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Abstract. This paper considers the finite element approximation and algebraic solution of the
pure Neumann problem. Our goal is to present a concise variational framework for the finite element
solution of the Neumann problem that focuses on the interplay between the algebraic and variational
problems. While many of the results that stem from our analysis are known by some experts, they
are seldom derived in a rigorous fashion and remain part of numerical folklore. As a result, this
knowledge is not accessible (nor appreciated) by many practitioners—both novices and experts—in
one source. Our paper contributes a simple, yet insightful link between the continuous and algebraic
variational forms that will prove useful.
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1. Introduction. This paper is concerned with finite element solution of the
pure Neumann problem

−4u = f in Ω and
∂u

∂n
= 0 on Γ (1.1)

where Ω ⊂ Rd, d = 1, 2, 3 is a bounded open region with boundary Γ. Solutions of
(1.1) are determined up to a constant1 mode. The Fredholm Alternative implies that
the source f must be orthogonal to this mode, that is∫

Ω

f(x)dx = 0. (1.2)

A direct Galerkin discretization of (1.1)-(1.2) leads to a linear system with similar
properties: a stiffness matrix with a one-dimensional kernel and a source term that
is orthogonal to this kernel. There are two basic approaches for computing a finite
element solution from this system. One, favored by some practitioners, is to constrain
the candidate solution by specifying its value at a node. This eliminates the null-space
and allows one to solve the linear system by a conventional (sparse) direct solver.

Alternatively, the solution can be computed from the consistent singular system
either by a properly modified direct procedure that recognizes (machine) zero pivot,
or a minimization based iterative solver such as conjugate gradients. This approach
is less popular for three reasons: special purpose direct solvers are required, there is
a general aversion towards solving singular systems, and many people are not aware
that conjugate gradients work for positive semi-definite consistent linear systems.
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1In the context of mechanical systems this mode is usually called a rigid body motion.
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In the extant literature, both solution techniques are formulated directly for the
discrete problems without any connection to a variational problem. This situation is
unsatisfactory because under closer scrutiny both approaches reveal some unsettling
details. For instance, specifying solution datum at a node is inherently ambiguous,
while roundoff error may render the singular system inconsistent and prevent conver-
gence of the conjugate gradient algorithm. At the same time, many well regarded
FEM textbooks [2, 13, 6, 18, 9, 21, 20, 19, 12] provide only scant information on these
issues. As a rule, engineering texts limit their exposition to a brief, ad hoc discussion
of the first approach; see the recent textbook by Gresho and Sani [12, p.474], or the
classic text [2]. Mathematically oriented finite element books, on the other hand,
focus on variational problems posed in factor, or zero mean spaces [6, 11, 3], but do
not discuss the practical details of implementing conforming finite element methods
in these settings. As for the second approach, the solution of singular systems by the
conjugate gradient algorithm is rarely discussed outside the specialized literature on
iterative solvers [1, 15] or sparse direct solvers [17, 10].

The contribution of our paper is threefold. First, we seek to develop a unifying
variational framework for the finite element solution of the Neumann problem that
embraces existing solution techniques and presents a lucid connection between the
algebraic equations and well-posed variational problems. Second, with the aforemen-
tioned connection, we present several new results that have not appeared, to best of
our knowledge, in the literature. Third, we address the impact of our choices when
using an iterative method of solution instead of the commonly studied impact on
(sparse) direct methods for the solution of the linear system.

Since our analysis will recover widely practiced solution techniques, many of the
results (and conclusions) in this paper will probably be known to an expert in mathe-
matical theory of finite elements or an experienced practitioner of the method. Never-
theless, we feel that there is a need to provide both novices and experts with a system-
atic presentation of the existing body of knowledge. Moreover, our treatment reveals
the common variational origins of seemingly different solution techniques, allows for
their rigorous mathematical analysis and suggests new methods, a development that
to the best of our knowledge has not appeared before in the extant literature.

We mention that our approach can be applied with equal success to other problems
where a finite element discretization leads to a matrix with a non-trivial kernel. We
have intentionally chosen to focus on the Neumann problem so as to avoid unnecessary
technical detail and instead focus on the germane idea.

Finite element solution of the Neumann problem and all ensuing approaches can
be completely understood by realizing that there are two variational settings that give
well-posed weak problems. Both are related to the energy functional of (1.1)

J(v, f) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

fvdx (1.3)

but differ in the type of optimization involved—constrained vs. unconstrained. With-
out constraints minimizers of (1.3) are determined up to a constant. The first varia-
tional setting is to factor out the constants and minimize (1.3) on a factor space. This
leads to finite element methods that require solution of a singular linear system.

If we impose a suitable constraint, then (1.3) will have a unique minimizer in
a standard Sobolev space. This is the second variational setting, and depending on
how the constraint is introduced and implemented, a number of different methods
follow. The standard way to enforce a constraint is to use Lagrange multipliers. We
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show that the popular solution method of fixing the datum at a point is simply an
instance of this technique. Ultimately, solutions of finite element problems obtained
by Lagrange multipliers all reduce to variations of the null-space method [16] for
equality constrained quadratic programs (QPS).

A saddle-point Lagrangian formulation can also be regularized by relaxing the
constraint. This leads to a class of finite element methods that have not been previ-
ously documented in the literature. Moreover, we show that these regularized finite
element formulations have some attractive properties, especially in the context of
iterative solution methods.

Throughout the paper we use the standard notation Hs(Ω) for a Sobolev space of
order s with norm and inner product given by ‖·‖s and (·, ·)s, respectively. Seminorms
on Hs(Ω) will be denoted by | · |k, 0 ≤ k ≤ s. For example, |u|1 =

∫
Ω
|∇u|2dx. For

s = 0 we write L2(Ω) instead of H0(Ω) and denote the resulting inner product by
(·, ·). We also define the subspace L2

0(Ω) of zero-mean functions.
Since our study also makes use of matrix theory, we introduce some useful no-

tation. With {ei}N
i=1 and IN we denote the canonical basis on RN and the identity

matrix of order N . For x,y ∈ RN the standard Euclidean norm and inner product
are denoted by xT y and ‖ ·‖, respectively. The ordering of the eigenvalues of a N×N
matrix A is 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

We call attention to our specific use of bold font for matrices and vectors. Ele-
ments of matrices and vectors will be denoted by lower-case Greek letters.

2. Projections and inequalities. Two projection operators will play funda-
mental role throughout the paper. Let ω be a smooth function such that

(1, ω) > 0 (2.1)

and consider the subspace

H1
ω(Ω) = {u ∈ H1(Ω) | (u, ω) = 0} (2.2)

of all functions in H1(Ω) with zero ω-mean. For any u ∈ H1(Ω) we define the
operators

Pωu = u− (u, ω)
(1, ω)

= u− uω, (2.3)

where uω = (u, ω)/(1, ω) is the normalized ω-mean of u, and

P∗ωu = u− ω
(1, u)
(1, ω)

, (2.4)

respectively. A direct calculation shows that Pωu ∈ H1
ω(Ω), P∗ωu ∈ H1(Ω) ∩ L2

0(Ω)
and that Pω and P∗ω are projectors. Specifically, Pω is a projector H1(Ω) 7→ H1

ω(Ω)
parallel to span(1) and P∗ω is a projector H1(Ω) 7→ H1(Ω)∩L2

0(Ω) parallel to span(ω).
Lemma 2.1. Pω and P∗ω are adjoint with respect to the L2 inner product, that is

(Pωu, v) = (u,P∗ωv). (2.5)

Proof.

(Pωu, v) = (u− uω, v) = (u, v)− (u, ω)
(1, ω)

(1, v) = (u, v − ω(1, v)/(1, ω)) = (u,P∗ωv).
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We note that P∗ωf = 0 for ω = f and that Pω is self-adjoint when ω = 1. We
end this section with a generalization of a well known inequality that will prove useful
in section 4. The Poincare-Friedrichs inequality [3] bounds the L2 norm by the H1

seminorm for a function in H1
0 . The following generalized version extends this bound

to H1 functions using our notion of the normalized mean of a function.
Lemma 2.2. Assume that Ω is simply connected and that H1(Ω) ⊂ L2(Ω) with

compact imbedding. Then, there exists a positive constant C such that

‖Pωu‖0 ≤ C|u|1 and ‖u‖0 ≤ C(|u|1 + |uω|) for every u ∈ H1(Ω). (2.6)

Proof. If the first inequality in (2.6) is not true, then there’s a sequence {uk} ⊂
H1(Ω) such that ‖uk‖1 = 1, uω,k = 0, and |uk|1 < 1/k. This sequence has a subse-
quence, denoted again by {uk} that converges weakly in H1(Ω) and strongly in L2(Ω)
to some u. This and |uk|1 < 1/k imply that ∇u = 0 a.e. in Ω and so u = const a.e.
in Ω. Likewise, ∫

Ω

uωdx = lim
k 7→∞

∫
Ω

ukωdx = 0.

By assumption (1, ω) > 0 and so u ≡ 0. As a result, uk 7→ 0 in H1(Ω), a contradiction.
The second inequality follows by a similar compactness argument.

Compact imbedding is a standard assumption required by the compactness argu-
ment used to demonstrate the existence of the constant. This hypothesis places mild
restrictions on the domain Ω. (See [3, p.32] and [6, pp.128–130] for further details on
compact imbedding and compactness arguments.)

3. Unconstrained Optimization Setting. We consider the problem of mini-
mizing (1.3) over the factor space H1(Ω)/R:

min
û∈H1(Ω)/R

J(û, f) (3.1)

where f ∈ L2
0(Ω) is given and

H1(Ω)/R = {û ⊂ H1(Ω) |u, v ∈ û⇔ u− v = C}. (3.2)

H1(Ω)/R is a Hilbert space when equipped with the quotient norm

‖û‖H1(Ω)/R = inf
u∈û

‖u‖1 (3.3)

and the mapping û 7→ |u|1, u ∈ û defines a norm equivalent to (3.3) [11, p. 13]. The
Euler-Lagrange equation for (3.1) is to seek û ∈ H1(Ω)/R such that

Â(û, v̂) = F̂ (v̂) ∀v̂ ∈ H1(Ω)/R, (3.4)

where

Â(û, v̂) = A(u, v) :=
∫

Ω

∇u · ∇vdx; u ∈ û, v ∈ v̂ (3.5)

is a bilinear form H1(Ω)/R×H1(Ω)/R 7→ R, and

F̂ (û) = F (u) := (f, u) u ∈ û, (3.6)
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is a linear functional H1(Ω)/R 7→ R. Both (3.5) and (3.6) are well-defined because
Â(u1−u2, ·) = Â(·, v1− v2) = 0 and F̂ (u1−u2) = C

∫
Ω
fdx = 0 whenever u1, u2 ∈ û,

and v1, v2 ∈ v̂. Because | · |1 is equivalent to the quotient norm (3.3), the bilinear
form (3.5) is continuous and coercive on the quotient space. Hence (3.4) has a unique
solution in H1(Ω)/R.

4. Constrained Optimization Setting. To formulate a problem that has a
unique minimizer in H1(Ω) we will require all minimizers to have a vanishing ω-mean,
that is we consider the problem

min
u∈H1(Ω)

J(u, f) subject to uω = 0. (4.1)

The choice of ω and the handling of the constraint in (4.1) provide a template for all
finite element methods for the Neumann problem.

4.1. A saddle-point formulation. We introduce a Lagrange multiplier τ ∈ R
and consider the saddle-point optimization problem (see problem 4.21 in [3, p 140])

inf
u∈H1(Ω)

sup
τ∈R

(J(u, f) + τuω) . (4.2)

The saddle-point (u, τ) ∈ H1(Ω)× R of (4.2) solves the first-order optimality system

A(u, v) + τvω = F (v) ∀v ∈ H1(Ω)
σuω = 0 ∀σ ∈ R. (4.3)

Theorem 4.1. Problem (4.3) has a unique solution (u, τ) for any f ∈ L2(Ω).
Proof. We apply the abstract theory of [7] and so we must show that there exists

a γ > 0 for every τ so that the form b(τ, u) = τuω satisfies the inf-sup condition

sup
u∈H1(Ω)

b(τ, u)
‖u‖1

≥ γ|τ |.

We equivalently show that for a given τ ∈ R there exists u ∈ H1(Ω) such that
b(τ, u) ≥ γ‖u‖1|τ |. Choosing u = 1 gives ‖u‖1 =

√
meas(Ω) and

b(τ, u) = τ(1, ω)/(1, ω) = τ,

and so the inf-sup condition clearly holds with γ = 1/
√

meas(Ω). To show that A(·, ·)
is coercive on the kernel

Z = {u ∈ H1(Ω) | b(τ, u) = 0 ∀τ ∈ R}.

we observe that Z = H1
ω(Ω). The generalized Friedrichs inequality (2.6) implies that

|u|1 is an equivalent norm on H1
ω(Ω) and because A(u, u) = |u|21, we conclude that

this form is coercive on Z. Existence and uniqueness of a saddle-point (u, τ) now
follows from [7].

Restriction of (4.1) to Z gives the equivalent, unconstrained, reduced problem

min
u∈H1

ω(Ω)
J(u, f). (4.4)

The Euler-Lagrange equation of the reduced problem is

seek u ∈ H1
ω(Ω) such that A(u, v) = F (v) ∀v ∈ H1

ω(Ω). (4.5)

Theorem 4.1 asserts thatA(·, ·) is coercive bilinear form onH1
ω(Ω)×H1

ω(Ω). Therefore,
the Lax-Milgram Lemma implies that (4.5) is a well-posed problem for any f ∈ L2(Ω).

In summary, we have the choice of either the saddle-point problem (4.3) or the
coercive problem (4.5).



6 P. B. BOCHEV and R. B. LEHOUCQ

4.2. A stabilized saddle-point formulation. We can modify (4.2) by stabi-
lizing the Lagrangian functional

inf
u∈H1(Ω)

sup
τ∈R

(
J(u, f) + τuω −

1
2ρ
τ2

)
, (4.6)

where ρ > 0 is a stabilizing parameter. The optimality system for (4.6) is to seek
(u, τ) ∈ H1(Ω)× R such that

A(u, v) + τvω = F (v) ∀v ∈ H1(Ω)
σuω = ρ−1στ ∀σ ∈ R. (4.7)

The Lagrange multiplier can be eliminated from (4.7) to obtain the regularized prob-
lem

Aρ(u, v) = F (v) ∀v ∈ H1(Ω), (4.8)

where

Aρ(u, v) = A(u, v) + ρuωvω =
∫

Ω

∇u · ∇vdx+ ρuωvω. (4.9)

We remark that (4.8) is a first-order optimality system for the unconstrained mini-
mization of the penalized energy functional:

min
u∈H1(Ω)

(
J(u, f) +

ρ

2
u2

ω

)
≡ min

u∈H1(Ω)
Jρ(u, f). (4.10)

Theorem 4.2. For every f ∈ L2(Ω) problem (4.10) has a unique minimizer
u ∈ H1(Ω).

Proof. From (2.6) we see that

Aρ(u, u) = |u|21 + ρu2
ω ≥ C‖u‖21,

that is, (4.9) is coercive on H1(Ω) × H1(Ω). Continuity of this form and F (·) are
obvious and so, we can conclude that the regularized problem has a unique solution.

Therefore, in the present setting we can choose between the regularized saddle-
point problem (4.7), or the coercive problem (4.8).

4.3. Characterization of solutions. We now consider the relationship be-
tween the solutions obtained from the constrained optimization setting and the orig-
inal Neumann problem. Without stabilization we have the choice of (4.3) or (4.5),
with stabilization the choice is between (4.7) or (4.8). However, within each pair the
same weak solution u will be generated and so it suffices to consider the two coercive
equations, that is (4.7) and (4.8).

If f ∈ L2
0(Ω), both (4.4) and (4.10) have solutions that belong to a minimizing

class of (3.1). However, (3.1) is not well-posed unless f ∈ L2
0(Ω), while the weak

problems (4.5) and (4.8) are coercive and solvable for any f ∈ L2(Ω). Our next
result shows that when f does not satisfy the compatibility condition (1.2) solutions
computed by (4.5) and (4.8) solve a Neumann problem with a modified source term.

Theorem 4.3. Let ũ denote a solution of (4.8) (respectively (4.5)). For any
f ∈ L2(Ω)

ũω = α(f, 1), (4.11)
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where α = 1/ρ for (4.8) and α = 0 for (4.5). If ũ ∈ H2(Ω), then ũ solves the
Neumann problem

−4u = P∗ωf inΩ and
∂u

∂n
= 0 onΓ.

Proof. For ũ computed by (4.5) formula (4.11) is trivially true since ũ ∈ H1
ω(Ω).

To prove (4.11) for (4.8) insert v = 1 in (4.8) to obtain

(f, 1) =
ρ

(1, ω)2
(ũ, ω)(1, ω) = ρũω.

Let ũ ∈ H2(Ω) solve (4.8). Integrating (4.8) by parts gives

(−4ũ− f + ω
ρ

(1, ω)2
(ũ, ω), v)+ <

∂ũ

∂n
, v >Γ= 0 ∀v ∈ H1(Ω).

From (4.11) ρ(ũ, ω)/(1, ω)2 = (f, 1)/(1, ω), so v ∈ H1
0 (Ω) implies

−4ũ− (f − ω(f, 1)/(1, ω)) = −4ũ− P∗ωf = 0.

Choosing v 6= 0 on Γ recovers the Neumann boundary condition.
Let ũ ∈ H2(Ω) denote a solution of (4.5). Since Pωv ∈ H1

ω(Ω),

A(ũ,Pωv) = F (Pωv) ∀v ∈ H1(Ω).

From the definition of A(·, ·), (2.3), and Lemma 2.1

A(ũ,Pωv) = A(ũ, v) and (f,Pωv) = (P∗ωf, v),

and so

A(ũ, v) = (P∗ωf, v) ∀v ∈ H1(Ω).

Integrating this identity by parts gives

(−4ũ− P∗ωf, v)+ <
∂ũ

∂n
, v >Γ= 0 ∀v ∈ H1(Ω).

The theorem follows by first choosing v ∈ H1
0 (Ω) and then v ∈ H1(Ω).

Corollary 4.4. If f ∈ L2
0(Ω) solutions of the reduced and regularized problems

coincide.
Proof. Let uR solve (4.8). From (4.11) it is clear that uR

ω = 0 whenever f ∈ L2
0(Ω),

that is uR ∈ H1
ω(Ω). Now it is easy to see that uR also satisfies the weak problem

(4.5).

5. Finite Element Solution. Throughout this section T denotes a uniformly
regular triangulation of Ω into finite elements. For brevity we restrict attention to
planar regions, triangular elements and Lagrangian finite element spaces P k; see [3]
for details. The coefficient vector of uh ∈ P k with respect to a nodal basis {φh

i }N
i=1 is

denoted by u.
Formulation of finite element methods is based on the link between the optimiza-

tion and the Neumann problems established in §§3–4. Thus, we identify finite element
solution of (1.1) with the computation of approximate minimizers or saddle-points out
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of some P k. To state the algebraic problems that will arise in the solution process we
shall need the symmetric positive semi-definite stiffness matrix A with element i, j

Ai,j = A(φh
j , φ

h
i ), i, j = 1, . . . , N. (5.1)

We denote the j-th column of A by Aj ; fi = F (φh
i ) is the i-th element of the discrete

source term f and wi = (φh
i , ω) is the weighted basis mean vector. When ω = 1 we

will use z instead of w. For a nodal basis A has a kernel spanned by the constant
vector c = (1, . . . , 1)T . If M is the mass matrix with element Mi,j = (φh

j , φ
h
i ) the

relationships z = Mc and (uh, vh) = uT Mv hold. The last expression is the discrete
L2(Ω) inner product of uh and vh.

5.1. Finite elements in the unconstrained setting. In mathematical finite
element texts the use of (3.4) as a well-posed weak form for the Neumann problem is
standard. In contrast, this setting has found limited acceptance among practitioners
because formally a finite element subspace P k/R of H1(Ω)/R is required, formulation
of the ensuing method is never clarified, and the matrix problem is singular. However,
the ambiguities of a factor space setting can be easily avoided within the optimization
framework. Since P k/R is isomorphic to RN/(ker(A) ≡ c) the discrete equivalent of
(3.1) and its algebraic form are

min
ûh∈P k/R

J(ûh, f) ≡ min
û∈RN /c

1
2
ûT Aû− ûT f (5.2)

Therefore, a finite element method in the factor space setting simply amounts to
computation of an arbitrary member from the minimizing class ûh. Such a member
can be determined by solving the linear system

Aû = f (5.3)

by a sparse direct method modified so that a zero pivot can be detected. However,
floating point arithmetic complicates this decision because the solver needs to decide
when a pivot is negligible. Instead we recommend that an iterative scheme be applied
directly to (5.2). Indeed, as long as the f is in the range of A the quadratic functional
in (5.2) has a finite lower bound. As a result, the conjugate gradient algorithm will
generate a minimizing sequence that converges modulo ker(A); see Theorem 13.11,
[1, p. 583]. The rate of convergence of the conjugate gradient algorithm depends on
the ratio κε(A) = λN (A)/λ2(A) or the effective condition number.

An important practical consideration for (5.3) is that the discrete source f must
be discretely orthogonal to the constant vector c and Ac = 0. Since (1, f) = cT f in
exact arithmetic, the linear system will be consistent whenever the Neumann problem
is solvable, that is when f has zero mean. In practice the source f and the matrix A are
computed in floating point arithmetic via quadrature. As a result, cT f equals (1, f)
only approximately and (5.3) may become inconsistent. To restore consistency we
take a cue from Theorem 4.3 and introduce the discrete projector (PT f)i ≡ (P∗ωf, φh

i ),
i = 1, . . . , N . A direct calculation shows that

PT = I− wcT

wT c
.

Application of the projector to the linear system results in

(PT AP)u = PT f . (5.4)
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Table 5.1
Loss of consistency in (5.3) within CG. x(j) denotes the CG solution at the j-th iteration.

P 1 elements - nonuniform P 2 elements - nonuniform
Quad. cT f iter ‖f −Ax(j)‖ cT f iter ‖f −Ax(j)‖

1 -2.522E-03 1000 0.38000 -1.857E-03 underintegrated A
3 3.069E-05 208 0.1242E-05 1.610E-04 1000 0.2128E+02
7 -2.744E-09 85 0.1329E-05 -2.023E-08 169 0.8327E-06

P1 elements - uniform P2 elements - uniform
3 4.628E-15 55 0.9786E-05 -3.123E-16 54 0.7439E-06

The matrix P is the discrete analogue of the projector Pω and so the FEM solution Pu
has zero ω-mean, that is wT Pu = 0. We remark that the iterative solution of semi-
definite systems and application of projectors is rarely discussed beyond specialized
texts on iterative solvers and does not seem to be widely known among finite element
practitioners. This is another reason for the limited use of (5.3).

Let us demonstrate that the use of a projector to maintain consistency of (5.3)
is not unfounded, especially for unstructured meshes. To test effects of numerical
quadrature we consider the zero mean source f defined by evaluating (1.1) at u(x, y) =
cos(πx2) cos(2πy) on the unit square. We solve (5.3) with discrete sources f computed
using linear (1 point), quadratic (3 point) and quintic (7 point) quadrature rules [8,
p.343].

Table 5.1 shows that for P 2 elements on non-uniform meshes, the 3 point rule leads
to a numerically inconsistent linear system and so the conjugate gradient algorithm
diverges. For nonuniform P 1 elements the 3 point rule does suffice but requires 2.5
times more conjugate gradient iterations than the 7 point rule.

On uniform grids all three quadrature rules led to a discrete source f with exact
zero mean and a consistent (to machine precision) linear system. Table 5.1 shows
that in this case conjugate gradients converged without a difficulty. This contrasting
behavior clearly demonstrates the importance of maintaining consistency in (5.3).

5.2. Finite elements in the constrained setting. The starting point now is
the constrained problem (4.1). To define a finite element solution we restrict mini-
mization of (4.1) to a subspace P k of H1(Ω) and note that uh,ω = 0 if and only if
uT w = 0. As a result, the discrete equivalent of (4.1) and its algebraic form are

min
uh∈P k

uh,ω=0

J(uh, f) ≡ min
u∈RN

wT u=0

1
2
uT Au− uT f . (5.5)

In the optimization literature (5.5) is known as an equality constrained quadratic
program [16]. This quadratic program can be solved in a number of ways. In all
cases however, we are led to an algebraic equation that is related to one of the four
variational problems (4.3), (4.5), (4.6), or (4.8). In what follows we consider the
variational settings of §4.1 and §4.2 and demonstrate their relationship with (5.5).

5.2.1. The saddle-point formulation. The algebraic equivalent of saddle-
point equation (4.3) is a symmetric, indefinite linear system.(

A (wT c)−1w
(wT c)−1wT 0

) (
u
τ

)
=

(
f
0

)
(5.6)



10 P. B. BOCHEV and R. B. LEHOUCQ

This system can be obtained directly from (5.5) by introducing a Lagrange multiplier
for the algebraic constraint. The matrix in (5.6) is called the Karush-Kuhn-Tucker
(KKT) matrix. One way to compute a finite element approximation is to solve (5.6)
by either a sparse direct method or an iterative method. Another approach that
exploits the structure in the KKT matrix is the null-space method. The alternative
range-space method requires that A is nonsingular and is not applicable to (5.6).

The constraint wT u = 0 implies that the minimizer belongs to the subspace
span(w)⊥ or, equivalently, the null-space of wT . Let B ∈ RN×(N−1) denote a matrix
whose columns form a basis for span(w)⊥. Then u = Bv and (5.5) is equivalent to
an unconstrained problem

min
v∈RN−1

1
2
vT BT ABv − vT BT f (5.7)

in terms of v. The null-space method for (5.6) amounts to constructing the matrix
B and solving the symmetric positive definite linear system

BT ABv = BT f . (5.8)

The null-space method is the variational equivalent of “minimization on the ker-
nel” that produced the reduced problem (4.4). Let us show that conforming discretiza-
tion of (4.4) is in turn equivalent to an explicit method for constructing the matrix
B. For this purpose we restrict (4.4) to a finite element subspace P k

ω = P k ∩H1
ω(Ω)

of H1
ω(Ω). Since P k

ω is isomorphic with RN−1, the discrete minimization problem and
its algebraic form are

min
uh∈P k

ω

J(uh, f) ≡ min
v∈RN−1

1
2
vT Aωv − vT fω, (5.9)

where Aω, fω, and v denote a stiffness matrix, right hand side and a coefficient
vector relative to some basis {ψi}N−1

i=1 of P k
ω . Let B denote the transformation matrix

between this basis and the standard nodal basis of P k. If u contains the nodal
coefficients of uh relative to P k and v are the coefficients of this function relative to
the basis in P k

ω then

u = Bv and Aω = BT AB.

Because A(·, ·) is coercive on H1
ω(Ω) × H1

ω(Ω) and P k
ω ⊂ H1

ω(Ω) the matrix Aω is
symmetric and positive definite.

In general, {ψi}N−1
i=1 need not be a nodal basis. In this case the coefficients in v are

linear combinations of the nodal values in u. Because nodal bases are easier to work
with we demonstrate how we can construct such a basis for a given weight ω. Suppose
that2 (φh

` , ω) 6= 0 for some ` between 1 and N . Solving (uh, ω) ≡
∑N

i=1 αi(φh
i , ω) = 0,

for the `th term gives the set of functions

ψh
i,` = φh

i − φh
`

(φh
i , ω)

(φh
` , ω)

i = 1, . . . , N ; i 6= ` (5.10)

parameterized by `, and a space P k
ω = span{ψh

i,`}i 6=` ⊂ H1
ω(Ω). Note that P k

ω does not
have a degree of freedom associated with the (arbitrarily chosen) triangulation node

2This assumption is necessary because Lagrangian basis functions may have zero mean. One
example is given by the P 2 basis functions associated with the nodes of a triangulation.
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x`. By definition (ψh
i,`, ω) = 0, and ψh

i,`(xj) = δij and so (5.10) is a nodal basis. A
straightforward calculation shows that the transformation matrix for the basis (5.10)
is

B`,ω =
(
I− e`wT

eT
` w

)
I`
N .

Consider now a situation where w = e` so that the constraint in (5.5) is eT
` u = 0.

In this case, the transformation matrix is

B =
(
I− e`eT

`

)
I`
N = I`

N .

Therefore, Aω is simply A with deleted `th row and column. Note that eT
` u = 0 is

the same as uh(x`) = 0 and so this is simply the standard method of specifying the
solution value at a node. Therefore, this commonly used technique turns out to be a
variant of the null-space method.

Our framework allows us to establish an interesting link between the linear system
and variational equation. Let φh

` denote the basis function associated with node x`

in some triangulation Th, and consider a weight function ωh,` such that

(φh
` , ωh,`) = 1 and (φh

k , ωh,`) = 0 for k 6= `. (5.11)

Then w = e` and fixing the solution value can be viewed as a conforming discretization
of the saddle-point (4.3) or the reduced (4.5) problems with a constraint given by

(ωh,`, u) = 0.

While the choice of ωh,` is not unique, (5.11) formally implies that ωh,` 7→ δ(x`) as Th is
refined. Because the delta function is in the dual of H1(Ω) only in one dimension, this
constraint will become ill-posed in two and three dimensions as h→ 0. We conclude
that specifying the solution at a node leads to a ill-posed variational problem in two
and three dimensions and so impacts the resulting linear system.

The following discrete Poincaré inequality available in the domain decomposi-
tion literature is the key result for understanding the effect of using (5.11) upon the
resulting stiffness matrix.

Lemma 5.1. Let uh ∈ P k ⊂ H1(Ω) where Ω is the unit volume in Rd, d = 1, 2, 3.
If uh(p) = 0 for some point p ∈ Ω, then

‖uh‖20
|uh|1

≤
{ C d = 1
C(1 + | lnh|) d = 2
Ch−1 d = 3

(5.12)

for a constant C independent of h.
Proof. For d = 1, Sobolev Imbedding implies that ‖uh‖∞ ≤ |uh|. For d = 2,

Lemma 3.4 of [4] implies that ‖uh‖∞ ≤ C(1 + | lnh|)|uh|. For d = 3, Lemma 2.3 of
[5] and Lemma 2.2 imply that

‖Pωuh‖2∞ ≤ C1h
−1(‖Pωuh‖20 + |uh|21) ≤ C1(C2 + 1)h−1|uh|1

for constants C1, C2. The hypothesis gives that uh(p) = 0 and so |uω| ≤ ‖Pωuh‖∞
and the triangle inequality gives ‖uh‖∞ ≤ 2C1(C2 + 1)h−1|uh|1.



12 P. B. BOCHEV and R. B. LEHOUCQ

Finally, ‖uh‖0 ≤ c‖uh‖∞ for d = 1, 2, 3 where c = ‖1‖0 and the lemma is proved.

An elementary result established in finite element theory is that the condition
number of the stiffness matrix is proportional to h−2 for a conforming discretization
of the Laplacian with homogenous Dirchlet boundary conditions (for instance, see
[14, pp.141–142]). Lemma 5.1 allows us to easily modify this elementary proof to
determine the condition number of the stiffness matrix that arises by specifying a
nodal value of the solution.

Theorem 5.2. Assume the same hypothesis of Lemma 5.1 and let Aω be the
stiffness matrix relative to some basis {ψi}N−1

i=1 of P k
ω . If ω ≡ ωh,` is defined by

(5.11), then for a constant C independent of h

κ(Aω) ≤
{ Ch−2 d = 1
C(1 + | lnh|)h−2 d = 2
Ch−3 d = 3

(5.13)

where κ(Aω) the condition number of Aω. The numerical experiments in section
5.2.2 show numerical support for this theorem.

5.2.2. The stabilized saddle-point formulation. The linear system(
A (wT c)−1w

(wT c)−1wT −ρ−1

) (
u
τ

)
=

(
f
0

)
(5.14)

is the algebraic equivalent of the stabilized saddle-point problem (4.6). As in §4.2,
the Lagrange multiplier can be eliminated to obtain a system only in terms of u:

Aρu ≡
(
A +

ρ

(wT c)2
wwT

)
u = f . (5.15)

This equation is the necessary condition for the quadratic program

min
uh∈P k

Jρ(uh, f) ≡ min
u∈RN

1
2
uT Au− uT f + ρ

(wT u)2

(wT c)2
, (5.16)

which is a discrete counterpart of (4.10). From Theorem 4.2 it follows that Aρ is
symmetric and positive definite. The sparsity pattern of Aρ depends on the choice
of ω because Aρ is a rank-one correction of the singular matrix A. If support of ω
overlaps with only a few elements in Th, the vector w will have only a few non-zero
entries and Aρ will have a sparsity pattern similar to that of A. In this case a sparse
direct solver can be used.

When the support of ω is larger, for instance if ω = 1, then wwT is dense and
formally, Aρ is also dense. While a direct elimination is not practical in this case,
(5.15) can be solved iteratively for almost the same cost as (5.3). Typically, an
iterative solver requires one matrix vector product Aρu per iteration. This product
can be computed by

1. forming the vector v = Au;
2. computing the scalar µ = ρ(wT u);
3. updating v + µw.

Step 1 is standard part of any finite element solver, so the only additional work
involved is the dot product in step 2 (2N − 1 flops) and the update in step 3 (2N
flops). The row vector wT can be precomputed and stored rendering the computation
of µ efficient.
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Table 5.2
CG solution of (5.15). x(j) denotes the CG solution at the j-th iteration.

P1 elements - nonuniform P2 elements - nonuniform
Quad. cT f iter ‖f −Ax(j)‖ cT f iter ‖f −Ax(j)‖

1 -2.522E-03 85 0.1358E-05 -1.857E-03 underintegrated A
3 3.069E-05 85 0.1242E-05 1.610E-04 169 0.8667E-06
7 -2.744E-09 85 0.1329E-05 -2.023E-08 169 0.8327E-06

Theorem 4.2 also implies that the regularized system (5.15) must be solvable for
any discrete source f . This means that iterative solver performance should not degrade
as in Table 5.1 for low order quadrature. Table 5.2 contains convergence history
for Jacobi preconditioned conjugate gradients applied to (5.15) and the same exact
solution as in Section 5.1. Regardless of the quadrature we see identical convergence
of the solver.

The following theorem proves fundamental for understanding the structure of Aρ

and how the rank-one update modifies the null-space of A.
Theorem 5.3. Let QΛQT denote the eigendecomposition of the singular stiffness

matrix A, with ‖c‖Qe1 = c and Ac = 0. If w = (‖w‖/‖c‖) cos(φ)c + r, where
rT c = 0 and φ measures the positive angle between c and w, then

‖Aρ −Q(Λ +
ρ

‖c‖2
e1eT

1 )QT ‖ ≤ ρ

‖c‖2
tan(φ)(2 + tan(φ)) (5.17)

Proof. From the identity

Aρ = A +
ρ

(wT c)2
wwT = Q(Λ +

ρ

(wT c)2
(QT w)(QT w)T )QT (5.18)

and the hypothesis on Qe1, we have

QT w = QT
(
(‖w‖/‖c‖) cos(φ)c + r

)
= ‖w‖ cos(φ)e1 + QT r

and hence

QT w(QT w)T =
(
‖w‖ cos(φ)e1 + QT r

)(
‖w‖ cos(φ)e1 + QT r

)T

= ‖w‖2 cos2(φ)e1eT
1 + QT r(QT r)T +

‖w‖ cos(φ)
(
QT reT

1 + e1rT Q
)

Using (5.18), the previous expression and the easily established relationships

‖QT r(QT r)T ‖ = ‖r‖2, ‖QT reT
1 ‖ = ‖r‖ = ‖w‖ sin(φ), |wT c| = ‖c‖‖w‖ cos(φ)

gives

Aρ −Q(Λ + ρ
(wT c)2

‖w‖2 cos2(φ)e1eT
1 )QT = Aρ −Q(Λ + (ρ/‖c‖2)e1eT

1 )QT

and so finally

‖Aρ −Q(Λ + (ρ/‖c‖2)e1eT
1 )QT ‖ ≤ ρ‖w‖2

(wT c)2
(2| cos(φ) sin(φ)|+ sin2(φ))

= (ρ/‖c‖2) tan(φ)(2 + tan(φ))
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Fig. 5.1. Growth in conjugate gradient iterations for the solution of (5.15) vs. (5.8) for a
stiffness matrix from a bilinear quadrilateral approximation of a two dimensional problem. Two
choices of B = I`

N corresponding to specifying the center and corner nodal coefficient are used.

and the theorem is proved.
This theorem shows that with a proper choice of ρ the rank-one update modifies

the zero eigenvalue of A to a positive one and only perturbs the eigenvectors. If ρ is at
least as large as ‖c‖2λ2 and ρ tan (φ) < ‖c‖2, then the condition number of Aρ equals
the effective condition number of A. Note that as w improves as an approximation
for the nullspace vector c, then φ is small and an ρ can be selected larger than λ2.

Recall that (5.2) implies condition numbers higher than the effective condition
number whenever solution is being specified at a point. This can be confirmed by
comparing the conjugate gradient convergence of (5.15) and (5.8) when B = I`

N .
Figures 5.1-5.2 show the results when the pure Neumann problem is solved on the
unit square and on the unit cube by bilinear and trilinear finite elements, respec-
tively. The zero mean sources 4u(x, y) = 4 cos(πx2) cos(2πy) and 4u(x, y, z) =
4 cos(πx2) cos(2πy) cos(z3π) are used. The choices of B = I`

N correspond to specify-
ing the center and the corner nodal coefficients. Figures 5.1-5.2 reveal a substantial
and growing gap between the iteration counts for the regularized approach and that
of specifying the solution at a point. Figure 5.3, on the other hand, shows that with
respect to the mesh size this gap grows faster in three dimensions, and hence supports
the conclusion of Theorem (5.2).

6. Conclusions. We demonstrated that finite element methods for the Neu-
mann problem originate from two optimization settings. The first requires minimiza-
tion of a quadratic energy functional on a factor space and leads to singular linear
systems. These systems can be solved iteratively provided consistency is maintained
by a discrete projector to ensure that the source remains discretely orthogonal to the
constant mode.

The second optimization setting involves constrained minimization of a quadratic
functional and leads to an equality constrained quadratic program. The manner
in which the constraint is treated defines yet another two classes of finite element
methods, while the choice of the constraint describes the different methods within
each class.

The first class corresponds to the application of the null-space method for the
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Fig. 5.2. Growth in conjugate gradient iterations for the solution of (5.15) vs. (5.8) for a
stiffness matrix from a trilinear quadrilateral approximation of a three dimensional problem. Two
choices of B = I`

N corresponding to specifying the center and corner nodal coefficient are used.
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Fig. 5.3. Ratio of the number of regularized to pinned at the center conjugate gradient iterations.

solution of the quadratic program. The method of specifying a solution value at a
node is an instance of this class. Moreover, we established that this method can be
associated with a variational formulation involving a weight function approaching a
delta function as h→ 0. As a result, condition numbers of the resulting matrices are
larger than the effective condition number of the singular matrix.

The second class of finite element methods corresponds to a regularized formu-
lation of the constrained minimization problem. Here we were led to a new class of
methods for the Neumann problem that provide symmetric positive definite linear
systems with effective condition numbers. Moreover, the sparsity pattern of the rank
one update can be controlled so as to match the sparsity pattern of the singular matrix
by taking a weight function with the appropriate support.
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