3anucKM Hay4JHBIX
cemunapos [ITOMUA
Tom 318, 2004 r.

P. Bochev, M. Gunzburger

COMPATIBLE DISCRETIZATIONS OF
SECOND-ORDER ELLIPTIC PROBLEMS

ABSTRACT. Differential forms provide a powerful abstraction tool to en-
code the structure of many partial differential equation problems. Dis-
crete differential forms offer the same possibility with regard to compat-
ible discretizations of these problems, i.e., for finite-dimensional models
that exhibit similar conservation properties and invariants. We consid-
er the application of a discrete exterior calculus to the approximation
of second-order elliptic boundary-value problems. We show that there
exist three possible discretization patterns. In the context of finite ele-
ment methods, two of these lead to familiar classes of discrete problems,
while the third offers a novel perspective about least-squares variational
principles, namely how they can arise from particular choices for discrete
Hodge—* operators.

Dedicated to the memory
of Olga A. Ladyzhenskaya

1. INTRODUCTION

Partial differential equations (PDEs) are a fundamental modeling tool
in science and engineering. With the exception of few special cases, their
exact analytical solution is difficult, if not impossible to obtain. As a re-
sult, the approximate numerical solution of PDEs is a task of tremendous
practical importance. A key ingredient in this task is discretization. Dis-
cretization 1s a model reduction process wherein a system of differential
equations, posed in infinite-dimensional spaces, 1s replaced by a finite-
dimensional algebraic model that can be solved on a digital computer.
Over the last few decades, discretizations evolved along three separate
and seemingly distinct routes which relied on different types of reduction
ideas to define the algebraic equations.

Finite difference quotient methods replace differential operators by
difference operators acting upon grid functions. Finite volume methods
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reduce an equivalent integral form of the equations to an algebraic sys-
tem by breaking down the computational domain into a finite number
of cells (volumes) and approximating the boundary fluxes by polynomi-
al expressions. Finally, finite element methods transform the PDE into
an equivalent variational equation and then restrict this equation to a
finite-dimensional function space. While in some cases all three methods
lead to exactly the same reduced model, historically adherents of each
discretization approach placed the main focus of their research on the
distinctions rather than on the similarities between the three.

Recently, researchers have focused more attention on the fact that
regardless of which particular reduction approach is used, stable and ac-
curate discretizations of many PDE problems share more than an ac-
cidental similarity with each other. This similarity becomes even more
obvious when one adopts the formalism of exterior calculus and differen-
tial forms and uses them to express the PDE equation problem. Then,
one quickly realizes that successful discretizations of the problem try to
mimic the abstract structure revealed by differential forms by using a
parallel system of discrete differential forms.

Bossavit [6-8] was among the first to recognize the importance of these
connections in the context of computational electromagnetics. His work
spurred further research activity that revealed fundamental connections
between, e.g., stability conditions in mixed methods [11-13] and discrete
differential form structures [2, 4] and led to the further development of
tools for and understanding of compatibility in discretization processes [5,
10, 15, 20, 26]. Similar developments occurred in finite difference methods
[17-19] and finite volume methods [21, 22].

In this paper, we consider a general framework for compatible dis-
cretizations of second-order elliptic PDEs. Our starting point is a fac-
torization diagram (see [6, 16, 27, 28] among others) that breaks down
the second-order PDE into a set of metric-independent primal and dual
equilibrium relations augmented by a set of metric-dependent constitu-
tiwe laws. To solve the PDE problem, we consider a four-field constrained
optimization approach in which the error in the constitutive laws is min-
imized subject to the equilibrium equations. The optimization problem
1s discretized using an exact sequence of finite-dimensional spaces. We
show that, depending on the choices made for the approximation of the
various fields, one recovers many familiar methods. Included among these
are a mixed-type and Ritz-like finite element methods that can be asso-
ciated with the use of the constitutive laws and/or one of the equilibrium
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equations to eliminate the primal or dual variables.

Our main focus is on another kind of formulation where the elimination
of variables in the four-field problem is effected by using the equilibrium
equations alone. Under certain assumptions on the equilibrium equations,
this elimination method reduces the four-field constrained optimization
problem to a two-field unconstrained minimization problem. The latter
involves one primal and one dual variable and can be shown to combine
the best properties of the other elimination methods. Its discretization
also leads to symmetric and positive definite algebraic systems that are
easier to solve than some of the systems arising with the other elimination
choices. A remarkable fact about the reduced two-field problem is that
it remains meaningful even if some of the assumptions necessary for the
initial elimination process are not satisfied.

The idea of using constitutive error minimization was perhaps first
suggested by Bossavit [6] for magnetostatics problems; see also [1] for a
similar approach applied to the full Maxwell equations using vector po-
tentials. Tt was further developed in the magnetostatics setting in [9] and
analyzed for the two-dimensional case in [23]. These works focus on the
solution of the constrained optimization problem by Lagrange multipli-
ers rather than elimination, and consider the field-based formulation as
being separate from mixed and Ritz-like methods. The approach adopted
in this paper allows us to show that minimization of the constitutive er-
ror is in fact the most general variational setting that, depending on the
discretization choices, defaults to three basic schemes — a mixed type, a
Ritz type, and a least-squares type.

2. QUOTATION OF RESULTS

2.1. Exterior and differential forms.
We recall [3] that, in n dimensions, an exterior form of degree k, k < n,
or a k—form, is a mapping
w:RPx ... .xR"— R
—_——
k

that is k—linear and antisymmetric:

Wi pw&+ve ) =pw( € ) trw(oL € )
and
0if (é1,42,...,1) is even

f1y-+° 161 = (-1 V’ h = : y y ] 1
w(€1 gk) ( ) where v {1lf (11,22,~~~,Zk) is odd.
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The set of all k—forms is a linear space with dimension (Z)

Exterior forms operate on groups of vectors in Fuclidean space. Dif-
ferential forms do the same thing, except that they draw their arguments
from tangent spaces T'M to differentiable manifolds M. Locally, a differ-
entiable k—manifold embedded in R" is defined by the n — &k equations

ix)=0 i=1,...,n—k,

where fi,..., fa_r : R? = R are smooth functions such that Vf; are
linearly independent. The tangent space at the point x € M is defined
by

TMy = (span{Vfi,... .,V .z }7*.

The union of all tangent spaces TM = UxepT Mx is called the tangent
bundle of M. In what follows, we restrict attention to M = R”. A differ-
ential k—form wg|x at a point x € M is an exterior k-form on T M. If
such a form wy is given at every point x € M and if it is differentiable,
it 1s called k—form on M. A differential 0—form is a function on M. The
set of all k—forms on M will be denoted by W*(M).

We recall the operators A : W* x W' — Wkt for k +1 < n and
d:WF— Wk for k=0,1,...,n— 1 with the properties that

wr Awp = (=) w Awy
ddw =0,
and, if k+1 < n,
d(wr Awr) = (dwr) Awr + (1) wp A (dwr) - (1)

Integration of a k—form on a k—cell is another fundamental operation
that illustrates the power of differential form abstraction. It allows the
merging of the Newton-Leibniz theorem, the Stokes circulation theorem,
and the Gauss divergence theorem into one simple, elegant formula:

for any w € W*(M) and a k-cell C, /w = /dw. (2)
oC c

As a corollary to this theorem and (1), we have, for £+ {4+ 1 = n, the
integration by parts formula

/wk/\wl:/(dwk)/\wl—l—(—l)k/wk/\(dwl). (3)

aoC C C
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In what follows, we will use the symbol d* to denote the “dual” operator
& = (-1l (4)

so that (3) takes the form

/wk Awp = /(dwk) Awp — /wk A (d*wr).

aoC C C

2.2. De Rham co-homology and the Hodge star operator.
Structures consisting of spaces and an operator £ between them that
has the property £ £ = 0 are called homological complexes. The homo-
logical complex consisting of differential forms W* (M) and the operator
d is called the De Rham complex. In R3, the De Rham complex contains
the forms Wo(M), WY(M), W?(M), and W3(M). If M is contractible

or star-shaped, then the sequence

d d

|—>W1(M)|—> d

R — Wo(M) W3H(M) —— W3(M)—0  (5)

is exact, i.e., the closed forms in W%(M) are the constants and all closed
forms in W*(M), k = 1,2, 3, are differentials of (k — 1)—forms. Therefore,
for contractible and star-shaped regions, the Betti numbers are by = 1
and by = by = 0; see [T].

Note that for any 3—form in R3, we have that dws = 0. Therefore,
W3(M) contains only closed forms. The last link in (5), i.e., W3 (M) —
0, means that for regions without peculiarities, all forms in W3(M) are
in fact differentials, i.e., they are exact forms. But this also means that
d is a surjective map from W?(M) into W3(M).

For simplicity, in what follows we assume that M = Q C R?3 is con-
tractible or star-shaped so that the De Rham complex (5) is exact. In
three dimensions, every 1 and 2—form can be associated with a vector
field according to

wl = wy(x)dry + us(x)des + us(x)des
and
wy =uy(x)deg A des + ua(x)des A dey +us(x)dey Ades,

respectively. If ¢ is a smooth function, then the O—form wg’ is the function

¢ itself, and the 3—form wg is given by

wg’ = ¢(x)dey Adrs Ades.



80 P. BOCHEV, M. GUNZBURGER

Using these identifications, it is easy to see that

dwg’ = W1V¢ podot =wyX™; and dw¥ =wy ™™, (6)
1.e., exterior differentiation of a 0, 1, 2—form is equivalent to application of
the gradient, curl, and divergence operators, respectively, to its associated
scalar or vector field.

A manifold Q can be endowed with a metric, i1.e., a quadratic, positive
definite, symmetric form. The properties of differential forms discussed
so far do not depend on the choice of this metric. The Hodge—*j operator
is a mapping W*(Q) — W"~*(Q) that depends on the metric selection
on Q. For a precise definition of this operator, we refer to [25, p. 356].
For the Euclidean metric, the action of #; on the basic forms is given by
(see [29, p. 30])

0l = dxy Adrs ANdes;

*1dl‘1 = dl‘z/\dl‘g, *1dl‘2 = dl‘g/\dl‘g, *1dl‘3: dl‘l/\dl‘z;
*z(dl‘l A dl‘z) = dl‘g, *z(dl‘z A dl‘g) = dl‘l, *z(dl‘g A dl‘l) = dl‘z ;

and
*3(dey Adea Ndas) = 1.

To understand the action of this operator, it is convenient to think of k-
forms as scalar or a vector function with attachments that can measure
k—cells. Then, we can view the Hodge—* operator as a device that leaves
the function unchanged but swaps its k-measure for an n — k—measure.
Since the sum of the orders of a k—form and its image under the Hodge—*
is always n, the Hodge operator can be used to define an inner product
on W*(Q) according to

(w%,w,%)o = /*kw% Awi. (7)
Q

In this paper, we will consider forms whose associated scalar and vector
fields are L? functions. With this in mind, we introduce the spaces

Whd, Q) = {w e WHQ) | [lllf +[ldw]f5 < oo},

where || - ||o is the norm induced by (7). In view of (6), it is clear that for
k = 0,1,2, the spaces W*(d, Q) respectively coincide with the Sobolev
spaces H(Q, grad), H(Q, curl), and (2, div) of square integrable func-
tions whose gradient, curl, and divergence are also square integrable.
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The space W3(d, Q) is simply L3(Q). Under the hypotheses on Q, the
sequence

R — H(Q, grad) — H(Q, curl) =5 H(Q, div) ~— L2(Q) — 0 (8)

is exact. We call (8) De Rham differential complex.

For PDEs, one has to account for various boundary conditions. We
will consider a simple situation wherein the boundary of € consists of
two smooth, disjoint pieces I' and I'*. If we incorporate the boundary
conditions in the spaces, the domains of the gradient, curl, and diver-
gence, relative to I', are

Ho(Q,grad) ={p € HQ,grad) | ¢ =0 on T}
Hy(Q,curl) ={w € H(Q,curl) | wxn=0 on T}
Ho(Q,div)={we H(Q,div) | w- n=0 on T}.

These spaces define a De Rham differential complex relative to I':

R — Ho(Q, grad) —— Ho($, curl) 225 Ho(Q, div) > LE(Q) — 0.
(9)
The dual De Rham complex is defined relative to I'* and involves the
“dual” operators V* = =V., (Vx)* = Vx and (V-)* = —=V. The do-
mains of these operators are the Sobolev spaces H (8, div), H(Q, curl),
and H3(Q,grad), where, e.g. H;(Q, grad) = {¢ € H(Q,grad) | ¢ =
0 on T*}.

The De Rham complex (9) and its dual form exact sequences. We
note for further reference that the last links in these two complexes are
surjective. In what follows, we will use the simpler notation W*(d, Q) and
WH*(d*, Q) to denote the spaces in the De Rham complex and its dual.
Here, d* is the operator defined in (4).

2.3. Factorization diagrams.

Consider the exact sequence {W*(d,Q)} and its dual {W**(d*,Q)}.
The Hodge—* operator connects the two sequences into the following
structure:

Wo(d, Q) - Wi(d,Q) & W(d,Q) & W3(d,Q)
*0 | *1 | * | *3 | (10)
WS’*(d*,Q)sz’*(d*,Q)Lwl’*(d*,Q)LWO’*(d*,Q)
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We will call (10) a primal-dual complex. For simplicity, we will use
bold face roman letters to denote forms from the primal complex and
bold face Greek letters for the forms in the dual complex.

The primal-dual complex can be traversed along its horizontal and
vertical links, which correspond to the application of the exterior deriva-
tive or a Hodge operator, respectively. In this way we can obtain different
diagrams relating primal and dual forms. In this paper, we focus on the

diagrams

Whl(d, Q) L Wk, Q)

kr—1 | k| (11)
Wn_(k_l)’*(d*, Q)LW”‘kv*(d*, Q)

where k£ = 1,2, or 3. Each diagram in (11) represents a second-order
elliptic boundary value problem by virtue of

d
u —>ClV

*p_1 | *g (12)

—auL v

where (u,v) € W*=1(d, Q) x W¥(d,Q) and (p,v) € Wn=k+14(d* Q) x
Wn=k*(d* Q) are the primal and dual variables, respectively, f and &
are additive data functions, and @ and « are multiplicative, non-negative
data functions with at least one of them being positive. Homogeneous
boundary conditions on the primal and dual variables are already includ-
ed in the definition of the spaces and need not appear explicitly in (12).
The use of constructs like (11) or (12) to represent physical models was
pioneered by Tonti [27, 28] and further popularized by Bossavit [6], Hipt-
mair [16], and many others. For further details and more examples; we

refer to [7, 16, 20, 26].

Remark 1. A diagram such as (12) reflects the fact that, in many cases,
a physical quantity can be described in two complementary ways. Con-
sider, for example, the flow of a fluid in a pipe. We can either measure
the velocity of the fluid along a line or measure its flux across a cross-
section of the pipe. In the first case, we are using a 1-form description
for the flow, while the second case describes the same phenomena using a
2-form. Then, the Hodge-* operator is the facility that enables conversion
between the two descriptions. When setting up a model to describe the
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flow, we use the description that is consistent with the kind of balance we
want to express. If the flow is irrotational, we use the 1-form of the ve-
locity to relate it to the pressure gradient. To express mass conservation,
we switch to a 2-form description.

Remark 2. Which set of variables and spaces are labeled as being primal
and which are labeled as being dual is almost always a matter of arbitrary
choice, 1.e., one can just as well reverse their roles.

A fundamental property of (11) and (12) is that they separate topo-
logical from metric relationships. The primal and dual equations

da=av+f and d'v=-apu+é¢

express two independent topological “equilibrium” relations while the
metric-dependent properties of the problem are completely isolated in
the two “constitutive” equations

p=*_1u and v =x;v

that involve Hodge-* operators; see [16, 24].

3. COMPATIBLE DISCRETIZATIONS

3.1. Discrete exact sequences.

Factorization diagrams are a succinct tool for representing the PDE
structure. Compatible discretization can be viewed as a process wherein
one attempts to create a finite-dimensional analogue of a factorization
diagram. Such model reduction requires two principal ingredients:

L. two sets {WF(dn,Q)} and {Wf’*( 5, )} of primal and dual dis-
crete differential forms that are exact with respect to the opera-
tions dp, and dJ;

2. discrete Hodge operators

o WE(dn, Q) — Wi (d5, Q)

that connect the primal and dual spaces into a discrete primal-dual com-
plex

WO(dp, Q) 2 Wi(dn, Q) 2= W2(dy, Q) 2 Wi(dy, Q)
* | *P | * | * | (13)
W2 (dy, @) W2 (dy, )Wl (d5, Q)W (5, Q)
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Fach one of the primal and dual sequences in (13) is a model for a “dis-
crete vector calculus” and offers discrete analogues of, e.g., the Stokes
formula (2). Let n; and n} denote the dimensions of W,f(dh,Q) and
W:’*(dZ,Q), respectively. Since *Z 18 a mapping between two finite-
dimensional spaces, it must be expressible in the form of a matrix re-
lation. Hiptmair [16] pointed out that a generic form of this operator is
given by (see also [24])

Mwp = Kw* (14)

n—k >

where M is np X np symmetric “mass” matrix and K is a rectangular
ng X n;,_, matrix.

Remark 3. We will say that W,f(dh,Q) provides an internal approzi-
mation of W*(d, Q) if it contains discrete k-forms. This notion is weaker
than, e.g., the notion of a conforming finite element space which requires
Wi (dn, Q) to be a subspace of the function space W*(d, Q). In contrast,
W,f(dh, ) can be an internal approximation without even having to be
a function space. This situation occurs in, e.g., mimetic methods [17,
18] and co-volume schemes [20-22], where W} (dp,, Q) is represented by
co-chains. The values of such objects are associated with particular mesh
locations; an additional reconstruction operator must be defined to obtain
their values at other locations. For comparison, for finite element meth-
ods the reconstruction operator is built into the definition of W5 (dy, Q)
by virtue of a shape function choice.

3.2. Discrete factorization diagrams.

Once a discrete primal-dual complex 1s available, a compatible dis-
cretization of a problem represented by (12) can be defined by its restric-
tion to the discrete complex (13):

d
4 L[]

*Z—l J J *Z (15)

)

The diagram (15) is a generic discretization template that maps the PDE
structure onto discrete spaces. An important feature of this template is
that the discrete equilibrium equations will be satisfied exactly as long as
Wik (dp, Q) and W,f’*( 5, §2) are exact with respect to dp and d}, respec-
tively. This means that any discretization based on (15) will also imitate
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the conservation properties that are inherent to (12). However, this sit-
uation describes one possibility among many for the realization of (15).
Practical considerations may dictate other choices for the components in
(15), leading to methods with very different properties.

3.3. An optimization approach to compatibility.

One of the main strengths of finite element methods is rooted in their
reliance on variational principles. This in turn opens up a possibility to
draw upon the rich foundations of functional analysis and operator theory
when studying finite element methods. As a result, finite element theory
has been extremely strong in all matters related to metric aspects of
discretizations such as error estimates, convergence, and stability. Finite
element theory has been less successful in providing constructive means to
determine what spaces should be used in a discretization so as to satisfy
various compatibility conditions.

The situation with the use of structures like (15) is exactly the op-
posite. They provide excellent means to identify the appropriate discrete
spaces that depend on the topological relations between the fields but are
less successful in assessing the accuracy and asymptotic behavior of the
discrete models.

Since variational and geometric approaches complement each other so
nicely, 1t 1s only natural to try to apply them both in the discretization
process. Our plan is to do exactly this by using (12) in conjunction with
constrained optimization to derive the discrete diagrams (15). To this
end, recall that (12) represents the following boundary value problem:

da=av+ f p=%*p_ju
d'v=—ap+§& v=xv. (16)

We cast (16) into a constrained optimization problem by minimizing the
error in the two constitutive laws subject to the two equilibrium equa-
tions. Thus, we consider the quadratic functional

e~ 1~ ~ ~ ~
J@, ¥, 0) = 5 (17— 6 VIl5 + 17— i 11][5)

and the optimization problem:
find (0, v) € WE=(d, Q) x W*(d,Q)and (p,v) € W5 (d*, Q)
X W=EFL*(d* Q) such that for all
(W,v) € WF=(d, Q) x W*(d, Q)
and (fr,0) € WP=R*(d*, Q) x W=k (d* Q)
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T v o) < J (@5 )
subject to du=av+f and d'v=—ap+E.

(17)

It is easy to see that any solution of (16) solves (17) and vice versa. We
will develop compatible discretizations by restricting this optimization
problem to suitable finite-dimensional spaces and making various choices
for the Hodge—=# operator.

4. REALIZATIONS OF COMPATIBLE DISCRETIZATIONS

To reduce (16) to an algebraic model, we select the components in (13)
and then restrict (17) to this structure. There are two basic templates
that exist in this process. The first leads to what we call primal and dual
formulations. In this case, (13) provides an internal approximation to
only one of the complexes in (10). The second template leads to a class of
primal-dual formulations. In this case, (13) uses internal approximations
to both complexes in (10). Our main focus will be on a class of primal-
dual methods; however, to demonstrate the capacity of (17) to serve as a
general framework for compatible discretizations, we briefly examine the
primal and dual reduction patterns.

4.1. Primal and dual methods.

4.1.1. Primal methods.
We consider an exact sequence {W¥(dp, )}, where

dp : WE(dn, Q) — W (dy, Q);  dudy =0

is a set of natural exterior derivative operators. We assume that there
exists a dual set {(dp)*} of discretely defined adjoint® operators

(dn)* - Wit (dn, Q) — W (dn,Q);  (dn)*(dn)" =0.

To define a primal? method, we approximate the primal variables
(u,v) internally by (u” vh) € W,f_l(dh, Q) x W (dy, Q). The dual vari-
ables (p,17) are approximated ezternally by the same pair of discrete
spaces, i.e., we use (p" ") € W,f_l(dh, Q) x Wi(dy, Q).

* is defined with respect to an ap-

propriate discrete inner product. The terminology “natural” and “adjoint” are adopted
from [17, 18].

2 Again, we note that the designation of what is a primal method and what is a
dual method is somewhat arbitrary.

1By this we mean that the adjoint operator (dj,)
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Remark 4. One immediate consequence from this choice is that any
boundary conditions imposed on the dual pair cannot be enforced strong-
ly, e.g., by setting the degrees of freedom residing on I'* to values pre-
scribed by the boundary data.

The choice of the same spaces for the primal and the dual variables
implies that (14) reduces to

w = H@uh and " =1Tv", (18)

where 5 and I; are scaled identity matrices, i.e., diagonal matrices, and
G > 0 and b > 0 are “constitutive” functions, e.g., material constants.
Therefore, (17) specializes to the following primal discrete optimization
problem:

find (0", v") € WiY(dy, Q) x WE(dn, Q)

and (p" v") € Wi (dy, Q) x WE(d, Q) that

ok o~k o~ ~ 1, ~ ~ ~ ~
minimize J(@" v pt o) = 5 (||uh — a2 4 ||p" —HbvhHg)

subject to  dpa® = a¥v" + 1 and (dp)* D" = —ap” +¢".
(19)
Let (u”,v") and (p”, ") solve (19). It is easy to see that the minimum
of the cost functional will be achieved when (18) is satisfied. Substituting
(18) into the second constraint (the dual equilibrium equation) yields

(dp);Iyv" = —allgu 4 ¢ (20)
This relation along with primal equation
dpu® = avh + f* (21)

serve to define the approximations of the primal variables u”? and v”.
If a # 0, then we can use the primal equation (21) to eliminate v? and
to obtain a single second-order equation in terms of u” only:

(dh)ZHbdhuh + aaﬂguh = afh + (dh)*ﬂbfh. (22)

In this case, (22) is an equivalent formulation of (19). If a = 0, then
this reduced “Ritz-Galerkin” system cannot be obtained and one instead
must solve the “mixed-Galerkin” system (20)—(21).
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4.1.2. Dual methods.
We consider an exact sequence {W:’*(dz, )}, where

dy WS (dy, Q) — Wit (dy, Q) didy =0

is a set of natural exterior derivative operators. We assume that there
exists a dual set {(d})*} of adjoint operators

(i) = Wit (5, Q) = Wi (d7, Q); (d])7(d})" = 0.

Remark 5. In general, since they operate between different sets of
spaces, the operators dp and (dp)* that help define the primal discrete
problem and the operators dj and (dj,)* that help define the dual discrete
problem do not satisfy dj = (dn)* or dj, = (d})*.

We define a dual method by choosing to approximate internally the
dual variables (p”*, »") by the pair WP =*+Lx(dx Q) x Wn=*(d;, Q). The
primal variables (u, v) are approximated externally by the same pair, i.e.,

we use (", vh) € WnTFFLE(dr Q) x WTR(dy Q).

Remark 6. One immediate consequence from this choice is that any
boundary conditions imposed on the primal pair cannot be enforced
strongly, e.g., by setting the degrees of freedom residing on I' to values
prescribed by the boundary data.

For the dual methods, (14) specializes to

u = H@_luh and v =T,-.", (23)
where l[g—1 and ;-1 are scaled identity matrices. The dual discrete opti-
mization problem, derived from (17), is:

find (p" ") e WETEERE (@ Q) x Wi TR (d, Q) and
(", v") € Wi TR, Q) x WRTR(d;, Q) that

minimize J(u" ¥ pt oMy = % (||H@_1ﬁh —u" |24 ||Ty-a" —6h||§)
subject to (d3)*0" = av" + f* and dip" = —ap" +€".
(24)
If (u”, v") and (p”, ") solve (19), it is easy to see that they must satisfy
(23). We use those relations to eliminate the primal variables from the
primal equation to obtain

(d3) Tg-1p" = aly-” + £ (25)
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This relation along with dual equation
W= —aph +¢ (26)

serve to define the approximations of the dual variables ©* and p”.
If a # 0, then we can use the dual equation (26) to eliminate p” and
to obtain a single second-order equation in terms of ”* only:

(d5) Ig-1djr" + aaly- " = —af" + (df) T 5-16". (27)

In this case, (27) is an equivalent formulation of (24). If &« = 0, then
this reduced “Ritz-Galerkin” system cannot be obtained and one instead
must solve the “mixed-Galerkin” system (25)—(26).

4.2. Primal-dual methods.

The methods defined in the last section utilize the same set of forms in
the discrete complex (13). This set can provide an internal approximation
either with respect to the primal or the dual variables, but not for both
of them simultaneously. This i1s why in primal and dual methods we have
to use a combination of natural and adjoint differential operators. The
adjoint operators act as surrogates for the true exterior derivative for the
set of variables that are not approximated internally.

In this section, we consider another class of methods defined by using
internal approximations for both the primal and dual variables. In this
case, the exterior derivative for both sides is represented by the natural
differential operators and there is no need for using an adjoint operator.
We will call such methods primal-dual to highlight the participation of
both groups of variables.

To define primal-dual methods, we require a primal and a dual exact
sequence, denoted by {WF(d,, )} and {Wf’*( 5, §0)}, respectively. We

also have the primal
dp : WE(dy, Q) — WY, Q);  dpdy, =0
and the dual
di s Wi (i, Q) = WAL Q) didy =

sets of natural exterior derivative operators. The factor (—1)"~!is includ-

ed in the definition of dJ .

Remark 7. The operators d; and dj now defined in the context of
primal-dual methods do not necessarily need to be the same as the same-
named operators used in the primal and dual methods, respectively.
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In conjunction with a discrete Hodge operator, these two sequences
lead to a discrete complex (13) that provides an internal approximation
of the complex in (10). In the realization of (13), there are two distinct
possibilities. The first 1s to use primal and dual sequences defined on
topologically dual grids. For such grids there exists a one-to-one rela-
tionship between the primal k—cells and the dual (n — k)—cells and the
spaces Wr(dp, Q) and W(”_k)’*(d’;b, 1) have the same dimension. As a re-
sult, the discrete Hodge operator defines an isomorphism between these
spaces and (14) reduces to

hox h
w, = Moy,

where M is a symmetric, positive definite matrix. This setting leads to
some well-known finite volume and co-volume methods [14, 21, 22] and
staggered finite difference schemes such as the Yee scheme [30].

Our focus, however, is on another class of primal-dual methods that
exploits the use of unrelated sets of primal and dual spaces. In particular,
one possibility afforded by this approach is to consider primal and dual
spaces defined with respect to the same partition of {2 into k—cells. Since
on a single grid it is impossible to have a one-to-one relationship between
the k— and the (n — k)—cells, the spaces W} (ds, Q) and W(”_k)’*(d’;b, Q)
defined on this grid cannot be isomorphic. In this case, the discrete Hodge
operator is represented by a pair of matrices as in (14). However, the use
of a single grid for both complexes offers numerous advantages and sim-
plifications that, in our opinion, outweigh the disadvantage of not having
an isomorphic discrete Hodge operator. Furthermore, instead of attempt-
ing to find explicit representations for the discrete Hodge operators, we
will let the optimization process in (17) define the operators implicitly.
Thus, to define this primal-dual method we consider the optimization
problem:

find (u" vy e WETH(dy, Q) x W(dy, Q) and
(") e WD @ Q) x W (dg, Q) that

b o~ ol o~ 1 - . ~h o~
minimize J(uh,vh;uh,yh):§ (||a(uh—ﬁuh)||g + ||a(b_11/h—vh)||g)

subject to dpyu” =av" + f* and djo" = —aph 4 €7
(28)
The “constitutive” functions 8 > 0 and b > 0 insure, among other things,
dimensional consistency in the functional J(-,;-,-). The appearance of
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the weight factors a and o is natural, given how the variables v* and
p” appear in the constraint equations. We recall that in (28) both dj,
and dj are natural differentiation operators. To solve (28), one could use
Lagrange multipliers to enforce the two constraints. A better and more
efficient way to solve this problem is to take advantage of the fact that,
thanks to the use of the natural operators, both constraint equations are
exact.

First, consider the case for which both a # 0 and « # 0. Let (u”, v")
and (p",v") solve (28). Then, we can eliminate v? and p” from (28)
using the primal and the dual equations, respectively. The result is the
unconstrained minimization problem in terms of one of the primal and
one of the dual variables:

find u" € W;f_l(dh,Q)and vh e W,En_k)’*( 5, §2) that minimize

Jaa (@, ") = o (||di0" + apa® — €25 + [|dai® — ab™'2" — 7|17 .
(29)
Next, consider the case” a = 0 and « > 0. We can consider this case as
corresponding to the limit, as @ — 0, of a sequence of problems with a > 0
and « > 0. Since for positive values of @ and « the two-field formulation
(29) and the four-field formulation (28) are completely equivalent, we
can derive formulations for @ = 0 by taking the limit @ — 0 either in the
original problem (28), or its reduced version (29). This, however, leads to
two different compatible formulations that are not equivalent with each
other. In other words, taking the limit ¢ — 0 does not commute with
eliminating variables from (28). Indeed, starting from (29) and setting
a = 0 gives the unconstrained optimization problem:

N | —

3

find u" € W,f_l(dh, Q)and " € W,En_k)’*( 5, ) that minimize

Jo(@" D") = = (|d;2" + apa® — 5+ [|dp@® — FP3) . (30)

N | —

On the other hand, setting ¢ = 0 in (28) leads to a problem where the
primal variable v* does not appear in the constraints or the functional
J(+, -5+, +). We can still use the second constraint equation to eliminate
p however, there’s nothing that can be done to rid the problem of the

3Recall that it has been assumed that not both ¢ and « can vanish.
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first equation which continues to act as a constraint. As a result, we are
led to a simpler, but still constrained, two-field optimization problem

find u" € W,f_l(dh,Q) and V" € W,En_k)’*( 5, ) that minimize

~h. o~ Ly 3 u
JE@ P = s + it — €Ml subject to dyit = [ (31)

Finally, consider the case a > 0 and o = 0. Taking the limit « — 0 in
(29) gives the unconstrained optimization problem

find u" € WF1(dy, Q) and v" € W,En_k)’*( 5, §2) that minimize

Toi M) = 3 (75" — €2+ i — b= 5" — IR (32)
Since (30) and (32) are the same as (29) specialized to the cases a = 0
and o = 0, respectively, all three optimization problems can be cast in
terms of the single functional (29).

When the limit @ — 0 is taken in (28), the situation is exactly the
opposite to what happened earlier: now the dual variable pu* does not
appear in the constraints or the functional J(-, ;-,-) and v* can be elimi-
nated from the first constraint equation. This gives another reduced, but
constrained, optimization problem:

find u" € W,f_l(dh,Q) and V" € W,En_k)’*( 5, §2) that minimize
~h o~ 1, - ~ ~
J@" oM = §||dhuh —ab™' " — 2 subject to dip" =€". (33)

There is an obvious symmetry between (31) and (33). Both problems use
the same pair of variables but have different constraints and their cost
functionals employ dual operators.

Regarding the solution of (29), using standard calculus of variations
tools 1t is not hard to see that the first-order necessary condition for
(uh vh) € W,f_l(dh,Q) X W,En_k)’*(dh,Q) to minimize (29) is given by
the variational (Euler-Lagrange) equation:

find u" € W,f_l(dh,Q) and V" € W,En_k)’*( 5y 1) such that
Q" v uh vt = F", ") (34)

for all (@', ") € WFY(dy, Q) x W% (dz, Q), where
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h . h.~h ~h h h ~h ~h
Q" v"a" o") = (dpv" + apu | d;p" +apu )0

+ (dpu” —ab™'" | dpu® —ab™'P") (35)

and

F@" o) = (¢, dio" +apu) 4+ (1, dput —ab™'D")
An analysis of (34) in the case of £ = 1 and exact sequences of finite
element spaces can be found in [4]. A formal analysis of this formulation
in three dimensions and general discrete exact sequences is a subject of
a forthcoming paper.

Here we proceed with examples that illustrate the various methods in
the context of the eddy current subset of the Maxwell equations when
the exact sequences are defined by finite element spaces. Among other
things, the examples illustrate the attractive computational properties of
formulations based on the primal-dual variational equation (34).

5. EXAMPLES

In [4], examples of primal, dual, and primal-dual finite element meth-

ods for a div-grad system (for which & = 1) are considered. Here, we
consider the eddy current problem
VxH=J inQx(0,T] (36a)
B
VXE:—%—t in Qx(0,7] (36b)

that is derived from the full set of the Maxwell equations by neglecting
the displacement current. In (36a)-(36b), H denotes the magnetic field, J
the current density, E the electric field, and B the magnetic flux density.
Note that (36a) and (36b) imply

V-B=0 in Q (37a)

V-J=0 in Q. (37h)
Any initial values By for B is required to satisfy (37a). The system (36a)-
(36b) is closed by adding the constitutive relations

B=pH and J=/0E, (38)

where o and p denote the conductivity and permeability of the media,
respectively, and the boundary conditions

nxH=nxH, or n-J=n-J, on T (39)
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nxE=nxE, or n-B=n-B, on I (40)

posed on disjoint parts I' and I'* of the boundary 0€2. The pairs of bound-
ary conditions in (39) and (40) are not independent and only one from
each pair can be posed on I' and I'*. Here we use

nxH=nxH, on ' and nxE=nxE, on I'*. (41)

We will apply the framework of the previous sections to a semidiscrete
version of (36a)—(36b). For simplicity, assume that [0, 77 is divided into
N subintervals of equal length At = T'/N. The implicit Euler method
to advance solution by one time step requires the solution of the elliptic
problem

VxH=1J (42a)
1 1~
VxE=—-—B+ —B 42b
* AT A (42b)
along with (41). In (42b), B is the magnetic flux at the beginning of the
time step. Clearly, for the first time step, B = Byg.
To apply the framework, we assume constant material properties, ho-
mogeneous boundary conditions, and make the following identifications.
First, k = 2, a = 1, f = 0, the primal variables are

u=H¢c W'(d, Q)= Hy(Q,curl) and v=J € W?(d, Q) = Ho(Q, div),
(43)
and (42a) is the primal equilibrium equation. Second, & = 1/At, € = aﬁ,
the dual variables are

p=BeW»(d,Q)=H;(Q,div) and v=E€ W"*(d, Q)= H}(Q, curl),
(44)
and (42b) is the dual equation. Finally, (38) is the set of material laws
where 8= p and b= 1/0.

For a primal method, we need to choose spaces! Wl(dp, Q) and
WZ2(dp, ). For the sake of clarity, we will denote the operators dj, and
(dp)* by € and C*, respectively. Here C is the natural curl and C* is its
discretely defined adjoint curl. Since 4 and ¢ are assumed constant, (22)
specializes to

1 ] 1 ~
~C'CH" + —H" = —B". 45
- + At At ( )

4We recall that the notion of internal approximation, discussed in Remark 3, does
not require these spaces to be proper subspaces of W1(d, Q) and W?2(d, Q).
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For a dual method, we need to choose spaces W}} *(dz, Q) and W *(dy, Q)
For the sake of clarity, we will denote the operators d} and (d})* by C

and C respectively, where now C* is the natural curl and C is its discrete
adjomt curl. The dual problem (27) then specializes to

AMEzgh 4 0B = LB, (46)

t t
Note that, in general, C # C even though both are natural curl opera-
tors. For the problem considered here, a > 0 and « > 0 so that in both
cases we were able to eliminate all but one variable and obtain a Ritz-
type method. Note that both the primal (45) and dual (46) equations
are essentially (potentially different) discretizations of the same curl-curl
differential operator.

5.1. Finite element realizations.

We now demonstrate the methods one obtains when the discrete exact
sequences are built from finite element spaces. For the sake of brevity, we
only consider the dual formulation (46) and the primal-dual method (28)

or (34).

To specialize the dual method (46) to the case of finite element spaces,
we need both the natural curl C* and its discrete adjoint operator C.
Finite element spaces provide proper, finite-dimensional subspaces of the
Sobolev spaces that form (10). As a result, the natural differential oper-
ators are defined by restriction of d* to the discrete spaces, i.e., Cis a
matrix that gives the action of the actual curl operator on finite element
functions. For the sake of clarity, we will use the latter instead of the ma-
trix form, i.e., we will write the dual equation restricted to finite element
spaces as . .

ho_ h b

V x E AtB +AtB . (47)
The adjoint operator C should act on discrete functions that form a sub-
space of W2*(d*, Q). Such functions are in the domain of the divergence
but not in the domain of the curl. In the finite element case, this problem
is resolved by using a weak variational form of the curl operator obtained
by integration by parts: C: th’*(d”,;, Q) — Whl’*(d”,;, ) and CB" = E*
if and only if

/@Bhﬁhdsz: /BhV x EMdQ VE" e Wh(d, Q). (48)
Q
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The operator C defined by (48) is not local. Finding its explicit matrix
representation entails the solution of a linear system of equations and is
not practical. Fortunately, 1t is also not needed, as the primal variables H
and J can be eliminated from (36a) by directly using (48). The ensuing
weak form of this equation is

1 o~ - _
/—Bh -V x E"dQ = /aEh "E"dQ VE" e W N(d;, Q). (49)
Ji!
Q

Using (47) to eliminate B® from (49), we obtain the dual finite element
method: seek EP € WL*(d, Q) such that

/%(VX Eh) ' (VXEh)dQ-i-JUEh ~Eth:/%]§h. (VX Eh)dQ
for all EM € Whe(ds, Q). (50)

Remark 8. If inhomogeneous boundary conditions are specified in (41),
they will contribute an additional trace term

/(n X Hb) . EhdF
b

to (48), (49), and (50); this term will modify the source function. The
boundary condition on E has to be strongly imposed, in some appropriate
approximate manner, on the discrete approximation E?. Thus, for the
dual problem, the boundary condition on H is a natural one while the
one of E is an essential one. For further details about the dual formulation
with such boundary conditions, see [5].

The primal finite element counterpart of (50) will lead to a similar
curl-curl equation but in terms of the primal variable H; the roles of the
essential and natural boundary conditions are reversed.

Let us now specialize the primal-dual method (28)-(29) to the semidis-
crete eddy current problem (42a)-(42b) and finite element spaces. First,
the constrained optimization problem (28) now reads: find (H" J*) €
Wik(dp, Q) x W2(dp, Q) and (B* E") € th*(dZ,Q) X Whl*(dZ,Q) that

e~ 1/ ~ . - -
minimize J(H", 3" B" E)=2 (||Bh—ﬂHh||§—|—||Eh—a_1Jh||g)

~ ~ ~ 1 ~ 1 ~
bject 1 H" = J" and E'= -—B"+ —B"
subject to 'V X and V X N + N
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In the present case, @ > 0 and « > 0 and so we can proceed to eliminate
J? from the primal variables and B” from the dual set to obtain a min-
imization problem in terms of H"* and E” only. The analogue of (29) is

therefore: find H* € Wl(d;,, Q) and E" € Whl’*(d”,;, Q) that minimize

SN 1 N P N N
JH" B = (||Atv x B! 4 pH" — BP|2 + [|E" — 071V x Hh||§) .

(51)
The form in (35) is given by

Q(H" EMH" EM) = (Atv x E" 4 yH" AtV x B + ﬂﬁh)
n (Eh — o~V x H",E" — 071V x ﬁh)
and the right hand-side functional is
Fh(HA" E") = (ﬁh, ALV x B + ﬂﬁh) . (52)

Another way to derive the reduced problem (51) is by application of least-
squares principles directly to the semidiscrete equations (42a)—(42b), in
which J and B were eliminated by using the constitutive laws in (38).
However, this way of deriving (51) obscures the origins of each variable
and makes the choice of the correct discrete spaces less transparent. Cou-
pled with the extreme robustness of least-squares principles, this has led
to the widespread misconception that the choice of elements in (51) is
irrelevant and that standard C° nodal spaces can be used for E and H
instead of the spaces Whl’*(d”,;, Q) and W (dp, Q).

Indeed, a least-squares principle remains stable on any proper subspace
of the relevant function spaces by virtue of the fact that it computes an
orthogonal projection of the true solution onto that subspace. Since nodal
C" spaces do form proper subspaces of W1*(d* Q) and W1(d,Q), such
an implementation of (51) will reliably compute the best C' approxima-
tions of E and H. The trouble with this approach is that the best C°
approximation is not necessarily the most accurate possible approxima-
tion of E and H since the latter pair are required to have only tangential
continuity (and not continuity of all their components) along element
interfaces. Consequently, while always stable, nodal implementations of
(51) may lack optimal accuracy in many physically relevant settings.
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6. CONCLUSIONS

The approach developed in this paper combines variational and geo-

metric ideas into a single framework for compatible discretizations. De-

p

ending on the choice of components, the framework allows the recovery

of familiar examples of discretization schemes and to derive new types
of formulations. This capability has been demonstrated by using as an
example problem the eddy current equations.
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