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We develop and analyze a negative norm least-squares method for the compressible Stokes equations
with an inflow boundary condition. Least-squares principles are derived for a first-order form of the equa-
tions obtained by using ω = ∇ × u and φ = ∇ · u as new dependent variables. The resulting problem
is incompletely elliptic, i.e., it combines features of elliptic and hyperbolic equations. As a result, well-
posedness of least-squares functionals cannot be established using the ADN elliptic theory and so we use
direct approaches to prove their norm-equivalence. The article concludes with numerical examples that illus-
trate the theoretical convergence rates. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 22:
000–000, 2006
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I. INTRODUCTION

This article deals with least-squares finite element methods for the approximate numerical solution
of the boundary value problem




−µ� u − ν∇∇ · u + (β · ∇)u + ∇p = f in �,
∇ · u + β · ∇p = g in �,

u = 0 on ∂�,
p = 0 on �in

(1.1)
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In (1.1) � is a bounded open region in �2 with a Lipschitz continuous boundary ∂�, β = (β1, β2)
t

with β1 ≥ C0 > 0 is a given C1 vector function on �̄, f and g are given C1 functions, and µ and
ν are two constants such that µ > 0 and µ > −ν.

Problem (1.1) can be derived by linearization of the barotropic Navier-Stokes equations around
a given ambient flow; see [1]. In what follows we shall refer to (1.1) as the compressible Stokes
equations. Accordingly, we will refer to u = (u1, u2)

t , p and µ and ν as the velocity, pressure,
and the viscous constants, respectively.

We draw attention to the fact that the second equation in (1.1) contains a streamline derivative
of the pressure and so the pressure must be specified on the inflow boundary �in = {(x, y) ∈
∂� | β · n < 0}, where n is the outward unit vector normal to the boundary ∂�. This means that
with respect to the pressure, (1.1) has a hyperbolic character, while with respect to the velocity it
is elliptic. Systems of equations that exhibit such mixed behavior are called incompletely elliptic.

Since the structure of (1.1) resembles that of the usual Stokes problem, finite element methods
for (1.1) can be obtained by an extension of the mixed Galerkin formulation to the compressible
case. This approach has been adopted in [2–4]. Because the continuity equation in the compressible
case already includes a pressure term, it is relatively easy to obtain mixed formulations that do not
require the inf-sup stability condition; see [5]. Such formulations resemble the so-called stabilized
finite element methods where the continuity equation is relaxed by adding a suitable pressure term.

An alternative path to the finite element solution of (1.1) is to use least-squares minimization
principles. While for the incompressible Stokes, or Navier-Stokes equations the main reason to
consider least-squares would be the desire to circumvent the inf-sup stability condition; see [6–9],
for the compressible case this reason would be the possibility to obtain a symmetric and positive
definite algebraic system. Such least-squares methods for (1.1) have been introduced only recently
in [8] and [9]. The method of [8] is based on the second-order problem (1.1), while [9] uses a
velocity-flux first-order system that was proposed in [8]. In the velocity flux formulation all first
derivatives of the velocity U = ∇u are used as new dependent variables leading to a significant
increase in the problem size. This drawback can be partially offset for problems with smooth
solutions because then one can consider an augmented velocity flux formulation that is H 1-elliptic.
In this case algebraic equations can be solved efficiently by multigrid.

In this article we develop a new least-squares method for (1.1) based on a formulation that
falls between the two aforementioned compressible Stokes formulations. We do replace (1.1) by
a first-order system, but unlike the one in [9], it is based on the physically important variables
ω = ∇ × u and φ = ∇ · u. This allows us to reap the benefits of a direct approximation
of physically meaningful fields without unnecessary increase in complexity. This is especially
important in cases when solutions are not smooth enough for the augmented flux formulation
to make sense and so the advantages of fast multigrid solvers cannot be exploited. In addition,
unlike [8], we allow advective fields β that do not vanish on the outflow boundary. This more
general case considerably complicates the analysis because now the pressure does not have a
vanishing mean and Necas’s inequality is not applicable.

The article is organized as follows. Notation and technical results are summarized at the end
of this section. In Section II we prove an auxiliary a priori estimate for the second-order system
(1.1) that is later used to establish norm-equivalence of first-order system least-squares functional.
This system and the associated continuous least-squares principle are formulated in Section III.
Here we also show the well-posedness of the least-squares minimization problem. Our results are
established under additional assumptions on ‖∇ · β‖∞ that are not uncommon for the compressible
case; see [8] or [3,5]. The continuous least-squares principle in §III uses negative norms and is not
a practical foundation for a finite element method. In section IV we use it as a template to define a
proper discrete least-squares functional that can be implemented in a practical manner. We show
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that the discrete least-squares principle leads to finite element approximations that converge at
optimal rates to all sufficiently smooth solutions of (1.1). These theoretical error estimates are
further confirmed by a series of numerical experiments collected in Section V.

A. Notations

We use standard notations and definitions for the Sobolev spaces Hs(�), with their associated
inner products 〈·, ·〉s , and norms ‖ · ‖s , s ≥ 0. For s = 0, H 0(�) is the usual L2(�) with norm and
inner product denoted by ‖ · ‖0 = ‖ · ‖ and 〈·, ·〉, respectively. As usual, L2

0(�) is the subspace of
all square integrable functions with zero mean. The closure of D(�) in Hs(�) will be denoted
by Hs

0 (�), where D(�) is the linear space of infinitely differentiable functions with compact
supports on � with respect to the norm ‖ · ‖s . We identify it with the subspace of all Hs(�)

functions that vanish on ∂�. H−1(�) denotes the dual of H 1
0 equipped with the norm

‖φ‖−1 = sup
ψ∈H1

0 (�)

(φ, ψ)

‖ψ‖1
. (1.1)

The product spaces Hs
0 (�)2 and L2(�)2 are defined in the usual manner. We recall that

H(div; �) = {v ∈ L2(�)2 : ∇ · v ∈ L2(�)} (1.2)

equipped with a norm

‖v‖H(div;�) := (‖v‖2 + ‖∇ · v‖2)1/2

is a Hilbert space. We will make a frequent use of the space

Q(β, �) = {
q ∈ L2(�) : β · ∇q ∈ L2(�), q = 0 on �in

}
(1.3)

equipped with the norm

‖q‖Q = (‖q‖2 + ‖β · ∇q‖2)1/2. (1.4)

In two dimensions the curl of v = (v1, v2)
t is the scalar function

∇ × v = ∂x1v2 − ∂x2v1,

and the curl of a scalar function p is the planar vector

∇ × p = (∂x2p, −∂x1p)t .

II. AN A PRIORI ESTIMATE FOR THE COMPRESSIBLE STOKES EQUATIONS

Below we establish an a priori estimate for the second-order problem (1.1). This auxiliary result
will be used later on to show norm-equivalence of least-squares functionals based on first-order
forms of (1.1). Let λ be the Poincaré constant, that is,

‖u‖2 ≤ λ ‖∇u‖2, ∀ u ∈ H 1
0 (�)2.
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Furthermore, let µ0 = min{µ, µ + 2ν},

γ0(β) := 1

2
‖∇ · β‖∞ and γ1(β) := µ0 − λγ0(β)

1 + λ
.

The following Lemma extends a result of [3, Lemma 2] to the present case.

Lemma 2.1. Assume that γ1(β) > 0. For any u ∈ H 1
0 (�)2,

γ1(β)‖u‖2
1 ≤ 〈−µ�u − ν∇∇ · u + (β · ∇)u, u〉. (2.1)

For any p ∈ Q(β; �),

−γ0(β)‖p‖2 ≤ 〈β · ∇p, p〉. (2.2)

Proof. From the Green’s Theorem and the fact that ‖∇ · u‖ ≤ √
2‖∇u‖, it follows that

〈−µ�u − ν∇∇ · u + (β · ∇)u, u〉

= µ〈∇u, ∇u〉 + ν〈∇ · u, ∇ · u〉 + 1

2

〈
β, ∇|u|2〉

= µ‖∇u‖2 + ν‖∇ · u‖2 − 1

2

〈∇ · β, |u|2〉
≥ µ0‖∇u‖2 − γ0(β)‖u‖2 ≥ (µ0 − λγ0(β))‖∇u‖2.

Since γ1(β) > 0, Poincaré’s inequality yields (2.1). Because p = 0 on �in for any p ∈ Q(β; �)

and β · n ≥ 0 on �out, it follows that

〈β · ∇p, p〉 = 1

2
〈β, ∇p2〉 = −1

2

∫
�

(∇ · β)p2 d� + 1

2

∫
∂�

(β · n)p2 ds

≥ −γ0(β)‖p‖2 + 1

2

∫
�out

(β · n)p2 ds ≥ −γ0(β)‖p‖2.

This completes the proof of the Lemma.

To state the main result of this section we recall that (see [5])

‖p‖ ≤ C1‖β · ∇p‖, ∀ p ∈ Q(β; �). (2.3)

Theorem 2.1. Assume that γ0(β) is such that

γ0(β) <
µ0

λ + 4C2
1 (1 + λ)

, (A0)

where C1 is given in (2.3). Then, there exist constants c and C such that for any (u, p) ∈ H 1
0 (�)2 ×

Q(β; �)

c
(‖u‖2

1 + ‖p‖2
Q

) ≤ |||u, p|||2 ≤ C
(‖u‖2

1 + ‖p‖2
Q

)
, (2.4)

where

|||u, p|||2 = ‖−µ�u − ν∇(∇ · u) + (β · ∇)u + ∇p‖2
−1 + ‖β · ∇p + ∇ · u‖2.
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Proof. The upper bound easily follows by repeated application of the triangle inequality
and the definition of H−1(�)-norm. To prove the lower bound, note that (2.3) and the triangle
inequality imply

‖p‖ ≤ C1(‖β · ∇p + ∇ · u‖ + ‖∇ · u‖). (2.5)

If γ0(β) satisfies (A0), then γ1(β) > 0. Hence, from (2.1), integrating by parts and using the
Cauchy-Schwarz inequality yields that

γ1(β)‖u‖2
1 ≤ 〈−µ�u − ν∇∇ · u + (β · ∇)u + ∇p, u〉 + 〈p, ∇ · u〉
≤ ‖−µ�u − ν∇∇ · u + (β · ∇)u + ∇p‖−1‖u‖1 + 〈p, ∇ · u〉

≤ C|||u, p|||2 + γ1(β)

4
‖u‖2

1 + 〈p, ∇ · u〉. (2.6)

On the other hand, from (2.2), (2.5), and the Cauchy-Schwarz’s inequality follows that

〈p, ∇ · u〉 = 〈p, β · ∇p + ∇ · u〉 − 〈p, β · ∇p〉
≤ ‖β · ∇p + ∇ · u‖ ‖p‖ + γ0(β)‖p‖2

≤ C|||u, p|||2 +
(

γ1(β)

4
+ 2C2

1γ0(β)

)
‖u‖2

1. (2.7)

Combining (2.6), (2.7), and (A0) gives that

‖u‖2
1 ≤ C‖−µ�u − ν∇(∇ · u) + (β · ∇)u + ∇p‖2

−1 + ‖β · ∇p + ∇ · u‖2. (2.8)

Now, using (2.5), (2.8), and triangle inequality

‖p‖2
Q ≤ C‖−µ�u − ν∇(∇ · u) + (β · ∇)u + ∇p‖2

−1 + ‖β · ∇p + ∇ · u‖2.

This completes the proof of the theorem.

We consider an alternative restriction for β in the next corollary.

Corollary 2.1. Assume that

∇ · β ≤ 0 in � and γ0(β) <
µ0

λ
. (A1)

Then, (2.4) holds for any (u, p) ∈ H 1
0 (�)2 × Q(β; �).

Proof. If ∇ · β ≤ 0 in �, then instead of (2.2) we have that

(β · ∇p, p) ≥ 0 ∀ p ∈ Q(β; �). (2.9)

Thus, instead of (2.7) we obtain the alternative bound

(p, ∇ · u) = (p, β · ∇p + ∇ · u) − (p, β · ∇p)

≤ ‖β · ∇p + ∇ · u‖ ‖p‖. (2.10)
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If γ0(β) < µ0/λ, then γ1(β) > 0, and so from (2.5), (2.6), and (2.10) easily follows that

γ1(β)‖u‖2
1 ≤ C‖−µ�u − ν∇(∇ · u) + (β · ∇)u + ∇p‖2

−1 + ‖β · ∇p + ∇ · u‖2.

Validity of (2.9) is an immediate consequence of this inequality.

Theorem 2.1 and Corollary 2.1 can be used to set up a well-posed least-squares principle for
the second-order system (1.1). We will not pursue this direction here because our main focus
is on more practical least-squares finite element methods based on first-order systems. Thus,
Theorem 2.1 will serve an auxiliary role in proving the norm equivalence of the first-order system
least-squares functionals. For examples of second-order formulations the interested reader can
consult [8]. There, a priori estimates similar to those in Theorem 2.1 are established under the
assumption that β vanishes on the boundary ∂�. In contrast, our analysis in Theorem 2.1 is carried
under more general assumption that β vanishes only on �in. The main complication in this case
stems from the fact that p is not in L2

0 and so the inequality ‖p‖ ≤ C‖∇p‖−1 does not hold.

III. CONTINUOUS LEAST-SQUARES PRINCIPLE

In this section we formulate an equivalent first-order form of the compressible Stokes problem
(1.1) and then develop a least-squares variational principle for this system. The main focus of the
section is on demonstrating the norm-equivalence of the least-squares functional.

To obtain the first-order system, we introduce the vorticity ω = ∇ × u and the divergence
φ = ∇ · u as new dependent variables. Using the vector identity

∇ × (∇ × u) = −�u + ∇(∇ · u), (3.1)

to rewrite the momentum equation in (1.1) in terms of ω, u, and p, and adding the definitions of
the new variables to (1.1) yields the equivalent system



µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p = f , in �,
φ + β · ∇p = g, in �,
ω − ∇ × u = 0, in �,
φ − ∇ · u = 0, in �,

u = 0, on ∂�

p = 0, on �in, (3.2)

where φ satisfies a zero mean constraint, ∫
�

φ dx = 0.

To formulate a least-squares principle for (3.2) let

V = L2
0(�) × L2

0(�) × H 1
0 (�)2 × Q(β; �),

with norm

‖(ω, φ, u, p)‖2
V = ‖ω‖2 + ‖φ‖2 + ‖u‖2

1 + ‖p‖2
Q.



FOSLS FOR COMPRESSIBLE STOKES EQUATIONS 7

We consider the quadratic least-squares functional

J (ω, φ, u, p; f , g) = ‖µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p − f‖2
−1

+ ‖φ + β · ∇p − g‖2 + ‖ω − ∇ × u‖2 + ‖φ − ∇ · u‖2, (3.3)

and the least-squares principle: seek (ω, φ, u, p) ∈ V such that

J (ω, φ, u, p; f , g) ≤ J (χ , ψ , v, q; f , g), (3.4)

for all (χ , ψ , v, q) ∈ V . Next Theorem shows that (3.4) is a well-posed minimization problem.

Theorem 3.1. Assume that (A0) or (A1) hold. Then, there exist two positive constants c and C,
which depend on µ, ν, β, and �, and such that, for all (ω, φ, u, p) ∈ V ,

c‖(ω, φ, u, p)‖2
V ≤ J (ω, φ, u, p; 0, 0) ≤ C‖(ω, φ, u, p)‖2

V . (3.5)

Proof. The upper bound in (3.5) follows easily from the triangle inequality. To prove the
lower bound note that if either (A0) or (A1) holds, then the a priori estimate (2.4) holds too. Let
(ω, φ, u, p) denote an arbitrary element of V . Using (2.4), the triangle inequality and the fact that

‖∇ × q‖−1 ≤ ‖q‖ and ‖∇q‖−1 ≤ ‖q‖, ∀ q ∈ L2(�),

we obtain the bound

‖u‖2
1 + ‖p‖2

Q ≤ C|||u, p|||2
= C

(‖−µ�u − ν∇∇ · u + (β · ∇)u + ∇p‖2
−1 + ‖∇ · u + β · ∇p‖2

)
≤ C

(‖µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p‖2
−1 + ‖∇ × (ω − ∇ × u)‖2

−1

+ ‖∇(φ − ∇ · u)‖2
−1 + ‖φ + β · ∇p‖2 + ‖φ − ∇ · u‖2

)
≤ C J (ω, φ, u, p; 0, 0), (3.6)

where C is a constant depending on µ, ν, β, and �. Furthermore,

‖ω‖ ≤ ‖ω − ∇ × u‖ + ‖∇ × u‖ and ‖φ‖ ≤ ‖φ − ∇ · u‖ + ‖∇ · u‖. (3.7)

The lower bound of (3.5) and the theorem follow from combining (3.6) and (3.7).

IV. DISCRETE LEAST-SQUARES PRINCIPLES

Formally, restriction of (3.4) to a finite dimensional subspace Vh of V will yield a well-posed
discrete problem. However, the presence of negative norms in (3.3) means that computation of
the discrete minimizer out of Vh will not be possible in a practical manner.

In this section we use (3.3) as a template to define a discrete least-squares functional that is
practical and at the same time retains the attractive properties of its continuous counterpart. To
discuss the discrete functional and the associated finite element methods, we will assume that Th

is a uniformly regular triangulation of � into finite elements, parametrized by the mesh parameter
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h. Furthermore, we assume that Vh := Vh,1 × Vh,2 × Vh,3 × Vh,4 is a finite dimensional subspace
of V such that for (ω, φ, u, p) ∈ V ∩ [Hr(�) × Hr(�) × Hr+1(�)2 × Hr+1(�)](r ≥ 1),

inf
χh∈Vh,1

{‖ω − χh‖ + h‖ω − χh‖1} ≤ Chr‖ω‖r , (4.1)

inf
ψh∈Vh,2

{‖φ − ψh‖ + h‖φ − ψh‖1} ≤ Chr‖φ‖r , (4.2)

inf
vh∈Vh,3

{‖u − vh‖ + h‖u − vh‖1} ≤ Chr+1‖u‖r+1, (4.3)

inf
qh∈Vh,4

{‖p − qh‖ + h‖p − qh‖1} ≤ Chr+1‖p‖r+1, (4.4)

for some positive C independent of h. The spaces Vh,i can be constructed from the standard
Lagrangian finite element spaces Sd

h of continuous, piecewise polynomial functions whose degree
on each element K ∈ Th equals d . We recall that for such spaces on regular triangulations there
exists a positive constant C such that

‖φh‖1 ≤ h−1C‖φh‖0 ∀φh ∈ Sd
h . (4.5)

We recall (see Lemma 2.1 in [10]) that for all g ∈ H−1(�)2

‖g‖2
−1 = (T g, g), (4.6)

where T : H−1(�)2 → H 1
0 (�)2 is the solution operator of the boundary value problem

−� w + w = g in � and w = 0 on ∂�.

Using (4.6) we can rewrite the continuous least-squares functional (3.3) as

J (ω, φ, u, p ; f , g) = (T (µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p − f),

µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p − f)

+ ‖φ + β · ∇p − g‖2 + ‖ω − ∇ × u‖2 + ‖φ − ∇ · u‖2. (4.7)

Following [10] and [11], we will define a practical least-squares functional by replacing the
continuous operator T by a discrete operator Th. To this end, let B̃h : H−1(�)2 → Vh,3 denote a
solution operator of the discrete weak equation: seek wh ∈ Vh,3 such that

(∇wh, ∇vh) + (wh, vh) = (g, vh), ∀ vh ∈ Vh,3. (4.8)

In other words, given g ∈ H−1(�), B̃h g = wh if and only if wh solves (4.8).
Computation of B̃h requires solution of a Poisson equation on the same mesh where we pose

our primary problem. To define Th, we assume that there is a preconditioner Bh : H−1(�)2 → Vh,3

for B̃h, which is symmetric positive definite operator with respect to the L2(�)-inner product and
spectrally equivalent to B̃h, i.e.,

C1(B̃hvh, vh) ≤ (Bhvh, vh) ≤ C2(B̃hvh, vh) for all vh ∈ Vh,3, (4.9)
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but which is cheaper to evaluate. Let Qh : L2(�)2 → Vh,3 be the L2-orthogonal projection onto
Vh,3. We assume that Qh is bounded in H 1, i.e.,

‖Qhvh‖1 ≤ C‖vh‖1 ∀vh ∈ Vh,3.

Then, one can show; see [10], that

‖(I − Qh)v‖−1 ≤ Ch‖v‖, for all v ∈ L2(�)2 (4.10)

and

‖Qhv‖2
−1 ≤ C(B̃hv, v) ≤ C‖v‖2

−1 for all v ∈ L2(�)2. (4.11)

Finally, from the symmetry of Bh and the identities Bh = BhQh and B̃h = B̃hQh, it follows that
(4.9) holds for any v ∈ L2(�)2.

We now proceed to define the operator

Th := h2I + γBh, (4.12)

where I denotes identity and γ > 0 is a real parameter. Using (4.12) in place of T gives the
discrete counterpart of (3.3):

Jh(ω, φ, u, p; f , g) = (Th(µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p − f),

µ∇ × ω − (µ + ν)∇φ + (β · ∇)u + ∇p − f)

+ ‖φ + β · ∇p − g‖2 + ‖ω − ∇ × u‖2 + ‖φ − ∇ · u‖2. (4.13)

The discrete least-squares principle associated with (4.13) is

min
(χh ,ψh ,vh ,qh)∈Vh

Jh(χh, ψh, vh, qh; f , g). (4.14)

The optimality condition for (4.14) is to seek Uh = (ωh, φh, uh, ph) ∈ Vh such that

Bh(Uh, Vh) = Fh(Vh) for all Vh = (χh, ψh, vh, qh) ∈ Vh, (4.15)

and where

Bh(Uh, Vh) = (µ∇ × ωh − (µ + ν)∇φh + (β · ∇)uh + ∇ph,

Th (µ∇ × χh − (µ + ν)∇ψh + (β · ∇)vh + ∇qh))

+ (φh + β · ∇ph, ψh + β · ∇qh) + (ωh − ∇ × uh, χh − ∇ × vh)

+ (φh − ∇ · uh, ψh − ∇ · vh), (4.16)

Fh(Vh) = (f , Th(µ∇ × χh − (µ + ν)∇ψh + (β · ∇)vh + ∇qh)) + (g, ψh + β · ∇qh).
(4.17)

Our next result reveals the norm-equivalence properties of (4.13).
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Theorem 4.1. Assume that (A0) or (A1) hold. Then, there exist two positive constants c and C,
which depend on µ, ν, β, and �, and such that for all (ωh, φh, uh, ph) ∈ Vh,

c‖(ωh, φh, uh, ph)‖2
V ≤ Jh(ωh, φh, uh, ph) ≤ C‖(ωh, φh, uh, ph)‖2

V . (4.18)

Proof. We follow the arguments of ([10]). It is clear that for any finite element function
(ωh, φh, uh, ph) ∈ Vh the function

v ≡ µ∇ × ωh − (µ + ν)∇φh + (β · ∇)uh + ∇ph (4.19)

is in L2(�)2. From (4.11) it is easy to see that

(Thv, v) ≤ C
(
h2‖v‖2 + ‖v‖2

−1

) ∀v ∈ L2(�).

This, together with the triangle inequality and the inverse inequality (4.5), implies the upper bound
in (4.18). To prove the lower bound in (4.18), it is enough, according to Theorem 3.1, to show
that

‖µ∇ × ωh − (µ + ν)∇φh + (β · ∇)uh + ∇ph‖2
−1

≤ C(Th(µ∇ × ωh − (µ + ν)∇φh + (β · ∇)u + ∇p),

µ∇ × ωh − (µ + ν)∇φh + (β · ∇)uh + ∇ph).

From (4.10) and (4.11), for any v ∈ L2(�)2, we have

‖v‖2
−1 ≤ 2

(‖(I − Qh)v‖2
−1 + ‖Qhv‖2

−1

) ≤ C
(
h2‖v‖2 + (B̃hv, v)

) ≤ C(Thv, v).

Setting v equal to the function in (4.19) completes the proof.

Corollary 4.1. Problem (4.14) has a unique minimizer Uh ∈ Vh.

Proof. From (4.18) it follows that form Bh is coercive and continuous on Vh × Vh. It is
not difficult to see that Fh is continuous linear functional Vh �→ � and so Lax-Milgram lemma
implies that (4.15) has a unique solution.

Theorem 4.1 asserts that (4.13) has the same norm-equivalence properties as its continuous
prototype (3.3) on any C0 conforming finite element subspace of V . In the next theorem we use
this fact to establish optimal convergence rates for the finite element solutions of (4.13).

Theorem 4.2. Let the assumption (2.4) hold and assume further that

U = (ω, φ, u, p) ∈ V ∩ [
Hr(�) × Hr(�) × Hr+1(�)2 × Hr+1(�)

]
, r ≥ 1

is the solution of (3.2). Let Uh = (ωh, φh, uh, ph) ∈ Vh be the unique minimizer of (4.14). Then,
there exists a positive constant C depending on µ, ν, β, and �, such that

‖U − Uh‖V ≡ ‖(ω − ωh, φ − φh, u − uh, p − ph)‖V

≤ C hr(‖ω‖r + ‖φ‖r + ‖u‖r+1 + ‖p‖r+1) . (4.20)
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Proof. Let UI
h be the element of Vh that verifies (4.1)–(4.4). Then,

‖U − Uh‖V ≤ ‖U − UI
h ‖V + ‖UI

h − Uh‖V

≤ C hr(‖ω‖r + ‖φ‖r + ‖u‖r+1 + ‖p‖r+1) + ‖UI
h − Uh‖V .

Using (4.18) in Theorem 4.1 for the discrete error gives

c‖UI
h − Uh‖2

V ≤ Bh

(
UI

h − Uh, UI
h − Uh

) = Bh

(
UI

h − U , UI
h − Uh

)
≤ C‖UI

h − U‖V‖UI
h − Uh‖V ,

where the last inequality follows from the error orthogonality. As a result,

‖UI
h − Uh‖V ≤ C

c
‖UI

h − U‖V ≤ C̃ hr(‖ω‖r + ‖φ‖r + ‖u‖r+1 + ‖p‖r+1) .

This completes the proof.

The norm-equivalence (4.18) holds for the discrete functional (4.13) whenever Bh is spectrally
equivalent to B̃h. The operator Bh ≡ h2I does not verify (4.9) but is very simple to work with.
Using this operator we have the alternative definition

Th = αh2I

that leads to the weighted L2 norm least-squares functional

J w
h (ωh, φh, uh, ph; f , g) = α h2‖µ∇ × ωh − (µ + ν)∇φh + (β · ∇)uh + ∇ph − f‖2

+ ‖φh + β · ∇ph − g‖2 + ‖ωh − ∇ × uh‖2 + ‖φh − ∇ · uh‖2. (4.21)

Similar weighted functionals were studied in [6] and [12] for the incompressible Stokes problem.
However, for (4.21) one can only show that

c‖(ωh, φh, uh, ph)‖2
V ≤ J w

h (ωh, φh, uh, ph) ≤ Cαh−2‖(ωh, φh, uh, ph)‖2
V , (4.22)

FIG. 1. Finite element solution errors as function of the mesh size: (Jh).
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TABLE I. Numerical L2 norm convergence rates: (Jh).

Level ‖u − uh‖ ‖p − ph‖ ‖p − ph‖Q ‖ω − ωh‖ ‖φ − φh‖
3 1.5278 1.3404 1.3883 1.7171 1.6006
4 2.1172 1.4399 1.4731 1.6858 1.5806
5 2.0546 1.5665 1.5695 1.7196 1.4215
6 2.0466 1.5301 1.4364 1.8084 1.3579

i.e., (4.21) is only quasi norm-equivalent. Because (1.1) is an incompletely elliptic system, analysis
of [6] and [12] cannot be extended to the present case. Nevertheless, simplicity of the weighted
functional makes it very attractive computationally. In the next section we compare this functional
(4.21) with its norm-equivalent counterpart (4.13).

V. NUMERICAL EXAMPLES

Below we present numerical results obtained with the two discrete least-squares functionals
introduced in the last section. One may refer to the implementation given in [13]. The goal of
our experiments is twofold. First, we want to confirm the asymptotic error estimates (4.20) for
the discrete functional (4.13). The second objective is to compare computationally performance
of the norm-equivalent, but more expensive, functional (4.13) with that of the simpler, but only
quasi-norm equivalent, weighted functional (4.21). The goal is to determine whether or not (4.21)
can serve as a sensible alternative for a truly norm-equivalent least-squares functional.

All experiments were carried on with µ = 1, ν = 0, and β = (1, 0)t . The right-hand sides
were obtained by evaluating (3.2) for a known exact solution. The operator Bh used to define Th

in (4.12) was selected to be one sweep of the multigrid V (1,1)-cycle algorithm with pointwise
Gauss-Seidel smoothing applied to (4.8).

In all cases Vh was defined using equal order interpolation finite element spaces. We report
numerical results with piecewise linear finite element spaces. For such spaces (4.1)–(4.4) hold
with r = 1.

A. Numerical Results on the Unit Square

Let � = [0, 1]2. We consider a uniform triangulation of � obtained by subdividing the region
into 2k+1 squares and then drawing the diagonal in each square. The level k used in this study
range from k = 2 to k = 7. The mesh size for each level k equals 2−k . The convergence rates for
level k + 1 in L2(�) and H 1(�) norm discretization errors are measured by

log2

‖χ − χk‖
‖χ − χk+1‖ and log2

‖χ − χk‖1

‖χ − χk+1‖1

TABLE II. Numerical H 1 norm convergence rates: (Jh).

Level ‖u − uh‖1 ‖p − ph‖1 ‖ω − ωh‖1 ‖φ − φh‖1 ‖U − Uh‖V

3 1.5419 0.4370 1.0543 0.7709 1.4552
4 1.8475 0.5640 0.9798 0.5645 1.5289
5 1.6239 0.6437 0.9780 0.6294 1.5690
6 1.5331 0.6765 0.8562 0.6746 1.4490
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FIG. 2. Finite element solution errors as function of the mesh size: (J w
h ).

for each variable χ = u, p, ω, φ, where χ and χk denote by the exact solution and approximate
solution of level k, respectively. The exact solutions for the unit square domain are

u1 = u2 = sin(πx) sin(πy) and p = x exp(πy). (5.1)

Our results for the discrete least-squares functional Jh(·; ·) in (4.13) are summarized in Fig. 1
and Tables I and II. Fig. 1 shows plots of various error norms that were used to compute numerical
convergence rates reported in Tables I and II. The rates summarized in these tables show very
good agreement with the theoretical error rates established in Theorem 4.2. We note that some of
the numerical rates are actually higher than the theoretical rates. We also note that the L2 error
rate for the velocity appears to be optimal, even though this error is not covered by the analysis
in Theorem 4.2.

Next we consider the simpler, weighted L2 norm least-squares functional J w
h (·; ·) in (4.21).

Recall that (4.21) can be viewed as a version of (4.13), where Th was replaced by the scaled
identity h2I , leading to a discrete negative norm operator Th = αh2I . In all experiments α = h, a
value that was determined to yield the best performance of the weighted least-squares functional.

Fig. 2 shows plots of finite element errors for (4.21). The convergence rates corresponding to
the error plots are summarized in Tables III and IV.

From the results in Tables III and IV we see that convergence rates of the weighted least-squares
method are smaller than the rates obtained with the norm-equivalent least-squares functional
(4.13). This is especially true for the L2 error in the velocity that drops to O(h1.2) for the weighted

TABLE III. Numerical L2 norm convergence rates: (J w
h ).

Level ‖u − uh‖ ‖p − ph‖ ‖p − ph‖Q ‖ω − ωh‖ ‖φ − φh‖
3 1.3214 1.3971 1.2674 1.5638 1.5387
4 1.5881 1.5547 1.4621 1.8239 1.7610
5 1.5270 1.5404 1.4894 1.7662 1.5665
6 1.3570 1.5173 1.4668 1.5792 1.4419
7 1.2094 1.4692 1.4273 1.2865 1.3117
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TABLE IV. Numerical H 1 norm convergence rates: (J w
h ).

Level ‖u − uh‖1 ‖p − ph‖1 ‖ω − ωh‖1 ‖φ − φh‖1 ‖U − Uh‖V

3 1.3518 0.4908 1.2989 1.0354 1.4391
4 1.5769 0.5351 1.2737 0.6771 1.6185
5 1.5222 0.5190 1.2608 0.5050 1.5599
6 1.3827 0.5086 1.3042 0.4873 1.4883
7 1.2510 0.5040 1.3259 0.4912 1.3892

functional. However, the error in the composite norm ‖U − Uh‖V is still of order O(h1.4), i.e.,
above the theoretically optimal value predicted by Theorem 4.2.

B. Numerical Results on the Unit Disk

We will now test the weighted least-squares functional J w
h (·; ·) in (4.21) on the unit disk

using piecewise linear finite element spaces. The triangulation of � is defined by using affine
isoparametric families of finite elements on triangles, i.e., the computational domain �̂ is a
polygonal approximation to the unit disk domain �. This leads to an error of order O(h2) in the
approximation of ∂� by ∂�̂. Fig. 3 shows the initial triangulation of the unit disk. The refined
triangulations T2, . . . , Tj are generated by subdividing each triangle in Tk into four congruent
triangles of Tk+1. However, when two vertices of the triangle are located on ∂�, the midpoint of
two vertices is projected onto the curved boundary of the side with outward normal direction.
A refined triangulation T2 is shown on the right-hand side of Fig. 3. To define the least-squares
method we set α = h in (4.21). Then we consider an exact solution

u =
(

u1

u2

)
=

(
1 − x2 − y2

1
2 (1 + y)[(1 − y2)

3
2 − |x|3]

)
,

p = 3

2
(1 + y)(x − 1)(x + √

1 − y2).

FIG. 3. Initial triangulation and refined triangulation.
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FIG. 4. L2 norm errors and H 1 semi-norm errors: (J w
h ).

that was used in [5]. The derivatives ∂yp and ∂yyu2 of this solution have mild singularities near
(0, 1). In particular, near this point ∂yp behaves like ∂yyu2; see [5]. After substituting the exact
solution in (1.1) we find that

f1 = −µ�u1 + ∂xu1 + ∂xp = 4µ + x(3y + 1) − 3

2
(y + 1)(1 − √

1 − y2),

f2 = −µ�u2 + ∂xu2 + ∂yp = 3µ|x|(1 + y) − 3

2
x|x|(y + 1) + 3

2
x(x − 1)

+ 3

2
[µ(1 + 3y) + x − 1]√1 − y2 + 3

2
(1 − x − µy)(y + y2)

1√
1 − y2

,

g = ∂xu1 + ∂yu2 + ∂xp = 2(1 − y2)
3
2 − 1

2
|x|3 + x + 3y

(
x − 1

2

)
− 3

2
.

Fig. 4 shows plots of the finite element errors as a function of the number of grid points. Numerical
convergence rates are reported in Tables V and VI. As expected we see a slight deterioration in the
convergence rates. Nevertheless, with the exception of the H 1 error rate of the pressure variable all
other rates are reasonable. We also note that the error in the convective derivative of the pressure
behaves much better.

TABLE V. Discrete L2 norm convergence rates: (J w
h ).

Level ‖u − uh‖ ‖p − ph‖ ‖p − ph‖Q ‖ω − ωh‖ ‖φ − φh‖
2 1.2866 0.8855 0.4991 0.5021 0.5778
3 1.7441 0.9688 0.6968 0.6938 0.8669
4 1.9063 1.4121 1.0184 1.3252 1.3118
5 1.8187 1.5424 1.0272 1.7949 1.6685
6 1.6902 1.4170 0.8453 1.9335 1.7361
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TABLE VI. Discrete H 1 norm convergence rates: (J w
h ).

Level ‖u − uh‖1 ‖p − ph‖1 ‖ω − ωh‖1 ‖φ − φh‖1 ‖U − Uh‖V

2 1.1839 0.5019 0.3400 0.5220 0.8724
3 1.6425 0.4603 0.5076 0.6811 0.9833
4 1.7193 0.6839 1.0188 0.9314 1.2052
5 1.6538 0.3873 1.4884 0.5412 1.2273
6 1.4755 0.2668 1.5466 0.2183 0.9530

VI. CONCLUSIONS

We have formulated two different least-squares functionals for the compressible Stokes problem
that are based on an equivalent first-order system. The discretely norm-equivalent functional
requires operator Bh that is spectrally equivalent to the discrete Poisson solution operator B̃h.
This method is mathematically guaranteed to be well-posed and we were able to give a rigorous
quantification of its convergence rates. We also defined a simpler, weighted L2 norm least-squares
functional wherein spectral equivalence is traded for simplicity and Bh is taken to be a scaled
identity operator. Rigorous error analysis for this method remains an open problem. However,
our numerical results indicate that its performance is comparable to that of the norm-equivalent
method, at least for smooth solutions. Thus, in such cases, the weighted method appears to be a
reasonable alternative to the more complex norm-equivalent formulation.
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