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Abstract. The approximate solution of optimization and optimal control problems for systems
governed by linear, elliptic partial differential equations is considered. Such problems are most of-
ten solved using methods based on applying the Lagrange multiplier rule to obtain an optimality
system consisting of the state system, an adjoint-state system, and optimality conditions. Galerkin
methods applied to this system result in indefinite matrix problems. Here, we consider using modern
least-squares finite element methods for the solution of the optimality systems. The matrix equa-
tions resulting from this approach are symmetric and positive definite, and are readily amenable to
uncoupling strategies. This is an important advantage of least-squares principles as they allows for
a more efficient computational solution of the optimization problem. We develop an abstract theory
that includes optimal error estimates for least-squares finite element methods applied to optimality
systems. We then provide an application of the theory to optimization problems for the Stokes
equations.
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1. Introduction. Optimization and control problems for systems governed by
partial differential equations arise in many applications. Experimental studies of such
problems go back 100 years [22] and computational approaches have been applied
since the advent of the computer age. Most of the efforts in the latter direction
have employed elementary optimization strategies but, more recently, there has been
considerable practical and theoretical interest in the application of sophisticated local
and global optimization strategies, e.g., Lagrange multiplier methods, sensitivity or
adjoint-based gradient methods, quasi-Newton methods, evolutionary algorithms, etc.

The optimal control or optimization problems we consider consist of
• state variables, i.e., variables that describe the system being modeled;
• control variables or design parameters, i.e., variables at our disposal that can

be used to affect the state variables;
• a state system, i.e., partial differential equations relating the state and control

variables; and
• a functional of the state and control variables whose minimization is the goal.

Then, the problems we consider consist of finding state and control variables that
minimize the given functional subject to the state system being satisfied. Here, we
restrict attention to linear, elliptic state systems and to quadratic functionals.

The Lagrange multiplier rule is a standard approach for solving finite-dimensional,
constrained optimization problems. It is not surprising then that several popular
approaches to solving optimization and control problems constrained by partial dif-
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ferential equations are also based on solving optimality systems deduced from the
application of the Lagrange multiplier rule. The optimality system consists of:

• the state system, i.e., the given partial differential equations that relate the
unknown state and control variables;

• an adjoint or co-state system which are also partial differential equations
involving the adjoint operator of the state system; and

• an optimality condition that reflects the fact that the gradient of the func-
tional vanishes for optimal values of the state and control variables.

The three components of the optimality system are coupled. In the linear con-
straints/quadratic functional context we consider in this paper, the optimality system,
viewed as a coupled system, is a symmetric and weakly coercive linear system in the
state, adjoint-state, and control variables.

In the context of finite element methods, optimality systems are usually dis-
cretized using Galerkin methods, resulting in typical saddle-point type matrix prob-
lems that are symmetric and indefinite. In many if not most practical situations, the
coupled optimality system is a formidable system to solve; compared to solving direct
problems involving the state system alone, discrete optimality systems typically in-
volve at least double the number of unknowns. For this reason, many approaches have
been proposed for decoupling, through iterative processes, the different components
of the optimality system. An extensive discussion of several such strategies in both
an abstract setting and for fluid flow problems can be found in [18].

In this paper, we discuss the use of modern least-squares finite element methods
for finding approximate solutions of the optimality system. The resulting matrix
problems are symmetric and positive definite. Moreover, their diagonal blocks are
also symmetric and positive definite, thus opening up better possibilities for devising
efficient uncoupling methods than is the case for Galerkin discretizations. In order
to develop a basic theory for least-squares finite element methods for optimization
and control problems, we focus on treating the optimality system as a fully coupled
system and only briefly discuss the application of decoupling strategies. Nevertheless,
the reader should keep in mind that amenability to efficient uncoupling strategies
is, perhaps, the chief reason to consider the application of least-squares principles
to optimization problems. The application of least-squares principles to optimality
systems was previously discussed, in a concrete setting, in [19].

The approach we have described for finding approximate solutions of optimal con-
trol and optimization problems for partial differential equations is of the differentiate-
then-discretize or optimize-then-discretize type. One first applies, at the continuous
partial differential equations level, the first-order necessary conditions for finding sad-
dle points of a Lagrangian functional and then one uses a finite element method, be it
of Galerkin or of least-square type, to discretize the resulting optimality system. For
the alternative discretize-then-differentiate or discretize-then-optimize type approach,
one reverses the steps: one first discretizes the optimization or control problem by
some means and then applies the Lagrange multiplier rule to the resulting discrete
optimization problem. The two steps do not, in general, commute so that the discrete
systems determined by the two approaches are not the same. A discussion of the
relative merits of the two approaches can be found, e.g., in [18]. Here, we focus on
the differentiate-then-discretize approach.

Instead of using the Lagrange multiplier rule for solving constrained optimiza-
tion problems, one may use a penalty method. Penalty/least-squares finite element
methods are the subject of the companion paper [9]; see also [20]. Other applica-
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tions of least-squares finite element methods to optimization problems may be found
in [2, 3, 5, 8].

The paper is organized as follows. In §3, we study, in an abstract setting, Lagrange
multiplier methods for quadratic optimization and control problems constrained by
linear, elliptic partial differential equations. In §4, we study least-squares finite ele-
ment methods for the approximate solution of the optimality system resulting from
the application of the Lagrange multiplier rule. In §5, we provide concrete examples
that illustrate the theory of §§3–4. In passing, we briefly remark on several related
topics, including decoupling strategies for the solution of the discretized optimality
system. Before we embark, however, in §2, we present mostly well-known results about
general constrained optimization problems and their solution via Lagrange multiplier
methods. These results serve as the foundation for the considerations of §§3–4. We
remark that in several inequalities appearing in the throughout the paper, C denotes
a positive constant whose value changes with context but that is independent of any
of the data or solution functions appearing in the inequalities.

2. Linearly constrained quadratic minimization problems in Hilbert
spaces. In this section, we review the now classical theory (see [12] and also [13,16])
for finite element methods for constrained quadratic minimization problems. The
optimization and control problems that are the subject of this paper can be profitably
viewed as special cases of the types of problems treated by the classic theory.

Given Hilbert spaces V and S along with their dual spaces V ∗ and S∗, respectively,
the symmetric bilinear form a(·, ·) on V × V , the bilinear form b(·, ·) on V × S,
the functions f ∈ V ∗ and g ∈ S∗, and the real number t, we define the quadratic
functional1

J (u) =
1
2
a(u, u)− 〈f, u〉V ∗,V + t ∀u ∈ V , (2.1)

the linear constraint equation

b(u, q) = 〈g, q〉S∗,S ∀ q ∈ S , (2.2)

where 〈·, ·〉 denotes an appropriate duality pairing, and the constrained minimization
problem2.

min
u∈V

J (u) subject to (2.2) . (2.4)

1The value of t does not affect the minimizer of J (·). We include it in the definition of J (u) only
to facilitate, in later sections, the identification of concrete functionals with the abstract functional
(2.1).

2Such problems arise in many applications. A classical example is provided by the functional

J (v) =
1

2

Z
Ω
|v|2 dΩ ,

the linear constraint ∇ · v = f , and the minimization problem

min J(v) subject to ∇ · v = f , (2.3)

where the minimization is effected over suitable function space. For example, in fluid mechanics,
(2.3) is known as the Kelvin principle and, in structural mechanics (where v is a tensor), as the com-
plimentary energy principle. For the Kelvin principle A is the identity operator, B is the divergence,
S is the space L2(Ω) of all square integrable functions, and V is the space H(div, Ω) of all square
integrable vector fields whose divergencies are also square integrable.
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The bilinear forms serve to define the associated operators

A : V → V ∗, B : V → S∗, and B∗ : S → V ∗ (2.5)

through the relations{
a(u, v) = 〈Au, v〉V ∗,V ∀u, v ∈ V
b(v, q) = 〈Bv, q〉S∗,S = 〈B∗q, v〉V ∗,V ∀ v ∈ V, q ∈ S .

The minimization problem (2.4) can then be given the form

min
u∈V

J (u) subject to Bu = g ,

where the constraint equations Bu = g holds in S∗. We define the subspace

Z = {v ∈ V : b(v, q) = 0 ∀ q ∈ S} (2.6)

and make the following assumptions about the bilinear forms:

a(u, v) ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V

b(u, q) ≤ Cb‖u‖V ‖q‖S ∀u ∈ V, q ∈ S

a(u, u) ≥ 0 ∀u ∈ V

a(u, u) ≥ Ka‖u‖2
V ∀u ∈ Z

sup
v∈V,v 6=0

b(v, q)
‖v‖V

≥ Kb‖q‖S ∀ q ∈ S ,

(2.7)

where Ca, Cb, Ka, and Kb are all positive constants.

2.1. Existence of solutions. The following result is well known; see, e.g. [21].
Proposition 2.1. Let the assumptions (2.7) hold. Then, the constrained mini-

mization problem (2.4) has a unique solution u ∈ V . �

2.2. Solution via Lagrange multipliers. For all v ∈ V and q ∈ S, we intro-
duce the Lagrangian functional

L(v, q) = J (v) + b(v, q)−〈g, q〉S∗,S =
1
2
a(v, v) + b(v, q)−〈f, v〉V ∗,V −〈g, q〉S∗,S + t .

Then, the constrained minimization problem (2.4) is equivalent to the unconstrained
optimization problem of finding saddle points (u, p) ∈ V × S of the Lagrangian func-
tional. These saddle points may be found by solving the optimality system{

a(u, v) + b(v, p) = 〈f, v〉V ∗,V ∀ v ∈ V
b(u, q) = 〈g, q〉S∗,S ∀ q ∈ S .

(2.8)

The following result is also well known; see, e.g., [12].
Proposition 2.2. Let the assumptions (2.7) hold. Then, the system (2.8) has a

unique solution (u, p) ∈ V × S. Moreover,

‖u‖V + ‖p‖S ≤ C
(
‖f‖V ∗ + ‖g‖S∗

)
(2.9)
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and u ∈ V is the unique solution of the constrained minimization problem (2.4). �
In terms of the operators introduced in (2.5), the system (2.8) takes the form{

Au+B∗p = f in V ∗

Bu = g in S∗ .

Remark 2.3. The unique solvability of (2.8) and the estimate (2.9) do not require
that the bilinear form a(·, ·) be symmetric or that it satisfy the third condition in (2.7).
Also, the fourth condition in (2.7) may be weakened to a weak coercivity condition.
However, these conditions are required to make the connection between (2.8) and the
constrained minimization problem (2.4). So, throughout, we will assume that all the
conditions in (2.7) hold.

2.3. Galerkin approximations of the optimality system. We choose (con-
forming) finite dimensional subspaces V h ⊂ V and Sh ⊂ S, and then restrict (2.8) to
these subspaces, i.e., we seek uh ∈ V h and ph ∈ Sh that satisfy{

a(uh, vh) + b(vh, ph) = 〈f, vh〉V ∗,V ∀ vh ∈ V h

b(uh, qh) = 〈g, qh〉S∗,S ∀ qh ∈ Sh .
(2.10)

This is also the optimality system for the minimization of the functional J (·) over
V h subject to b(uh, qh) = 〈g, qh〉S∗,S for all qh ∈ Sh. Let

Zh = {vh ∈ V h : b(vh, qh) = 0 ∀ qh ∈ Sh} .

In general, Zh 6⊂ Z even though V h ⊂ V and Sh ⊂ S, and so the last two assumptions
in (2.7) may not be satisfied with respect to the subspaces. If V h and Sh are such
that the last two assumptions hold, then one obtains the following well-known result;
see, e.g., [12].

Proposition 2.4. Let the hypotheses of Proposition 2.1 hold and assume that

a(uh, uh) ≥ Kh
a ‖uh‖2

V ∀uh ∈ Zh (2.11)

and

sup
vh∈V h,vh 6=0

b(vh, qh)
‖vh‖V

≥ Kh
b ‖qh‖S ∀ qh ∈ Sh , (2.12)

where Kh
a and Kh

b are positive constants independent of h. Then, the discrete system
(2.10) has a unique solution (uh, ph) ∈ V h × Sh and moreover

‖uh‖V + ‖ph‖S ≤ C
(
‖f‖V ∗ + ‖g‖S∗

)
.

Furthermore, if (u, p) ∈ V × S denotes the unique solution of (2.8), then

‖u− uh‖V + ‖p− ph‖S ≤ C
(

inf
vh∈V h

‖u− vh‖V + inf
qh∈Sh

‖p− qh‖S
)
. (2.13)

The discrete problem (2.10) is equivalent to a linear system. Indeed, let {Ui}ni=1

and {Pi}mi=1, where n = dim(V h) and m = dim(Sh), denote bases for V h and Sh,
respectively, and let ~u = (u1, . . . , un)T and ~p = (p1, . . . , pm)T denote the vectors of
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coefficients in the expansions of uh and ph in terms of the respective bases. Fur-
thermore, let fi = 〈f, Ui〉V ∗,V for i = 1, . . . , n, gi = 〈g, Pi〉S∗,S for i = 1, . . . ,m,
~f = (f1, . . . , fn)T , and ~g = (g1, . . . , gm)T and define the elements of the n× n matrix
A and the m × n matrix B by Aij = a(Ui, Uj) for i, j = 1, . . . , n and Bij = b(Uj , Pi)
for i = 1, . . . ,m, j = 1, . . . , n, respectively. Then, (2.10) is equivalent to the linear
system (

A BT
B 0

) (
~u
~p

)
=

(
~f
~g

)
. (2.14)

Remark 2.5. The coefficient matrix in (2.14) is symmetric and indefinite. This
is universal for discretizations of saddle-point problems arising from the use of the
Lagrange multiplier rule for constrained optimization problems.

Remark 2.6. The assumptions (2.11) and (2.12) guarantee that the (m + n) ×
(m+ n) coefficient matrix in (2.14) is invertible and that the norms of its inverse are
bounded from above independently of m and n, i.e., independently of the grid size h.

Remark 2.7. The observations made in Remark 2.3 about the bilinear form
a(·, ·) and (2.8) also apply to (2.10).

3. Quadratic optimization and control problems in Hilbert spaces with
linear constraints. In this section, we specialize the results of §2 to the the type of
optimization and control problems described in §1. We identify the variable u of §2
with the pair (φ, θ), where φ and θ are the state and control variables, respectively,
of the control problem.

We begin with four given Hilbert spaces Θ, Φ, Φ̂, and Φ̃ along with their dual
spaces denoted by (·)∗. We assume that Φ ⊆ Φ̂ ⊆ Φ̃ with continuous embeddings and
that Φ̃ acts as the pivot space for both the pair {Φ∗,Φ} and the pair {Φ̂∗, Φ̂} so that
we not only have that Φ ⊆ Φ̂ ⊆ Φ̃ ⊆ Φ̂∗ ⊆ Φ∗, but also〈

ψ, φ
〉
Φ∗,Φ

=
〈
ψ, φ

〉bΦ∗,bΦ =
(
ψ, φ

)eΦ ∀ψ ∈ Φ̂∗ ⊆ Φ∗ and ∀φ ∈ Φ ⊆ Φ̂ , (3.1)

where (·, ·)eΦ denotes the inner product on Φ̃.
Next, we define the quadratic functional

J (φ, θ) =
1
2
a1(φ− φ̂, φ− φ̂) +

1
2
a2(θ, θ) ∀φ ∈ Φ, θ ∈ Θ , (3.2)

where a1(·, ·) and a2(·, ·) are symmetric bilinear forms on Φ̂×Φ̂ and Θ×Θ, respectively,
and φ̂ ∈ Φ̂ is a given function. In the language of control theory, Φ is called the state
space, φ the state variable, Θ the control space, and θ the control variable. In many
applications, the control space is finite dimensional in which case θ is often referred
to as the vector of design variables. We note that often Θ is chosen to be a bounded
set in a Hilbert space but, for our purposes, we consider the less general situation of
Θ itself being a Hilbert space. We make the following assumptions about the bilinear
forms a1(·, ·) and a2(·, ·):

a1(φ, µ) ≤ C1‖φ‖bΦ‖µ‖bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) ≤ C2‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ

a1(φ, φ) ≥ 0 ∀φ ∈ Φ̂

a2(θ, θ) ≥ K2‖θ‖2
Θ ∀ θ ∈ Θ ,

(3.3)
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where C1, C2, and K2 are all positive constants. The second term in the functional
(3.2) can be interpreted as a penalty term which limits the size of the control θ.

Given another Hilbert space Λ, the additional bilinear forms b1(·, ·) on Φ×Λ and
b2(·, ·) on Θ× Λ, and the function g ∈ Λ∗, we define the linear constraint equation

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ . (3.4)

We make the following assumptions about the bilinear forms b1(·, ·) and b2(·, ·):

b1(φ, ψ) ≤ c1‖φ‖Φ‖ψ‖Λ ∀φ ∈ Φ, ψ ∈ Λ

b2(θ, ψ) ≤ c2‖ψ‖Φ‖θ‖Θ ∀ θ ∈ Θ, ψ ∈ Λ

sup
ψ∈Λ,ψ 6=0

b1(φ, ψ)
‖ψ‖Λ

≥ k1‖φ‖Φ ∀φ ∈ Φ

sup
φ∈Φ,φ 6=0

b1(φ, ψ)
‖φ‖Φ

> 0 ∀ψ ∈ Λ ,

(3.5)

where c1, c2, and k1 are all positive constants. These assumptions suffice to guarantee
that, given any θ ∈ Θ, the constraint equation (3.4) is uniquely solvable for φ ∈ Φ;
this observation easily follows from [1] and (3.5).

We consider the optimal control problem3

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ . (3.6)

It is easy to verify that the problem (3.6) falls into the framework of §2. To this
end, we let V ≡ Φ×Θ, S ≡ Λ, ‖{φ, θ}‖V =

√
‖φ‖2

Φ + ‖θ‖2
Θ for all {φ, θ} ∈ V ,

a
(
{φ, θ}, {µ, ν}

)
≡ a1(φ, µ) + a2(θ, ν) ∀φ, µ ∈ Φ, θ, ν ∈ Θ ,

b
(
{φ, θ}, {ψ}

)
≡ b1(φ, ψ) + b2(θ, ψ) ∀φ ∈ Φ, θ ∈ Θ, ψ ∈ Λ ,〈

f, {µ, ν}
〉
V ∗,V

≡ a1(µ, φ̂) ∀µ ∈ Φ, ν ∈ Θ ,

t =
1
2
a1(φ̂, φ̂) .

(3.7)

From (3.3), it follows that t ≤ (C1/2)‖φ̂‖2bΦ and, also using the continuous embedding

Φ ⊆ Φ̂,

〈f, {µ, ν}〉V ∗,V
‖{µ, ν}‖V

≤ 〈f, {µ, ν}〉V ∗,V
‖µ‖Φ

=
a1(µ, φ̂)
‖µ‖Φ

≤ C1‖φ̂‖bΦ ∀ {µ, ν} ∈ Φ×Θ = V ,

so that ‖f‖V ∗ ≤ C1‖φ̂‖bΦ, i.e., f does indeed belong to V ∗. Then, with the obvi-
ous identifications u = {φ, θ}, v = {µ, ν}, and q = {ψ}, the functionals (2.1) and

3In section 5 we will consider an example where the linear constraint will be the weak form of the
Stokes equations of incompressible viscous flows. We draw attention to the fact that these equations
themselves are another example of a problem that fits the abstract setting of section 2 with

J (v; f) =
1

2

Z
Ω
|∇v|2 dΩ−

Z
Ω

f · v dΩ ,

b(v, q) =
R
Ω q∇ · v dΩ nd g = 0.
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(3.2) are equivalent as are the constraint equations (2.2) and (3.4). The constrained
optimization problem (2.4) and the optimal control problem (3.6) are also equivalent.

We will use the framework and results established in §2 to study the optimal
control problem (3.6). Many of the results we discuss are well known, but we repeat
them here to establish a context for later discussions.

3.1. Existence of optimal states and controls. We begin with the following
preliminary result.

Lemma 3.1. Let the assumptions (3.3) and (3.5) hold. Then, the spaces V ≡
Φ × Θ and S ≡ Λ and the bilinear forms a(·, ·) and b(·, ·) defined in (3.7) satisfy the
assumptions (2.7).

Proof. Using (3.3) and the continuous embedding Φ ⊂ Φ̂, we have that

a({φ, θ}, {µ, ν}) = a1(φ, µ) + a2(θ, ν) ≤ C1‖φ‖bΦ‖µ‖bΦ + C2‖θ‖Θ‖ν‖Θ

≤ C1‖φ‖Φ‖µ‖Φ + C2‖θ‖Θ‖ν‖Θ ≤ max{C1, C2}
√
‖φ‖2

Φ + ‖θ‖2
Θ

√
‖µ‖2

Φ + ‖ν‖2
Θ

for all φ, µ ∈ Φ, θ, ν ∈ Θ so that a(u, v) ≤ Ca‖u‖V ‖v‖V for all u, v ∈ V with
Ca = max{C1, C2}. Similarly, we have using (3.5) that b(u, q) ≤ Cb‖u‖V ‖q‖S for all
u ∈ V, q ∈ S with Cb = max{c1, c2}. Next, from (3.3) we have that

a({φ, θ}, {φ, θ}) = a1(φ, φ) + a2(θ, θ) ≥ a2(θ, θ) ≥ K2‖θ‖2
Θ ∀φ ∈ Φ, θ ∈ Θ

so that a(u, u) ≥ 0 for all u ∈ V . We next define the subspace Z ⊂ Φ×Θ by

Z =
{
{φ, θ} ∈ Φ×Θ : b1(φ, ψ) + b2(θ, ψ) = 0 ∀ψ ∈ Λ

}
. (3.8)

The assumptions (3.5) imply that, given any θ ∈ Θ, the problem

b1(φ, ψ) = −b2(θ, ψ) ∀ψ ∈ Λ (3.9)

has a unique solution φθ and, moreover,

‖φθ‖Φ ≤ c2
k1
‖θ‖Θ ; (3.10)

see, e.g., [1]. Thus, Z can be completely characterized by (φθ, θ) ∈ Φ×Θ, where, for
arbitrary θ ∈ Θ, φθ is the solution of (3.9). Then, (3.10) and (3.3) imply that

a({φθ, θ}, {φθ, θ}) = a1(φθ, φθ) + a2(θ, θ) ≥ a2(θ, θ) ≥ K2‖θ‖2

≥ K2

2
min

{
1,
k2
1

c22

}
‖{φθ, θ}‖V ∀ {φθ, θ} ∈ Z .

As a result, a(u, u) ≥ Ka‖u‖2
V for all u ∈ Z with Ka = 1

2K2 min
{

1, k
2
1
c22

}
so that the

third assumption in (2.7) is also satisfied.
To verify the last assumption in (2.7), note that

sup
φ∈Φ,φ 6=0

b1(φ, ψ)
‖φ‖Φ

≥ k1‖ψ‖Λ ∀ψ ∈ Λ . (3.11)

Indeed, assumptions (3.5) imply that (see [1]), for any ψ ∈ Λ, the problem

b1(φ, µ) = (ψ, µ)Λ ∀µ ∈ Λ (3.12)
8



has a unique solution φψ and, moreover,

‖φψ‖Φ ≤ 1
k1
‖ψ‖Λ . (3.13)

Using (3.12)–(3.13), it is easy to see that

b1(φψ, ψ)
‖φψ‖Φ

=
‖ψ‖2

Λ

‖φψ‖Φ
≥ k1‖ψ‖Λ ∀ψ ∈ Λ

which immediately implies (3.11). Finally, using (3.11),

sup
(φ,θ)∈Φ×Θ, (φ,θ) 6=(0,0)

b({φ, θ}, {ψ})√
‖φ‖2

Φ + ‖θ‖2
Θ

≥ sup
φ∈Φ, φ 6=0

b1(φ, ψ)
‖φ‖Φ

≥ k1‖ψ‖Λ ∀ψ ∈ Λ

so that

sup
u∈V, u6=0

b(u, q)
‖u‖V

≥ Kb‖q‖S ∀ q ∈ S

with Kb = k1.
Having verified the assumptions (2.7) for the optimal control problem (3.6), we

immediately have the following result.
Theorem 3.2. Let the assumptions (3.3) and (3.5) hold. Then, the optimal

control problem (3.6) has a unique solution (φ, θ) ∈ Φ×Θ.
Proof. The result immediately follows from Proposition 2.1 and Lemma 3.1.
It is instructive to rewrite the functional (3.2), the constraint (3.4), and the

optimal control problem (3.6) in operator notation. To this end, we note that the
bilinear forms serve to define operators

A1 : Φ̂ → Φ̂∗, A2 : Θ → Θ∗, B1 : Φ → Λ∗,
B∗1 : Λ → Φ∗, B2 : Θ → Λ∗, B∗2 : Λ → Θ∗

through the following relations:
a1(φ, µ) = 〈A1φ, µ〉bΦ∗,bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) = 〈A2θ, ν〉Θ∗,Θ ∀ θ, ν ∈ Θ

b1(φ, ψ) = 〈B1φ, ψ〉Λ∗,Λ = 〈B∗1ψ, φ〉Φ∗,Φ ∀φ ∈ Φ, ψ ∈ Λ

b2(ψ, θ) = 〈B2θ, ψ〉Λ∗,Λ = 〈B∗2ψ, θ〉Θ∗,Θ ∀ θ ∈ Θ, ψ ∈ Λ .

(3.14)

Then, the functional (3.2) and the constraint (3.4) respectively take the forms

J (φ, θ) =
1
2
〈
A1(φ− φ̂), (φ− φ̂)

〉bΦ∗,bΦ +
1
2
〈A2θ, θ〉Θ∗,Θ ∀φ ∈ Φ, θ ∈ Θ (3.15)

and

B1φ+B2θ = g in Λ∗ (3.16)

and the optimal control problem (3.6) takes the form

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to (3.16) . (3.17)
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Assumptions (3.3) and (3.5) imply that A1, A2, B1, B2, B∗1 , and B∗2 are bounded
with

‖A1‖bΦ→bΦ∗ ≤ C1, ‖A2‖Θ→Θ∗ ≤ C2, ‖B1‖Φ→Φ∗ ≤ c1,
‖B∗1‖Φ→Φ∗ ≤ c1, ‖B2‖Φ→Θ∗ ≤ c2, ‖B∗2‖Θ→Φ∗ ≤ c2

and that the operator B1 is invertible with ‖B−1
1 ‖Λ∗→Φ ≤ 1/k1. Note also that the

subspace Z ⊂ V = Φ×Θ can be defined by

Z =
{
{φ, θ} ∈ Φ×Θ : φ = −B−1

1 B2θ ∀ θ ∈ Θ
}
.

3.2. Solution via Lagrange multipliers and the optimality system. For
all {µ, ν} ∈ V = Φ×Θ and ψ ∈ S = Λ, we introduce the Lagrangian functional

L({µ, ν}, {ψ}) = J ({µ, ν}) + b({µ, ν}, {ψ})− 〈g, ψ〉Λ∗,Λ

=
1
2
a1(µ− φ̂, µ− φ̂) +

1
2
a2(ν, ν) + b1(µ, ψ) + b2(ν, ψ)− 〈g, ψ〉Λ∗,Λ .

Then, (3.6) is equivalent to the unconstrained optimization problem of finding saddle
points ({φ, θ}, {λ}) in V × S of the Lagrangian functional. These saddle points may
be found by solving the optimality system

a1(φ, µ) + b1(µ, λ) = a1(φ̂, µ) ∀µ ∈ Φ

a2(θ, ν) + b2(ν, λ) = 0 ∀ ν ∈ Θ

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ .

(3.18)

The third equation in the optimality system (3.18) is simply the constraint equation.
The first equation is commonly referred to as the adjoint or co-state equation and the
Lagrange multiplier λ is referred as the adjoint or co-state variable. The second equa-
tion in (3.18) is referred to as the optimality condition since it is merely a statement
that the gradient of the functional J (·, ·) defined in (3.2) vanishes at the optimum.

Using the framework of §2.2, the following result is immediate.
Theorem 3.3. Let the assumptions (3.3) and (3.5) hold. Then, the optimality

system (3.18) has a unique solution (φ, θ, λ) ∈ Φ×Θ× Λ. Moreover

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

and (φ, θ) ∈ Φ×Θ is the unique solution of the optimal control problem (3.6).
Proof. With the associations V = Φ × Θ, S = Λ, u = {φ, θ}, and p = {λ}, the

results immediately follow from Lemma 3.1 and Proposition 2.2.
Using the operators introduced in (3.14) and (3.1), the optimality system (3.18)

takes the form 
A1φ + B∗1λ = A1φ̂ in Φ∗

A2θ + B∗2λ = 0 in Θ∗

B1φ + B2θ = g in Λ∗ .

(3.19)
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3.3. Galerkin approximation of the optimality system. We choose (con-
forming) finite dimensional subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then restrict
(3.18) to the subspaces, i.e., we seek (φh, θh, λh) ∈ Φh ×Θh × Λh that satisfies

a1(φh, µh) +b1(µh, λh) = a1(φ̂, µh) ∀µh ∈ Φh

a2(θh, νh) +b2(νh, λh) = 0 ∀ νh ∈ Θh

b1(φh, ψh) +b2(θh, ψh) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh .

(3.20)

This is also the optimality system for the minimization of (3.2) over Φh×Θh subject
to the constraint b1(φh, ψh) + b2(ψh, θh) = 〈g, ψh〉Λ∗,Λ for all ψh ∈ Λh.

We next define the subspace Zh ⊂ Φh ×Θh by

Zh =
{
{φh, θh} ∈ Φh ×Θh : b1(φh, ψh) + b2(θh, ψh) = 0 ∀ψh ∈ Λh

}
. (3.21)

Note that, in general, Zh 6⊂ Z even though Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ. Thus, we
make the following additional assumptions about b1(·, ·) and Φh:

sup
ψh∈Λh,ψh 6=0

b1(φh, ψh)
‖ψh‖Λ

≥ kh1 ‖φh‖Φ ∀φh ∈ Φh

sup
φh∈Φh,φh 6=0

b1(φh, ψh)
‖φh‖V

> 0 ∀ψh ∈ Λh ,

(3.22)

where kh1 is a positive constant whose value is independent of h. Analogous to Lemma
3.1, we have the following result.

Lemma 3.4. Let the assumptions (3.3), (3.5), and (3.22) hold. Then, the spaces
V h = Φh × Θh and Sh = Φh and the bilinear forms a(·, ·) and b(·, ·) defined in (3.7)
satisfy the assumptions (2.11) and (2.12).

Proof. The proof proceeds exactly as that for for Lemma 3.1; the constants in
(2.11) are given by Kh

a = 1
2K2 min

{
1, (kh

1 )2

c22

}
and Kh

b = kh1 .
We then easily obtain the following results.
Theorem 3.5. Let the assumptions (3.3), (3.5), and (3.22) hold. Then, the

discrete optimality system (3.20) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh

and moreover

‖φh‖Φ + ‖θh‖Θ + ‖λh‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖bΦ)

.

Furthermore, let (φ, θ, λ) ∈ Φ × Θ × Λ denote the unique solution of the optimality
system (3.18), or, equivalently, of the optimal control problem (3.6). Then,

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
µh∈Φh

‖φ− µh‖Φ + inf
ξh∈Θh

‖θ − ξh‖Θ + inf
ψh∈Λh

‖λ− ψh‖Λ

)
.

(3.23)

Proof. The results immediately follow from Proposition 2.4 and Lemma 3.4.
The discrete optimality system (3.20) is equivalent to the linear system A1 0 BT1

0 A2 BT2
B1 B2 0




~φ

~θ

~λ

 =


~f

~0

~g

 , (3.24)
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where ~f and ~g are defined using a1(φ̂, µh) and 〈g, ψh〉Λ∗,Λ, respectively, and Ak and
Bk are defined in the standard manner from the bilinear forms ak(·, ·) and bk(·, ·),
k = 1, 2, repectively.

Remark 3.6. There are two sets of inf-sup conditions associated with the prob-
lems (3.18) and (3.20). First, we have the “inner” conditions (3.5) and (3.22) that
involve only the state variable and that guarantee the unique solvability of the state
equation and the discrete state equation, respectively, i.e., of the third equations in
(3.18) and (3.20). Second, we have the “outer” conditions (2.7) and (2.12) involving
the bilinear form b(·, ·) defined in (3.7) and that involve both the state and control
variables. These latter conditions help guarantee the unique solvability of the optimal-
ity system (3.18) and the discrete optimality system (3.20), respectively. Note that
the outer conditions and the related saddle point nature of the optimality systems
occur regardless of the the nature of the inner problem, i.e., the state equations. For
example, even if the state equations involve a strongly coercive bilinear form b1(·, ·)
so that the last two inequalities in (3.5) can be replaced by b1(φ, φ) ≥ k1‖φ‖2

Φ for all
φ ∈ Φ, we would still have the inf-sup condition in the form of the last equation in
(2.7).

Remark 3.7. As mentioned in Remark 3.6, the assumptions in (3.22) guarantee
the unique solvability of the discrete state equation (the third equation in (3.20))
for the discrete state variable φh ∈ Φh. Thus, if the constraint equation (3.4) is a
partial differential equation problem, then (3.22) are the general assumptions on the
associated bilinear form and the approximating space that are made to guarantee
the stability and convergence of Galerkin finite element discretizations; see, e.g., [1].
Furthermore, because of the nature of the assumptions (3.3) and (3.5), the inf-sup
condition on the bilinear form b(·, ·) is satisfied merely by assuming that (3.22) holds.
Thus, by merely guaranteeing that the discrete constraint equations within the dis-
cretized optimal control problem are uniquely solvable for any given discrete control,
i.e., assuming that the “inner” inf-sup conditions holds, we have that the “outer”
inf-sup condition on the bilinear form b(·, ·) holds. The latter, of course, is crucial
to the stability and convergence of finite element approximations to any saddle point
problem, including the optimality systems we consider here.

Remark 3.8. The discrete optimality system (3.20) or its matrix equivalent
(3.24), have the typical saddle point structure and thus, the stability and convergence
of the approximations they define depend on the bilinear form b(·, ·) = b1(·, ·)+b2(·, ·)
satisfying the discrete inf-sup condition (2.12) with respect to V h = Φh × Θh and
Sh = Λh. In the current context, this assumption is satisfied (see Remark 3.7) merely
by assuming that (3.22) holds for the bilinear form b1(·, ·) and the spaces Φh and
Λh. Thus, as discussed in Remark 3.7, the stability and convergence of solutions of
(3.20) or (3.24) depends solely on the ability to stably solve, given any discrete control
variable, the discrete state equation for a discrete state variable. On the other hand, if
(3.22) does not hold, then there exists a φh0 ∈ Φh such that φh0 6= 0 and b1(φh0 , ψ

h) = 0
for all ψh ∈ Λh. Then, b({φh0 , 0}, {ψh}) = b1(φh0 , ψ

h) = 0 for all ψh ∈ Λh so that

sup
ψh∈Λh, ψh 6=0

b({φh0 , 0}, {ψh})
‖ψh‖Λ

= 0 .

It can be shown that this implies that the discrete inf-sup condition (2.12) does
not hold so that (3.20) or its matrix equivalent (3.24) may not be solvable, i.e., the
coefficient matrix in (3.24) may not be invertible. In fact, the assumptions (3.22)
imply that B1 is uniformly invertible. This, and the facts (which follow from (3.3))
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that the symmetric matrices A1 and A2 are positive semi-definite and positive definite,
respectively, is enough to guarantee that the coefficient matrix in (3.24) is invertible.
On the other hand, if (3.22) does not hold so that the matrix B1 has a nontrivial null
space, then, under the other assumptions that have been made, one cannot guarantee
the invertibility of the coefficient matrix in (3.24).

Remark 3.9. Solving the discrete optimality system (3.20), or equivalently, the
linear system (3.24), is often a formidable task. If the constraint equations (3.4) are a
system of partial differential equations, then the last (block) row of (3.24) represents a
Galerkin finite element discretization of that system. The discrete adjoint equations,
i.e., the first row in (3.24), are also a discretization of a system of partial differential
equations. Moreover, the dimension of the discrete adjoint vector ~λ is essentially the
same as that of discrete state vector ~φ. Thus, (3.24) is at least twice the size (we
have yet to account for the discrete control variables in ~θ) of the discrete system cor-
responding to the discretization of the partial differential equation constraints. Thus,
if these equations are difficult to approximate, the discrete optimality system will be
even more difficult to deal with. For this reason, there have been many approaches
suggested for uncoupling the three components of discrete optimality systems such
as (3.20), or equivalently, (3.24). See, e.g., [18], for a discussion of several of these
approaches. We note that these approaches rely on the invertibility of the matrices
B1 and A2, properties that follow from (3.22) and (3.3), respectively.

4. Least-squares finite element methods for the optimality system.
Even if the state equation (3.4) (or (3.16)) involves a symmetric, positive definite
operator B1, i.e., even if the bilinear form b1(·, ·) is symmetric and strongly coer-
cive, the discrete optimality system (3.20) (or (3.24)) obtained through a Galerkin
discretization is indefinite. For example, if B1 = −∆ with zero boundary conditions,
then B1 is a symmetric, positive definite matrix, but the coefficient matrix in (3.24)
is indefinite. In order to obtain a discrete optimality system that is symmetric and
positive definite, we will apply a least-squares finite element discretization. In fact,
these desirable properties for the discrete system will remain in place even if the state
system bilinear form b1(·, ·) is only weakly coercive, i.e., even if the operator B1 is
merely invertible and not necessarily positive definite.

Given a system of partial differential equations, there are many ways to define
least-squares finite element methods for determining approximate solutions. Practi-
cality issues can be used to select the “best” methods from among the many choices
available. See, e.g., [6] for a discussion of what factors enter into the choice of a
particular least-squares finite element method for a given problem. Here, we will
consider the most straightforward means for defining a least-squares finite element
method. When, in §5, we consider a specific example, we will return to a discussion
of practicality issues in the choice of a least-squares finite element formulation.

4.1. A least-squares finite element method for a generalization of the
optimality system. We start with the generalized form of the optimality system
(3.19) written in operator form, i.e.,

A1φ + B∗1λ = f in Φ∗

A2θ + B∗2λ = s in Θ∗

B1φ + B2θ = g in Λ∗ ,

(4.1)

where (f, s, g) ∈ Φ∗ × Θ∗ × Λ∗ is a general data triple and (φ, θ, λ) ∈ Φ × Θ × Λ is
the corresponding solution triple. In the same way that Theorem 3.3 was proved, we
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have the following result.
Proposition 4.1. Let the assumptions (3.3) and (3.5) hold. Then, for any

(f, s, g) ∈ Φ∗×Θ∗×Λ∗, the generalized optimality system (4.1) has a unique solution
(φ, θ, λ) ∈ Φ×Θ× Λ. Moreover,

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖f‖Φ∗ + ‖s‖Θ∗ + ‖g‖Λ∗

)
. (4.2)

A least-squares functional can be defined by summing the squares of the norms
of the residuals of the three equations in (4.1) to obtain

K(φ, θ, λ; f, s, g) = ‖A1φ+B∗1λ−f‖2
Φ∗+‖A2θ+B∗2λ−s‖2

Θ∗+‖B1φ+B2θ−g‖2
Λ∗ . (4.3)

Clearly, the unique solution of (4.1) is also the solution of the problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; f, s, g) . (4.4)

The first-order necessary conditions corresponding to (4.4) are easily found to be

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= F

(
(µ, ν, ψ); (f, s, g)

)
∀ (µ, ν, ψ) ∈ Φ×Θ× Λ , (4.5)

where

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= (A1µ+B∗1ψ,A1φ+B∗1λ)Φ∗

+(A2ν +B∗2ψ,A2θ +B∗2λ)Θ∗ + (B1µ+B2ν,B1φ+B2θ)Λ∗

∀ (φ, θ, λ), (µ, ν, ψ) ∈ Φ×Θ× Λ

(4.6)

and

F
(
(µ, ν, ψ); (f, s, g)

)
= (A1µ+B∗1ψ, f)Φ∗ + (A2ν +B∗2ψ, s)Θ∗

+(B1µ+B2ν, g)Λ∗ ∀ (µ, ν, ψ) ∈ Φ×Θ× Λ .
(4.7)

Lemma 4.2. Let the assumptions (3.3) and (3.5) hold. Then, the bilinear form
B(·, ·) is symmetric and continuous on (Φ × Θ × Λ) × (Φ × Θ × Λ) and the linear
functional F (·) is continuous on (Φ × Θ × Λ). Moreover, the bilinear form B(·, ·) is
coercive on (Φ×Θ× Λ), i.e.,

B
(
(φ, θ, λ), (φ, θ, λ)

)
≥ C(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) ∀ (φ, θ, λ) ∈ Φ×Θ× Λ . (4.8)

Proof. The symmetry and continuity of the form B(·, ·) and the continuity of the
form F (·) are clear. From (4.6), we have that

B
(
(φ, θ, λ), (φ, θ, λ)

)
= ‖A1φ+B∗1λ‖2

Φ∗ + ‖A2θ +B∗2λ‖2
Θ∗ + ‖B1φ+B2θ‖2

Λ∗ . (4.9)

Clearly, for any (φ, θ, λ) ∈ Φ×Θ× Λ, there exists (f, s, g) ∈ Φ∗ ×Θ∗ × Λ∗ such that
(φ, θ, λ) is a solution of (4.1). This observation and Proposition 4.1 then yield that

‖φ‖2
Φ + ‖θ‖2

Θ + ‖λ‖2
Λ ≤ C

(
‖f‖2

Φ∗ + ‖s‖2
Θ∗ + ‖g‖2

Λ∗

)
= C

(
‖A1φ+B∗1λ‖2

Φ∗ + ‖A2θ +B∗2λ‖2
Θ∗ + ‖B1φ+B2θ‖2

Λ∗

)
∀ (φ, θ, λ) ∈ Φ×Θ× Λ .

(4.10)
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Combining (4.9) and (4.10) then easily yields (4.8).
Remark 4.3. Since

K(φ, θ, λ; 0, 0, 0) = ‖A1φ+B∗1λ‖2
Φ∗ + ‖A2θ +B∗2λ‖2

Θ∗ + ‖B1φ+B2θ‖2
Λ∗

= B
(
(φ, θ, λ), (φ, θ, λ)

)
,

the coercivity and continuity of the bilinear form B(·, ·) are equivalent to stating
that the functional K(φ, θ, λ; 0, 0, 0) is norm-equivalent, i.e., that there exist constants
γ1 > 0 and γ2 > 0 such that

γ1(‖φ‖2
Φ + ‖θ‖2

Θ + ‖λ‖2
Λ) ≤ K(φ, θ, λ; 0, 0, 0) ≤ γ2(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) (4.11)

for all (φ, θ, λ) ∈ Φ×Θ× Λ.
Proposition 4.4. Let the assumptions (3.3) and (3.5) hold. Then, for any

(f, s, g) ∈ Φ∗×Θ∗×Λ∗, the problem (4.5) has a unique solution (φ, θ, λ) ∈ Φ×Θ×Λ.
Moreover, this solution coincides with the solution of the problems (4.1) and (4.4) and
satisfies the estimate (4.2).

Proof. The results follow from Lemma 4.2 and the Lax-Milgram lemma.
We define a finite element discretization of (4.1) or, equivalently, of (4.5), by

choosing conforming finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then
requiring that (φh, θh, λh) ∈ Φh ×Θh × Λh satisfy

B
(
(φh, θh, λh), (µh, νh, ψh)

)
= F

(
(µh, νh, ψh); (f, s, g)

)
∀ (µh, νh, ψh) ∈ Φh ×Θh × Λh .

(4.12)

Note that (φh, θh, λh) can also be characterized as the solution of the problem

min
(φh,θh,λh)∈Φh×Θh×Λh

K(φh, θh, λh; f, s, g) .

Proposition 4.5. Let the assumptions (3.3) and (3.5) hold. Then, for any
(f, h, g) ∈ Φ∗ × Θ∗ × Λ∗, the problem (4.12) has a unique solution (φh, θh, λh) ∈
Φh ×Θh × Λh. Moreover, we have the optimal error estimate

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

infeφh∈Φh

‖φ− φ̃h‖Φ + infeθh∈Θh

‖θ − θ̃h‖Θ + infeλh∈Λh

‖λ− λ̃h‖Λ

)
,

(4.13)

where (φ, θ, λ) ∈ Φ×Θ×Λ is the unique solution of the problem (4.5), or equivalently,
of the problems (4.1) or (4.4).

Proof. The results follow from Lemma 4.2 and standard finite element analyses.

4.2. A least-squares finite element method for the optimality system.
The results of §4.1 easily specialize to the optimality system (3.19). Indeed, letting
f = A1φ̂ ∈ Φ̂∗ ⊂ Φ∗ and s = 0, we have that (4.1) reduces to (3.19). We now have
the least-squares functional,

K(φ, θ, λ; φ̂, g) = ‖A1φ+B∗1λ−A1φ̂‖2
Φ∗+‖A2θ+B∗2λ‖2

Θ∗+‖B1φ+B2θ−g‖2
Λ∗ , (4.14)

the minimization problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; φ̂, g) , (4.15)
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the first-order necessary conditions

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= F

(
(µ, ν, ψ); (A1φ̂, 0, g)

)
∀ (µ, ν, ψ) ∈ Φ×Θ× Λ , (4.16)

where B(·, ·) and F (·) are defined as in (4.6) and (4.7), respectively.

We define a finite element discretization of (4.16) by again choosing conforming
finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then requiring that
(φh, θh, λh) ∈ Φh ×Θh × Λh satisfy

B
(
(φh, θh, λh), (µh, νh, ψh)

)
= F

(
(µh, νh, ψh); (A1φ̂, 0, g)

)
∀ (µh, νh, ψh) ∈ Φh ×Θh × Λh .

(4.17)

Then, Proposition 4.5 takes the following form.

Theorem 4.6. Let the assumptions (3.3) and (3.5) hold. Then, for any (φ̂, g) ∈
Φ̂∗ × Λ∗, the problem (4.17) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh.
Moreover, we have the optimal error estimate: there exists a constant C > 0 whose
value is independent of h, such that

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

infeφh∈Φh

‖φ− φ̃h‖Φ + infeθh∈Θh

‖θ − θ̃h‖Θ + infeλh∈Λh

‖λ− λ̃h‖Λ

)
,

(4.18)

where (φ, θ, λ) ∈ Φ×Θ×Λ is the unique solution of the problem (4.16) or, equivalently,
of the problems (3.19) or (3.18). Note also that (φ, θ) ∈ Φ×Θ is the unique solution
of the problem (3.6).

Remark 4.7. The discrete problem (4.17) is equivalent to the linear algebraic
system

 K1 CT1 CT2
C1 K2 CT3
C2 C3 K3




~φ

~θ

~λ

 =


~f

~h

~g

 . (4.19)

Indeed, if one chooses bases {µhj (x)}Jj=1, {νhk (x)}Kk=1, and {ψh` (x)}L`=1 for Φh, Θh,
and Λh, respectively, we then have φh =

∑J
j=1 φjµ

h
j , θ

h =
∑K
k=1 θkµ

h
k , and λh =∑L

`=1 λ`ψ
h
` for some sets of coefficients {φj}Jj=1, {θk}Kk=1, and {λ`}L`=1 that are deter-

mined by solving (4.19). In (4.19), we have that ~φ = (φ1, . . . , φJ)T , ~θ = (θ1, . . . , θK)T ,
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~λ = (λ1, . . . , λL)T ,(
K1

)
ij

= (A1µi, A1µj)Φ∗ + (B1µi, B1µj)Λ∗ for i, j = 1, . . . , J,(
K2

)
ik

= (A2νi, A1νk)Θ∗ + (B2νi, B2νk)Λ∗ for i, k = 1, . . . ,K,(
K3

)
i`

= (B∗1ψi, B
∗
1ψ`)Φ∗ + (B2ψi, B2ψ`)Θ∗ for i, ` = 1, . . . , L,(

C1

)
ij

= (B2νi, B1µj)Λ∗ for i = 1, . . . ,K, j = 1, . . . , J,(
C2

)
ij

= (B∗1ψi, A1νj)Φ∗ for i = 1, . . . , L, j = 1, . . . , J,(
C3

)
ik

= (B∗2ψi, A2νk)Θ∗ for i = 1, . . . , L, k = 1, . . . ,K,(
~f
)
i
= (A1µi, A1φ̂)Φ∗ + (B1µi, g)Λ∗ for i = 1, . . . , J,(

~h
)
i
= (B2νi, g)Λ∗ for i = 1, . . . ,K,(

~g
)
i
= (B∗1ψi, A1φ̂)Φ∗ for i = 1, . . . , L.

Remark 4.8. It easily follows from Lemma 4.2 that the coefficient matrix of
(4.19) is symmetric and positive definite. This should be compared to the linear system
(3.24) that results from a Galerkin finite element discretization of the optimality
system (3.18) for which the coefficient matrix is symmetric and indefinite.

Remark 4.9. The stability of the discrete problem (4.17), the convergence and
optimal accuracy of the approximate solution (φh, θh, λh), and the symmetry and
positive definiteness of the discrete system (4.19) obtained by the least-squares fi-
nite element method follow from the assumptions (3.3) and (3.5) that guarantee the
well posedness of the infinite-dimensional optimization problem (3.6) and its corre-
sponding optimality system (3.18). It is important to note that all of these desirable
properties of the least-squares finite element method do not require that the bilinear
form b1(·, ·) and the finite element spaces Φh and Λh satisfy the inner (see Remark
3.6) inf-sup conditions (3.22) that are necessary for the well posedness of the Galerkin
finite element discretization (3.20) of the optimality system (3.18). In fact, this is why
least-squares finite element methods are often an attractive alternative to Galerkin
discretizations; see, e.g., [6].

Remark 4.10. The observations made in Remark 3.9 about the possible need to
uncouple the equations in (3.24) hold as well for the linear system (4.19). Uncoupling
approaches for (3.24) rely on the invertibility of the matrices B1 and A2; the first of
these is, in general, non-symmetric and indefinite, even when the necessary discrete
inf-sup conditions in (3.22) are satisfied. For (4.19), uncoupling strategies would rely
on the invertibility of the matrices K1, K2, and K3; all three of these matrices are
symmetric and positive definite even when (3.22) is not satisfied. An example of a
simple uncoupling strategy is to apply a block-Gauss Seidel method to (4.19), which
would proceed as follows.

Start with initial guesses ~φ
(0)

and ~θ
(0)

for the discretized state and
control; then, for k = 1, 2, . . ., successively solve the linear systems

K3
~λ

(k+1)
= ~g − C2

~φ
(k)

− C3
~θ

(k)

K1
~φ

(k+1)
= ~f − CT1 ~θ

(k)
− CT2 ~λ

(k+1)

K2
~θ

(k+1)
= ~h− C1

~φ
(k+1)

− CT3 ~λ
(k+1)

(4.20)
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until satisfactory convergence is achieved, e.g., until some norm of
the difference between successive iterates is less than some prescribed
tolerance.

Since the coefficient matrix in (4.19) is symmetric and positive definite, this iteration
will converge. Moreover, all three coefficient matrices K3, K1, and K2 of the linear
systems in (4.20) are themselves symmetric and positive definite so that very efficient
solution methodologies, including parallel ones, can be applied for their solution. We
also note that, in order to obtain faster convergence rates, better uncoupling iterative
methods, e.g., over-relaxation schemes or a conjugate gradient method, can be applied
instead of the Gauss-Seidel iteration of (4.20).

Remark 4.11. The discrete problem (4.17) (or equivalently, (4.19)) resulting
from the least-squares method for the optimality system (3.19) can be viewed as a
Galerkin discretization of the system

(A∗1A1 +B∗1B1)φ+ (B∗1B2)θ + (A∗1B
∗
1)λ = (A∗1A1)φ̂+ (B∗1)g in Φ

(A∗2A2 +B∗2B2)θ + (A∗2B
∗
2)λ+ (B∗2B1)φ = (B∗2)g in Θ

(B1B
∗
1 +B2B

∗
2)λ+ (B1A1)φ+ (B2A2)θ = (B1A1)φ̂ in Λ .

(4.21)

The first equation of this system is the sum of A∗1 applied to the first equation of the
optimality system (3.19) and B∗1 applied to the third equation of that system. The
other equations of (4.21) are related to the equations of (3.19) in a similar manner.
The system (4.21) shows that the discrete system (4.19) essentially involves the dis-
cretization of “squares” of operators, e.g., A∗1A1, B∗1B1, etc. This observation has a
profound effect in how one chooses the form of the constraint equation in (3.6), i.e.,
the form of (3.16). We will return to this point in the next section when we consider
a concrete example.

5. Example: Optimization problems for the Stokes system. Let Ω denote
an open, bounded domain in Rs, s = 2 or 3, with boundary Γ. Let u and p denote
the velocity and pressure fields, respectively, and let θ denote a distributed control.
Then, consider the Stokes system{

−∆u +∇p+ θ = g

∇ · u = 0
in Ω, u = 0 on Γ,

∫
Ω

p dΩ = 0 (5.1)

and the functionals

Case I: J1(u,θ) =
1
2

∫
Ω

|∇ × u|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ (5.2)

Case II: J2(u,θ; û) =
1
2

∫
Ω

|u− û|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ , (5.3)

where g and û are given functions. We study the two problems of finding (u, p,θ)
that minimizes either the functional in (5.2) or (5.3), subject to the Stokes system
(5.1) being satisfied. In the first case, i.e., for the functional (5.2), the problem we
study is to find a distributed control function θ that minimizes, in the L2(Ω) sense,
the vorticity over the flow domain Ω. In the second case, i.e., for the functional (5.3),
the problem we study is to find a distributed control function θ such that flow velocity
u matches as well as possible, in the L2(Ω) sense, a given velocity field û.
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In Remark 4.11, it was noted that least-squares finite element methods for opti-
mization problems result in the “squaring” of the constraint operator, in this case,
of the Stokes system (5.1). This results in biharmonic type terms appearing in the
system corresponding to (4.21), or, equivalently, in (4.9). A conforming finite element
discretization would then require the use of continuously differentiable approximation
spaces. In order to overcome this impracticality, it has become a standard procedure
in least-squares finite element methods to write the state system in an equivalent
first-order formulation; see, e.g., [6], for a detailed discussion of this issue.

There are many ways to rewrite the Stokes system (5.1) as a first-order system of
partial differential equations. Here, we choose the velocity-vorticity-pressure formula-
tion that is the most commonly used system for this purpose. Let ω = ∇×u denote the
vorticity. Then, using the well-known vector identity −4u = ∇×∇×u−∇(∇·u) =
∇× ω −∇(∇ · u), the Stokes system (5.1) can be expressed as

∇× ω +∇p+ θ = g

∇ · u = 0

∇× u− ω = 0

in Ω, u = 0 on Γ,
∫

Ω

p dΩ = 0 . (5.4)

Note that the functional (5.2) can now be written as

Case I: J1(ω,θ) =
1
2

∫
Ω

|ω|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ . (5.5)

Thus, the optimization problems we study are to find (u,ω, p,θ) that minimizes either
the functional in (5.3) or (5.5), subject to the Stokes system in the form (5.4) being
satisfied.

5.1. Precise statement of optimization problems. We recall the space
L2(Ω) of all square integrable functions with norm ‖ · ‖0 and inner product (·, ·),
the space L2

0(Ω) ≡ {q ∈ L2(Ω) :
∫
Ω
pdΩ = 0}, the space H1(Ω) ≡ {v ∈ L2(Ω) : ∇v ∈

[L2(Ω)]s}, and the space H1
0 (Ω) ≡ {v ∈ H1(Ω) : v = 0 on Γ}. A norm for functions

v ∈ H1(Ω) is given by ‖v‖1 ≡ (‖∇v‖2 +‖v‖2
0)

1/2. The dual space of H1
0 (Ω) is denoted

by H−1(Ω). The corresponding spaces of vector-valued functions are denoted in bold
face, e.g., H1(Ω) = [H1(Ω)]s is the space of vector-valued functions each of whose
components belongs to H1(Ω). We note the following equivalence of norms [16]:

C̃1‖v‖2
1 ≤ ‖∇× v‖2

0 + ‖∇ · v‖2
0 ≤ C̃2‖v‖2

1 ∀v ∈ H1
0(Ω) (5.6)

for some constants C̃1 > 0 and C̃2 > 0.
Let Φ = Λ = H1

0(Ω) × L2(Ω) × L2
0(Ω) and Θ = L2(Ω) so that Φ∗ = Λ∗ =

H−1(Ω) × L2(Ω) × L2
0(Ω) and Θ∗ = L2(Ω). Let Φ̂ = Φ̃ = L2(Ω) × L2(Ω) × L2

0(Ω).
Then, Φ ⊂ Φ̂ = Φ̃ = Φ̂∗ ⊂ Φ∗. For φ = {u,ω, p} ∈ Φ, we define the norm

‖φ‖Φ =
(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2

and likewise for the other product spaces.
We make the associations of

trial functions: φ = {u,ω, p} ∈ Φ, θ = {θ} ∈ Θ, λ = {v,σ, q} ∈ Λ ,
test functions: µ = {ũ, ω̃, p̃} ∈ Φ, ν = {θ̃} ∈ Θ, ψ = {ṽ, σ̃, r̃} ∈ Λ ,
data: g = {g,0, 0} ∈ Λ∗, φ̂ = {û,0, 0} ∈ Φ̂ .
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We next define the bilinear forms

a1(φ, µ) =
{

(ω̃,ω) for Case I
(ũ,u) for Case II ∀φ = {u,ω, p} ∈ Φ̂, µ = {ũ, ω̃, p̃} ∈ Φ̂ ,

a2(θ, ν) = δ(θ, θ̃) ∀ θ = {θ} ∈ Θ, ν = {θ̃} ∈ Θ ,

b1(φ, ψ) = (ω,∇× ṽ)− (p,∇ · ṽ) + (∇× u− ω, σ̃)− (∇ · u, r̃)
∀φ = {u,ω, p} ∈ Φ, ψ = {ṽ, σ̃, r̃} ∈ Λ ,

b2(θ, ψ) = (θ, ṽ) ∀ θ = {θ} ∈ Θ, ψ = {ṽ, σ̃, r̃} ∈ Λ .

For g ∈ H−1(Ω), we also define the linear functional

〈g, ψ〉Λ∗,Λ = 〈g, ṽ〉H−1(Ω),H1
0(Ω) ∀ψ = {ṽ, σ̃, r̃} ∈ Λ .

The operators associated with the bilinear forms are then

A1 =

 0 0 0
0 I 0
0 0 0

 for Case I, A1 =

 I 0 0
0 0 0
0 0 0

 for Case II,

A2 = δI, B1 =

 0 ∇× ∇
∇× −I 0
−∇· 0 0

 , B2 =

 I
0
0

 .

(5.7)

It is now easily seen that the functionals J1(·, ·) and J2(·, ·; ·) defined in (5.5)
and (5.3), respectively, can be written in the form (3.2). Likewise, the Stokes system
(5.4) can be written in the form (3.4). Thus, the two optimization problems for the
Stokes system can both be written in the form (3.6), with J (·, ·) being either J1(·, ·)
or J2(·, ·) as appropriate. Thus, if the assumptions (3.3) and (3.5) can be verified
in the context of the two optimization problems for the Stokes system, then all the
results of §4 will apply to those systems.

Proposition 5.1. Let the spaces Φ, Φ̂, Θ, and Λ and the bilinear forms a1(·, ·),
a2(·, ·), b1(·, ·), and b2(·, ·) be defined as in §5.1. Then, the assumptions (3.3) and
(3.5) are satisfied.

Proof. The four inequalities in (3.3) and the first two inequalities in (3.5) are
easily verified with C1 = 1, C2 = δ, K2 = δ, c1 = 3, and c2 = 1. The third inequality
in (3.5) is verified if, for any φ = {u,ω, p} ∈ Φ, one can find a ψ̃ = {ṽ, σ̃, r̃} ∈ Λ such
that

b1(φ, ψ̃) = (ω,∇× ṽ)− (p,∇ · ṽ) + (∇× u− ω, σ̃)− (∇ · u, r̃)

≥ k1‖φ‖Φ‖ψ̃‖Λ = k1

(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2(‖ṽ‖2
1 + ‖σ̃‖2

0 + ‖r̃‖2
0

)1/2

for some constant k1 > 0. To this end, for any φ = {u,ω, p} ∈ Φ, let ψ̃ = {ṽ, σ̃, r̃} ∈ Λ
satisfy the system

∇× ṽ = ω, ∇ · ṽ = −p, σ̃ = ∇× u, and r̃ = −∇ · u

in Ω. Clearly, from the last two equations, we have that

‖σ̃‖2
0 + ‖r̃‖2

0 = ‖∇ × u‖2
0 + ‖∇ · u‖2

0 ≤ C̃2‖u‖2
1 .
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Also, since ṽ ∈ H1
0(Ω), we have from the first two equations and (5.6) that

C̃1‖ṽ‖2
1 ≤ (‖∇ × ṽ‖2

0 + ‖∇ · ṽ‖2
0) = (‖ω‖2

0 + ‖p‖2
0) .

Combining the last two results yields that(
‖ṽ‖2

1 + ‖σ̃‖2
0 + ‖r̃‖2

0

)
≤ max

{
1

C̃1

, C̃2

} (
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)
.

Then, with φ = {u,ω, p} ∈ Φ and ψ̃ = {ṽ, σ̃, r̃} ∈ Λ, we have that

b1(φ, ψ̃) = ‖ω‖2
0 + ‖p‖2

0 + ‖∇ × u‖2
0 + ‖∇ · u‖2

0 − (ω,∇× u)

≥ ‖ω‖2
0 + ‖p‖2

0 + ‖∇ × u‖2
0 + ‖∇ · u‖2

0 − ‖ω‖0‖∇ × u‖0

≥ 1
2‖ω‖

2
0 + ‖p‖2

0 + 1
2‖∇ × u‖2

0 + ‖∇ · u‖2
0

≥ 1
2 min{1, C̃1}

(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)
≥ min{1, eC1}

2

r
max

n
1eC1
, eC2

o(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2(
‖ṽ‖2

1 + ‖σ̃‖2
0 + ‖r̃‖2

0

)1/2

= min{1, eC1}

2

r
max

n
1eC1
, eC2

o‖φ‖Φ‖ψ̃‖Λ .

Thus, with k1 = min{1, C̃1}
/ (

2
√

max
{

1eC1
, C̃2

})
, the third inequality in (3.5) is

verified. Note that k1 depends only on the comparability constants in (5.6).
Remark 5.2. We have now verified the assumptions (3.3) and (3.5) for the two

optimization problems of finding (u,ω, p,θ) that minimizes either the functional in
(5.3) or (5.5), subject to the Stokes system in the form (5.4) being satisfied. Thus, all
the results of Sections 3.1 and 3.2 hold. In particular, with the associations already
defined between spaces, operators, etc., we could use the Lagrange multiplier rule to
characterize the solutions of the optimization problems as solutions of the optimality
system (3.19).

Remark 5.3. We could apply, as in §3.3, a Galerkin finite element method for
determining approximate solutions of the optimality system (3.19). Such an approach,
unlike least-squares finite element discretizations, does not involve the “squaring”
of operators so that there is no need to transform the Stokes system (5.1) into an
equivalent first-order form as in (5.4); one would then also use the form (5.2) for the
functional J1 instead of the from (5.5). We then would have φ = {u, p}, θ = {θ},
etc., and use, instead of the operators defined in (5.7), the operators

A1 =
(
∇× 0
0 0

)
for Case I, A1 =

(
I 0
0 0

)
for Case II,

A2 = δI, B1 =
(

−∆ ∇
−∇· 0

)
, B2 =

(
I
0

)
.

(5.8)

The assumptions (3.3) and (3.5) can also be verified for the bilinear forms associated
with these operators.

Remark 5.4. As noted in §3.3, a Galerkin discretization of the optimality system
(3.19) using either of the forms (5.7) or (5.8) for the operators, requires that the
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assumptions in (3.22) hold. If one uses (5.8), one can easily show that the finite
element spaces for the velocity and pressure approximations have to satisfy the inf-
sup condition [12,13,16,17]

inf
qh∈Sh,qh 6=0

sup
vh∈Vh,vh 6=0

∫
Ω

qh∇ · vh dΩ

‖qh‖0‖vh‖1
≥ γ (5.9)

for some constant γ > 0. This condition guarantees the unique solvability of the
discrete Stokes sytem and restricts the choice of finite element spaces used for the
velocity and pressure approximations; see [12, 13, 17] for details. In particular, one
cannot use piecewise polynomial spaces of the same order and defined with respect to
the same grid for the velocity and pressure approximations. If one instead uses (5.7),
an even more onerous inf-sup condition is required of the finite element spaces for the
velocity, vorticity, and pressure.

Remark 5.5. Note that (5.9) is a third level of inf-sup conditions that we have
encountered in our deliberations: (5.9) is necessary and sufficient to guarantee that
the inf-sup condition (3.22) holds; the latter is necessary and sufficient to guarantee
that the inf-sup condition (2.12) holds.

5.2. Least-squares finite element methods for the two optimization
problems. Using the associations of spaces and variables defined in §5.1 and the
operators defined in (5.7), it is easy to see that the least-squares funtional (4.14) is
given by, for the example problems we are considering,

K
(
{u,ω, p},θ, {v,σ, q}; û,g

)
= ‖∇ × σ +∇q + δ2(u− û)‖2

−1 + ‖∇ × v − σ + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0

+‖∇ × ω +∇p+ θ − g‖2
−1 + ‖∇ × u− ω‖2

0 + ‖∇ · u‖2
0 ,

(5.10)

where

δ1 =
{

1 for Case I
0 for Case II and δ2 =

{
0 for Case I
1 for Case II .

We also have the bilinear form

B
(
{u,ω, p},θ, {v,σ, q}; {ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}

)
=

(
∇× σ +∇q + δ2u , ∇× σ̃ +∇q̃ + δ2ũ

)
−1

+
(
∇× v − σ + δ1ω , ∇× ṽ − σ̃ + δ1ω̃

)
+

(
∇ · v , ∇ · ṽ

)
+

(
δθ + v , δθ̃ + ṽ

)
+

(
∇× ω +∇p+ θ , ∇× ω̃ +∇p̃+ θ̃

)
−1

+
(
∇× u− ω , ∇× ũ− ω̃

)
+

(
∇ · u , ∇ · ũ

)
,

(5.11)
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where (·, ·)−1 denotes the inner product in H−1(Ω), and the linear functional

F
(
{ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}; û,g

)
=

(
δ2û , ∇× σ̃ +∇q̃ + δ2ũ

)
−1

+
(
g , ∇× ω̃ +∇p̃+ θ̃

)
−1
.

(5.12)

Then, as in (4.16), we have that the unique minimizer of the least-squares functional
(5.10) can be characterized as being the solution of the problem: find {u,ω, p} ∈
H1

0(Ω) × L2(Ω) × L2
0(Ω), θ ∈ L2(Ω), and {v,σ, q} ∈ H1

0(Ω) × L2(Ω) × L2
0(Ω) such

that

B
(
{u,ω, p},θ, {v,σ, q}; {ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}

)
= F

(
{ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}; û,g

)
∀ {ũ, ω̃, p̃} ∈ H1

0(Ω)× L2(Ω)× L2
0(Ω), θ̃ ∈ L2(Ω),

{ṽ, σ̃, q̃} ∈ H1
0(Ω)× L2(Ω)× L2

0(Ω) .
(5.13)

To define least-squares finite element approximations of the optimization prob-
lems, we first choose conforming finite element subspaces Vh ⊂ H1

0(Ω), Wh ⊂ L2(Ω),
Sh ⊂ L2

0(Ω), and Th ⊂ L2(Ω). We the minimize the functional in (5.10) over the
subspaces, or equivalently, solve the problem: find {uh,ωh, ph} ∈ Vh × Wh × Sh,
θh ∈ Th, and {vh,σh, qh} ∈ Vh ×Wh × Sh such that

B
(
{uh,ωh, ph},θh, {vh,σh, qh}; {ũh, ω̃h, p̃h}, θ̃

h
, {ṽh, σ̃h, q̃h}

)
= F

(
{ũh, ω̃h, p̃h}, θ̃

h
, {ṽh, σ̃h, q̃h}; û,g

)
∀ {ũh, ω̃h, p̃}h ∈ Vh ×Wh × Sh, θ̃

h
∈ Th,

{ṽh, σ̃h, q̃h} ∈ Vh ×Wh × Sh .

(5.14)

Proposition (5.1) and the results of §4 allow us to prove the following results.

Theorem 5.6. Let Φ = Λ = H1
0(Ω)× L2(Ω)× L2

0(Ω) and let Θ = L2(Ω). Then,

i) the bilinear form B(·; ·) defined in (5.11) is symmetric, continuous, and coercive
on {Φ×Θ× Λ} × {Φ×Θ× Λ}.

Let û ∈ L2(Ω) and g ∈ H−1(Ω) be given. Then,

ii) the linear funcional F (·) defined in (5.12) is continuous on {Φ×Θ× Λ};
iii) the problem (5.13) has a unique solution ({u,ω, p}, θ, {v,σ, q}) ∈ Φ×Θ× Λ.

Let Vh ⊂ H1
0(Ω), Wh ⊂ L2(Ω), Sh ⊂ L2

0(Ω), and Th ⊂ L2(Ω) and let Φh = Λh =
Vh ×Wh × Sh and Θh = Th. Then,

iv) the discrete problem (5.13) has a unique solution ({uh,ωh, ph}, θh, {vh,σh, qh}) ∈
Φh ×Θh × Λh;

v) we have the error estimate:
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‖u− uh‖1 + ‖ω − ωh‖0 + ‖p− ph‖0 + ‖θ − θh‖0

+‖v − vh‖1 + ‖σ − σh‖0 + ‖q − qh‖0

≤ C
(

infeuh∈Vh
‖u− ũh‖1 + infeωh∈Wh

‖ω − ω̃h‖0 + infeph∈Sh
‖p− p̃h‖0

+ infeθh

∈Th

‖θ − θ̃
h
‖0 + infevh∈Vh

‖v − ṽh‖1

+ infeσh∈Wh

‖σ − σ̃h‖0 + infeqh∈Sh
‖q − q̃h‖0

)
.

(5.15)

Proof. The results follow in a straightforward manner from Proposition 5.1 along
with Lemma 4.2, Proposition 4.4, and Theorem 4.6.

Remark 5.7. Following Remark 4.8, the discrete problem (5.13) is equivalent to
a linear algebraic system having a symmetric, positive definite coefficient matrix. In
the case of a Galerkin discritization of the optimality system, the coefficient matrix
is indefinite.

Remark 5.8. Following Remark 4.9, the results in Theorem (5.6) about the
solution of the discrete problem (5.13) follow merely from the conformity of the finite
element subspaces, i.e., merely from the inclusions Vh ⊂ H1

0(Ω), Wh ⊂ L2(Ω),
Sh ⊂ L2

0(Ω), and Th ⊂ L2(Ω). In particular, unlike the case of Galerkin finite element
discretizations of the optimality system, they do not require that the finite element
spaces satisfy additional conditions such as (5.9); see Remark 5.4. In particular, in
(5.13), one can choose the same degree piecewise polynomials defined with respect to
the same grid for all variables.

Remark 5.9. The discrete problem (5.13) is a rather formidable one in that it
involves many unknowns, i.e., 10 scalar fields in two dimensions and 17 scalar fields
in three dimensions. However, following Remark 4.10, the discrete problem (5.13)
can be efficiently uncoupled, more so than is the case for Galerkin finite element
discretizations of optimality systems.

Remark 5.10. A practical Galerkin finite element discretization of the optimality
system can use a formulation in terms of the operators defined in (5.8) while the least-
squares based discretization employs a formulation in terms of the operators defined
in (5.7). Thus, the latter approach involves more unknowns compared to the former
that involves 8 scalar fields in two dimensions and 11 scalar fields in three dimensions.
This apparent disadvantage of the least-squares approach should be balanced against
the advantages discussed in Remarks 5.7, 5.8, and 5.9.

Remark 5.11. Suppose one chooses continuous, piecewise polynomial finite ele-
ment spaces of degree r for the approximation of all variables; this is permissible for
least-squares finite element methods; see Remark 5.8. Suppose also that the solution of
the optimality system satisfies u ∈ Hr+1(Ω)∩H1

0(Ω), ω ∈ Hr(Ω), p ∈ Hr(Ω)∩L2
0(Ω),

θ ∈ Hr(Ω), v ∈ Hr+1(Ω) ∩H1
0(Ω), σ ∈ Hr(Ω), and q ∈ Hr(Ω) ∩ L2

0(Ω). Then, the
error estimate (5.15) implies that

‖u− uh‖1 + ‖ω − ωh‖0 + ‖p− ph‖0 + ‖θ − θh‖0

+‖v − vh‖1 + ‖σ − σh‖0 + ‖q − qh‖0 = O(hr) ,
(5.16)

where h is a measure of the grid size.

5.2.1. Circumventing the use of negative norms. The least-squares func-
tional (5.10) makes use of the H−1(Ω) norm. As a result, both the bilinear from B(·; ·)
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and the linear functional F (·) appearing in least-squares finite element discretization
(5.14) of the optimality system involve the H−1(Ω) inner product (·, ·)−1. Computing
the H−1(Ω) inner product of two functions esentially requires the solution of a Poisson
problem, i.e., for two functions ω, σ ∈ H−1(Ω), we can write

(ω, σ)−1 =
∫

Ω

ωv dΩ, where −∆v = σ in Ω and v = 0 on Γ .

Having to solve a Poisson problem every time one has to evaluate the H−1(Ω) inner
product of two functions renders impractical the implementation of (5.14).

There is substantial temptation to avoid the appearance of negative norms in
the least-square finite element formulation by simply replacing the negative norm in
(5.10) with the L2(Ω) norm, i.e., to base a least-squares finite element method on the
functional

K̃
(
{u,ω, p},θ, {v,σ, q}; û,g

)
= ‖∇ × σ +∇q + δ2(u− û)‖2

0 + ‖∇ × v − σ + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0 + ‖∇ × ω +∇p+ θ − g‖2

0 + ‖∇ × u− ω‖2
0 + ‖∇ · u‖2

0

instead of the functional (5.10); note that now we would have to choose Φ = Λ =
H1

0(Ω) × H1(Ω) × L2
0(Ω). Doing this would indeed lead to a discrete problem in-

volving only easily implementable L2(Ω) inner products. However, in this case, the
norm-equivalence relation does not hold (see [6,7]) so that the resulting bilinear form
associated with the minimization of the functional K̃ is not coercive. As a result, the
discrete problem will not have a (uniformly, as h → 0) positive definite coefficient
matrix and the least-squares finite element approximations may not be stable and
will certainly not be optimally accurate.

Another approach for avoiding the use of H−1(Ω) inner products is to replace
the velocity-vorticity-pressure formulation (5.4) of the Stokes problem with another
first-order formulation whose residuals, when measured in L2(Ω) norms, do result in
a norm equivalent functional. Such formulations, involving additional unknowns and
redundant equations, were developed in [14, 15]. For example, if we use the velocity-
velocity gradient-pressure formulation due to [14], we would employ the least-squares
functional

K̂
(
{u,U, p},θ, {v,V, q}; û,g

)
= ‖∇ ·V +∇q + δ2(u− û)‖2

0 + ‖(∇v)T −V + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0 + ‖ − ∇ ·U +∇p+ θ − g‖2

0 + ‖(∇u)T −U‖2
0 + ‖∇ · u‖2

0

+‖∇(TrV)‖2
0 + ‖∇ ×V‖2

0 + ‖∇(TrU)‖2
0 + ‖∇ ×U‖2

0 ,

where (·)T and Tr(·) denote the transpose and the trace of a tensor, and where the
components of ω can be easily expressed as linear combinations of the off-diagonal
elements of the tensor U. Instead of the vorticity ω = ∇ × u and adjoint vorticity
σ = ∇ × v, the new variables introduced to effect the first-order formulation are
U = (∇u)T and V = (∇v)T . Also, now we have that Φ = Λ = H1

0(Ω)×Q× L2
0(Ω),

where Q = {V ∈ [H1(Ω)]9 | V×n = 0}. The equations whose residuals appear in the
last line of the definition of K̂ are all redundant in the sense that they are all already
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implied by the other equations. Note that now we have even more unknowns than
that for the velocity-vorticity-pressure; e.g., in three dimensions, the least-squares
discrete problem resulting form minimizing the functional K̂ would now involve 27
scalar fields. Furthermore, the addition of redundant equations requires more regular
data and solutions and preclude the use of the least-squares methodology in, e.g.,
non-convex polygonal domains.

A third and more practical approach to avoiding the use of H−1(Ω) inner prod-
ucts, is to replace the functional (5.10) by the mesh-weighted functional

K̃h
(
{u,ω, p},θ, {v,σ, q}; û,g

)
= h2‖∇ × σ +∇q + δ2(u− û)‖2

0 + ‖∇ × v − σ + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0 + h2‖∇ × ω +∇p+ θ − g‖2

0 + ‖∇ × u− ω‖2
0 + ‖∇ · u‖2

0 .

This approach is motivated by the finite element inverse inequality C‖ωh‖0 ≤ h−1‖ωh‖−1

which leads to the norm “equivalence” Ch‖ωh‖0 ≤ ‖ωh‖−1 ≤ ‖ωh‖0 between the
H−1(Ω) and L2(Ω) norms of finite element functions. One can then show, using the
analyses developed in [6], that one obtains an optimal convergence for the functional
K̃h, even though this functional is not norm-equivalent. One possible drawback of
this approach is that the condition number of the resulting matrix may be too large
for the practical use of some iterative solution techniques.

Perhaps the most practical approach to avoiding the use ofH−1(Ω) inner products
is to replace the H−1(Ω) norm terms in the functional (5.10) by more sophisticated
“equivalent” discrete norms that involve only L2(Ω) norms. Such ideas have been
widely used in the least-squares finite element literature; see, e.g., [4,10,11]. As noted
above, the computation of negative norms requires inversion of a Laplacian operator
(with zero boundary conditions). It was shown in [10] that for finite element functions,
it is equivalent to use the discrete minus one inner product

(ωh, σh)h =
(
(Lh + h2I)ωh, σh

)
0
,

where Lh is a discrete inverse Laplace operator (with zero boundary conditions) that is
spectrally equivalent to inverse Laplace operator itself. In practice, the computation of
Lhωh for any finite element function ωh is often implemented by using a few multigrid
cycles which makes its computation very efficient. The application of this approach
in our context results in the minimization of the functional

Kh
(
{uh,ωh, ph},θh, {vh,σh, qh}; û,g

)
= ‖∇ × σh +∇qh + δ2(uh − û)‖2

h + ‖∇ × vh − σh + δ1ω
h‖2

0 + ‖∇ · vh‖2
0

+‖δθh + vh‖2
0 + ‖∇ × ωh +∇ph + θh − g‖2

h + ‖∇ × uh − ωh‖2
0 + ‖∇ · uh‖2

0 ,

where ‖ωh‖2
h = ((Lh + h2I)ωh, ωh)0. Using the techniques of [4], it can be shown

that this functional leads to a practical least-squares finite element method yielding
positive definite coefficient matrices and an error estimate such as (5.16).

6. Conclusions. Optimization and control problems governed by PDEs are
most often solved by Lagrange multiplier techniques which lead to variational equa-
tions consisting of the state system, an adjoint-state system, and optimality condi-
tions. Galerkin discretization of these equations results in discrete problems that are
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not only formidable in size but are indefinite as well, which makes their iterative
solution difficult.

In this paper we formulated a new approach for the finite element discretization of
the optimality system, based on the application of least-squares principles. The main
advantage of this formulation is seen in the better possibilities that it affords for the
uncoupling of the discrete optimality equations and their efficient iterative solution.
Least-squares principles result in symmetric and positive definite algebraic systems.
Moreover, for the optimization and control problems considered in this paper, these
linear systems have a 3× 3 block structure where the diagonal blocks themselves are
symmetric and positive definite. As an example of a simple, but convergent uncoupling
strategy, we considered a block-Gauss Seidel method. To illustrate the issues involved
in the formulation of effective and practical least-squares methods we considered two
optimization problems for the Stokes equations.
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