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On least-squares variational principles for the

discretization of optimization and control problems

Pavel B. Bochev∗, and Max D. Gunzburger†

Abstract

The approximate solution of optimization and control problems for systems governed by linear,
elliptic partial differential equations is considered. Such problems are most often solved using
methods based on the application of the Lagrange multiplier rule followed by discretization
through, e.g., a Galerkin finite element method. As an alternative, we show how least-squares
finite element methods can be used for this purpose. Penalty-based formulations, another ap-
proach widely used in other settings, have not enjoyed the same level of popularity in the
partial differential equation case perhaps because naively defined penalty-based methods can
have practical deficiencies. We use methodologies associated with modern least-squares finite
element methods to develop and analyze practical penalty methods for the approximate solution
of optimization problems for systems governed by linear, elliptic partial differential equations.
We develop an abstract theory for such problems; along the way, we introduce several methods
based on least-squares notions, and compare and constrast their properties.

1 Introduction
{sec1}

Optimization and control problems for systems governed by partial differential equations arise in
many applications. Experimental studies of such problems go back 100 years [22]. Computational
approaches have been applied since the advent of the computer age. Most of the efforts in the
latter direction have employed elementary optimization strategies but, more recently, there has been
considerable practical and theoretical interest in the application of sophisticated local and global
optimization strategies, e.g., Lagrange multiplier methods, sensitivity or adjoint-based gradient
methods, quasi-Newton methods, evolutionary algorithms, etc.

The optimal control or optimization problems we consider consist of

• state variables, i.e., variables that describe the system being modeled;

• control variables or design parameters, i.e., variables at our disposal that can be used to affect
the state variables;

• a state system, i.e., partial differential equations relating the state and control variables; and

• a functional of the state and control variables whose minimization is the goal.
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Then, the problems we consider consist of finding state and control variables that minimize the
given functional subject to the state system being satisfied. Here, we restrict attention to linear,
elliptic state systems and to quadratic functionals.

The Lagrange multiplier rule is a standard approach for solving finite-dimensional, constrained
optimization problems. It is not surprising then that several popular approaches to solving opti-
mization and control problems constrained by partial differential equations are based on solving
optimality systems deduced from the application of the Lagrange multiplier rule. In these ap-
proaches, Galerkin weak forms of the partial differential equation constraints are used. In the finite
element method context, these Galerkin variational formulations are usually used as the basis for
defining discretizations; see, e.g., [14, 16, 19] for descriptions this approach. Another means for
solving the optimality system is to apply least-squares finite element methods; see [8] and also [20].

Instead of constraining the cost functional with a Galerkin weak form of the constraint equa-
tions, one can constrain with a least-squares minimization form of the constraints. This leads to
a different optimality system that has advantages over using the Galerkin form of the constraints.
This approach was considered in [9].

Penalty methods, which are another popular approach for finite-dimensional optimization prob-
lems, have not generated much interest for the infinite-dimensional problems which are of interest
here. In this paper, we will see why naively defined penalty methods may not be practical and
how, using methodologies developed in modern least-squares finite element methods, the penalty
approach can be rehabilitated to yield practical and efficient algorithms for optimal control prob-
lems. These algorithms enforce the partial differential equations constraints by using well-posed
least-squares functionals as penalty terms that are added to the original cost functional. This
type of penalty methods offers certain efficiency-related advantages compared to methods based
on the solution of the Lagrange multiplier optimality system either by Galerkin or least-squares
finite element methods. Least-squares/penalty methods have been considered, in concrete settings,
in [1, 2, 4, 7, 21].

The paper is organized as follows. In §2, we define an abstract, quadratic optimization and
control problem constrained by linear, elliptic partial differential equations. Then, in §3, we review
results about Galerkin and least-squares finite element methods for the approximate solution of
the constraint equations. In §4, we consider the use of the Lagrange multiplier rule for deriving an
optimality system whose solution is also a solution of the control problem; we also consider Galerkin
and least-squares finite element methods for finding approximate solutions of the optimality system.
In §§5 and 6, we define and analyze several penalty-based methods for the approximate solution of
the abstract control problem of §2. In §4, we begin by directly penalizing the cost functional of the
optimal control problem by the least-squares functional; in §6, we begin by constraining the cost
functional by the least-squares functional. The two approaches lead to different discrete systems.
Methods that result from the approach of §5, which is the more common way to define penalty
methods, are not as effective as those resulting from the approach of §6. In the former case, one has
methods that either require the satisfaction of discrete stability conditions or are prone to locking.
In the latter case, one can define a method that avoids both of these undesirable features. In §7,
we critically compare several theoretical properties of the methods; we then briefly discuss some
practical issues that also affect the choice of method.

2 The model optimization and control problem
{sec2}

We begin with four given Hilbert spaces Θ, Φ, Φ̂, and Φ̃ along with their dual spaces denoted by
(·)∗. We assume that Φ ⊆ Φ̂ ⊆ Φ̃ with continuous embeddings and that Φ̃ acts as the pivot space
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for both the pairs {Φ∗,Φ} and {Φ̂∗, Φ̂} so that we not only have that Φ ⊆ Φ̂ ⊆ Φ̃ ⊆ Φ̂∗ ⊆ Φ∗, but
also 〈

ψ, φ
〉
Φ∗,Φ

=
〈
ψ, φ

〉
bΦ∗,bΦ

=
(
ψ, φ

)
eΦ

∀ψ ∈ Φ̂∗ ⊆ Φ∗ and ∀φ ∈ Φ ⊆ Φ̂ , (2.1) {dupa}

where (·, ·)eΦ
denotes the inner product on Φ̃. Next, we define the functional

J (φ, θ) =
1

2
a1(φ− φ̂, φ− φ̂) +

1

2
a2(θ, θ) ∀φ ∈ Φ, θ ∈ Θ , (2.2) {func11}

where a1(·, ·) and a2(·, ·) are symmetric bilinear forms on Φ̂ × Φ̂ and Θ × Θ, respectively, and
φ̂ ∈ Φ̂ is a given function. In the language of control theory, Φ is called the state space, φ the state
variable, Θ the control space, and θ the control variable. In many applications, the control space
is finite dimensional in which case θ is often referred to as the vector of design variables. We note
that often Θ is chosen to be a bounded set in a Hilbert space but, for our purposes, we can consider
the less general situation of Θ itself being a Hilbert space. The second term in the functional (2.2)
can be interpreted as a penalty term1 which limits the size of the control θ.

We make the following assumptions about the bilinear forms a1(·, ·) and a2(·, ·):




a1(φ, µ) ≤ C1‖φ‖bΦ
‖µ‖bΦ

∀φ, µ ∈ Φ̂

a2(θ, ν) ≤ C2‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ

a1(φ, φ) ≥ 0 ∀φ ∈ Φ̂

a2(θ, θ) ≥ K2‖θ‖2
Θ ∀ θ ∈ Θ ,

(2.3) {ass11}

where C1, C2, and K2 are all positive constants.
Given another Hilbert space Λ, the additional bilinear forms b1(·, ·) on Φ × Λ and b2(·, ·) on

Θ × Λ, and the function g ∈ Λ∗, we define the constraint equation2

b1(φ,ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗ ,Λ ∀ψ ∈ Λ . (2.4) {cons11}

We make the following assumptions about the bilinear forms b1(·, ·) and b2(·, ·):




b1(φ,ψ) ≤ c1‖φ‖Φ‖ψ‖Λ ∀φ ∈ Φ, ψ ∈ Λ

b2(θ, ψ) ≤ c2‖θ‖Θ‖ψ‖Λ ∀ θ ∈ Θ, ψ ∈ Λ

sup
ψ∈Λ,ψ 6=0

b1(φ,ψ)

‖ψ‖Λ
≥ k1‖φ‖Φ ∀φ ∈ Φ

sup
φ∈Φ,φ 6=0

b1(φ,ψ)

‖φ‖Φ
> 0 ∀ψ ∈ Λ ,

(2.5) {ass12}

where c1, c2, and k1 are all positive constants.
We consider the optimal control problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to b1(φ,ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗ ,Λ ∀ψ ∈ Λ . (2.6) {cmp11}

The following result is proved in, e.g., [8].

1The usage of the terminology “penalty term” in conjunction with the second term in (2.2) should not be confused
with the usage of that terminology below.

2One should view (2.3) as a Galerkin weak form of the given partial differential equation constraint, i.e., of the
operator constraint equation (2.9). In fact, one usually formulates the partial differential equation constraint in the
operator form (2.9) and then derives a (Galerkin) weak formulation of the form (2.4).
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{thm3.2}
Theorem 2.1. Let the assumptions (2.3) and (2.5) hold. Then, the optimal control problem (2.6)
has a unique solution (φ, θ) ∈ Φ × Θ.

It is instructive to rewrite the functional (2.2), the constraint (2.4), and the optimal control
problem (2.6) in operator notation. To this end, we note that the bilinear forms serve to define
operators

A1 : Φ̂ → Φ̂∗, A2 : Θ → Θ∗, B1 : Φ → Λ∗,
B∗

1 : Λ → Φ∗, B2 : Θ → Λ∗, B∗
2 : Λ → Θ∗

through the relations

a1(φ, µ) = 〈A1φ, µ〉bΦ∗,bΦ ∀φ, µ ∈ Φ̂

a2(θ, ν) = 〈A2θ, ν〉Θ∗,Θ ∀ θ, ν ∈ Θ

b1(φ,ψ) = 〈B1φ,ψ〉Λ∗,Λ = 〈B∗
1ψ, φ〉Φ∗,Φ ∀φ ∈ Φ, ψ ∈ Λ

b2(ψ, θ) = 〈B2θ, ψ〉Λ∗,Λ = 〈B∗
2ψ, θ〉Θ∗,Θ ∀ θ ∈ Θ, ψ ∈ Λ .

(2.7) {ope11}

Then, the functional (2.2) and the constraint (2.4) respectively take the forms

J (φ, θ) =
1

2

〈
A1(φ− φ̂), (φ − φ̂)

〉
bΦ∗,bΦ

+
1

2
〈A2θ, θ〉Θ∗,Θ ∀φ ∈ Φ, θ ∈ Θ (2.8) {funco11}

and
B1φ+B2θ = g in Λ∗ (2.9) {conso11}

and the optimal control problem (2.6) takes the form

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to B1φ+B2θ = g in Λ∗. (2.10) {cmpo11}

Assumptions (2.3) and (2.5) imply that A1, A2, B1, B2, B
∗
1 , and B∗

2 are bounded with

‖A1‖bΦ→bΦ∗ ≤ C1, ‖A2‖Θ→Θ∗ ≤ C2, ‖B1‖Φ→Λ∗ ≤ c1,
‖B∗

1‖Λ→Φ∗ ≤ c1, ‖B2‖Θ→Λ∗ ≤ c2, ‖B∗
2‖Λ→Θ∗ ≤ c2

and that the operator B1 is invertible with ‖B−1
1 ‖Λ∗→Φ ≤ 1/k1. See [8] for details.

3 Galerkin and least-squares finite element methods for the con-

straint equations
{sec3}

The constraint equations are given by (2.9), or in equivalent variational form by (2.4). We consider
two finite element approaches for finding approximations of solutions of the constraint equations.
The first is a direct discretization of the weak formulation (2.4); the second is based on a reformu-
lation of the constraint equation into a least-square variational principle. Throughout this section,
we assume that not only the data function g ∈ Λ∗ but also the control function θ ∈ Θ are given and
that we wish to determine the corresponding sate φ ∈ Φ satisfying (2.9), or, equivalently, (2.4). In
subsequent sections, we will again consider the optimization or control problem problem (2.6) or,
equivalently, (2.10), for which the control θ ∈ Θ as well as the state φ ∈ Φ are unknown.

For the constraint equation (2.4), we have the following well-known result; see [13,14,16].
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{gfecon}
Proposition 3.1. Let the assumptions (2.5) hold. Then, given θ ∈ Θ and g ∈ Λ∗, (2.4) has a
unique solution φ ∈ Φ. Moreover, we have that

‖φ‖Φ ≤ C
(
‖θ‖Θ + ‖g‖Λ∗

)
.

Thus, we see that (2.5) are sufficient to guarantee that the constraint equation are solvable for a
state φ ∈ Φ for any control θ ∈ Θ. Note that, in terms of operators, we have that φ = B−1(g−B2θ).

3.1 Galerkin finite element methods for the constraint equations
{sec3.1}

We consider finite element discretizations of the constraint equation (2.4). To this end, we choose
(conforming) families of finite-dimensional subspaces Φh ⊂ Φ and Λh ⊂ Λ and then restrict (2.4)
to the subspaces, i.e., given θ ∈ Θ and g ∈ Λ∗, we seek φh ∈ Φh that satisfies

b1(φ
h, ψh) + b2(θ, ψ

h) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh . (3.1) {gfecon1}

It is well known (see, e.g., [13,14,16]) that in order to guarantee that (3.1) is stably solvable, it is
not enough to require that (2.5) hold; one must additionally assume that3





sup
ψh∈Λh,ψh 6=0

b1(φ
h, ψh)

‖ψh‖Λ
≥ kh1‖φh‖Φ ∀φh ∈ Φh

sup
φh∈Φh,φh 6=0

b1(φ
h, ψh)

‖φh‖V
> 0 ∀ψh ∈ Λh ,

(3.2) {ass11h}

where kh1 is a positive constant whose value is independent of h.
{thm3.5aa}

Proposition 3.2. Let the assumptions (2.5) and (3.2) hold. Then, for any θ ∈ Θ and g ∈ Λ∗,
(3.1) has a unique solution φh ∈ Φh. Moreover,

‖φh‖Φ ≤ C
(
‖g‖Λ∗ + ‖θ‖Θ

)
.

Furthermore, let φ ∈ Φ denote the unique solution of (2.4). Then,

‖φ− φh‖Φ ≤ C inf
µh∈Φh

‖φ− µh‖Φ . (3.3) {err1h}

If {φj}Jj=1 and {λm}Mm=1 denotes bases for Φh and Λh, respectively. Then, the problem (3.1) is
equivalent to the matrix problem

B1
~φ = ~g0 , (3.4) {pls4h}

where ~φ is the vector of coefficients for φh, (B1)ij = b1(φi, ψj) = 〈B1φi, ψj〉Λ∗,Λ, and
(
~g0

)
i

=
〈g, ψi〉Λ∗,Λ − b2(θ, ψi) = 〈g − B2θ, ψi〉Λ∗,Λ. The assumption (3.2) guarantee that B1 is a square,
invertible matrix.

3One of the main motivations for defining least-squares finite element methods for problems of the type (2.4) is
to develop discretization methods that do not require the imposition of the discrete stability conditions (3.2).
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3.2 Least-squares finite element methods for the constraint equations
{sec3.2}

The constraint equations are given in variational form in (2.4) and in equivalent operator form in
(2.9). The may also be defined through a least-squares minimization problem. Let D : Λ → Λ∗ be
a self-adjoint, strongly coercive operator,4 i.e., there exist constants cd > 0 and kd > 0 such that

〈Dλ,ψ〉Λ∗ ,Λ ≤ cd‖λ‖Λ‖ψ‖Λ and 〈Dλ, λ〉Λ∗,Λ ≥ kd‖λ‖2
Λ ∀λ, ψ ∈ Λ . (3.7) {pls1a}

Note that then kd ≤ ‖D‖Λ→Λ∗ ≤ cd and 1/cd ≤ ‖D−1‖Λ∗→Λ ≤ 1/kd. Let5,6

K(φ; θ, g) =
〈
B1φ+B2θ − g,D−1(B1φ+B2θ − g)

〉
Λ∗,Λ

∀φ ∈ Φ, θ ∈ Θ, g ∈ Λ∗. (3.8) {pls1}

Given θ ∈ Θ and g ∈ Λ∗, consider the problem

min
φ∈Φ

K (φ; θ, g) . (3.9) {pls2}

Clearly, this problem is equivalent to (2.4) and (2.9), i.e., solutions of (3.9) are solutions of (2.4) or
(2.9) and conversely. The Euler-Lagrange equation corresponding to the problem (3.9) is given, in
variational form, by

b̃1(φ, µ) = 〈g̃1, µ〉Φ∗,Φ − b̃2(θ, µ) ∀µ ∈ Φ , (3.10) {pls3}
where

b̃1(φ, µ) =
〈
B1µ,D

−1B1φ
〉
Λ∗,Λ

=
〈
B∗

1D
−1B1φ, µ

〉
Φ∗,Φ

∀φ, µ ∈ Φ (3.11) {pls3a}

b̃2(θ, µ) =
〈
B1µ,D

−1B2θ
〉
Λ∗,Λ

=
〈
B∗

1D
−1B2θ, µ

〉
Φ∗,Φ

∀ θ ∈ Θ, µ ∈ Φ (3.12) {pls3b}
and

g̃1 = B∗
1D

−1g ∈ Φ∗ . (3.13) {pls3c}
As is shown in the following proposition, the bilinear forms b̃1(·, ·) and b̃2(·, ·) are continuous and
the former is strongly coercive; see [8, 9] for details.

{prop:pls2}
Proposition 3.4. Assume that (2.5) and (3.7) hold. Then, the bilinear form b̃1(·, ·) is symmetric
and there exist positive constants c̃1, c̃2, and k̃1 such that





b̃1(φ, µ) ≤ c̃1‖φ‖Φ‖µ‖Φ ∀φ, µ ∈ Φ

b̃2(θ, µ) ≤ c̃2‖µ‖Φ‖θ‖Θ ∀ θ ∈ Θ, µ ∈ Φ

b̃1(φ, φ) ≥ k̃1‖φ‖2
Φ ∀φ ∈ Φ .

(3.14) {ass12t}

4In the sequel, we will also use the induced bilinear form

d(λ,ψ) = 〈Dλ, ψ〉Λ∗,Λ ∀λ, ψ ∈ Λ . (3.5) {pls1d}
The following results are immediate.

{propdd}
Proposition 3.3. Assume that the operator D is symmetric and that (3.7) holds. Then, the bilinear form d(·, ·) is

symmetric and

d(λ,ψ) ≤ cd‖λ‖Λ‖ψ‖Λ ∀λ, ψ ∈ Λ and d(λ, λ) ≥ kd‖λ‖
2

Λ ∀λ ∈ Λ . (3.6) {ass1a}
5The reason for the using D−1 and not simply D will become apparent in §5 when we discuss penalty methods.
6Let R : Λ → Λ∗ denote the Reisz operator, i.e., we have that if υ = Rλ and χ = Rψ for λ, ψ ∈ Λ and υ,χ ∈ Λ∗,

then ‖λ‖Λ = ‖υ‖Λ∗ , ‖ψ‖Λ = ‖χ‖Λ∗ , and

(ψ, λ)Λ =< Rψ, λ >Λ∗,Λ=< χ,R
−1
υ >Λ∗,Λ= (υ, χ)Λ∗ .

Then, if one chooses D = R, the functional (3.8) reduces to K(φ; θ, g) = (B1φ + B2θ − g,B1φ + B2θ − g)Λ∗ =
‖B1φ + B2θ − g‖2

Λ∗ . Note that, in general, (3.8) can also be written as an inner product, i.e., K(φ; θ, g) = (B1φ +
B2θ − g,RD−1(B1φ+B2θ − g))Λ∗ .
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Moreover, ‖g̃1‖Φ∗ ≤ c1
kd
‖g‖Λ∗ and the problem (3.10), or equivalently (3.9), has a unique solution.

As an immediate consequence of Proposition 3.4, we have that the least-squares functional
(3.8) is norm equivalent in the following sense.

{lemma:pls1}
Corollary 3.1. Assume that (3.7) and the conditions on the bilinear form b1(·, ·) in (2.5) hold.
Then,

k̃1‖φ‖2
Φ ≤ K(φ; 0, 0) = b̃1(φ, φ) =

〈
B1φ,D

−1B1φ
〉
Λ∗,Λ

≤ c̃1‖φ‖2
Φ ∀φ ∈ Φ . (3.15) {pls6}

For all µ ∈ Φ, we can the rewrite (3.10) as
〈
B1µ,D

−1(B1φ+B2θ − g)
〉
Λ∗,Λ

= 0 or
〈
B∗

1D
−1(B1φ+B2θ − g), µ

〉
Φ

0 so that, in operator form, we have that (3.10) is equivalent to

B̃1φ+ B̃2θ = g̃1 in Φ∗, (3.16) {pls5}

where
B̃1 = B∗

1D
−1B1 : Φ → Φ∗, and B̃2 = B∗

1D
−1B2 : Θ → Φ∗. (3.17) {pls5a}

Note that (3.15) implies that the operator B̃1 = B∗
1D

−1B1 in (3.16) is symmetric and coercive even
when the operator B1 in (2.9) is indefinite and/or non-symmetric; these observations, of course,
follow from the facts that the bilinear form b1(·, ·) is weakly coercive (see (2.5)) while the bilinear
form b̃1(·, ·) is strongly coercive (see (3.14)). It is also easy to see that (3.16) has the same solutions
as (2.9).

Discretization of (3.10), or equivalently of (3.16), is accomplished in the standard manner. One
chooses a subspace Φh ⊂ Φ and then, given θ ∈ Θ and g̃ ∈ Φ∗, one solves the problem

b̃1(φ
h, µh) = 〈g̃1, µh〉Φ∗,Φ − b̃2(θ, µ

h) ∀µh ∈ Φh . (3.18) {pls3h}

Then, (3.15) and the Lax-Milgram and Cea lemmas immediately imply the following results.
{prop:pls3}

Proposition 3.5. Assume that (2.5) and (3.7) hold. Then, the problem (3.18) has a unique solution
and, if φ denotes the solution of the problem (3.10), or equivalently, of (3.16), there exists a constant
C > 0 whose value is independent of h, φ, and φh such that

‖φ− φh‖Φ ≤ C inf
eφh∈Φ

‖φ− φ̃h‖Φ .

Again, if {φj}Jj=1 denotes a basis for Φh, then the problem (3.18) is equivalent to the matrix
problem

B̃1
~φ = ~̃g0 , (3.19) {pls4h}

where ~φ is the vector of coefficients for φh, (B̃1)ij = b̃1(φi, φj) = 〈B̃1φi, φj〉Φ∗,Φ, and
(
~̃g0

)
i

=

〈g̃1, φi〉Φ∗,Φ − b̃2(θ, φi) = 〈g̃1 − B̃2θ, φi〉Φ∗,Φ = 〈B∗
1D

−1g −B∗
1D

−1B2θ , φi〉Φ∗,Φ.
The following result follows easily from Proposition 3.4 and Corollary 3.1. {prop:pls3-}

Corollary 3.2. Assume that (3.7) and the conditions on the bilinear form b1(·, ·) in (2.5) hold.
Then, the matrix B̃1 is symmetric positive definite and spectrally equivalent to the Gramm matrix
G, (G)i,j = (φi, φj)Φ.

The main advantages of using a least-squares finite element method to solve the constraint
equation (2.9) are that the matrix B̃1 in (3.19) is symmetric and positive definite even when the
operator B1 in (2.9) is indefinite and/or non-symmetric, and that the conforming finite element
subspace Φh ⊂ Φ is not subject to any additional discrete stability conditions such as (3.2).7 In
incorporating the least-squares formalism into the optimization setting of §2, we want to preserve
these advantages.

7The direct, conforming Galerkin finite element discretization considered in §3.1 requires that that discrete stability
conditions be satisfied.
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4 Solution of the optimization problem via Lagrange multipliers
{sec4}

For all {µ, ν, ψ} ∈ Φ × Θ × Λ, we introduce the Lagrangian functional

L({µ, ν}, {ψ}) = J ({µ, ν}) + b({µ, ν}, {ψ}) − 〈g, ψ〉Λ∗ ,Λ

=
1

2
a1(µ− φ̂, µ− φ̂) +

1

2
a2(ν, ν) + b1(µ,ψ) + b2(ν, ψ) − 〈g, ψ〉Λ∗ ,Λ .

Then, (2.6) is equivalent to the unconstrained optimization problem of finding saddle points
{φ, θ, λ} ∈ Φ × Θ × Λ of the Lagrangian functional. These saddle points may be found by solving
the optimality system, i.e., the first-order necessary conditions





a1(φ, µ) + b1(µ, λ) = a1(φ̂, µ) ∀µ ∈ Φ

a2(θ, ν) + b2(ν, λ) = 0 ∀ ν ∈ Θ

b1(φ,ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗ ,Λ ∀ψ ∈ Λ .

(4.1) {ops11}

The third equation in the optimality system (4.1) is simply the constraint equation. The first
equation is commonly referred to as the adjoint or co-state equation and the Lagrange multiplier
λ is referred as the adjoint or co-state variable. The second equation in (4.1) is referred to as the
optimality condition since it is merely a statement that the gradient of the functional J (·, ·) defined
in (2.2) vanishes at the optimum.

The following result is proved in [8].
{thm3.3}

Theorem 4.1. Let the assumptions (2.3) and (2.5) hold. Then, the optimality system (4.1) has a
unique solution (φ, θ, λ) ∈ Φ × Θ × Λ. Moreover

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)

and (φ, θ) ∈ Φ × Θ is the unique solution of the optimal control problem (2.6).

Using the operators introduced in (2.7), the optimality system (4.1) takes the form





A1φ + B∗
1λ = A1φ̂ in Φ∗

A2θ + B∗
2λ = 0 in Θ∗

B1φ + B2θ = g in Λ∗ .

(4.2) {lsls0}

In analogy to the discussion of §3 concerning the discretization of the constraint equation, we
consider Galerkin and least-squares finite element methods for finding approximate solutions of the
optimality system (4.1).

4.1 Galerkin finite element methods for the optimality system
{sec4.1}

We choose (conforming) finite dimensional subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then
restrict (4.1) to the subspaces, i.e., we seek (φh, θh, λh) ∈ Φh × Θh × Λh that satisfies





a1(φ
h, µh) +b1(µ

h, λh) = a1(φ̂, µ
h) ∀µh ∈ Φh

a2(θ
h, νh) +b2(ν

h, λh) = 0 ∀ νh ∈ Θh

b1(φ
h, ψh) +b2(θ

h, ψh) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh .

(4.3) {opsh11}
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This is also the optimality system for the minimization of (2.2) over Φh × Θh subject to the
constraint b1(φ

h, ψh) + b2(ψ
h, θh) = 〈g, ψh〉Λ∗,Λ for all ψh ∈ Λh. The assumptions (2.3) and (2.5)

are not sufficient to guarantee that the discrete optimality system (4.3) is solvable. Again, we must
assume that the discrete stability conditions (3.2) on the bilinear form b1(·, ·) hold. In this case,
we have the following result which is again proved in [8].

{thm3.5}
Theorem 4.2. Let the assumptions (2.3), (2.5), and (3.2) hold. Then, the discrete optimality
system (4.3) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh and moreover

‖φh‖Φ + ‖θh‖Θ + ‖λh‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)
.

Furthermore, let (φ, θ, λ) ∈ Φ × Θ × Λ denote the unique solution of the optimality system (4.1),
or, equivalently, of the optimal control problem (2.6). Then,

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
µh∈Φh

‖φ− µh‖Φ + inf
ξh∈Θh

‖θ − ξh‖Θ + inf
ψh∈Λh

‖λ− ψh‖Λ

)
.

(4.4) {err1h}

In the usual way, the discrete optimality system (4.3) is equivalent to a matrix problem. Let
{φj}Jj=1, {θk}Kk=1, and {λm}Mm=1, where J = dim(Φh), K = dim(Θh), and M = dim(Λh), denote

chosen basis sets for Φh, Θh, and Λh, respectively. We then define the matrices





(A1)ij = a1(φi, φj) for i, j = 1, . . . , J

(A2)kℓ = a2(θk, θℓ) for k, ℓ = 1, . . . ,K

(B1)mj = b1(φj , λm) for j = 1, . . . , J, m = 1, . . . ,M

(B2)km = b2(θk, λm) for k = 1, . . . ,K, m = 1, . . . ,M

and the vectors {
(~f)j = a1(φ̂, φj) for j = 1, . . . , J

(~g)m = 〈g, λm〉Λ∗,Λ for m = 1, . . . ,M .

We then have that the problem (4.3) is equivalent to the matrix problem




A1 0 B
T
1

0 A2 B
T
2

B1 B2 0







~φ

~θ

~λ


 =




~f

~0

~g


 , (4.5) {lisy11}

where ~φ, ~θ, and ~λ are the vector of coefficients for φh, θh, and λh, respectively.
{rmk16}

Remark 4.1. The discrete optimality system (4.3) or its matrix equivalent (4.5), have the typical
saddle point structure. This remains true even if the state equations involve a strongly coercive
bilinear form b1(·, ·) so that the last two inequalities in (2.5) can be replaced by b1(φ, φ) ≥ k1‖φ‖2

Φ

for all φ ∈ Φ. If the assumptions (2.3) and (2.5) hold, then the stability and convergence properties
associated with solutions of (4.3) or (4.5) hold by merely by assuming that (3.2) holds for the
bilinear form b1(·, ·) and the spaces Φh and Λh. Thus, these properties depend solely on the ability
to stably solve, given any discrete control variable, the discrete state equation for a discrete state
variable. On the other hand, if (3.2) does not hold, then (4.3) or its matrix equivalent (4.5) may
not be solvable, i.e., the coefficient matrix in (4.5) may not be invertible. In fact, the assumptions
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(3.2) imply that B1 is uniformly invertible. This, and the facts (which follow from (2.3)) that
the symmetric matrices A1 and A2 are positive semi-definite and positive definite, respectively, is
enough to guarantee that the coefficient matrix in (4.5) is invertible. On the other hand, if (3.2)
does not hold so that the matrix B1 has a nontrivial null space, then, under the other assumptions
that have been made, one cannot guarantee the invertibility of the coefficient matrix in (4.5). See [8]
for details.

{rmk17}
Remark 4.2. Solving the discrete optimality system (4.3), or equivalently, the linear system (4.5),
is often a formidable task. If the constraint equations (2.4) are a system of partial differential
equations, then the last (block) row of (4.5) represents a Galerkin finite element discretization of
that system. The discrete adjoint equations, i.e., the first row in (4.5), are also a discretization of
a system of partial differential equations. Moreover, the dimension of the discrete adjoint vector ~λ
is essentially the same as that of discrete state vector ~φ. Thus, (4.5) is at least twice the size (we
have yet to account for the discrete control variables in ~θ) of the discrete system corresponding
to the discretization of the partial differential equation constraints. Thus, if these equations are
difficult to approximate, the discrete optimality system will be even more difficult to deal with. For
this reason, there have been many approaches suggested for uncoupling the three components of
discrete optimality systems such as (4.3), or equivalently, (4.5). See, e.g., [19], for a discussion of
several of these approaches. We note that these approaches rely on the invertibility of the matrices
B1 and A2, properties that follow from (3.2) and (2.3), respectively.

4.2 Least-squares finite element methods for the optimality system
{sec4.2}

Even if the state equation (2.4) (or (2.9)) involves a symmetric, positive definite operator B1, i.e.,
even if the bilinear form b1(·, ·) is symmetric and strongly coercive, the discrete optimality system
(4.3) (or (4.5)) obtained through a Galerkin discretization is indefinite. For example, if B1 = −∆
with zero boundary conditions, then B1 is a symmetric, positive definite matrix, but the coefficient
matrix in (4.5) is indefinite. In order to obtain a discrete optimality system that is symmetric and
positive definite, we will apply a least-squares finite element discretization. In fact, these desirable
properties for the discrete system will remain in place even if the state system bilinear form b1(·, ·)
is only weakly coercive, i.e., even if the operator B1 is merely invertible but not necessarily positive
definite.

Given a system of partial differential equations, there are many ways to define least-squares
finite element methods for determining approximate solutions. Practicality issues can be used to
select the “best” methods from among the many choices available. See, e.g., [5] for a discussion of
what factors enter into the choice of a particular least-squares finite element method for a given
problem. Here, we will consider the most straightforward means for defining a least-squares finite
element method.

4.2.1 A least-squares finite element method for a generalized optimality system
{sec4.2.1}

We start with the generalized form of the optimality system (4.2) written in operator form, i.e.,





A1φ + B∗
1λ = f in Φ∗

A2θ + B∗
2λ = s in Θ∗

B1φ + B2θ = g in Λ∗ ,

(4.6) {lsls1}

where (f, s, g) ∈ Φ∗×Θ∗×Λ∗ is a general data triple and (φ, θ, λ) ∈ Φ×Θ×Λ is the corresponding
solution triple. In the same way that Theorem 4.1 is proved, we have the following result.
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{prop4.1}
Proposition 4.1. Let the assumptions (2.3) and (2.5) hold. Then, for any (f, s, g) ∈ Φ∗×Θ∗×Λ∗,
the generalized optimality system (4.6) has a unique solution (φ, θ, λ) ∈ Φ × Θ × Λ. Moreover,

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖f‖Φ∗ + ‖s‖Θ∗ + ‖g‖Λ∗

)
. (4.7) {lsls2}

A least-squares functional can be defined by summing the squares of the norms of the residuals
of the three equations in (4.6) to obtain

K(φ, θ, λ; f, s, g) = ‖A1φ+B∗
1λ− f‖2

Φ∗ + ‖A2θ +B∗
2λ− s‖2

Θ∗ + ‖B1φ+B2θ − g‖2
Λ∗ . (4.8) {lsls3}

Clearly, the unique solution of (4.6) is also the solution of the problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; f, s, g) . (4.9) {lsls4}

The first-order necessary conditions corresponding to (4.9) are easily found to be

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= F

(
(µ, ν, ψ); (f, s, g)

)
∀ (µ, ν, ψ) ∈ Φ × Θ × Λ , (4.10) {lsls5}

where
B

(
(φ, θ, λ), (µ, ν, ψ)

)
= (A1µ+B∗

1ψ,A1φ+B∗
1λ)Φ∗

+(A2ν +B∗
2ψ,A2θ +B∗

2λ)Θ∗ + (B1µ+B2ν,B1φ+B2θ)Λ∗

∀ (φ, θ, λ), (µ, ν, ψ) ∈ Φ × Θ × Λ

(4.11) {lsls6}

and
F

(
(µ, ν, ψ); (f, s, g)

)
= (A1µ+B∗

1ψ, f)Φ∗ + (A2ν +B∗
2ψ, s)Θ∗

+(B1µ+B2ν, g)Λ∗ ∀ (µ, ν, ψ) ∈ Φ × Θ × Λ .
(4.12) {lsls7}

The following result is proved in [8].
{lem4.2}

Lemma 4.1. Let the assumptions (2.3) and (2.5) hold. Then, the bilinear form B(·, ·) is symmetric
and continuous on (Φ × Θ × Λ) × (Φ × Θ × Λ) and the linear functional F (·) is continuous on
(Φ × Θ × Λ). Moreover, the bilinear form B(·, ·) is coercive on (Φ × Θ × Λ), i.e.,

B
(
(φ, θ, λ), (φ, θ, λ)

)
≥ C(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) ∀ (φ, θ, λ) ∈ Φ × Θ × Λ . (4.13) {lsls8}
{remlsne}

Remark 4.3. Since

K(φ, θ, λ; 0, 0, 0) = ‖A1φ+B∗
1λ‖2

Φ∗ + ‖A2θ +B∗
2λ‖2

Θ∗ + ‖B1φ+B2θ‖2
Λ∗

= B
(
(φ, θ, λ), (φ, θ, λ)

)
,

the coercivity and continuity of the bilinear form B(·, ·) are equivalent to stating that the functional
K(φ, θ, λ; 0, 0, 0) is norm-equivalent, i.e., that there exist constants γ1 > 0 and γ2 > 0 such that

γ1(‖φ‖2
Φ + ‖θ‖2

Θ + ‖λ‖2
Λ) ≤ K(φ, θ, λ; 0, 0, 0) ≤ γ2(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) (4.14) {lslsne}

for all (φ, θ, λ) ∈ Φ × Θ × Λ.

The following results follow from Lemma 4.1 and the Lax-Milgram lemma.
{prop4.2}

Proposition 4.2. Let the assumptions (2.3) and (2.5) hold. Then, for any (f, s, g) ∈ Φ∗×Θ∗×Λ∗,
the problem (4.10) has a unique solution (φ, θ, λ) ∈ Φ × Θ × Λ. Moreover, this solution coincides
with the solution of the problems (4.6) and (4.9) and satisfies the estimate (4.7).
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We define a finite element discretization of (4.6) or, equivalently, of (4.10), by choosing conform-
ing finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then requiring that (φh, θh, λh) ∈
Φh × Θh × Λh satisfy

B
(
(φh, θh, λh), (µh, νh, ψh)

)
= F

(
(µh, νh, ψh); (f, s, g)

)

∀ (µh, νh, ψh) ∈ Φh × Θh × Λh .
(4.15) {lsls11}

Note that (φh, θh, λh) can also be characterized as the solution of the problem

min
(φh,θh,λh)∈Φh×Θh×Λh

K(φh, θh, λh; f, s, g) .

The following result follow from Lemma 4.1 and standard finite element analyses.
{prop4.3}

Proposition 4.3. Let the assumptions (2.3) and (2.5) hold. Then, for any (f, h, g) ∈ Φ∗×Θ∗×Λ∗,
the problem (4.15) has a unique solution (φh, θh, λh) ∈ Φh×Θh×Λh. Moreover, we have the optimal
error estimate

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
eφh∈Φh

‖φ− φ̃h‖Φ + inf
eθh∈Θh

‖θ − θ̃h‖Θ + inf
eλh∈Λh

‖λ− λ̃h‖Λ

)
,

(4.16) {lsls12}

where (φ, θ, λ) ∈ Φ × Θ × Λ is the unique solution of the problem (4.10), or equivalently, of the
problems (4.6) or (4.9).

4.2.2 A least-squares finite element method for the optimality system
{sec4.2.2}

The results of §4.2.1 easily specialize to the optimality system (4.2). Indeed, letting f = A1φ̂ ∈
Φ̂∗ ⊂ Φ∗ and s = 0, we have that (4.6) reduces to (4.2). We now have the least-squares functional,

K(φ, θ, λ; φ̂, g) = ‖A1φ+B∗
1λ−A1φ̂‖2

Φ∗ + ‖A2θ +B∗
2λ‖2

Θ∗ + ‖B1φ+B2θ − g‖2
Λ∗ , (4.17) {lsls13}

the minimization problem
min

(φ,θ,λ)∈Φ×Θ×Λ
K(φ, θ, λ; φ̂, g) , (4.18) {lsls14}

the first-order necessary conditions

B
(
(φ, θ, λ), (µ, ν, ψ)

)
= F

(
(µ, ν, ψ); (A1φ̂, 0, g)

)
∀ (µ, ν, ψ) ∈ Φ × Θ × Λ , (4.19) {lsls15}

where B(·, ·) and F (·) are defined as in (4.11) and (4.12), respectively.
We define a finite element discretization of (4.19) by again choosing conforming finite element

subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then requiring that (φh, θh, λh) ∈ Φh×Θh×Λh satisfy

B
(
(φh, θh, λh), (µh, νh, ψh)

)
= F

(
(µh, νh, ψh); (A1φ̂, 0, g)

)

∀ (µh, νh, ψh) ∈ Φh × Θh × Λh .
(4.20) {lsls16}

Then, Proposition 4.3 takes the following form.
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{the4.4}
Theorem 4.3. Let the assumptions (2.3) and (2.5) hold. Then, for any (φ̂, g) ∈ Φ̂∗ × Λ∗, the
problem (4.20) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh. Moreover, we have the optimal
error estimate: there exists a constant C > 0 whose value is independent of h, such that

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
eφh∈Φh

‖φ− φ̃h‖Φ + inf
eθh∈Θh

‖θ − θ̃h‖Θ + inf
eλh∈Λh

‖λ− λ̃h‖Λ

)
,

(4.21) {lsls17}

where (φ, θ, λ) ∈ Φ × Θ × Λ is the unique solution of the problem (4.19) or, equivalently, of the
problems (4.2) or (4.1). Note also that (φ, θ) ∈ Φ × Θ is the unique solution of the problem (2.6).

{remls1}
Remark 4.4. The discrete problem (4.20) is equivalent to the linear algebraic system




K1 C
T
1 C

T
2

C1 K2 C
T
3

C2 C3 K3







~φ

~θ

~λ


 =




~f

~h

~g


 . (4.22) {lsls18}

Indeed, if one chooses bases {µhj (x)}Jj=1, {νhk (x)}Kk=1, and {ψhℓ (x)}Lℓ=1 for Φh, Θh, and Λh, respec-

tively, we then have φh =
∑J

j=1 φjµ
h
j , θ

h =
∑K

k=1 θkµ
h
k , and λh =

∑L
ℓ=1 λℓψ

h
ℓ for some sets of

coefficients {φj}Jj=1, {θk}Kk=1, and {λℓ}Lℓ=1 that are determined by solving (4.22). In (4.22), we have

that ~φ = (φ1, . . . , φJ)
T , ~θ = (θ1, . . . , θK)T , ~λ = (λ1, . . . , λL)T ,

(
K1

)
ij

= (A1µi, A1µj)Φ∗ + (B1µi, B1µj)Λ∗ for i, j = 1, . . . , J ,

(
K2

)
ik

= (A2νi, A1νk)Θ∗ + (B2νi, B2νk)Λ∗ for i, k = 1, . . . ,K,

(
K3

)
iℓ

= (B∗
1ψi, B

∗
1ψℓ)Φ∗ + (B2ψi, B2ψℓ)Θ∗ for i, ℓ = 1, . . . , L,

(
C1

)
ij

= (B2νi, B1µj)Λ∗ for i = 1, . . . ,K, j = 1, . . . , J,

(
C2

)
ij

= (B∗
1ψi, A1νj)Φ∗ for i = 1, . . . , L, j = 1, . . . , J,

(
C3

)
ik

= (B∗
2ψi, A2νk)Θ∗ for i = 1, . . . , L, k = 1, . . . ,K,

(
~f
)
i
= (A1µi, A1φ̂)Φ∗ + (B1µi, g)Λ∗ for i = 1, . . . , J ,

(
~h
)
i
= (B2νi, g)Λ∗ for i = 1, . . . ,K,

(
~g
)
i
= (B∗

1ψi, A1φ̂)Φ∗ for i = 1, . . . , L.

{remls2}
Remark 4.5. It easily follows from Lemma 4.1 that the coefficient matrix of (4.22) is symmetric
and positive definite. This should be compared to the linear system (4.5) that results from a
Galerkin finite element discretization of the optimality system (4.1) for which the coefficient matrix
is symmetric and indefinite.

{remls3}
Remark 4.6. The stability of the discrete problem (4.20), the convergence and optimal accuracy
of the approximate solution (φh, θh, λh), and the symmetry and positive definiteness of the discrete
system (4.22) obtained by the least-squares finite element method follow from the assumptions (2.3)
and (2.5) that guarantee the well posedness of the infinite-dimensional optimization problem (2.6)
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and its corresponding optimality system (4.1). It is important to note that all of these desirable
properties of the least-squares finite element method do not require that the bilinear form b1(·, ·) and
the finite element spaces Φh and Λh satisfy the discrete inf-sup conditions (3.2) that are necessary
for the well posedness of the Galerkin finite element discretization (4.3) of the optimality system
(4.1). In fact, this is why least-squares finite element methods are often an attractive alternative
to Galerkin discretizations; see, e.g., [5].

{remls4}
Remark 4.7. The observations made in Remark 4.2 about the possible need to uncouple the
equations in (4.5) hold as well for the linear system (4.22). Uncoupling approaches for (4.5) rely
on the invertibility of the matrices B1 and A2; the first of these is, in general, non-symmetric and
indefinite, even when the necessary discrete inf-sup conditions in (3.2) are satisfied. For (4.22),
uncoupling strategies would rely on the invertibility of the matrices K1, K2, and K3; all three of
these matrices are symmetric and positive definite even when (3.2) is not satisfied. An example
of a simple uncoupling strategy is to apply a block-Gauss-Seidel method to (4.22), which would
proceed as follows.

Start with initial guesses ~φ
(0)

and ~θ
(0)

for the discretized state and control; then, for
k = 1, 2, . . ., successively solve the linear systems

K3
~λ

(k+1)
= ~g − C2

~φ
(k) − C3

~θ
(k)

K1
~φ

(k+1)
= ~f − C

T
1
~θ

(k) − C
T
2
~λ

(k+1)

K2
~θ

(k+1)
= ~h− C1

~φ
(k+1) − C

T
3
~λ

(k+1)

(4.23) {lsls18a}

until satisfactory convergence is achieved, e.g., until some norm of the difference between
successive iterates is less than some prescribed tolerance.

Since the coefficient matrix in (4.22) is symmetric and positive definite, this iteration will converge.
Moreover, all three coefficient matrices K3, K1, and K2 of the linear systems in (4.23) are themselves
symmetric and positive definite so that very efficient solution methodologies, including parallel ones,
can be applied for their solution. We also note that, in order to obtain faster convergence rates,
better uncoupling iterative methods, e.g., over-relaxation schemes or a conjugate gradient method,
can be applied instead of the block Gauss-Seidel iteration of (4.23).

{remls5}
Remark 4.8. The discrete problem (4.20) (or equivalently, (4.22)) resulting from the least-squares
method for the optimality system (4.2) can be viewed as a Galerkin discretization of the system

(A∗
1A1 +B∗

1B1)φ+ (B∗
1B2)θ + (A∗

1B
∗
1)λ = (A∗

1A1)φ̂+ (B∗
1)g in Φ

(A∗
2A2 +B∗

2B2)θ + (A∗
2B

∗
2)λ+ (B∗

2B1)φ = (B∗
2)g in Θ

(B1B
∗
1 +B2B

∗
2)λ+ (B1A1)φ+ (B2A2)θ = (B1A1)φ̂ in Λ .

(4.24) {lsls19}

The first equation of this system is the sum of A∗
1 applied to the first equation of the optimality

system (4.2) and B∗
1 applied to the third equation of that system. The other equations of (4.24)

are related to the equations of (4.2) in a similar manner. The system (4.24) shows that the discrete
system (4.22) essentially involves the discretization of “squares” of operators, e.g., A∗

1A1, B
∗
1B1,

etc. This observation has a profound effect in how one chooses the form of the constraint equation
in (2.6), i.e., the form of (2.9). In particular, practical considerations lead to the need to recast
a given partial differential equation system into an equivalent first-order form; see, e.g., [5, 8], for
details.
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5 Methods based on direct penalization by the least-squares func-

tional
{sec44}

A straightforward way to use least-squares notions in the optimization setting of §2 is to enforce the
constraint equations (2.4), or equivalently (2.9), by penalizing the functional (2.2), or its equivalent
form (2.8), by the least-squares functional (3.8); see [7,21] for examples of the use of this approach
in concrete settings. Thus, instead of solving the constrained problem (2.6) or its equivalent form
(2.10), we solve the unconstrained problem

min
(φ,θ)∈Φ×Θ

Jǫ(φ, θ) , (5.1) {pls7}

where, for given φ̂ ∈ Φ̂ and g ∈ Λ∗,

Jǫ(φ, θ) = J (φ, θ) +
1

2ǫ
K(φ; θ, g) ∀φ ∈ Φ, θ ∈ Θ (5.2) {pls8}

so that

Jǫ(φ, θ) =
1

2

〈
A1(φ− φ̂), (φ− φ̂)

〉
bΦ∗,bΦ

+
1

2
〈A2θ, θ〉Θ∗,Θ

+
1

2ǫ

〈
B1φ+B2θ − g,D−1(B1φ+B2θ − g)

〉
Λ∗,Λ

=
1

2
a1(φ− φ̂, φ− φ̂) +

1

2
a2(θ, θ)

+
1

2ǫ

(
b̃1(φ, φ) + 2b̃2(θ, φ) + c(θ, θ)

)

− 1

2ǫ

(
2〈g̃1, φ〉Φ∗,Φ + 2〈g̃2, θ〉Θ∗,Θ − 〈g,D−1g〉Λ∗,Λ

)
.

(5.3) {pls8a}

where8

c(θ, ν) =
〈
B2ν,D

−1B2θ
〉
Λ∗,Λ

=
〈
B∗

2D
−1B2θ, ν

〉
Θ∗,Θ

∀ θ, ν ∈ Θ (5.5) {pls8b}

and the function
g̃2 = B∗

2D
−1g ∈ Θ∗. (5.6) {pls8c}

The Euler-Lagrange equations corresponding to the minimization problem (5.1) are given by





a1(φǫ, µ) +
1

ǫ
b̃1(φ, µ) +

1

ǫ
b̃2(θ, µ) = a1(φ̂, µ) +

1

ǫ
〈g̃1, µ〉Φ∗,Φ ∀µ ∈ Φ

a2(θ, ν) +
1

ǫ
c̃(θ, ν) +

1

ǫ
b̃2(ν, φǫ) =

1

ǫ
〈g̃2, ν〉Θ∗,Θ ∀ν ∈ Θ

(5.7) {asdggdv}

8The following results about the bilinear form c(·, ·) and the function eg2 are immediate.

{propcc}
Proposition 5.1. Assume that the operator D is symmetric and that (3.7) and the condition on the bilinear form

b2(·, ·) in (2.5) hold. Then, the bilinear form c(·, ·) is symmetric and, for some constant Cc > 0,

c(θ, ν) ≤ Cc‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ and c(θ, θ) ≥ 0 ∀ θ ∈ Θ . (5.4) {pls1e}

Moreover, ‖eg2‖Θ∗ ≤ c2
kd

‖g‖Λ∗ .

Associated with the bilinear form c(·, ·) we have the operator C = B∗
2D

−1B2 : Θ → Θ∗, i.e., c(θ, ν) = 〈Cθ, ν〉Θ∗,Θ

for all θ, ν ∈ Θ.
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or equivalently





〈A1φǫ, µ〉bΦ∗,bΦ +
1

ǫ

〈
B1µ,D

−1(B1φǫ +B2θǫ)
〉
Λ∗,Λ

= 〈A1φ̂, µ〉bΦ∗,bΦ +
1

ǫ

〈
B1µ,D

−1g
〉
Λ∗,Λ

∀µ ∈ Φ

〈A2θǫ, ν〉Θ∗,Θ +
1

ǫ

〈
B2ν,D

−1(B1φǫ +B2θǫ)
〉
Λ∗,Λ

=
1

ǫ

〈
B2ν,D

−1g
〉
Λ∗,Λ

∀ ν ∈ Θ .

(5.8) {asdggd}

For φǫ ∈ Φ and θǫ ∈ Θ, (3.7) guarantees that

ǫDλǫ = B1φǫ +B2θǫ − g in Λ∗ (5.9) {pls9}

has a unique solutions λǫ ∈ Λ. Then, one easily sees that (5.7) or (5.8) can be expressed in the
equivalent form





a1(φǫ, µ) + b1(µ, λǫ) = a1(φ̂, µ) ∀µ ∈ Φ

a2(θǫ, ν) + b2(ν, λǫ) = 0 ∀ν ∈ Θ

b1(φǫ, ψ) + b2(θǫ, ψ) − ǫd(λǫ, ψ) = 〈g, ψ〉Λ∗ ,Λ ∀ψ ∈ Λ .

(5.10) {ops11a2ab}

One recognizes the system (5.10) to be a regular perturbation of the system (4.1) that is the
Euler-Lagrange equations for the minimization problem (2.6) or its equivalent form (2.10).9 The
following result is proved in, e.g., [8].

Concerning the penalized control problem (2.6), we have the following results.
{thm4.2}

Theorem 5.1. Let the assumptions (2.3), (2.5), and (3.7) hold. Then, for each 0 < ǫ ≤ 1, (5.10)
or, equivalently, (5.8) and (5.9), or, equivalently, the penalized optimal control problem (5.1), has
a unique solution (φǫ, θǫ, λǫ) ∈ Φ × Θ × Λ. Let (φ, θ, λ) ∈ Φ × Θ × Λ denote the unique solution of
the optimality system (4.2) or, equivalently, of the optimal control problem (2.6). Then, for some
constant C > 0 whose value is independent of ǫ,

‖φ− φǫ‖Φ + ‖θ − θǫ‖Θ + ‖λ− λǫ‖Ψ ≤ Cǫ
(
‖g‖Ψ∗ + ‖φ̂‖bΦ

)
. (5.14) {errp1}

9The systems (5.7), (5.8), and (5.10) can be respectively be expressed in equivalent operator form as

8
>><
>>:

„
A1 +

1

ǫ
eB1

«
φǫ +

1

ǫ
eB2θǫ = A1

bφ+
1

ǫ
eg1 in Φ∗

„
A2 +

1

ǫ
C

«
θǫ +

1

ǫ
eB∗

2φǫ =
1

ǫ
eg2 in Θ∗ ,

(5.11) {asdggdv-}

8
>><
>>:

„
A1 +

1

ǫ
B

∗
1D

−1
B1

«
φǫ +

1

ǫ
B

∗
1D

−1
B2θǫ = A1

bφ+
1

ǫ
B

∗
1D

−1
g in Φ∗

„
A2 +

1

ǫ
B

∗
2D

−1
B2

«
θǫ +

1

ǫ
B

∗
2D

−1
B1φǫ =

1

ǫ
B

∗
2D

−1
g in Θ∗ ,

(5.12) {asdggd-}

and 8
><
>:

A1φǫ + B∗
1λǫ = A1

bφ in Φ∗

A2θǫ + B∗
2λǫ = 0 in Θ∗

B1φǫ + B2θǫ − ǫDλǫ = g in Λ∗.

(5.13) {ops11a2ab-}

Incidentally, we can now see why we use D−1 in (3.8), i.e., so that in (5.13) D and not D−1 appears.
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Proof. Define the bilinear forms

a({φ, θ}, {µ, ν}) = a1(φ, µ) + a2(θ, ν) ∀ {φ, θ}, {µ, ν} ∈ Φ × Θ

and
b({φ, θ}, {ψ}) = b1(φ,ψ) + b2(θ, ψ) ∀ {φ, θ} ∈ Φ × Θ, ψ ∈ Λ .

Then, (4.2) and (5.10) can be respectively written as

{
a({φ, θ}, {µ, ν}) + b({µ, ν}, {λ}) = a1(φ̂, µ) ∀ {µ, ν} ∈ Φ × Θ

b({φ, θ}, {ψ}) = 〈g, ψ〉Λ∗ ,Λ ∀ψ ∈ Λ
(5.15) {lsls0--}

and {
a({φǫ, θǫ}, {µ, ν}) + b({µ, ν}, {λǫ}) = a1(φ̂, µ) ∀ {µ, ν} ∈ Φ × Θ

b({φǫ, θǫ}, {ψ}) − ǫd(λǫ, ψ) = 〈g, ψ〉Λ∗ ,Λ ∀ψ ∈ Λ .
(5.16) {ops11a2ab--

Let the subspace Z be defined by

Z =
{
{φ, θ} ∈ Φ × Θ | b1(φ,ψ) + b2(θ, ψ) = 0 ∀ψ ∈ Λ

}
.

In operator notation, the elements {φ, θ} ∈ Z ⊂ Φ×Θ satisfy B1φ+B2θ = 0. Note that as a result
of (2.5), given any θ ∈ Θ, there exists a φθ ∈ Φ satisfying

b1(φθ, ψ) = −b2(θ, ψ) ∀ψ ∈ Λ and ‖φθ‖Φ ≤ c2
k1

‖θ‖Θ (5.17) {pls23}

so that Z can be completely characterized by (φθ, θ) ∈ Φ × Θ where, for arbitrary θ ∈ Θ, φθ ∈ Φ
satisfies (5.17).

In [8], it is shown that if (2.3) and (2.5) hold, then the subspace Z is closed and





a({φ, θ}, {µ, ν}) ≤ Ca‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ ∀ {φ, θ}, {µ, ν} ∈ Φ × Θ

b({φ, θ}, {λ}) ≤ Cb‖{φ, θ}‖Φ×Θ‖{λ}‖Λ ∀ {φ, θ} ∈ Φ × Θ, {λ} ∈ Λ

a({φ, θ}, {φ, θ}) ≥ 0 ∀ {φ, θ} ∈ Φ × Θ

a({φ, θ}, {φ, θ}) ≥ Ka‖{φ, θ}‖2
Φ×Θ ∀ {φ, θ} ∈ Z

sup
{µ,ν}∈Φ×Θ,{µ,ν}6={0,0}

b({µ, ν}, {λ})
‖{µ, ν}‖Φ×Θ

≥ Kb‖{λ}‖Λ ∀ {λ} ∈ Λ ,

(5.18) {ass1}

where Ca = max{C1, C2}, Cb = max{c1, c2}, Ka = 1
2 min{1, k

2
1

c2
2

}, and Kb = k1.

The results of the theorem then easily follow from well-known results about the systems (5.15)
and (5.16) whenever (5.18) holds; see, e.g., [8, 10,13,14,16,18].

Now, let us return to the system (5.8) that can be written in more compact form as

Aǫ({φǫ, θǫ}, {µ, ν}) = Gǫ({µ, ν}) ∀ {µ, ν} ∈ Φ × Θ (5.19) {pls25}

where, for all {φǫ, θǫ}, {µ, ν} ∈ Φ × Θ,

Aǫ({φ, θ}, {µ, ν}) = a1(φ, µ) + a2(θ, ν) +
1

ǫ

〈
B1µ+B2ν,D

−1(B1φ+B2θ)
〉
Λ∗,Λ

(5.20) {pls27}
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and

Gǫ({µ, ν}) = a1(φ̂, µ) +
1

ǫ

〈
B1µ+B2ν,D

−1g
〉
Λ∗,Λ

. (5.21) {pls28}

Concerning the bilinear form Aǫ(·, ·) and the linear functional Gǫ(·), we have the following results.10

{lem9}
Lemma 5.1. Let the bilinear form Aǫ(·, ·) be defined by (5.20) and let the linear functional Gǫ(·) be
defined by (5.21). Let the assumptions (2.3), (2.5), and (3.7) hold and let 0 < ǫ ≤ 1. Then, there
exist positive constants ca1, ca2, cg1, cg2, and ka whose values do not depend on ǫ such that for all
{φ, θ}, {µ, ν} ∈ Φ × Θ,

Aǫ({φ, θ}, {µ, ν}) ≤
(
ca1 +

ca2
ǫ

)
‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ (5.22) {pls29}

and
Aǫ({φ, θ}, {φ, θ}) ≥ ka‖{φ, θ}‖2

Φ×Θ . (5.23) {pls30}

Furthermore,

Gǫ({µ, ν}) ≤
(
cg1‖φ̂‖bΦ +

cg2
ǫ
‖g‖Λ∗

)
‖{µ, ν}‖Φ×Θ . (5.24) {pls333}

Proof. Using (5.18), we have that

Aǫ({φ, θ}, {µ, ν})

≤ Ca‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ +
1

ǫ
‖D−1‖Λ∗→Λ‖B1φ+B2θ‖Λ∗‖B1µ+B2ν‖Λ∗

≤
(
Ca +

C2
b

ǫkd

)
‖{φ, θ}‖Φ×Θ‖{µ, ν}‖Φ×Θ

so that (5.22) holds with ca1 = Ca = max{C1, C2} and ca2 =
C2

b

kd
= (max{c1,c2})2

kd
.

The proof of (5.24) proceeds in a similar manner; one obtains that cg1 = C1 and cg2 =
1
kd

max{c1, c2}.
Next, suppose {φ, θ} ∈ Z so that B1φ+B2θ = 0 and, by (5.17), ‖φ‖Λ ≤ c2

k1
‖θ‖Θ. Then,

Aǫ({φ, θ}, {φ, θ}) = a1(φ, φ) + a2(θ, θ) ≥ a2(θ, θ) ≥ K2‖θ‖2
Θ

≥ K2

2

(
‖θ‖2

Θ +
k2
1

c22
‖φ‖2

Φ

)
≥ K2

2
min

{
1,
k2
1

c22

}
‖{φ, θ}‖2 ∀ {φ, θ} ∈ Z .

(5.25) {pls31}

Now, it is well known (see, e.g., [16]) that if (5.18) holds, then

sup
{ψ}∈Λ,{ψ}6={0}

b({φ, θ}, {ψ})
‖{ψ}‖Λ

≥ k1‖{φ, θ}‖Φ×Θ ∀ {φ, θ} ∈ Z⊥ .

Then, since for all {φ, θ} ∈ Φ × Θ,

b({φ, θ}, {ψ}) = b1(φ,ψ) + b2(θ, ψ) = 〈B1φ+B2θ, ψ〉Λ∗,Λ ,

10The results of Lemma 5.1 provide and alternate means for proving, for any 0 < ǫ ≤ 1, that the system (5.8) has
a unique solution. Indeed, those results assert that the symmetric bilinear form Aǫ(·, ·) is continuous and coercive
and that the linear functional Gǫ(·) is continuous so that the existence and uniqueness of the solution of (5.19), or
equivalently, of (5.8) follows by the Lax-Milgram lemma. However, due to the ǫ−1 in the right-hand side of (5.22),
the results of Lemma 5.1 cannot be used to derive the estimate (5.14) for the solution of (5.8); this is done indirectly
by using the equivalence of (5.8) and (5.9) with (5.10).
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we have that
‖B1φ+B2θ‖Λ∗ ≥ k1‖{φ, θ}‖Φ×Θ ∀ {φ, θ} ∈ Z⊥

so that, using (5.18) and 0 < ǫ ≤ 1,

Aǫ({φ, θ}, {φ, θ})

= a1(φ, φ) + a2(θ, θ) +
1

ǫ

〈
B1φ+B2θ,D

−1(B1φ+B2θ)
〉
Λ∗,Λ

≥
〈
B1φ+B2θ,D

−1(B1φ+B2θ)
〉
Λ∗,Λ

≥ kd
c2d

‖B1φ+B2θ‖2
Λ∗

≥ kdk
2
1

c2d
‖{φ, θ}‖2 ∀ {φ, θ} ∈ Z⊥.

(5.26) {pls32}

Since Z ⊂ Φ×Θ is closed, we obtain (5.23) with ka = min
{
K2

2 min{1, k
2
1

c2
2

}, kdk
2
1

c2
d

}
by combining

(5.25) and (5.26).

As a result of the assumptions in (3.7) for the operator D, we see that (5.8) and (5.10) are
completely equivalent. One may then proceed to discretize either of these systems. It is important
to note that the two resulting discrete systems are not equivalent and can, in fact, have significantly
different properties.

5.1 Discretization of the regularized optimality system
{sec44.1}

We consider obtaining a discretization of (5.8) by first discretizing (5.10) and then eliminating the
Lagrange multiplier. Discretization can be effected by choosing conforming finite element spaces
Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then restricting (5.10) to the subspaces to obtain

a1(φ
h
ǫ , µ

h) + b1(µ
h, λhǫ ) = a1(φ̂, µ

h) ∀µh ∈ Φh

a2(θ
h
ǫ , ν

h) + b2(ν
h, λhǫ ) = 0 ∀νh ∈ Θh

b1(φ
h
ǫ , ψ

h) + b2(θ
h
ǫ , ψ

h) − ǫd(λhǫ , ψ
h) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh.

(5.27) {pls22}

In the usual way, the discrete system (5.33) is equivalent to a matrix problem. In addition to
to the matrices A1, A2, B1, and B2 and the vectors ~f and ~g defined in §4.1, we define the matrix D

by
(D)ij = d(λm, λn) for m,n = 1, . . . ,M .

Then, the discrete regularized problem (5.27) is equivalent to the linear system




A1 0 B
T
1

0 A2 B
T
2

B1 B2 −ǫD







~φǫ

~θǫ

~λǫ


 =




~f

~0

~g


 . (5.28) {lisy11h}

It is now easy to see how one can eliminate ~λǫ from (5.28), or equivalently, λhǫ from (5.27).
Indeed, (3.6) implies that D is symmetric and positive definite, and therefore invertible. Then, one
easily deduces from (5.28) that





(
A1 +

1

ǫ
B
T
1 D

−1
B1

)
~φǫ +

1

ǫ
B
T
1 D

−1
B2
~θǫ = ~f +

1

ǫ
B
T
1 D

−1~g

(
A2 +

1

ǫ
B
T
2 D

−1
B2

)
~θǫ +

1

ǫ
B
T
2 D

−1
B1
~φǫ =

1

ǫ
B
T
2 D

−1~g .

(5.29) {ops11a2h}
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Note that (5.29) only involves the approximations φhǫ ∈ Φh and θhǫ ∈ Θh of the state variable φ ∈ Φ
and the control variable θ ∈ Θ, respectively, and does not involve the approximation λhǫ ∈ Ψh of
the adjoint variable λ ∈ Ψ. Once (5.29) is used to determine ~φǫ and ~θǫ, ~λǫ may be determined
from the last equation in (5.28).

Now, consider what is required to guarantee that the coefficient matrix of the linear system
(5.28) or, equivalently, of (5.29) is stably invertible as either or both the grid size h and the penalty
parameter ǫ tend to zero. It is not difficult to show, based on the assumptions (2.3), (2.5), and (3.6)
that we have made about the bilinear forms appearing in (5.27), that a necessary and sufficient
condition for the stable invertibility of (5.28) or (5.29) is that the matrix B1 be stably invertible.
We have already seen in §3.1 that this guarantee can be made if and only if the subspaces Φh and
Λh satisfy (3.2), i.e., the same requirement needed to insure that the Galerkin discretization (4.3)
of the unperturbed optimality system is stably invertible; see §4.1. In other words, despite the fact
that

(5.10) is equivalent to enforcing the constraint (2.9) by penalizing the functional (2.8)
by the well-posed least-squares functional (3.8)

and despite the fact that

given a control θ, stable approximations of the state φ may be obtained by minimizing
the least-squares functional (3.8) without having to assume that the discrete spaces Φh

and Λh satisfy (3.2),

the stable solution of (5.27), or equivalently (5.28) or (5.29), requires that (3.2) is satisfied. Thus,
one of the main advantages of using least-squares finite element methods, i.e., being able to cir-
cumvent (3.2), is lost.11

The following error estimate is easily derived using well-known techniques.
{the8a}

Theorem 5.2. Let (2.3), (2.5), (3.7), and (3.2) hold. Then, (5.27), or equivalently (5.29), has a
unique solution φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes the unique solution of
the optimization problem (2.6) or equivalently, of (5.8), or equivalently, of (5.10), then there exist
a constant C > 0 whose value is independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖λ− λhǫ ‖Λ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)

+C
(

inf
eφh∈Φh

‖φǫ − φ̃h‖Φ + inf
eθh∈Θh

‖θǫ − θ̃h‖Θ + inf
eλh∈Λh

‖λǫ − λ̃h‖Λ

)
.

(5.30) {pls33-}

Proof. Standard finite element analyses [10, 13, 14, 16] yield, for the pair of systems (5.10) and
(5.27), that ‖φǫ−φhǫ ‖Φ + ‖θǫ− θhǫ ‖Θ + ‖λǫ−λhǫ ‖Λ is bounded by the second term on the right-hand
side of (5.30). Then, (5.14) and the triangle inequality yields (5.30).

Our discussion serves to point out an important observation about penalty methods, namely
that they are not stabilization methods, i.e., penalty methods do not circumvent the discrete
conditions (3.2).12 Penalty methods are properly viewed as being methods for facilitating the

11Although discretizations of (4.2) and (5.10) both require the imposition of (3.2) on the finite element spaces Φh

and Λh, using the system (5.28) still has some advantages. Foremost among these is that one can reduce the number

of variables by eliminating ~λǫ from (5.28) to obtain (5.29). Furthermore, as long as (3.2) is satisfied, the system
(5.29) is symmetric and positive definite while (5.28) is symmetric but indefinite as is, of course, (4.5).

12The fact that discretizations of (4.2) and (5.10) both require the imposition of (3.2) should not be surprising,
given that the latter is a regular perturbation of the former.
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solution of (4.1) or (4.5). Since here we are primarily interested in retaining the advantage that
least-squares finite element methods provide for circumventing conditions such as (3.2), we do
not consider discretizations of (5.10) as the best way to incorporate least-square notions into the
optimization problems we are considering.

It is usually the case that the approximation-theoretic terms on the right-hand side of (5.30)
satisfy inequalities of the type

inf
eφh∈Φh

‖φǫ − φ̃h‖Φ ≤ Chα and inf
eθh∈Θh

‖θǫ − θ̃h‖Θ ≤ Chβ , (5.31) {pls35a}

where α > 0 and β > 0 depend on the degree of the polynomials used for the spaces Φh and Θh

and the regularity of the solution φǫ and θǫ of (5.10), or equivalently, of (5.8). Then, (5.30) implies
that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ C
(
ǫ+ hα + hβ

)
. (5.32) {pls35-}

5.2 Discretization of the eliminated system
{sec44.2}

Instead of discretizing (5.10) and then eliminating the approximation of the Lagrange multiplier
to obtain (5.29), one can directly discretize the eliminated system (5.8) or, equivalently, minimize
the functional Jǫ(·, ·) over (φh, θh) ∈ Φh × Θh. Choosing approximating subspaces Φh ⊂ Φ and
Θh ⊂ Θ, the discrete problem is then given by





a1(φ
h
ǫ , µ

h) +
1

ǫ

〈
B1µ

h,D−1(B1φ
h
ǫ +B2θ

h
ǫ )

〉
Λ∗,Λ

= a1(φ̂, µ
h) +

1

ǫ

〈
B1µ

h,D−1g
〉
Λ∗,Λ

∀µh ∈ Φh

a2(θ
h
ǫ , ν

h) +
1

ǫ

〈
B2ν

h,D−1(B1φ
h
ǫ +B2θ

h
ǫ )

〉
Λ∗,Λ

=
1

ǫ

〈
B2ν

h,D−1g
〉
Λ∗,Λ

∀ νh ∈ Θh .

(5.33) {pls24}

This system can be written in the more compact form

Aǫ({φhǫ , θhǫ }, {µh, νh}) = Gǫ({µh, νh}) ∀ {µh, νh} ∈ Φh × Θh , (5.34) {pls26}

where the bilinear form Aǫ(·, ·) and linear functional Gǫ(·) are defined in (5.20) and (5.21), respec-
tively.13

{the8}
Theorem 5.3. Let (2.3), (2.5), and (3.7) hold. Then, for 0 < ǫ ≤ 1, (5.33), or equivalently, (5.34)
has a unique solution φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes the unique
solution of the optimization problem (2.6) or equivalently, of (5.8), or equivalently, of (5.10), then
there exist a constant C > 0 whose value is independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)

+C
(
1 +

1

ǫ

)(
inf

eφh∈Φh

‖φǫ − φ̃h‖Φ + inf
eθh∈Θh

‖θǫ − θ̃h‖Θ

)
.

(5.35) {pls33}

13The results of Theorem 5.3 do not require that the discrete inf-sup conditions (3.2) holds.
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Proof. Because of Lemma 5.1, the existence and uniqueness of the solution of (5.34) follow from
the Lax-Milgram lemma. Moreover, standard finite element analyses for the problem (5.19) and
its discretization (5.34) yield that

‖φǫ − φhǫ ‖Φ + ‖θǫ − θhǫ ‖Θ ≤ C
(
1 +

1

ǫ

)(
inf

eφh∈Φh

‖φǫ − φ̃h‖Φ + inf
eθh∈Θh

‖θǫ − θ̃h‖Θ

)
.

Then, (5.14) and the triangle inequality yields (5.35).

In the usual way, the discrete system (5.33) is equivalent to a matrix problem. Let {φj}Jj=1

and {θk}Kk=1, where J = dim(Φh) and K = dim(Θh), denote the chosen basis sets for Φh and Θh,

respectively. In addition to the matrices A1, A2, and B̃1 and the vectors ~f and ~̃g defined previously,
we define the matrices





(B̃2)jk = b̃2(θk, φj) =
〈
B2θk,D

−1B1φj
〉
Λ∗,Λ

for k = 1, . . . ,K, j = 1, . . . , J

(C)kℓ = c(θk, θℓ) =
〈
B2θk,D

−1B2θℓ
〉
Λ∗,Λ

for k, ℓ = 1, . . . ,K

and the vectors




(~g1)i = 〈g̃1, φi〉Φ∗,Φ =
〈
B1φi,D

−1g
〉
Λ∗,Λ

for k = 1, . . . ,K

(~g2)k = 〈g̃2, θk〉Θ∗,Θ =
〈
B2θk,D

−1g
〉
Λ∗,Λ

for k = 1, . . . ,K .

Then, (5.33) is equivalent to the matrix problem




A1 +
1

ǫ
B̃1

1

ǫ
B̃2

1

ǫ
B̃
T
2 A2 +

1

ǫ
C







~φǫ

~θǫ


 =



~f +

1

ǫ
~g1

1

ǫ
~g2


 , (5.36) {pls34}

where ~φǫ and ~θǫ are the vectors of coefficients for φhǫ and θhǫ , respectively.
It is clear that (5.29) and (5.36) are different, i.e., the discretize-then-eliminate approach yields

a discrete system that is not equivalent to the system obtained by the eliminate-then-discretize
approach, despite the fact that their respective parent continuous systems (5.10) and (5.8) are
equivalent. In other words, elimination and discretization steps do not commute!

Note that (5.36) is determined without the need for choosing a subspace Λh for the approxi-
mation of the Lagrange multiplier. As a result, unlike what is the case for (5.29), for a fixed value
of ǫ, the stable invertibility of the system (5.36) does not require the state approximation space Φh

to satisfy (3.2). In fact, because of (5.22) and (5.23), for a fixed value of ǫ, the coefficient matrix
in (5.36) is uniformly (with respect to h) positive definite for any choices for Φh and Θh.

The approximation-theoretic terms on the right-hand side of (5.35) satisfy inequalities of the
type (5.31). Then, (5.35) implies that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ C

(
ǫ+

hα + hβ

ǫ

)
, (5.37) {pls35}

where the value of C > 0 is independent of h and ǫ. The estimate (5.37) shows that nothing bad
happens as h → 0 for fixed ǫ. In fact, as h → 0, the error in φhǫ and θhǫ is of order ǫ which is the
best one can hope for for a fixed value of ǫ. However, (5.37) suggests that something bad may14

14Since (5.37) only provides an upper bound for the error, it does not with certainty predict what happens as
ǫ→ 0.
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happen as ǫ → 0. In fact, this effect is well known as locking and indeed does happen for at least
some choices of Φh; see, e.g., [10] for a discussion of locking phenomena. Thus, to be safe, (5.37)
suggests that as ǫ → 0, h should be chosen to depend on ǫ in such a way that the right-hand side
tends to zero as ǫ and h tend to zero. For example, if β ≥ α, as is often the case, then to equilibrate
the two terms in the right-hand side of (5.37), we choose h = ǫ2/α so that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ Cǫ = Chα/2.

In this case, convergence is guaranteed for any choice for Φh and Θh, but the rate of convergence
(with respect to h) may be suboptimal. This should be compared to the results for the discretization
of the regularized optimality system (see (5.32)) for which optimal rates of convergence with respect
to h are obtained and locking does not occur. Of course, the estimate (5.32) requires that the finite
element spaces satisfy the discrete stability conditions in (3.2), while the estimate (5.37) holds
without the need to impose those stability conditions.

6 Methods based on constraining by the least-squares functional
{sec5}

Another means of incorporating least-squares notions into a solution method for the constrained
optimization problem of §2 is to solve, instead of (2.6) or its equivalent form (2.10), the bilevel
minimization problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to min
φ∈Φ

K(φ; θ, g) . (6.1) {pls11}

From (3.16), one sees that this is equivalent to the problem

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to B̃1φ+ B̃2θ = g̃ in Φ∗. (6.2) {pls12}

The Euler-Lagrange equations corresponding to the minimization problem (6.2) are given by




A1φ + B̃1µ = A1φ̂ in Φ∗

A2θ + B̃∗
2µ = 0 in Θ∗

B̃1φ + B̃2θ = g̃1 in Φ∗,

(6.3) {pls13}

where µ ∈ Φ is the Lagrange multiplier introduced to enforce the constraint in (6.2).
The problem (6.2) should be contrasted with the problem (2.10). Both (2.10) and (6.2) involve

the same functional J (·, ·), but are constrained differently. As a result, the former leads to the
optimality system (4.2) while that latter leads to the optimality system (6.3). Although both
optimality systems are of saddle point type, their internal structures are significantly different. For
example, the operator B1 that plays a central role in (4.2) may be non-symmetric and indefinte;
on the other hand, the operator B̃1 = B∗

1D
−1B1 that plays the analogous role in (6.3) is always

symmetric and positive definite whenever the assumptions (2.5) and (3.7) hold.
Penalization can be used to facilitate the solution of the system (6.3) in just the same way

as (5.10) is related to (4.2). To this end, we let D̃ : Φ → Φ∗ be a self-adjoint, strongly coercive
operator, i.e., there exist constants c̃d > 0 and k̃d > 0 such that

〈D̃µ, φ〉Φ∗,Φ ≤ c̃d‖µ‖Φ‖φ‖Φ and 〈D̃µ, µ〉Φ∗,Φ ≥ k̃d‖µ‖2
Φ (6.4) {pls14}

for all φ, µ ∈ Φ. Corresponding to the operator D̃, we have the symmetric, coercive bilinear form

d̃(φ, µ) = 〈D̃µ, φ〉Φ∗,Φ ∀φ, µ ∈ Φ .
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We then consider the penalized functional

J̃ǫ(φ, θ) = J (φ, θ) +
〈
B̃1φ+ B̃2θ − g̃1, D̃

−1(B̃1φ+ B̃2θ − g̃1)
〉
Φ∗,Φ

and the unconstrained optimization problem

min
φ∈Φ, θ∈Θ

J̃ǫ(φ, θ) . (6.5) {pls60}

The Euler-Lagrange equations corresponding to this problem are given by




(
A1 +

1

ǫ
B̃1D̃

−1B̃1

)
φǫ +

1

ǫ
B̃1D̃

−1B̃2θǫ = A1φ̂+
1

ǫ
B̃1D̃

−1g̃1 in Φ∗

(
A2 +

1

ǫ
B̃∗

2D̃
−1B̃2

)
θǫ +

1

ǫ
B̃∗

2D̃
−1B̃1φǫ =

1

ǫ
B̃∗

2D̃
−1g̃1 in Θ∗

(6.6) {pls16}

or 



(
A1 +

1

ǫ
B∗

1D
−1B1D̃

−1B∗
1D

−1B1

)
φǫ

+
1

ǫ
B∗

1D
−1B1D̃

−1B∗
1D

−1B2θǫ = A1φ̂+
1

ǫ
B∗

1D
−1B1D̃

−1B∗
1D

−1g in Φ∗

(
A2 +

1

ǫ
B∗

2D
−1B1D̃

−1B∗
1D

−1B2

)
θǫ

+
1

ǫ
B∗

2D
−1B1D̃

−1B∗
1D

−1B1φǫ =
1

ǫ
B∗

2D
−1B1D̃

−1B∗
1D

−1g in Θ∗.

(6.7) {pls16-}

Letting µǫ = D̃−1(B̃1φǫ + B̃2θǫ − g̃1), it is easy to see that is (6.6) is equivalent to the following
regular perturbation of (6.3):





A1φǫ + B̃1µǫ = A1φ̂ in Φ∗

A2θǫ + B̃T
2 µǫ = 0 in Θ∗

B̃1φǫ + B̃2θǫ − ǫD̃µǫ = g̃1 in Φ∗.

(6.8) {pls15}

The systems (6.6) and (6.8) are equivalent, but once again, their discretizations are not, even
if we use the same subspaces Φh ⊂ Φ and Θh ⊂ Θ to discretize both systems. However, unlike
the situation for (5.10) and (4.2), now discretization of either (6.6) or (6.8) will result in matrix
systems (after elimination in the second case) that are uniformly (with respect to h) positive definite
without requiring that (3.2) holds.

6.1 Discretize-then-eliminate

Discretizing the equivalent weak formulation corresponding to (6.8) results in the matrix problem15




A1 0 B̃1

0 A2 B̃
T
2

B̃1 B̃2 −ǫD̃







~φǫ

~θǫ

~µǫ


 =




~f

~0

~g1


 , (6.10) {pls36}

15Discretization of the unperturbed system (6.3) yields the related discrete system
0
BB@

A1 0 eB1

0 A2
eBT

2

eB1
eB2 0

1
CCA

0
BB@

~φ

~θ

~µ

1
CCA =

0
BB@

~f

~0

~g
1

1
CCA . (6.9) {pls36a}
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where the matrices A1, A2, B̃1, and B̃2 and the vectors ~f and ~g1 are as in (5.36) and the matrix D̃

corresponds to the bilinear form d̃(φ, µ) = 〈D̃µ, φ〉Φ∗,Φ for φ, µ ∈ Φ. The system (6.10) is symmetric
and indefinite, but it is uniformly (with respect to h) invertible without regard to (3.2). Indeed,
we have that the matrices B̃1 and A2 are symmetric and positive definite whenever (2.3), (2.5),
and (3.7) hold. This should be contrasted with the situation for (5.28) whose uniform invertibility
required that the discrete spaces satisfy (3.2).

The vector of coefficients ~µǫ may be eliminated from (6.10) to yield




(
A1 +

1

ǫ
B̃1D̃

−1
B̃1

)
~φǫ +

1

ǫ
B̃1D̃

−1
B̃2
~θǫ = ~f +

1

ǫ
B̃1D̃

−1~g1

(
A2 +

1

ǫ
B̃
T
2 D̃

−1
B̃2

)
~θǫ +

1

ǫ
B̃
T
2 D̃

−1
B̃1
~φǫ =

1

ǫ
B̃
T
2 D̃

−1~g1 .

(6.11) {pls37}

{the8aa}
Theorem 6.1. Let (2.3), (2.5), and (3.7) hold. Then, (6.10) has a unique solution φhǫ ∈ Φh and
θhǫ ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes the unique solution of the optimization problem
(2.6) or equivalently, of (5.8), or equivalently, of (5.10), then there exist a constant C > 0 whose
value is independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖µ− µhǫ ‖Φ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)

+C
(

inf
eφh∈Φh

‖φǫ − φ̃h‖Φ + inf
eθh∈Θh

‖θǫ − θ̃h‖Θ + inf
eµh∈Φh

‖µǫ − µh‖Φ

)
.

(6.12) {pls33--}

Using (5.31), we have from (6.12) that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖µ− µhǫ ‖Φ ≤ C(ǫ+ hα + hβ) (6.13) {pls75a}

so that if β ≥ α and one chooses ǫ = hα, one obtains the optimal error estimate

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ + ‖µ− µhǫ ‖Φ ≤ Cǫ = Chα . (6.14) {pls75}

Note that unlike for Theorem 5.2, the result (6.1) does not require that (3.2) is satisfied. Also,
unlike for Theorem 5.3, we get better convergence rates and locking cannot occur.

6.2 Eliminate-then-discretize

Alternately, one could discretize (6.6) to obtain



A1 +
1

ǫ
K1

1

ǫ
K2

1

ǫ
K
T
2 A2 +

1

ǫ
C̃







~φǫ

~θǫ


 =



~f +

1

ǫ
~̃g1

1

ǫ
~̃g2


 . (6.15) {pls38}

The matrices A1 and A2 and the vector ~f are defined as before; we also have, in terms of the basis
vectors for Φh and Θh, that





(K1)ij = 〈B̃1φi, D̃
−1B̃1φj〉Φ∗,Φ = 〈B∗

1D
−1B1φi, D̃

−1B∗
1D

−1B1φj〉Φ∗,Φ

(K2)jk = 〈B̃2θk, D̃
−1B̃1φj〉Φ∗,Φ = 〈B∗

1D
−1B2θk, D̃

−1B∗
1D

−1B1φj〉Φ∗,Φ

(C̃)kℓ = 〈B̃2θk, D̃
−1B̃2θℓ〉Φ∗,Φ = 〈B∗

1D
−1B2θk, D̃

−1B∗
1D

−1B2θℓ〉Φ∗,Φ;

and {
(~̃g1)j = 〈B̃1φj , D̃

−1g̃1〉Φ∗,Φ = 〈B∗
1D

−1B1φj , D̃
−1B∗

1D
−1g〉Φ∗,Φ

(~̃g2)k = 〈B̃2θk, D̃
−1g̃2〉Φ∗,Φ = 〈B∗

1D
−1B2θk, D̃

−1B∗
1D

−1g〉Φ∗,Φ .
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{the888}
Theorem 6.2. Let (2.3), (2.5), and (3.7) hold. Then, for 0 < ǫ ≤ 1, (6.15) has a unique solution
φhǫ ∈ Φh and θhǫ ∈ Θh. Moreover, if φ ∈ Φ and θ ∈ Θ denotes the unique solution of the optimization
problem (2.6) or equivalently, of (5.8), or equivalently, of (5.10), then there exist a constant C > 0
whose value is independent of ǫ and h such that

‖φ− φhǫ ‖Φ + ‖θ − θhǫ ‖Θ ≤ Cǫ
(
‖g‖Λ∗ + ‖φ̂‖bΦ

)

+C
(
1 +

1

ǫ

)(
inf

eφh∈Φh

‖φǫ − φ̃h‖Φ + inf
eθh∈Θh

‖θǫ − θ̃h‖Θ

)
.

(6.16) {pls33---}

Clearly, (6.11) and (6.15) are not the same. However, the coefficient matrices of both systems
are symmetric and uniformly (with respect to h) positive definite without regards to (3.2).

7 Concluding discussion
{sec6}

7.1 Preliminary comparison of the different approaches
{sec6.1}

In the preceding sections, we have discussed several ways to incorporate least-squares finite element
notions into optimal control problems. We provide a summary list of the various possibilities. In
addition to the various least-squares-related methods, we include the standard approach of applying
a Galerkin finite element method to the optimality system obtained after applying the Lagrange
multiplier rule to the optimization problem. In the list, equation references that are listed within
parentheses correspond to equivalent formulations.

0. Lagrange multiplier rule applied to the optimization problem followed by a mixed-Galerkin
finite element discretization of the resulting optimality system

{
optimization problem (2.6 , 2.10)

}
−→ Lagrange multiplier rule −→

{
optimality system (4.1 , 4.2)

}
−→ Galerkin FE discretization −→

{
discrete equations (4.3 , 4.5)

}

1. Lagrange multiplier rule applied to the optimization problem followed by a least-squares for-
mulation of the resulting optimality system followed by a finite element discretization

{
optimization problem (2.6 , 2.10)

}
−→ Lagrange multiplier rule −→

{
optimality system (4.1 , 4.2)

}
−→ least-squares formulation −→

{
least-squares optimality system (4.18 , 4.19)

}
−→ FE discretization −→

{
discrete system (4.20 , 4.22)

}

2. Lagrange multiplier rule applied to the optimization problem followed by a penalty perturbation
of the resulting optimality system followed by a finite element discretization followed by the
elimination of the discrete Lagrange multiplier

{
optimization problem (2.6 , 2.10)

}
−→ Lagrange multiplier rule −→

{
optimality system (4.1 , 4.2)

}
−→ penalty perturbation −→

{
perturbed optimality system (5.10 , 5.13)

}
−→ FE discretization −→

{
discrete system (5.27 , 5.28)

}
−→ elimination of unknowns −→

{
reduced discrete system (5.29)

}
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3. Penalization of the cost functional by a least-squares functional followed by optimization
followed by a finite element discretization of the resulting optimality equations

{
optimization problem (2.6 , 2.10)

}
−→ penalization of the cost functional −→

{
penalized optimization problem (5.1)

}
−→ optimization −→

{
reduced optimality system (5.7 , 5.8)

}
−→ FE discretization −→

{
discrete system (5.33 , 5.36)

}

or, equivalently, the Lagrange multiplier rule applied to the optimization problem followed by
a penalty perturbation of the resulting optimality system followed by the elimination of the
Lagrange multiplier followed by a finite element discretization

{
optimization problem (2.6 , 2.10)

}
−→ Lagrange multiplier rule −→

{
optimality system (4.1 , 4.2)

}
−→ penalty perturbation −→

{
perturbed optimality system (5.10 , 5.13)

}
−→ elimination of unknowns −→

{
reduced optimality system (5.7 , 5.8)

}
−→ FE discretization −→

{
reduced discrete system (5.33 , 5.36)

}

4. Constraining the cost functional by a least-squares formulation of the state equations to
obtain a modified optimization problem followed by the Lagrange multiplier rule to obtain an
optimality system followed by a finite element discretization

{
modified optimization problem (6.1 , 6.2)

}
−→ Lagrange multiplier rule −→

{
optimality system (6.3)

}
−→ FE discretization −→

{
discrete system (6.9)

}

5. Constraining the cost functional by a least-squares formulation of the state equations to obtain
a modified optimization problem followed by the Lagrange multiplier rule followed by a penalty
perturbation of the resulting optimality system followed by a finite element discretization fol-
lowed by the elimination of the discrete Lagrange multiplier

{
modified optimization problem (6.1 , 6.2)

}
−→ Lagrange multiplier rule −→

{
optimality system (6.3)

}
−→ penalty perturbation −→

{
perturbed optimality system (6.8)

}
−→ FE discretization −→

{
discrete system (6.10)

}
−→ elimination of unknowns −→

{
reduced discrete system (6.11)

}

6. Constraining the cost functional by a least-squares formulation of the state equations to obtain
a modified optimization problem followed by penalization of the cost functional followed by
optimization followed by a finite element discretization of the resulting optimality equations

{
modified optimization problem (6.1 , 6.2)

}
−→ penalize the cost functional −→

{
penalized optimization problem (6.5)

}
−→ optimization −→

{
reduced optimality system (6.6 , 6.7)

}
−→ FE discretization −→

{
discrete system (6.15)

}
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In Table 1, we compare the seven methods just listed with respect to several desirable properties.
The properties are posed in the form of the following questions.

discrete inf-sup not required – are the finite element spaces required to satisfy (3.2) in order that
the resulting discrete systems be stably invertible as h→ 0?

locking impossible – is it possible to guarantee that the discrete systems are stably invertible as
ǫ→ 0 with fixed h?

optimal error estimate – are optimal estimates for the error in the approximate solutions ob-
tainable, possibly after choosing ǫ to depend on h?

symmetric matrix system – are the discrete systems symmetric?

reduced number of unknowns – is it possible to eliminate unknowns to obtain a smaller discrete
system?

positive definite matrix system – do the discrete systems, possible after the elimination of un-
knowns, have a positive definite coefficient matrix?

Table 1: Properties of different approaches for the approximate solution of the optimization prob-
lem. {tabtax}

Method
0 1 2 3 4 5 6

discrete inf-sup not required × √ × √ √ √ √

locking impossible
√ √ √ × √ √ ×

optimal error estimate
√ √ √ × √ √ ×

symmetric matrix system
√ √ √ √ √ √ √

reduced number of unknowns × × √ √ × √ √

positive definite matrix system × √ √ √ × √ √

From Table 1, we see that only approach 5 has all its boxes checked, so that as far as the six
properties used for comparison purposes in that table, that approach seems preferable. However,
there are other issues that arise in the practical implementation of this and other methods that can
influence the choice of a “best” method. In §7.2, we discuss some of these issues in the context of
concrete examples. When including practical considerations, it seems that Method 1 is also a good
candidate. It is probably the case that there is no universal “best” way to incorporate least-square
notions into control and optimization problems.

7.2 Some practical issues arising in implementations
{sec7.4}

One difficulty that arises in the implementation of Method 5 and, indeed, of the other methods
we have discussed is that, in concrete practical settings such as the Stokes equations, H−1(Ω)
norms appear in the least-squares functional (4.17). For example, for Method 5, this leads to the
appearance of the H−1(Ω) inner product in the definition of the matrices and vectors that form
the discrete system. The equivalence relation (·, ·)−1 = (·, (−∆)−1·) is not of much help since, in
general, one cannot exactly invert the Laplace operator, even in the case of zero Dirichlet boundary
conditions. Fortunately, there are several approaches available for ameliorating this difficulty;
these are discussed in [8] in the context of Method 1 of §7.1; see also [3,11,12]. All the approaches
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discussed in [8] can be applied to the methods introduced in this paper, with similar comparative
effectiveness; thus, here, we do not consider this issue any further.

A second issue that needs to be discussed is the conditioning of the discrete systems. Actually,
there are two issues here, i.e., the conditioning with respect to either h as h → 0 or with respect
to ǫ as ǫ→ 0. First, let us discuss the h→ 0 issue. Least-squares finite element methods typically
result in a “squaring” of operators, e.g., the normal equations in the linear algebra context. This
is clearly indicated in (3.16) and (3.17) where one sees that the operator B̃1 that results from
applying the least-squares principle (3.9) to the constraint equations involves the product of the
operators B∗

1 and B1. It is well known that “squaring” operators can result in the squaring of
the condition number of the corresponding matrices one obtains after discretization. This is the
principal reason for using first-order formulations of the constraint equations. The idea here is that
after “squaring” first-order operators, one obtains second-order operators so that the h-condition
number of the resulting squared system is hopefully similar to that for Galerkin formulations of
second-order equations. However, penalty formulations of optimal control problems can result in
a second “squaring” of operators. For example, look at (6.7); we see there operators such as
B∗

1D
−1B1D̃

−1B∗
1D

−1B1 which involves four copies of the operator B1. However, that is not the

whole story; that operator also involves two copies of the operator D−1 and also the operator D̃−1.
Given the nature of all these operators, it is not at all clear that the h-condition number of the
discrete systems of §§4.2, 5, and 6 are similar to those that result from a naive double “squaring”
of first-order operators; indeed, norm equivalence relations such as (3.15) and (4.14) can sometimes
be used to show that h-condition numbers for least-squares-based methods are no worse than those
for Galerkin-based methods.

The situation regarding the conditioning of the discrete systems as ǫ → 0 is problematic for
all penalty methods, even for those for which locking does not occur. Note that to obtain a result
such as (6.14), one chooses ǫ = hα; with such a choice, ǫ is likely to be small. This situation can be
greatly ameliorated by introducing an iterated penalty method; see, e.g., [15] and also [14,17,18]. To

this end, let {~φǫ, ~θǫ, ~µǫ} denote the solution of (6.10) and set ~φ
(0)

= ~φǫ,
~θ

(0)
= ~θǫ, and ~µ(0) = ~µǫ.

Then, for n ≥ 1, we solve the sequence of problems




A1 0 B̃1

0 A2 B̃
T
2

B̃1 B̃2 −ǫD̃







~φ
(n)

~θ
(n)

~µ(n)


 =




~0

~0

−ǫD̃~µ(n−1)


 . (7.1) {pls79}

Then, for any N > 0, we let

~φǫ,N =

N∑

n=0

~φ
(n)
, ~θǫ,N =

N∑

n=0

~θ
(n)
, and ~µǫ,N =

N∑

n=0

~µ(n) (7.2) {pls78}

and we let φhǫ,N ∈ Φh, θhǫ,N ∈ Θh, and µhǫ,N ∈ Φh be the finite element functions corresponding to
the coefficients collected in the respective vectors in (7.2). Then, instead of the estimate (6.13),
one obtains the estimate (see, e.g., [15] and also [14,17])

‖φ− φhǫ,N‖Φ + ‖θ − θhǫ,N‖Θ + ‖µ− µhǫ,N‖Φ ≤ C(ǫN+1 + hα + hβ)

so that if β ≥ α and one chooses ǫ = hα/N+1, one obtains the optimal error estimate

‖φ− φhǫ,N‖Φ + ‖θ − θhǫ,N‖Θ + ‖µ− µhǫ,N‖Φ ≤ CǫN+1 = Chα
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instead of (6.14). These estimates tell us that we can make the error due to penalization as small as
we want in two ways: we can choose either ǫ sufficiently small or N sufficiently large. Making the
former choice, e.g., choosing N = 0 and ǫ = hα, can lead to conditioning problems for the discrete
systems since ǫ << 1. Making the latter choice allows us obtain the same effect but with a much
larger value for ǫ.

Note that ~µ(n) may be eliminated from (7.1) to yield a reduced system with fewer unknowns.

Thus, the iteration to compute the pairs {~φ(n)
, ~θ

(n)} for n = 0, 1, . . . , using reduced systems

proceeds as follows. Let ~φ
(0)

= ~φǫ and ~θ
(0)

= ~θǫ, where ~φǫ and ~θǫ denote the solution of (6.11),
and then set

~g(0) = B̃1
~φ

(0)
+ B̃2

~θ
(0) − ~g1 .

Then, for n = 1, 2, . . . , solve the systems





(
A1 +

1

ǫ
B̃1D̃

−1
B̃1

)
~φ

(n)
+

1

ǫ
B̃1D̃

−1
B̃2
~θ

(n)
=

1

ǫ
B̃1D̃

−1~g(n−1)

(
A2 +

1

ǫ
B̃
T
2 D̃

−1
B̃2

)
~φ

(n)
+

1

ǫ
B̃
T
2 D̃

−1
B̃1
~θ

(n)
=

1

ǫ
B̃
T
2 D̃

−1~g(n−1).

In order to define the next iterate, we set

~g(n) = ~g(n−1) + B̃1
~φ

(n)
+ B̃2

~θ
(n)
.
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