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Abstract

In the finite element method, a standard approach to mesh tying is to apply La-
grange multipliers. If the interface is curved, however, discretization generally leads
to adjoining surfaces that do not coincide spatially. Straightforward Lagrange mul-
tiplier methods lead to discrete formulations failing a first-order patch test [18].

This paper presents a theoretical and computational study of a least-squares
method for mesh tying [4], applied to the partial differential equation −∇2φ +
αφ = f . We prove optimal convergence rates for domains represented as overlapping
subdomains and show that the least-squares method passes a patch test of the order
of the finite element space by construction. To apply the method to subdomain
configurations with gaps and overlaps we use interface perturbations to eliminate
the gaps. Theoretical error estimates are illustrated by numerical experiments.
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1 Introduction

Mesh tying, or domain bridging methods [3, 4, 7, 8, 16] are the opposite of do-
main decomposition (DD) [23]. A DD method solves a boundary value problem
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using subdomains formed by clustering finite elements from a given discretiza-
tion of a domain Ω. A mesh tying method solves the same problem by using
a discretization of Ω, composed of subdomains that were meshed completely
independently. The weak problem is obtained by joining subdomain problems
through a suitable variational principle.

The simplest nontrivial case of mesh tying is as follows. Assume that Ω is an
open bounded domain with Lipschitz continuous boundary Γ, composed of
two subdomains; Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅. The interface between the
two domains, σ = Ω1 ∩ Ω2, is non-empty, connected set. We want to solve
numerically the elliptic boundary value problem

−∇ ·A∇φ+ αφ = f in Ω

φ = h on Γ
, (1)

using independently defined finite element partitions of Ω1 and Ω2, with bound-
ary conditions imposed on each Γi = Γ ∩ Ωi

The main reason to use this computational setting is modeling and simulation
of complex engineering structures in which the bottleneck, as measured in
calendar time, is mesh generation. One example is certification of aerospace
structures where creating a monolithic mesh is hugely impractical and time
consuming. In such cases, for practical and efficiency reasons, grid generation
on Ω is replaced by independent meshing of its subdomains [3, 4, 8, 10, 16,
19, 20]. Other examples that lead to mesh tying settings include transmission,
contact, and domain-bridging problems [1, 6, 15, 17].

1.1 Specifics of mesh tying

In mesh tying Ω is first partitioned into subdomains and then each subdomain
is discretized independently. Let Ωh

i denote a discretization of Ωi, i = 1, 2. The
discrete subdomains induce approximations Γh1 , Γh2 , σ

h
1 and σh2 of Γ1, Γ2 and

the interface σ, respectively. The discretization of Ω is given by Ωh = Ωh
1 ∪Ωh

2 .
In mesh tying there are two basic configurations for the discrete interfaces
σh1 and σh2 . The first one is when the adjoining surfaces spatially coincide,
σh1 = σh2 = σh. This configuration arises from cutting a domain into simpler
subdomains to improve efficiency of the mesher, a practice often used with
Sandia’s meshing tool CUBIT. An example of a CUBIT hex mesh obtained in
this way is shown in Figure 1. In this example the shape of Ω is such that pla-
nar and curved interfaces can be easily matched. The general case, σh1 6= σh2 ,
arises when the grids on the two sides of a curved interface σ cannot be easily
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Fig. 1. The left plot shows an example of mesh tying configuration with matching
interfaces. The right plot is an example of a domain with more complicated curved
interfaces that may lead to σh1 6= σh2 .

matched 2 . Typically, this happens with more complex shapes, such as the ob-
ject shown on the right in Figure 1, transmission problems where discontinuous
coefficients naturally lead to curved interfaces, and contact problems where
the interface is between different bodies. In contrast, in domain decomposition
methods [23], the discrete domain Ωh is determined first, and the subdomains
are defined afterwards. As a result, in these methods the adjoining interfaces
always coincide, σh1 = σh2 = σh.

A minimal requirement for any mesh-tying or domain bridging method is a
consistency condition called patch test. In addition to consistency, patch tests
are used in practice for verification, and to identify discretizations that are
nonconvergent or that cause impulse waves through the interface to disperse
artificially. A method passes a patch test of order k if it can recover any so-
lution of (1) that is a polynomial of degree k. When σh1 6= σh2 mesh tying
methods based on Lagrange multipliers experience difficulties and naively de-
fined schemes fail even a first-order patch test, see [18] for an example.

Several approaches have been proposed to address this problem in both two
and three dimensions. Surface coupling methods [8–12, 18] start by selecting
one of the non-matching interfaces as a master and the other as a slave surface.
The approach of [10–12] defines Lagrange multipliers on the slave surface and

2 Finite element methods routinely replace curved boundaries Γ by polyhedral ap-
proximations Γh, but replacing a curved interface σ by two spatially distinct discrete
interfaces σh1 and σh2 is fundamentally different. Although either case is a ‘variational
crime’ in the sense of [22, p.193], the former case leads to a perturbation of the orig-
inal problem that can be estimated by the Strang’s lemma [22, Lemma 4.1, p.186].
For polyhedral approximations the error in energy is O(h3); see [22, p.196]. In the
latter case, the discrete computational domain Ωh

1 ∪Ωh
2 has gaps and overlaps where

the problem ceases to be well-defined. In the overlap regions the ‘solution’ is multiple
valued, and in the voids it is undefined.
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uses a projection operator from the master surface. The mesh tying methods
considered in [8, 9, 17, 18] build additional mesh structures between the slave
and master interfaces using tools that range from mesh imprinting to local
L2 projections. A disadvantage of these methods is that in order to maintain
accuracy, typically six levels of uniform 3D mesh refinement are required near
the boundary to pass the patch test approximately. The Generalized Lagrange
Multiplier method of [19] avoids the mesh refinement but requires an interface
balancing procedure to cancel out the signed ares of the gaps and overlaps.

Another approach that can be used for mesh tying is partition of unity meth-
ods (PUM) [1]. PUM represent a domain as an atlas of overlapping charts, and
couple the volumes. The charts are subdomain meshes. For example, swap-
ping charts adapts the mesh [16]. PUM methods with overlapping subdomain
meshes are discussed in [2] for some 2D problems, and a related method [3]
has been applied to plates, cracks and shells coupled to 3D models. The theo-
retical formulations of these methods is an active research area [15]. Note that
[3, 15] are Mixed Galerkin formulations that use Lagrange multipliers in the
overlap regions, and lead to indefinite linear systems.

Our approach [4] for dealing with non-matching interfaces utilizes least-squares
principles and extends a least-squares finite element method (LSFEM) for
transmission problems [6], where σh1 = σh2 , to mesh tying configurations where
σh1 6= σh2 . A least-squares functional is defined as the sum of the residuals of
the differential equations measured in Sobolev space norms. As a result, such
a functional always vanishes at the exact solution. By exploiting this prop-
erty, a least-squares method for mesh tying is formulated that automatically
passes a patch test of the same order as the finite element space employed in
its definition. We start by perturbing the discrete interfaces until there are
no void regions 3 between the subdomains. Then, least-squares principles for
each subdomain are joined together by generalized jump terms defined on the
overlap region 4 between the subdomains. This resembles the approach used
in the Arelquin method [3] and in the domain bridging method [15]. However,
by measuring residual energy and not physical energy, a least-squares func-

3 Were the subdomains disjoint, the residual energy would have a space of min-
imizers of positive dimension (corresponding to the missing boundary conditions)
and the coefficient matrix would be symmetric positive semi-definite.
4 In our opinion, forcing the meshes to overlap is easier than attempting to remesh a
complex body such as an aerospace structure. The perturbation required to overlap
the meshes is similar in magnitude to the perturbations due to either r-adaptivity
[13] or Lagrangian algorithms in which each individual node of the computational
mesh follows the associated material particle during motion. Moreover, tools for as-
sembling overlapping meshes already exist in the Overture package from Lawrence
Livermore National Laboratory. Likewise, the composite overlapping grid method
[7] for a collection of structured grids uses tools [20] to assemble overlapping sub-
structure meshes.
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tional may measure energy redundantly in subdomain intersections. This fact
greatly simplifies our algorithm. In contrast, methods that minimize physical
energy, subject to appropriate constraints on the interfaces, require special
efforts to avoid counting energy twice in the overlap regions; see [3].

The contents of the paper are as follows. Section 1.2 reviews notation. The
least squares method for mesh tying of [4] is formulated in Section 2. Sec-
tion 3 presents analysis of the method. Numerical examples illustrating the
consistency of the LSFEM are discussed in Section 4.

1.2 Notations

Our focus is on mesh tying for the case of non-matching interfaces. For clarity,
throughout the paper we assume that Ω is such that Γh = Γ and Ωh

i match
their continuous counterparts everywhere except along the interface σ, i.e.,

Γhi = Γi but σh1 6= σh2 ,

where σhi = ∂Ωh
i /Γ

h
i . The void and overlap regions between Ωh

1 and Ωh
2 are

ΩV = Ω/(Ω
h
1 ∪ Ω

h
2) and ΩO = Ωh

1 ∩ Ωh
2 , respectively. We assume that

Ω = (Ω
h
1/ΩO) ∪ (Ω

h
2/ΩO) ∪ ΩO ∪ ΩV . (2)

Variational settings will be discussed in terms of standard finite element no-
tation. As usual, L2(D) is the Hilbert space of all square integrable functions
defined over a domain D. H(div,D) will stand for the Hilbert space of all
functions in (L2(D))n with square integrable divergence, equipped with the
norm

‖v‖div,D =
(
‖v‖2

0,D + ‖∇ · v‖2
0,D

)1/2
.

For k > 0, Hk(D) denotes the subspace of L2(D) that consists of all functions
having square integrable derivatives up to order k. The space H1

0 (D) contains
all functions in H1(D) that vanish on ∂D. In situations when ∂D is partitioned
into two disjoint pieces Γ and σ, we will use H1

Γ(D) to denote all functions
in H1(D) that vanish on Γ only. The inner product and norm on Hk(D) are
denoted (·, ·)k,D and ‖ · ‖k,D, respectively.

The trace of a function φ ∈ H1(D) on a subset Γ ⊂ ∂D belongs to the space
H1/2(Γ). Extensions by zero of functions in H1/2(Γ) to H1/2(∂D) are in the

space H
1/2
00 (Γ). The dual of this space is H−1/2(Γ); see [23, p.342], and 〈·, ·〉Γ

denotes the duality pairing. Given a vector field v ∈ H(div,D), its normal
component v · n belongs to H−1/2(∂D); see [14, p.27].
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To discuss LSFEM for mesh tying we need the tensor product space

H1 = {φ = (φ1, φ2) |φi ∈ H1(Ωi); i = 1, 2} , (3)

its subspace H1
0 consisting of pairs (φ1, φ2) ∈ H1

Γ1
(Ω1)×H1

Γ2
(Ω2) that vanish

on Γi, and the space

H(div) = {v = (v1,v2)|vi ∈ H(div,Ωi); i = 1, 2)}. (4)

The spaces H1 and H(div) equipped with the inner products

〈φ, ψ〉1 =
2∑
i=1

(φi, ψi)1,Ωi
and 〈u,v〉div =

2∑
i=1

(ui,vi)div,Ωi
,

and the induced norms ||| · |||1 and ||| · |||div, are Hilbert spaces.

2 Least squares method for mesh tying

We assume the mesh tying setting described in §1. The mesh tying LSFEM
proposed in [4] uses an equivalent first-order system form of (1). Assuming for
simplicity that A is the identity and α = 1, the reformulated equations are∇ · ui + φi = fi and ui +∇φi = 0 in Ωi

φi = 0 on Γi
; i = 1, 2 (5)

augmented with the interface conditions

φ1 = φ2 and u1 · n1 + u2 · n2 = 0 on σ. (6)

To motivate our approach, note that the interface conditions (6) are the “glue”
applied to the interface σ to hold together the subdomain problems in (5). As
a result, if σh1 = σh2 , the jump terms

[ψ] = ψ1 − ψ2 and [v] = v1 · n1 + v2 · n2 (7)

can be used to join together least-squares functionals for (5) in a well-posed
LSFEM [6]. However, if σh1 6= σh2 , the jump terms are undefined. On the other
hand, if there’s a sufficient overlap ΩO between the subdomains, their least-
squares functionals can be joined together by using the “generalized” jumps

‖φh1 − φh2‖2
1,ΩO

and ‖vh1 − vh2‖2
div,ΩO

, (8)
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Fig. 2. Interface perturbations give subdomains with no gaps between them. The
blue line is the interface σ. The domain Ω = [−1, 1]2 has two overlapping subdo-
mains. Only the interface nodes on the right (or green) domain are perturbed. The
original interface node locations are marked with circles.

respectively, which replace the standard interface jump terms (7). Note that
because a least-squares functional measures residual rather than physical en-
ergy, there’s no need to subtract energy from ΩO.

2.1 The mesh tying region

Our least-squares functional is defined in the case of overlapping regions, ΩV =
∅. Let σh denote the set of spatially coincident interface segments. We define
the mesh tying “region” as

Σh = ΩO ∪ σh = Ω
h

1 ∩ Ω
h

2 . (9)

In words, Σh is the union of the overlap region and any spatially coincident
segments of the discrete interfaces. Note that σh may be empty but ΩO 6= ∅.

If Ωh
i are such that ΩV 6= ∅ we proceed as follows to perturb the interface to

close the voids. Bear in mind that in the case of polygonal domains and quasi-
uniform meshes, the diameter of the overlap and void regions is O(h2). Let
N(σhi ) denote the set of all vertices on interface σhi , i = 1, 2 that are not on the
Dirichlet boundary Γ. For each vertex zi ∈ N(σhi ) we consider a perturbation
δzi and define the perturbed subdomains Ω̂h

i by changing zi ∈ N(σhi ) to zi+δzi.
Note that the only elements in Ω̂h

i that differ from the elements in Ωh
i are those

that have a vertex on the interface. We assume that Ωh
i are such that there

exist perturbations δz with the following properties; see Figure 2:
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(1) The void region, ΩV , of the perturbed subdomains is empty.
(2) The overlap region Ω̂O = Ω̂h

1 ∩ Ω̂h
2 6= ∅ or if Ω̂O = ∅, then σh1 = σh2 = σh.

(3) All perturbed elements in Ω̂h
i are non-degenerate.

The hypothesis that ΩV = ∅ is satisfied by defining Σh as in (9) but in terms
of the perturbed subdomains. In most situations of practical interest, the con-
ditions are easily met. The resulting overlap region ΩO may not be simply
connected. However, it is important to note that the purpose of the inter-
face node perturbations is not to match 5 the interfaces (which in general is
impossible), but only to eliminate the void region. In contrast, mesh imprint-
ing/refining techniques tend to be more complicated, because they have to
preserve the existing interfaces.

2.2 A least-squares principle for mesh tying

In what follows H1 and H(div) denote the spaces (3) and (4) defined with
respect to Ωh

1 and Ωh
2 . Let Hh denote a finite element subspace of H1×H(div).

We consider the following least-squares functional on Hh:

Jh({ψh,vh}; f) =
1

2

( 2∑
i=1

‖∇ · vhi + ψhi − fi‖2
0,Ωh

i
+ ‖vhi +∇ψhi ‖2

0,Ωh
i

+
1

h1+ε0

∫
σh

[ψh]2 ds+
1

hε1

∫
σh

[vh]2 ds
)

+ωφ‖ψh1 − ψh2‖2
1,ΩO

+ ωv‖vh1 − vh2‖2
div,ΩO

,

(10)

where σh is the set from (9). In other words, we define the mesh-tying LSFEM
by gluing subdomain LSFEMs using the standard jump terms (7) on σh and
the generalized jumps (8) on ΩO. The weights ωφ and ωv are positive real
numbers that are independent of the mesh size h. The least-squares principle
for (10) is

min
(ψh,vh)∈Hh

Jh({ψh,vh}; f). (11)

The finite element approximation {φh,uh} ∈ Hh solves the Euler equation

Bh
Σ({φh,uh}; {ψh,vh}) = F h

Σ({ψh,vh}) ∀{ψh,vh} ∈ Hh. (12)

5 In some cases, perturbations such that σh 6= ∅, or even Σh = σh are available.
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The bilinear form and functional in (11) are given by

Bh
Σ({φh,uh}; {ψh,vh})

=
2∑
i=1

(
∇ · uhi + φi,∇ · vhi + ψi

)
0,Ωh

i

+
(
uhi +∇φhi ,vi +∇ψi

)
0,Ωh

i

+
1

h1+ε0

∫
σh

[φh][ψh] ds+
1

hε1

∫
σh

[uh][vh] ds

+ωφ
(
φh1 − φh2 , ψ

h
1 − ψh2

)
1,ΩO

+ ωv

(
uh1 − uh2 ,v

h
1 − vh2

)
div,ΩO

(13)

and F h
Σ({ψh,vh}) =

∑
i(fi,∇ · vhi )0,Ωh

i
+ (fi, ψ

h
i )0,Ωh

i
, respectively.

The next section justifies the choice ωφ = ωv = 3.

3 Analysis of the mesh tying LSFEM

When the mesh tying region Σh is such that σh 6= ∅, the least-squares func-
tional (10) is mesh dependent. The proofs in [6] can be modified to show that
(10) is norm equivalent on Hh. However, the mesh dependence of this func-
tional prevents it from being norm-equivalent on the space H. Consequently,
the bilinear form Bh

Σ is coercive only on Hh ×Hh.

In this section we will assume that Σh consists only of an overlap region ΩO

and that σh = ∅. In this case the least-squares functional (10) is not mesh-
dependent and one can show that it is norm-equivalent on H. As a result, Bh

Σ is
coercive on H×H. This implies that for mesh-tying problems there’s no reward
for perturbing the discrete interfaces to match exactly. In the contrary, volume
coupling gives rise to a least-squares functional with a better norm-equivalence
properties than surface coupling. The explanation is that the mesh-dependent
terms in (10) approximate norms in H1/2(σh) and H−1/2(σh) by weighted
L2 norms on σ. It is well-known that weighted L2 norms are not spectrally
equivalent to the true norms and so, the norm-equivalence is possible only for
discrete spaces [5].

We will prove norm-equivalence of the mesh-tying least-squares functional
with respect to the following energy norm

|||{ψ,v}|||2 =
2∑
i=1

(
‖vi‖2

div,Ωh
i

+ ‖ψi‖2
1,Ωh

i

)
+‖ψ1 − ψ2‖2

1,ΩO
+ ‖v1 − v2‖2

div,ΩO
.

(14)
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Our proof uses the trace inequalities that for every ψ ∈ H1(D) and v ∈
H(div,D)

‖ψ‖1/2,∂D ≤ ‖ψ‖1,D and ‖v‖−1/2,∂D ≤ ‖v‖div,D , (15)

and Green’s identity [14, p.28],

(v,∇ψ)0,D + (∇ · v, ψ)0,D = 〈v · n, ψ〉∂D . (16)

Theorem 1 There exist positive weights ωφ, ωv, independent of the maximum
element diameter h, such that for every {ψ,v} ∈ H there holds the lower bound

Jh({ψ,v}; 0) ≥ 1

4
|||{ψ,v}|||2 . (17)

The coercivity of (13) on H×H is a corollary of Theorem 1.

Corollary 2 In the notation of Theorem 1, for every {φ,u}, {ψ,v} ∈ H

1

4
|||{φ,u}|||2 ≤ Bh

Σ({φ,u}, {φ,u}) (18)

and

Bh
Σ({φ,u}, {ψ,v}) ≤ |||{φ,u}||| · |||{ψ,v}|||2 . (19)

Proof of Corollary 2. Equation (18) follows from the identity

Jh({φ,u}; 0) = Bh
Σ({φ,u}, {φ,u})

and the norm-equivalence (17). Continuity follows by a repeated application of
the Cauchy’s inequality and the definition of the mesh-tying energy norm.

Proof of Theorem 1. After expanding terms in (10)

Jh({ψ,v}; 0) =
2∑
i=1

(
‖∇ · vi‖2

0,Ωh
i

+ ‖vi‖2
0,Ωh

i
+ ‖∇ψi‖2

0,Ωh
i

+ ‖ψi‖2
0,Ωh

i

)

+2
2∑
i=1

∫
Ωh

i

∇ · viψi dx+
∫
Ωh

i

vi · ∇ψi dx+ωφ‖ψ1 − ψ2‖1,ΩO
+ ωv‖v1 − v2‖2

div,ΩO
.
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The norm definition (3)-(4) and Green’s identity (16) give

Jh({ψ,v}; 0) =
2∑
i=1

‖vi‖2
div,Ωh

i
+ ‖ψi‖2

0,Ωh
i

+ 2
∫
∂Ωh

i

ψivi · n ds


+ωφ‖ψ1 − ψ2‖1,ΩO

+ ωv‖v1 − v2‖2
div,ΩO

.

Note that ∂Ωh
i = σhi ∪ Γi and ψi = 0 on the Dirichlet boundary Γi. Therefore,∫

∂Ωh
i

ψivi · n dx =
∫
σh

i

ψivi · ni dx ,

where ni is the normal on σhi that coincides with the outer normal on ∂Ωh
i .

By adding and subtracting ψ2 and v2 to the integral along σh1 , we write it as

∫
σh
1

ψ1v1 · n ds =
1

2


∫
σh
1

(ψ1 − ψ2)v1 · n1 ds+
∫
σh
1

ψ1(v1 − v2) · n1 ds


+

1

2


∫
σh
1

ψ2v1 · n1 ds+
∫
σh
1

ψ1v2 · n1 ds

 .

Similarly for the integral along σh2 we add and subtract ψ1 and v1:

∫
σh
2

ψ2v2 · n ds =
1

2


∫
σh
2

(ψ2 − ψ1)v2 · n2 ds+
∫
σh
2

ψ2(v2 − v1) · n2 ds


+

1

2


∫
σh
2

ψ1v2 · n2 ds+
∫
σh
2

ψ2v1 · n2 ds

 .

Using that ∂ΩO = σh1 ∪ σh2 gives

∫
σh
1

ψ2v1 · n1 ds+
∫
σh
1

ψ1v2 · n1 ds+
∫
σh
2

ψ1v2 · n2 ds+
∫
σh
2

ψ2v1 · n2 ds

=
∫

∂ΩO

ψ2v1 · n ds+
∫

∂ΩO

ψ1v2 · n ds .

Using the Green’s formula (16) gives the identities

∫
∂ΩO

ψ2v1 ·n ds =
1

2

{
‖∇·v1+ψ2‖0,ΩO

+‖∇ψ2+v1‖0,ΩO
−‖v1‖2

div,ΩO
−‖ψ2‖2

1,ΩO

}
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and∫
∂ΩO

ψ1v2 ·n ds =
1

2

{
‖∇·v2+ψ1‖0,ΩO

+‖∇ψ1+v2‖0,ΩO
−‖v2‖2

div,ΩO
−‖ψ1‖2

1,ΩO

}
.

Therefore, the least-squares functional can be written as

Jh(ψ,v; 0) =
2∑
i=1

(
‖vi‖2

div,Ωh
i

+ ‖ψi‖2
0,Ωh

i

)
− 1

2

2∑
i=1

(
‖vi‖2

div,ΩO
+ ‖ψi‖2

1,ΩO

)
+ωφ‖ψ1 − ψ2‖1,ΩO

+ ωv‖v1 − v2‖2
div,ΩO

+
1

2

{
‖∇ · v1 + ψ2‖0,ΩO

+ ‖∇ψ2 + v1‖0,ΩO

+ ‖∇ · v2 + ψ1‖0,ΩO
+ ‖∇ψ1 + v2‖0,ΩO

+
∫
σh
1

(ψ1 − ψ2)v1 · n1 ds+
∫
σh
1

ψ1(v1 − v2) · n1 ds

+
∫
σh
2

(ψ2 − ψ1)v2 · n2 ds+
∫
σh
2

ψ2(v2 − v1) · n2 ds
}
.

To obtain a lower bound for the least-squares functional we drop the (non-
negative) norm terms inside the curly braces. Because ΩO ⊂ Ωh

i we have that

1

2

2∑
i=1

(
‖vi‖2

div,ΩO
+ ‖ψi‖2

1,ΩO

)
≤ 1

2

2∑
i=1

(
‖vi‖2

div,Ωh
i

+ ‖ψi‖2
1,Ωh

i

)
.

The first integral inside the curly braces is estimated as follows:∣∣∣∣∣∣∣∣
∫
σh
1

(ψ1 − ψ2)v1 · n1 dx

∣∣∣∣∣∣∣∣
≤ ‖ψ1 − ψ2‖1/2,σh

1
‖v1 · n‖−1/2,σh

1
using duality

≤ ‖ψ1 − ψ2‖1/2,∂ΩO
‖v1 · n‖−1/2,∂ΩO

using ∂ΩO = σh1 ∪ σh2

≤ ‖ψ1 − ψ2‖1,ΩO
‖v1‖div,ΩO

using trace inequalities (15)

≤ 1

4ε1
‖ψ1 − ψ2‖2

1,ΩO
+ ε1‖v1‖2

div,ΩO
using the ε-inequality .

The remaining three integrals are estimated using the same inequalities:∣∣∣∣∣∣∣∣
∫
σh
1

ψ1(v1 − v2) · n1 dx

∣∣∣∣∣∣∣∣ ≤ ε2‖ψ1‖2
1,ΩO

+
1

4ε2
‖v1 − v2‖2

div,ΩO
;

12



∣∣∣∣∣∣∣∣
∫
σh
2

(ψ2 − ψ1)v2 · n2 dx

∣∣∣∣∣∣∣∣ ≤
1

4ε3
‖ψ2 − ψ1‖2

1,ΩO
+ ε3‖v2‖2

div,ΩO
;

∣∣∣∣∣∣∣∣
∫
σh
2

ψ2(v2 − v1) · n2 dx

∣∣∣∣∣∣∣∣ ≤ ε4‖ψ2‖2
1,ΩO

+
1

4ε4
‖v2 − v1‖2

div,ΩO
.

For εi = 1/4, 1 ≤ i ≤ 4, all the bounds combined yield

Jh{ψ,v}; 0 ≥
1

4

2∑
i=1

(
‖vi‖2

div,Ωh
i

+ ‖ψi‖2
0,Ωh

i

)
+(ωφ − 2)‖ψ1 − ψ2‖1,ΩO

+ (ωv − 2)‖vh1 − vh1‖div,ΩO
.

By choosing ωφ = ωv = 3 the inequality (17) holds.

3.1 Error estimates

Throughout this section ψi and vi will stand for the restrictions of functions
ψ ∈ H1

0 (Ω) and v ∈ H(div,Ω) to the subdomains Ωi
h. According to the as-

sumption in (2), the closure of each subdomain is contained in Ω and so, ψi
and vi are well-defined.

We assume that Hh = Φh
r ×Vh

p where the finite element spaces

Φh
r = Φh

r,1 × Φh
r,2; Φh

r,i ⊂ H1
Γ(Ωh

i ), i = 1, 2 ;

Vh
p = Vh

p,1 ×Vh
p,2; Vh

p,i ⊂ H(div,Ωh
i ), i = 1, 2

have the following approximation properties. For every ψ ∈ Hr+1(Ω) there
exists ψh = (ψh1 , ψ

h
2 ) ∈ Φh

r such that

2∑
i=1

‖ψi − ψhi ‖0,Ωh
i

+ h|ψi − ψhi |1,Ωh
i
≤ Chr+1‖ψ‖r+1,Ω (20)

and for every v ∈ H(div,Ω) ∩ (Hp+1(Ω))2 there exists vh = (vh1 ,v
h
2) ∈ Vh

p

such that

2∑
i=1

‖vi − vhi ‖0,Ωh
i

+ h‖∇ · (vi − vhi )‖0,Ωh
i
≤ Chp+1‖v‖p+1,Ω . (21)

The error bound (20) holds for standard C0 piecewise polynomial spaces of
order r. The error bound (21) is valid for C0 spaces of order p and certain
H(div,Ω) conforming spaces such as BDMp.
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Theorem 3 Assume that the first order system∇ · u + φ = f and ∇φ+ u = 0 in Ω

φ = 0 on ∂Ω

has a solution φ ∈ H1
0 (Ω) ∩ Hr+1(Ω) and u ∈ H(div,Ω) ∩ (Hp+1(Ω))2. If

{φh,uh} ∈ Hh is a solution of the least-squares mesh-tying problem (12), then

|||{φ− φh,u− uh}||| ≤ C (hr‖φ‖r+1,Ω + hp‖u‖p+1,Ω) . (22)

Proof. Clearly, for the restrictions φi and ui of φ and u there holds

∇ · ui + φi = fi in Ωi and ∇φi + ui = 0 in Ωi .

Using this and the fact that φ1 = φ2 and u1 = u2 on ΩO,

2∑
i=1

(
∇ · ui + φi − fi,∇ · vhi + ψhi

)
0,Ωh

i

+
(
∇φi + ui,∇ψhi + vhi

)
0,Ωh

i

+
(
φ1 − φ2, ψ

h
1 − ψh2

)
1,ΩO

+
(
u1 − u2,v

h
1 − vh2

)
div,ΩO

= 0

(23)

for all {ψh,vh} ∈ Hh. Equivalently,

Bh
Σ({φ,u}, {ψh,vh}) = F h

Σ({ψh,vh}) ∀{ψh,vh} ∈ Hh .

Subtracting from (12) gives the error orthogonality equation

Bh
Σ({φ− φh,u− uh}, {ψh,vh}) = 0 ∀{ψh,vh} ∈ Hh .

Coercivity (18), continuity (19) of Bh
Σ and orthogonality imply

1

4
|||{φ− φh,u− uh}|||2 ≤ Bh

Σ({φ− φh,u− uh}, {φ− φh,u− uh})

= Bh
Σ({φ− φh,u− uh}, {φ− ψh,u− vh})

≤ |||{φ− φh,u− uh}||| |||{φ− ψh,u− vh}|||

where {ψh,vh} ∈ Hh is arbitrary. Therefore,

1

4
|||{φ− φh,u− uh}||| ≤ inf

{ψh,vh}∈Hh
|||{φ− ψh,u− vh}||| .

The theorem follows by noting that

|||{φ− ψh,u− vh}||| ≤ 2
2∑
i=1

‖ui − vhi ‖div,Ωh
i

+ ‖φi − ψhi ‖1,Ωh
i

14



Fig. 3. Finite element approximation of the manufactured solution
φ(x, y) = cos(πx2 ) cos(πy2 ) by the least-squares mesh-tying method using the
overlapping subdomains from Figure 2.

and using the approximation hypotheses (20)-(21).

We note that the estimate (22) implies that the LSFEM passes a patch test
of order s = min{p, r} by default.

4 Numerical results

In this section we study numerical convergence rates of the least-squares mesh-
tying method (10), using the manufactured solution φ(x, y) = cos(πx

2
) cos(πy

2
)

and Ω = [−1, 1]2. The overlapping subdomains are as shown in Figure (2).
The displacement φ and flux u are discretized using piecewise linear nodal
shape functions, i.e , r = p = 1 in the definition of Hh.

To estimate convergence rates we use a sequence of non-uniform (but uni-
formly regular) grids wish mesh parameter 6 h ranging from 0.75 to 0.02. The
corresponding numbers of unknowns are 121 and 81200, respectively. The first
half of the grids in the sequence (for h ranging from 0.75 to approximately
0.1) where generated using Triangle [21] with a uniform area constraint. The
second half of the grids were obtained by applying uniform mesh refinement

6 We define h to be the maximum element diameter in the mesh.
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to the last grid from the first half of the sequence. The boundary nodes were
snapped to the exact curved boundary.

In the following figures the red curves correspond to the left (red) subdomain
Ω1 in Figure 2. The green curves are associated with the right (green) subdo-
main Ω2, in the same figure. Figure 3 shows a typical finite element solution
by the LSFEM using overlapping subdomains of Ω. Convergence rates data is
summarized in Figures 4-5.

For piecewise linear elements the estimate (22) from Theorem 3 specializes to

|||{φ− φh,u− uh}||| ≤ Ch

Thus, definition (14) of the energy norm |||{φ,u}||| implies that the rates
of convergence for the flux error in H(div,Ω) and the displacement error in
H1(Ω) should equal one. The corresponding error plots in Figures 4-5 assert
that these theoretical rates also hold numerically.

The error analysis in Theorem 3 does not include separate estimates for the
L2 errors in the flux and the displacement. Regarding the flux, note that
u = −∇φ and so, |φhi − φi|1 ≈ ‖uhi − ui‖0. As a result, we can expect that
the flux approximation is first-order accurate in L2. Figure 4 compares these
two quantities and shows that this is indeed the case. For the L2 error in the
displacement we observed second order accuracy.

Studies of overlap region’s width as a function of h, decreasing the width from
h/4 down to h2, were also performed. Convergence of ‖∇·uhi−∇·ui‖0 was found
to be independent of the overlap width. However, both the displacements H1

semi-norm, |φhi −φi|1 and the fluxes L2 norm, ‖uhi −ui‖0 converged sublinearly
(if at all) for overlap widths hα with α > 1.

The results here are consistent with those reported in [4], in which ωφ = ωv = 3
too. The examples reported there include linear patch tests, in which the
computed displacements and fluxes differ with the corresponding exact only
in the trailing bits of double precision arithmetic.

5 Conclusions

Mixed Galerkin methods for mesh tying that are consistent when applied to
geometries with curved interfaces may significantly increase the complexity
of the overall solution [17], and lead to indefinite linear systems [1–3, 15,
19]. We formulated and analyzed a LSFEM for mesh tying that is optimally
accurate, patch test consistent for arbitrary order discretizations, and gives
rise to sparse symmetric positive definite matrices. The method is formulated
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Fig. 4. Loglog plots of the errors ‖uhi −ui‖0, and |φhi −φ|1 vs. h in each subdomain
Ωi. The red curves correspond to Ω1 and the green curves correspond to Ω2. The
straight black line has slope 1. The curves marked with the red + and the green o
are the H1 semi-norms of the displacement errors in Ω1 and Ω2 respectively. The
curves marked with the red × and the green diamond are the L2 norms of the flux
error in Ω1 and Ω2 respectively.
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Fig. 5. Loglog plots of the error ‖∇ ·uhi −∇ ·ui‖0 vs. h in each subdomain Ωi. The
red curve corresponds to Ω1 and the green curve corresponds to Ω2. The straight
black line has slope 1. This quantity was observed to be independent of the width
of the overlap region.

for overlapping domains; in the case of non-empty void regions application of
least-squares is preceded by an interface perturbation step to close the voids.
The use of least-squares is subject to certain tradeoffs, such as specialized
H(div,Ω) preconditioners, more variables 7 , and need for intrusive refactoring
of legacy codes.

7 This ceases to be a drawback if the flux variable is of primary interest as in porous
media flow applications.
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