptions. When setting up a model to describe the



COMPATIBLE DISCRETIZATIONS 83
ow, we use the description that is consistent with the kind of balance wewant to express. If the 
ow is irrotational, we use the 1-form of the ve-locity to relate it to the pressure gradient. To express mass conservation,we switch to a 2-form description.Remark 2. Which set of variables and spaces are labeled as being primaland which are labeled as being dual is almost always a matter of arbitrarychoice, i.e., one can just as well reverse their roles.A fundamental property of (11) and (12) is that they separate topo-logical from metric relationships. The primal and dual equationsdu = av + f and d�� = ���+ �express two independent topological \equilibrium" relations while themetric-dependent properties of the problem are completely isolated inthe two \constitutive" equations� = �k�1u and � = �kvthat involve Hodge-� operators; see [16, 24].3. Compatible discretizations3.1. Discrete exact sequences.Factorization diagrams are a succinct tool for representing the PDEstructure. Compatible discretization can be viewed as a process whereinone attempts to create a �nite-dimensional analogue of a factorizationdiagram. Such model reduction requires two principal ingredients:1. two sets fW kh (dh;
)g and fW k;�h (d�h;
)g of primal and dual dis-crete di�erential forms that are exact with respect to the opera-tions dh and d�h;2. discrete Hodge operators�hk : W kh (dh;
) 7!Wn�k;�h (d�h;
)that connect the primal and dual spaces into a discrete primal-dual com-plex W 0h (dh;
) dh�! W 1h (dh;
) dh�! W 2h (dh;
) dh�! W 3h (dh;
)�h0 # �h1 # �h2 # �h3 #W 3;�h (d�h;
) d�h �W 2;�h (d�h;
) d�h �W 1;�h (d�h;
) d�h �W 0;�h (d�h;
) (13)



84 P. BOCHEV, M. GUNZBURGEREach one of the primal and dual sequences in (13) is a model for a \dis-crete vector calculus" and o�ers discrete analogues of, e.g., the Stokesformula (2). Let nk and n�k denote the dimensions of W kh (dh;
) andW k;�h (d�h;
), respectively. Since �hk is a mapping between two �nite-dimensional spaces, it must be expressible in the form of a matrix re-lation. Hiptmair [16] pointed out that a generic form of this operator isgiven by (see also [24]) M!hk = K!h;�n�k ; (14)where M is nk � nk symmetric \mass" matrix and K is a rectangularnk � n�n�k matrix.Remark 3. We will say that W kh (dh;
) provides an internal approxi-mation of W k(d;
) if it contains discrete k-forms. This notion is weakerthan, e.g., the notion of a conforming �nite element space which requiresW kh (dh;
) to be a subspace of the function space W k(d;
). In contrast,W kh (dh;
) can be an internal approximation without even having to bea function space. This situation occurs in, e.g., mimetic methods [17,18] and co-volume schemes [20{22], where W kh (dh;
) is represented byco-chains. The values of such objects are associated with particular meshlocations; an additional reconstruction operator must be de�ned to obtaintheir values at other locations. For comparison, for �nite element meth-ods the reconstruction operator is built into the de�nition of W kh (dh;
)by virtue of a shape function choice.3.2. Discrete factorization diagrams.Once a discrete primal-dual complex is available, a compatible dis-cretization of a problem represented by (12) can be de�ned by its restric-tion to the discrete complex (13):uh dh�!avh fh�hk�1 # # �hk�h ���h d�h � �h (15)The diagram (15) is a generic discretization template that maps the PDEstructure onto discrete spaces. An important feature of this template isthat the discrete equilibrium equations will be satis�ed exactly as long asW kh (dh;
) and W k;�h (d�h;
) are exact with respect to dh and d�h, respec-tively. This means that any discretization based on (15) will also imitate



COMPATIBLE DISCRETIZATIONS 85the conservation properties that are inherent to (12). However, this sit-uation describes one possibility among many for the realization of (15).Practical considerations may dictate other choices for the components in(15), leading to methods with very di�erent properties.3.3. An optimization approach to compatibility.One of the main strengths of �nite element methods is rooted in theirreliance on variational principles. This in turn opens up a possibility todraw upon the rich foundations of functional analysis and operator theorywhen studying �nite element methods. As a result, �nite element theoryhas been extremely strong in all matters related to metric aspects ofdiscretizations such as error estimates, convergence, and stability. Finiteelement theory has been less successful in providing constructive means todetermine what spaces should be used in a discretization so as to satisfyvarious compatibility conditions.The situation with the use of structures like (15) is exactly the op-posite. They provide excellent means to identify the appropriate discretespaces that depend on the topological relations between the �elds but areless successful in assessing the accuracy and asymptotic behavior of thediscrete models.Since variational and geometric approaches complement each other sonicely, it is only natural to try to apply them both in the discretizationprocess. Our plan is to do exactly this by using (12) in conjunction withconstrained optimization to derive the discrete diagrams (15). To thisend, recall that (12) represents the following boundary value problem:du = av + f � = �k�1ud�� = ��� + � � = �kv : (16)We cast (16) into a constrained optimization problem by minimizing theerror in the two constitutive laws subject to the two equilibrium equa-tions. Thus, we consider the quadratic functionalJ(eu; ev; e�; e�) = 12 �ke� � �kevk20 + ke�� �k�1euk20�and the optimization problem:�nd (u;v) 2W k�1(d;
)�W k(d;
)and (�;�) 2Wn�k;�(d�;
)�Wn�k+1;�(d�;
) such that for all(eu; ev) 2W k�1(d;
)�W k(d;
)and (e�; e�) 2Wn�k;�(d�;
)�Wn�k+1;�(d�;
)



86 P. BOCHEV, M. GUNZBURGER( J(u;v;�;�) 6 J(eu; ev; e�; e�)subject to deu = aev + f and d�e� = ��e�+ � : (17)It is easy to see that any solution of (16) solves (17) and vice versa. Wewill develop compatible discretizations by restricting this optimizationproblem to suitable �nite-dimensional spaces and making various choicesfor the Hodge�� operator.4. Realizations of compatible discretizationsTo reduce (16) to an algebraic model, we select the components in (13)and then restrict (17) to this structure. There are two basic templatesthat exist in this process. The �rst leads to what we call primal and dualformulations. In this case, (13) provides an internal approximation toonly one of the complexes in (10). The second template leads to a class ofprimal{dual formulations. In this case, (13) uses internal approximationsto both complexes in (10). Our main focus will be on a class of primal{dual methods; however, to demonstrate the capacity of (17) to serve as ageneral framework for compatible discretizations, we brie
y examine theprimal and dual reduction patterns.4.1. Primal and dual methods.4.1.1. Primal methods.We consider an exact sequence fW kh (dh;
)g, wheredh :W kh (dh;
) 7!W k+1h (dh;
); dhdh = 0is a set of natural exterior derivative operators. We assume that thereexists a dual set f(dh)�g of discretely de�ned adjoint1 operators(dh)� :W k+1h (dh;
) 7!W kh (dh;
); (dh)�(dh)� = 0 :To de�ne a primal2 method, we approximate the primal variables(u;v) internally by (uh;vh) 2W k�1h (dh;
)�W kh (dh;
). The dual vari-ables (�;�) are approximated externally by the same pair of discretespaces, i.e., we use (�h;�h) 2W k�1h (dh;
)�W kh (dh;
).1By this we mean that the adjoint operator (dh)� is de�ned with respect to an ap-propriatediscrete inner product.The terminology\natural"and \adjoint"are adoptedfrom [17, 18].2Again, we note that the designation of what is a primal method and what is adual method is somewhat arbitrary.



COMPATIBLE DISCRETIZATIONS 87Remark 4. One immediate consequence from this choice is that anyboundary conditions imposed on the dual pair cannot be enforced strong-ly, e.g., by setting the degrees of freedom residing on �� to values pre-scribed by the boundary data.The choice of the same spaces for the primal and the dual variablesimplies that (14) reduces to�h = I�uh and �h = Ibvh ; (18)where I� and Ib are scaled identity matrices, i.e., diagonal matrices, and� > 0 and b > 0 are \constitutive" functions, e.g., material constants.Therefore, (17) specializes to the following primal discrete optimizationproblem: �nd (uh;vh) 2W k�1h (dh;
)�W kh (dh;
)and (�h;�h) 2W k�1h (dh;
)�W kh (dh;
) that8<:minimize J(euh; evh; e�h; e�h) = 12 �ke�h � I�euhk20 + ke�h � Ibevhk20�subject to dheuh = aevh + fh and (dh)�e�h = ��e�h + �h: (19)Let (uh;vh) and (�h;�h) solve (19). It is easy to see that the minimumof the cost functional will be achieved when (18) is satis�ed. Substituting(18) into the second constraint (the dual equilibrium equation) yields(dh)�hIbvh = ��I�uh + �h: (20)This relation along with primal equationdhuh = avh + fh (21)serve to de�ne the approximations of the primal variables uh and vh.If a 6= 0, then we can use the primal equation (21) to eliminate vh andto obtain a single second-order equation in terms of uh only:(dh)�hIbdhuh + a�I�uh = a�h + (dh)�Ibfh : (22)In this case, (22) is an equivalent formulation of (19). If a = 0, thenthis reduced \Ritz-Galerkin" system cannot be obtained and one insteadmust solve the \mixed-Galerkin" system (20){(21).



88 P. BOCHEV, M. GUNZBURGER4.1.2. Dual methods.We consider an exact sequence fW k;�h (d�h;
)g, whered�h :W k;�h (d�h;
) 7!W k+1;�h (d�h;
); d�hd�h = 0is a set of natural exterior derivative operators. We assume that thereexists a dual set f(d�h)�g of adjoint operators(d�h)� :W k+1;�h (d�h;
) 7!W k;�h (d�h;
); (d�h)�(d�h)� = 0 :Remark 5. In general, since they operate between di�erent sets ofspaces, the operators dh and (dh)� that help de�ne the primal discreteproblem and the operators d�h and (d�h)� that help de�ne the dual discreteproblem do not satisfy d�h = (dh)� or dh = (d�h)�.We de�ne a dual method by choosing to approximate internally thedual variables (�h;�h) by the pair Wn�k+1;�(d�h;
)�Wn�k(d�h;
). Theprimal variables (u;v) are approximated externally by the same pair, i.e.,we use (uh;vh) 2 Wn�k+1;�(d�h;
)�Wn�k(d�h;
).Remark 6. One immediate consequence from this choice is that anyboundary conditions imposed on the primal pair cannot be enforcedstrongly, e.g., by setting the degrees of freedom residing on � to valuesprescribed by the boundary data.For the dual methods, (14) specializes touh = I��1�h and vh = Ib�1�h; (23)where I��1 and Ib�1 are scaled identity matrices. The dual discrete opti-mization problem, derived from (17), is:�nd (�h;�h) 2Wn�k+1;�h (d�h;
)�Wn�k;�h (d�h;
) and(uh;vh) 2Wn�k+1;�h (d�h;
)�Wn�k;�h (d�h;
) that8<:minimize J(euh; evh; e�h; e�h)= 12 �kI��1 e�h�euhk20+kIb�1e�h�evhk20�subject to (d�h)�euh = aevh + fh and d�he�h = ��e�h + �h: (24)If (uh;vh) and (�h;�h) solve (19), it is easy to see that they must satisfy(23). We use those relations to eliminate the primal variables from theprimal equation to obtain(d�h)�I��1�h = aIb�1�h + fh: (25)



COMPATIBLE DISCRETIZATIONS 89This relation along with dual equationd�h�h = ���h + �h (26)serve to de�ne the approximations of the dual variables �h and �h.If � 6= 0, then we can use the dual equation (26) to eliminate �h andto obtain a single second-order equation in terms of �h only:(d�h)�I��1d�h�h + a�Ib�1�h = ��fh + (d�h)�I��1�h: (27)In this case, (27) is an equivalent formulation of (24). If � = 0, thenthis reduced \Ritz-Galerkin" system cannot be obtained and one insteadmust solve the \mixed-Galerkin" system (25){(26).4.2. Primal-dual methods.The methods de�ned in the last section utilize the same set of forms inthe discrete complex (13). This set can provide an internal approximationeither with respect to the primal or the dual variables, but not for bothof them simultaneously. This is why in primal and dual methods we haveto use a combination of natural and adjoint di�erential operators. Theadjoint operators act as surrogates for the true exterior derivative for theset of variables that are not approximated internally.In this section, we consider another class of methods de�ned by usinginternal approximations for both the primal and dual variables. In thiscase, the exterior derivative for both sides is represented by the naturaldi�erential operators and there is no need for using an adjoint operator.We will call such methods primal{dual to highlight the participation ofboth groups of variables.To de�ne primal{dual methods, we require a primal and a dual exactsequence, denoted by fW kh (dh;
)g and fW k;�h (d�h;
)g, respectively. Wealso have the primaldh :W kh (dh;
) 7!W k+1h (dh;
); dhdh = 0and the duald�h :W k;�h (d�h;
) 7!W k+1;�h (d�h;
); d�hd�h = 0sets of natural exterior derivative operators. The factor (�1)n�l is includ-ed in the de�nition of d�h.Remark 7. The operators dh and d�h now de�ned in the context ofprimal-dual methods do not necessarily need to be the same as the same-named operators used in the primal and dual methods, respectively.



90 P. BOCHEV, M. GUNZBURGERIn conjunction with a discrete Hodge operator, these two sequenceslead to a discrete complex (13) that provides an internal approximationof the complex in (10). In the realization of (13), there are two distinctpossibilities. The �rst is to use primal and dual sequences de�ned ontopologically dual grids. For such grids there exists a one-to-one rela-tionship between the primal k�cells and the dual (n � k)�cells and thespaces W kh (dh;
) andW (n�k);�(d�h;
) have the same dimension. As a re-sult, the discrete Hodge operator de�nes an isomorphism between thesespaces and (14) reduces to !h;�n�k = M!hk ;where M is a symmetric, positive de�nite matrix. This setting leads tosome well-known �nite volume and co-volume methods [14, 21, 22] andstaggered �nite di�erence schemes such as the Yee scheme [30].Our focus, however, is on another class of primal-dual methods thatexploits the use of unrelated sets of primal and dual spaces. In particular,one possibility a�orded by this approach is to consider primal and dualspaces de�ned with respect to the same partition of 
 into k�cells. Sinceon a single grid it is impossible to have a one-to-one relationship betweenthe k� and the (n� k)�cells, the spaces W kh (dh;
) and W (n�k);�(d�h;
)de�ned on this grid cannot be isomorphic. In this case, the discrete Hodgeoperator is represented by a pair of matrices as in (14). However, the useof a single grid for both complexes o�ers numerous advantages and sim-pli�cations that, in our opinion, outweigh the disadvantage of not havingan isomorphic discrete Hodge operator. Furthermore, instead of attempt-ing to �nd explicit representations for the discrete Hodge operators, wewill let the optimization process in (17) de�ne the operators implicitly.Thus, to de�ne this primal-dual method we consider the optimizationproblem: �nd (uh;vh) 2W k�1h (dh;
)�W kh (dh;
) and(�h;�h) 2W (n�k+1);�h (d�h;
)�W (n�k);�h (d�h;
) that8<:minimize J(euh; evh; e�h; e�h)= 12 �k�(e�h��euh)k20 + ka(b�1e�h�evh)k20�subject to dheuh=aevh + fh and d�he�h = ��e�h + �h: (28)The \constitutive" functions � > 0 and b > 0 insure, among other things,dimensional consistency in the functional J(�; �; �; �). The appearance of



COMPATIBLE DISCRETIZATIONS 91the weight factors a and � is natural, given how the variables vh and�h appear in the constraint equations. We recall that in (28) both dhand d�h are natural di�erentiation operators. To solve (28), one could useLagrange multipliers to enforce the two constraints. A better and moree�cient way to solve this problem is to take advantage of the fact that,thanks to the use of the natural operators, both constraint equations areexact.First, consider the case for which both a 6= 0 and � 6= 0. Let (uh;vh)and (�h;�h) solve (28). Then, we can eliminate vh and �h from (28)using the primal and the dual equations, respectively. The result is theunconstrained minimization problem in terms of one of the primal andone of the dual variables:�nd uh 2W k�1h (dh;
)and �h 2 W (n�k);�h (d�h;
) that minimizeJa�(euh; e�h) = 12 �kd�he�h + ��euh � �hk20 + kdheuh � ab�1e�h � fhk20� :(29)Next, consider the case3 a = 0 and � > 0. We can consider this case ascorresponding to the limit, as a! 0, of a sequence of problems with a > 0and � > 0. Since for positive values of a and � the two-�eld formulation(29) and the four-�eld formulation (28) are completely equivalent, wecan derive formulations for a = 0 by taking the limit a! 0 either in theoriginal problem (28), or its reduced version (29). This, however, leads totwo di�erent compatible formulations that are not equivalent with eachother. In other words, taking the limit a ! 0 does not commute witheliminating variables from (28). Indeed, starting from (29) and settinga = 0 gives the unconstrained optimization problem:�nd uh 2W k�1h (dh;
)and �h 2W (n�k);�h (d�h;
) that minimizeJ�(euh; e�h) = 12 �kd�he�h + ��euh � �hk20 + kdheuh � fhk20� : (30)On the other hand, setting a = 0 in (28) leads to a problem where theprimal variable vh does not appear in the constraints or the functionalJ(�; �; �; �). We can still use the second constraint equation to eliminate�h, however, there's nothing that can be done to rid the problem of the3Recall that it has been assumed that not both a and � can vanish.



92 P. BOCHEV, M. GUNZBURGER�rst equation which continues to act as a constraint. As a result, we areled to a simpler, but still constrained, two-�eld optimization problem�nd uh 2W k�1h (dh;
) and �h 2W (n�k);�h (d�h;
) that minimizeJ(euh; e�h) = 12kd�he�h + ��euh � �hk20 subject to dheuh = fh : (31)Finally, consider the case a > 0 and � = 0. Taking the limit � ! 0 in(29) gives the unconstrained optimization problem�nd uh 2W k�1h (dh;
) and �h 2W (n�k);�h (d�h;
) that minimizeJa(euh; e�h) = 12 �kd�he�h � �hk20 + kdheuh � ab�1e�h � fhk20� : (32)Since (30) and (32) are the same as (29) specialized to the cases a = 0and � = 0, respectively, all three optimization problems can be cast interms of the single functional (29).When the limit � ! 0 is taken in (28), the situation is exactly theopposite to what happened earlier: now the dual variable �h does notappear in the constraints or the functional J(�; �; �; �) and vh can be elimi-nated from the �rst constraint equation. This gives another reduced, butconstrained, optimization problem:�nd uh 2W k�1h (dh;
) and �h 2W (n�k);�h (d�h;
) that minimizeJ(euh; e�h) = 12kdheuh � ab�1e�h � fhk20 subject to d�he�h = �h: (33)There is an obvious symmetry between (31) and (33). Both problems usethe same pair of variables but have di�erent constraints and their costfunctionals employ dual operators.Regarding the solution of (29), using standard calculus of variationstools it is not hard to see that the �rst-order necessary condition for(uh;�h) 2 W k�1h (dh;
) �W (n�k);�h (dh;
) to minimize (29) is given bythe variational (Euler-Lagrange) equation:�nd uh 2 W k�1h (dh;
) and �h 2W (n�k);�h (d�h;
) such thatQ(uh;�h; euh; e�h) = F (euh; e�h) (34)for all (euh; e�h) 2W k�1h (dh;
)�W (n�k);�h (d�h;
); where



COMPATIBLE DISCRETIZATIONS 93Q(uh;�h; euh; e�h) = �d�h�h + ��uh ; d�he�h + ��euh�0+ �dhuh � ab�1�h ; dheuh � ab�1e�h�0 (35)and F (euh; e�h) = ��h ; d�he�h + ��euh�0 + �fh ; dheuh � ab�1e�h�0 :An analysis of (34) in the case of k = 1 and exact sequences of �niteelement spaces can be found in [4]. A formal analysis of this formulationin three dimensions and general discrete exact sequences is a subject ofa forthcoming paper.Here we proceed with examples that illustrate the various methods inthe context of the eddy current subset of the Maxwell equations whenthe exact sequences are de�ned by �nite element spaces. Among otherthings, the examples illustrate the attractive computational properties offormulations based on the primal-dual variational equation (34).5. ExamplesIn [4], examples of primal, dual, and primal-dual �nite element meth-ods for a div-grad system (for which k = 1) are considered. Here, weconsider the eddy current problemr�H = J in 
� (0; T ] (36a)r� E = �@B@t in 
� (0; T ] (36b)that is derived from the full set of the Maxwell equations by neglectingthe displacement current. In (36a){(36b),H denotes the magnetic �eld, Jthe current density, E the electric �eld, and B the magnetic 
ux density.Note that (36a) and (36b) implyr �B = 0 in 
 (37a)r � J = 0 in 
 : (37b)Any initial values B0 forB is required to satisfy (37a). The system (36a){(36b) is closed by adding the constitutive relationsB = �H and J = �E ; (38)where � and � denote the conductivity and permeability of the media,respectively, and the boundary conditionsn�H = n�Hb or n � J = n � Jb on � (39)



94 P. BOCHEV, M. GUNZBURGERn� E = n� Eb or n �B = n �Bb on �� (40)posed on disjoint parts � and �� of the boundary @
. The pairs of bound-ary conditions in (39) and (40) are not independent and only one fromeach pair can be posed on � and ��. Here we usen�H = n�Hb on � and n� E = n� Eb on �� : (41)We will apply the framework of the previous sections to a semidiscreteversion of (36a){(36b). For simplicity, assume that [0; T ] is divided intoN subintervals of equal length 4t = T=N . The implicit Euler methodto advance solution by one time step requires the solution of the ellipticproblem r�H = J (42a)r� E = � 1�tB + 1�t eB (42b)along with (41). In (42b), eB is the magnetic 
ux at the beginning of thetime step. Clearly, for the �rst time step, eB = B0.To apply the framework, we assume constant material properties, ho-mogeneous boundary conditions, and make the following identi�cations.First, k = 2, a = 1, f = 0, the primal variables areu=H 2W 1(d;
)=H0(
; curl) and v=J2W 2(d;
)=H0(
; div);(43)and (42a) is the primal equilibrium equation. Second, � = 1=�t, � = �eB,the dual variables are�=B2W 2;�(d;
)=H�0(
; div) and �=E2W 1;�(d;
)=H�0(
; curl);(44)and (42b) is the dual equation. Finally, (38) is the set of material lawswhere � = � and b = 1=�.For a primal method, we need to choose spaces4 W 1h (dh;
) andW 2h (dh;
). For the sake of clarity, we will denote the operators dh and(dh)� by C and C � , respectively. Here C is the natural curl and C � is itsdiscretely de�ned adjoint curl. Since � and � are assumed constant, (22)specializes to 1� C �CHh + ��tHh = 1�t eBh: (45)4We recall that the notion of internal approximation, discussed in Remark 3, doesnot require these spaces to be proper subspaces of W 1(d;
) and W 2(d;
).



COMPATIBLE DISCRETIZATIONS 95For a dual method, we need to choose spacesW 1;�h (d�h;
) andW 2;�h (d�h;
).For the sake of clarity, we will denote the operators d�h and (d�h)� by eC �and eC , respectively, where now eC � is the natural curl and eC is its discreteadjoint curl. The dual problem (27) then specializes to�t� eC eC �Eh + �Eh = 1� eC eBh: (46)Note that, in general, eC � 6= C even though both are natural curl opera-tors. For the problem considered here, a > 0 and � > 0 so that in bothcases we were able to eliminate all but one variable and obtain a Ritz-type method. Note that both the primal (45) and dual (46) equationsare essentially (potentially di�erent) discretizations of the same curl-curldi�erential operator.5.1. Finite element realizations.We now demonstrate the methods one obtains when the discrete exactsequences are built from �nite element spaces. For the sake of brevity, weonly consider the dual formulation (46) and the primal-dual method (28)or (34).To specialize the dual method (46) to the case of �nite element spaces,we need both the natural curl eC � and its discrete adjoint operator eC .Finite element spaces provide proper, �nite-dimensional subspaces of theSobolev spaces that form (10). As a result, the natural di�erential oper-ators are de�ned by restriction of d� to the discrete spaces, i.e., eC � is amatrix that gives the action of the actual curl operator on �nite elementfunctions. For the sake of clarity, we will use the latter instead of the ma-trix form, i.e., we will write the dual equation restricted to �nite elementspaces as r� Eh = � 1�tBh + 1�t eBh: (47)The adjoint operator eC should act on discrete functions that form a sub-space of W 2;�(d�;
). Such functions are in the domain of the divergencebut not in the domain of the curl. In the �nite element case, this problemis resolved by using a weak variational form of the curl operator obtainedby integration by parts: eC : W 2;�h (d�h;
) 7! W 1;�h (d�h;
) and eCBh = Ehif and only ifZ
 eC Bh bEhd
 = Z
 Bhr� bEh d
 8 bEh 2W 1;�h (d�h;
) : (48)



96 P. BOCHEV, M. GUNZBURGERThe operator eC de�ned by (48) is not local. Finding its explicit matrixrepresentation entails the solution of a linear system of equations and isnot practical. Fortunately, it is also not needed, as the primal variablesHand J can be eliminated from (36a) by directly using (48). The ensuingweak form of this equation isZ
 1�Bh � r� bEhd
 = Z
 �Eh � bEhd
 8 bEh 2W 1;�h (d�h;
): (49)Using (47) to eliminate Bh from (49), we obtain the dual �nite elementmethod: seek Eh 2W 1;�(d�h;
) such thatZ
 �t� �r�Eh� ��r� bEh�d
+ Z
 �Eh � bEhd
 = Z
 1� eBh ��r� bEh�d
(50)for all bEh 2W 1;�(d�h;
).Remark 8. If inhomogeneous boundary conditions are speci�ed in (41),they will contribute an additional trace termZb (n�Hb) � bEhd�to (48), (49), and (50); this term will modify the source function. Theboundary condition on E has to be strongly imposed, in some appropriateapproximate manner, on the discrete approximation Eh. Thus, for thedual problem, the boundary condition on H is a natural one while theone of E is an essential one. For further details about the dual formulationwith such boundary conditions, see [5].The primal �nite element counterpart of (50) will lead to a similarcurl-curl equation but in terms of the primal variable H; the roles of theessential and natural boundary conditions are reversed.Let us now specialize the primal-dual method (28){(29) to the semidis-crete eddy current problem (42a)-(42b) and �nite element spaces. First,the constrained optimization problem (28) now reads: �nd (Hh;Jh) 2W 1h (dh;
)�W 2h (dh;
) and (Bh;Eh) 2W 2;�h (d�h;
)�W 1;�h (d�h;
) that8><>:minimize J( eHh; eJh; eBh; eEh)= 12 �keBh�� eHhk20 + keEh���1eJhk20�subject to r� eHh = eJh and r� eEh = � 1�t eBh + 1�t eBh:



COMPATIBLE DISCRETIZATIONS 97In the present case, a > 0 and � > 0 and so we can proceed to eliminateJh from the primal variables and Bh from the dual set to obtain a min-imization problem in terms of Hh and Eh only. The analogue of (29) istherefore: �nd Hh 2W 1h (dh;
) and Eh 2W 1;�h (d�h;
) that minimizeJ( bHh; bEh) = 12 �k�tr� bEh + � bHh � eBhk20 + kbEh � ��1r� bHhk20� :(51)The form in (35) is given byQ(Hh;Eh; bHh; bEh) = ��tr�Eh + �Hh;�tr� bEh + � bHh�+ �Eh � ��1r�Hh; bEh � ��1r� bHh�and the right hand-side functional isF h( bHh; bEh) = �eBh;�tr� bEh + � bHh� : (52)Another way to derive the reduced problem (51) is by application of least-squares principles directly to the semidiscrete equations (42a){(42b), inwhich J and B were eliminated by using the constitutive laws in (38).However, this way of deriving (51) obscures the origins of each variableand makes the choice of the correct discrete spaces less transparent. Cou-pled with the extreme robustness of least-squares principles, this has ledto the widespread misconception that the choice of elements in (51) isirrelevant and that standard C0 nodal spaces can be used for E and Hinstead of the spaces W 1;�h (d�h;
) and W 1h (dh;
).Indeed, a least-squares principle remains stable on any proper subspaceof the relevant function spaces by virtue of the fact that it computes anorthogonal projection of the true solution onto that subspace. Since nodalC0 spaces do form proper subspaces of W 1;�(d�;
) and W 1(d;
), suchan implementation of (51) will reliably compute the best C0 approxima-tions of E and H. The trouble with this approach is that the best C0approximation is not necessarily the most accurate possible approxima-tion of E and H since the latter pair are required to have only tangentialcontinuity (and not continuity of all their components) along elementinterfaces. Consequently, while always stable, nodal implementations of(51) may lack optimal accuracy in many physically relevant settings.
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