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Abstract

This article considers the blending of atomistic and continuum problems
on a bridging subdomain building upon the ideas introduced in [1, 2, 7]. The
continuity of the atomistic and continuum solutions is imposed by a constraint
operator using Lagrange multipliers. These methods are stated in an abstract
form. The consistency of these methods is analyzed. A new blending model
is designed using mechanical arguments. The consistency and accuracy of the
method is discussed theoretically and confirmed numerically.
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1 Introduction

Fully atomistic simulation on an entire model domain is computationally infeasible
for many applications of interest. In order to alleviate the computational cost, the
atomistic problem is approximated by a continuum model on some region for where
the solution is sufficiently smooth. These two models must be tied together in an
interface region. That is, some kind of continuity of atomistic and continuum po-
sition or displacement is required. A seemingly natural approach is to enforce this
continuity of solution using Lagrange multipliers. Unfortunately, this approach has
some complications.

When coupling two different continuum equations approximated by a finite el-
ement analysis in two different domains, we can couple these two problems on the
d − 1-dimensional interface manifold via Lagrange multipliers. Unfortunately, the
atomistic problem is in general nonlocal, and so the interface atoms are not confined
to a d− 1-dimensional manifold. Any desirable AtC coupling method must therefore
not rely only on transmission conditions at a surface (in the mathematical sense). We
instead consider techniques that glue both models in a d-dimensional domain, which
we will call the bridging region.

We cannot näıvely tie together atomistic and continuum solutions in the bridging
region because the effective stiffness on this region would be the sum of the stiffnesses
of the atomistic and continuum models, which is clearly nonphysical. We must instead
account for the material properties of both the atomistic and continuum material in
such a way that the coupled model in the bridging region has the correct elastic
response.

Blended AtC coupling are motivated by the following two observations:

• the boundary for the atomistic problem is not a d− 1-dimensional manifold;

• näıve coupling does not reproduce the correct stiffness in the bridging region,

These methods couple the atomistic and continuum problems in the bridging domain
with a blending model that enforces solution continuity while reproducing the correct
stiffness. This blending model is a combination of atomistic and continuum models
by (atomistic and continuum) blending functions that are a partition of the unity in
the bridging domain.

We explain the difference between a straightforward coupling and a blending ap-
proach, let Ac and Aa denote continuum and atomistic operators acting on Ωc and
Ωa, respectively. A Näıve coupling method will tie the two models together by us-
ing Lagrange multipliers in some d-dimensional blending region Ωb ⊂ Ωa ∩ Ωc. The
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resulting AtC operator can be formally stated as Aa 0 Ct
1

0 Ac Ct
2

C1 C2 0

 (1.1)

In contrast, a blending approach to AtC replaces the original continuum and atomistic
operators by blended operators Ac

θ and Aa
θ such that Ac

θ = Ac on Ωc/Ωb and Aa
θ = Aa

on Ωa/Ωb, and where θ is a partition of unity. The resulting AtC operator has the
form  Aa

θ 0 Ct
1

0 Ac
θ Ct

2

C1 C2 0

 (1.2)

AtC blended coupling is a relatively recent development. In [1] a blending of
energy functionals was considered and Lagrange multipliers used for enforcing a set of
constraints in the bridging domain. The extension to the transient case was considered
in [2]. A blending method for coupling atomistic and continuum equations without
blending energy functionals has recently been proposed in [7]. The last approach is
the one we consider herein.

The outline of the paper is the following. Section 2 is devoted to atomistic and
continuum models. In Section 3 we state in an abstract manner AtC blended coupling
techniques and address the issues of consistency and ghost forces. Four different
AtC coupling methods are introduced in Section 4 and their consistency properties
analyzed. For one of these methods, in Section 5 we construct a blending model which
is consistent when applied to different test problems. We motivate this model using
mechanical arguments. Theoretical results are confirmed numerically in Section 6.
Some conclusions are drawn in Section 7.
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2 The atomistic and continuum models

2.1 The atomistic model

Let us consider an undeformed lattice P within a given domain Ω. We denote by
D the subset of atoms whose position is fixed. The lattice statics problem consists
of finding an equilibrium deformed configuration for an inter-atomic potential (i.e.,
the Lennard-Jones potential) that defines the internal forces. The space of possible
atomistic configurations is denoted by X a. An element W ∈ X a can be defined as:

W i
α = (xα)i, α ∈ P, i = 1, ..., d,

where d is the space dimension and xα the coordinates of the atom α for this cor-
responding deformed configuration. This space is simply a set of properly ordered
|P|×d scalar values.1 We also introduce the afine space of configurations that satisfy
the constraints over D:

X a
D := {V ∈ X a | ∀α ∈ D, Vα = UD

α }

where UD
α = xD

α is the array of fixed coordinates for contrained atoms. Analogously,
the space X a

0 consists of:

X a
0 := {V ∈ X a | ∀α ∈ D, Vα = 0}.

The atomistic statics problem consists of: find U ∈ X a
D such that,

L (U)α = Fα ∀α ∈ P \D. (2.1)

The operator L : X a
D → X a (possibly non-linear) gives the internal forces for a given

atomistic configuration U . F is the array of external forces applied over the atoms
of the lattice. Therefore, (2.1) is nothing but Newton’s second law for a system of
particles interacting via L. Alternatively, we can write the previous problem in weak
form as: find U ∈ X a

D such that

(L (U) , V ) = (F, V ) ∀V ∈ X a
0 . (2.2)

2.2 The continuum model

The continuum model is defined by a differential operator L : X c → (X c)′, where
X c is an appropriate function space and (X c)′ its corresponding dual space. The
continuum problem (in strong form) consists of: find u ∈ X c such that

Lu = f in Ω, (2.3a)

u = uD on ∂Ω, (2.3b)

1| · | denotes the cardinality of the set.
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where f ∈ (X c)′ is the external force and uD the Dirichlet boundary value. We
only consider essential boundary conditions for the sake of simplicity. The atomistic
problem is usually stated in terms of displacements. Without loss of generality, let
us consider u the continuum displacement.

A basic assumption we will make is that the continuum model is a good approxima-
tion of the atomistic model under suitable conditions (e.g. smoothness). Therefore,
the atomistic problem (2.1) and the continous problem (2.3) must be related. It does
not only imply a link between L and L, but also between the external forces f and
F , fixed values uD and UD and ∂Ω and D.

In order to state the weak form we introduce the following function spaces:

X c
D := {v ∈ X c | v = uD on ∂Ω} ,

X c
0 := {v ∈ X c | v = 0 on ∂Ω} .

We define the bilinear form

` (u, v) :=

∫
Ω

α(u)β(v)dΩ

for u ∈ X c and v ∈ X c
0 ; α(·) and β(·) are differential operators obtained after

integrating by parts 〈Lu, v〉. The weak form of system (2.3) consists of: find u ∈ X c
D

such that

` (u, v) = 〈f , v〉 ∀v ∈ X c
0 . (2.4)

12



3 An abstract framework for blended AtC

coupling

The aim of this section is to state in an abstract setting the family of blended AtC
coupling methods. We subdivide the given body Ω into three disjoint regions Ωa, Ωb,
and Ωc, with Ωb sandwiched in some way between the other two (see Figure 3.1). Let
us also denote by A, B and C the set of atoms of the overall lattice that belong to
Ωa, Ωb and Ωc respectively. We make the following assumptions:

• the atomistic model is valid throughout, and in particular in the atomistic region
Ωa and in the bridge region Ωb;

• the continuum model is valid in the continuum region Ωc and in the bridge
region Ωb.

Figure 3.1: The atomistic domain (left), the continuum domain (right), and the
bridging domain (center).

This family of methods requires the solution of

• the atomistic problem on Ωa (which in general will be small in comparison with
Ω);

• the continuous problem on Ωc;

• a blended model (a weighted average of the atomistic and continuum models)
on Ωb.

2

2Let us remark that the blending is basic when considering both atomistic and continuum models
on Ωb; see (1.1). In case of tying both models without blending, we cannot consider both atomistic
and continuum models in the same region. It leads to wrong results because we are counting two
times the strength of the material (the atomistic and continous strength). There are two ways to
solve this issue: to consider the atomistic problem and slave nodes (of the FEM approximation of the
continuous problem) in the bridging region or to consider the continuous problem and slave atoms
on Ωb.

13



We denote by θc and θa the continuous and atomistic scalar blending functions
such that:

θc = 1 in Ωc,

θa = 1 in Ωa,

θc + θa = 1 in Ω.

These blending functions define the purely atomistic region Ωa (where θa = 1), the
purely continuous region Ωc (where θc = 1), and the bridge domain Ωb.

The results of this section have been obtained under the following assumptions
(unless indicated otherwise):

Asumption 3.1. The blending functions are such that, given a function v ∈ X c, the
weighted function θav ∈ X c, and subsequently θcv ∈ X c.

In order to state blending-based methods in an abstract framework, it is useful to
introduce some restrictions of global spaces to subdomains.

Given a function (element) v ∈ W, where W ia an appropriate function space
(set), its restriction Reω(v) onto ω is a function (element) with support in ω such
that

Reω(v) = v on ω.

(3.2)

We can also define the restriction of the space Reω(W) := {Reω(v)}v∈W . It allows to
introduce the spaces Rc

D = ReΩc∪Ωb
(X c

D) and Bc
D = ReΩb

(X c
D). We also define their

atomistic counterparts, Ra
D = ReA∪B(X a

D) and Ba
D = ReB(X a

D). Anagously, we get Rc
0

and Ra
0.

Another basic ingredient is the constraint operator that enforces continuity of the
atomistic and continuum solutions in the bridging domain. We denote this operator
by Λ(·, ·), which is a bilinear functional defined over X c

D × X a
D. For instance, we can

define Λ(·, ·) by introducing a projection ΠB : Bc
D → Ba

D as follows:

Λ(u, U) =
∑
α∈B

‖Uα − ΠB(u)α‖.

This particular choice of the constraint operator implies that the atoms are slaves of
the continuous solution on Ωb. In Section 5 we consider a natural atom-wise constraint
that is given by the following projection:

ΠB(u)α = u(xα) ∀α ∈ B.

For this particular choice of ΠB(·) the constraint Λ(u, U) = 0 simply means:

u(xα)i = U i
α ∀α ∈ B, i = 1, ..., d.

14



Alternatively, we consider Λ(u, U) = ‖u− πb(U)‖Bc with a projection πb : Ba
D → Bc

D.
In this case the bridging problem ia stated only in terms of u. Hybrid situations in
which the bridging domain cannot be stated only in terms of atomistic (or continuum)
solutions may also be considered.3 Any AtC blended coupling can be written in the
following abstract form: find u ∈ Rc

D and U ∈ Ra
D such that

Ac
θ(u, v) +Aa

θ(U, V ) = 0, (3.3a)

Λ(u, U) = 0, (3.3b)

for all v ∈ Rc
0 and V ∈ Ra

0 .4Ac
θ(u, v) includes all the terms related to the continuum

model whereas Aa
θ(u, v) includes all the atomistic terms. The form of these operators

will depend on the blending functions and the blending approach used. In the next
section we discuss different choices for these operators.

3.1 Ghost forces

One of the basic features of AtC coupling methods is that the atomistic problem is
only solved for a subset of atoms of the lattice. Therefore, Aa

θ(U, V ) must only involve
the equilibrium equations of atoms on A ∪ B. Given the purely atomistic solution
Ua ∈ X a

D, its restriction Ua
A∪B over A ∪ B, and its counterpart Ua

C for C, we know
that the atomistic problem is

(L (Ua) , V ) = (L (Ua
A∪B + Ua

C) , V ) = 〈F, V 〉.

In the AtC coupling method Ua
C is approximated by a continuous solution u. We

must account for the force exerted by the atoms in C upon the atoms in A ∪B. If
not, ghost forces (surface effects) appear.

For the numerical approximation of the atomistic problem, only atoms within
some distance δ (known as the cut-off radius) interact. Therefore, only the set of
atoms

H := {α ∈ C | ∃ β ∈ A ∪B s.t. ‖xα − xβ‖ ≤ δ} 5

must be considered when evaluating (L (·) , ·)6. There are two formal ways to include
this effect:

• We can recover an atomistic displacement UC as:

UC = ΠC(u) := u(xα), ∀α ∈ C, (3.4)

3These hybrid constraints are not possible for AtC coupling without blending.
4The condition Λ(u, U) = 0 can be easily imposed via Lagrange multipliers.
5Let us remark that the definition of H is non-linear because it depends on the atomistic con-

figuration. In a non-linear iterative procedure, this set must be recalculated.
6That is to say, only those atoms belonging to C in the cut-off radius of some atom in A ∪ B

must be accounted.

15



and replace (L (Ua
A∪B + Ua

C) , V ) by an approximate force (L (UA∪B + Π(u)) , V ),
that depends on u. Obviously, (3.4) only needs to be computed for atoms in
H .

• We can alternatively consider the constraint Λ(u, U) = 0 to enforce all the
atoms belonging to B in the cut-off radius of any atom in C to be slaves of
the continuous solution. This is the approach we consider when defining the
different AtC coupling methods.7

Asumption 3.2. Given the subset of atoms

H ′ := {α ∈ B | ∃ β ∈ C s.t. ‖xα − xβ‖ ≤ δ} ,

the constraint Λ(u, U) = 0 enforces

U = u(xα), ∀α ∈ H ′.

3.2 AtC consistency and the patch test

Numerous AtC coupling methods have been designed based on physical motivations.
However, the numerical analysis of AtC coupling methods is in its infancy. Almost
nothing is known about basic numerical properties such as consistency, convergence,
and stability. Some analysis exists for the quasi-continuum method, in which the
model error is basically interpolation error (see [9, 8]).

A preliminary step for analyzing AtC coupling methods is writing these procedures
in an abstract mathematical framework. This is one of the goals of our article for
blending-based coupling techniques.

The numerical analysis of AtC coupling methods is non-trivial because questions
that have a trivial answer in finite element analysis are not at all clear. Because we
do not have a global equation on the entire domain, the identification of the exact
solution is not obvious. Under the assumption that the atomistic model is valid
everywhere, the exact solution is the purely atomistic solution Ua. Unfortunately, it
is not straightforward to use this solution in the AtC coupling scheme. The aim of
this section is to formulate a well-defined notion of AtC consistency. We introduce
the following definitions:

Definition 3.1 (Consistency test problem). We say that a problem is a consistency
test problem when the purely atomistic solution Ua of (2.2) and the purely continuous
solution uc of (2.3) do satisfy the constraint Λ(uc, Ua) = 0 on the bridging domain
Ωb.

A consistency test problem is characterized by data F , f , UD
α , uD such that

solutions of (2.2) and (2.4) match in the bridging domain modulo the constraint
operator Λ.

7Reasonably assuming (for simplicity) that there is not any atom in A in the cut-off radius of C
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Definition 3.2 (Patch test problem). A consistency test problem is called patch test
problem if the purely continuous solution is such that α(u) = c where c is a constant
matrix.8

The following definition formalizes the notion of passing a patch test for a coupled
AtC formulation.

Definition 3.3 (Passing a patch test problem). Let [Ua, uc] denote a patch test
problem. An AtC coupling method passes a patch test if [Ua, uc] satisfies the coupled
AtC system.

Definition 3.4 (AtC consistency). An AtC coupling method is consistent when, for
any consistency test problem, the pair of purely atomistic and purely continuous so-
lutions [Ua, uc] satisfies the coupled AtC system.

Atomistic problems with Cauchy-Born solutions (see [6]) are a physical example
of consistency test problems.

From the previous definitions we can easily infer that consistency implies passage
of the patch test problem. However, the opposite statement is not true.

8That is to say, constant stress solutions
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4 Some blended AtC coupling methods

In this section we list four blended AtC coupling methods. The first was proposed
by [7]. To the best of knowledge, the remaining three methods are new. We refer to
Section 5 and [7] for justification of some of these methods by mechanical arguments.

Throughout this section we will assume that for any smooth functions θ and v
the differential operator β(·) has the following product rule property:

β(θv) = θβ(v) + β(θ)v . (4.1)

4.1 Method I

The underlying mechanical motivation of Method I has been recently introduced in
[7] with the aim of coupling atomistic and continuum simulations via the blending of
stresses. Unfortunately, stress is not a clear concept at the atomistic level (see [10, 5]).
By the definition of the blending functions and Assumption 3.1 we can rewrite (2.4)
and (2.2) as:∫

Ω

θcα(u)β(v)dΩ +

∫
Ω

θaα(u)β(v)dΩ = 〈f , θcv〉+ 〈f , θav〉,

(L (U) , ΘcV ) + (L (U) , ΘaV ) = 〈F, ΘcV 〉+ 〈F, ΘaV 〉,

where Θa is a diagonal weighting matrix whose diagonal values are equal to θa eval-
uated at the corresponding atoms:

(Θa)
ij
αβ = δijδαβθa(xα), i, j = 1, ..., d, α, β ∈ P,

and similiarly for Θc. In order to couple both equations, we merge the continuous
terms weighted with θc and the atomistic terms weighted with θa. Furthermore, the
continuous and atomistic solution are tied together on Ωb via the constraint operator.
The resulting AtC bridging method consists of: find u ∈ Rc

D and U ∈ Ra
D such that∫

Ω

θcα(u)β(v)dΩ + (L (U) , ΘaV ) = 〈f , θcv〉+ 〈F, ΘaV 〉, (4.2a)

Λ(u, U) = 0, (4.2b)

for all v ∈ Rc
D and V ∈ Ra

D.

We can write (4.2a) in the fashion of (3.3) with:

Ac
θ(u, v) :=

∫
Ω

θcα(u)β(v)dΩ− 〈f , θcv〉,

Aa
θ(U, V ) := (L (U) , ΘaV )− 〈F, ΘaV 〉.

In the following theorem, we analyze the consistency of Method I.
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Theorem 4.1. Method (4.2) is not consistent and does not pass a patch test problem.

Proof. Let [Ua, uc] be a solution of a consistency test problem. The purely atomistic
part Ua is such that Aa

θ(U
a, V ) = 0 for any θa. However, using (4.1) we see that for

the purely continuous solution uc of (2.3)

Ac
θ(u

c, v) =

∫
Ω

θcα(uc)β(v)dΩ− ` (uc, θcv) =

∫
Ω

α(uc)β(θc)vdΩ

:= ε(θc, u
c, v), .

The last term is zero if and only if

α(uc)β(θc) = 0, (4.3)

which is not true in general. In particular, for a patch test problem, (4.3) is only true
if β(θc) = 0.9

Remark 1. Let us consider a discrete version of system (4.2) where a finite element
approximation of the continuous problem and a discretized expression of the blending
parameters are considered: find uh ∈ Rc

D,h and U ∈ Ra
D such that∫

Ω

θh
c α(uh)β(vh)dΩ +

(
L (U) , Vθh

a

)
= 〈f , θh

c vh〉+ 〈F, Vθh
a
〉, (4.4a)

Λh(uh, U) = 0 (4.4b)

for all vh ∈ Rc
0,h and Vθh

a
∈ Ra

D. In [7] the blending parameters have been considered
element-wise constant. It is easy to check that also for this particular choice method
(4.4) is not consistent and does not pass a patch test problem. For a discrete consis-
tency test, such that uc

h (the solution of the finite element discretization of problem
(2.4)) and Ua (purely atomistic problem) satisfy Λh(u

c
h, U

a) = 0, the atomistic terms
cancel. Due to the fact that θh

c vh does not belong to X c
D,h (we do not make Assumption

3.1), we have to modify the way we treat the continuous terms. Again, we know that

` (uc
h, vh) =

∫
Ω

α(uc
h)β(vh)dΩ = 〈f , vh〉.

9For instance, let us consider one-dimensional linear elasticity for the continuous problem. We
can easily see that:

ε(θc,u
c,v) =

∫
Ω

∇uc · v · ∇θcdΩ.

In order for method (4.2) to pass the patch test, the following relation should be satisfied:

∇uc · ∇θc = 0.

The only situation in which (4.3) holds is when θa = θc = 1/2, computationally infeasible. The
original motivation of the method is to activate the atomistic problem in a small part of the domain.
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Let us denote with Ωe the domain for a finite element e and
∑

e the sum over all the
finite elements. The consistency condition∑

e

∫
Ωe

θh
c α(uh)β(vh)dΩ = 〈f , θh

c vh〉

holds for arbitrary element-wise constant blending functions only if:∫
Ωe

α(uc
h)β(vh)dΩ =

∫
Ωe

fvh,

which is not true in general.

4.2 Method II

The previous method fails (in terms of consistency) because, whereas the atomistic
blending operator Aa

θ vanishes for the purely atomistic solution, its continuous coun-
terpart Ac

θ does not vanish for the purely continuous solution. As a result, equation
(3.3) can never be satisfied exactly by this coupling scheme. One possible solution is
to relax Aa

θ so that consistency could be proved. The idea is to define Aa
θ in such a way

that Aa
θ(U

a, V ) = −Ac
θ(u

c, v), i.e., to have (3.3) satisfied by relaxing the atomistic
operator over the blending region.

A modification that can be mechanically justified as a blended force balance, and
that achieves this goal, will be presented in Section 5 (see also Figure 5.2). The
atomistic part that results from this approach can be expressed as

Aa
θ(U, V ) := (LθaU, V )− 〈F, ΘaV 〉 ,

where Lθa is an appropriate modification of L via the blending functions. Section 5 is
devoted to the construction of this operator. Therefore, the AtC coupling procedure
consists of: find u ∈ Rc

D and U ∈ Ra
D such that

(LθaU, V ) +

∫
Ω

θcα(u)β(v)dΩ = 〈f , θcv〉+ 〈F, ΘaV 〉 (4.5a)

Λ(u, U) = 0 (4.5b)

for all v ∈ Rc
D and V ∈ Ra

D.

The consistency of the method depends on the definition of the operator Lθ.
In Section 5 we obtain the condition that must be satisfied by this operator when
considering finite elements for the numerical approximation of the continuum problem.

4.3 Method III

One of the assumptions used for the design of AtC coupling algorithms is that the
continuous model is a good approximation of the atomistic model in Ωb and Ωc. This
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assumption implies that the continuous differential operator L is a good representa-
tion of L under suitable conditions (e.g., smoothness). A reasonable approach is to
blend both models in a pointwise sense. Roughly speaking, blend the operators L
and L.10 This approach leads to the following AtC coupling system: find u ∈ Rc

D

and U ∈ Ra
D such that

` (u, θcv) + (L (U) , ΘaV ) = 〈f , θcv〉+ 〈F, ΘaV 〉, (4.6a)

Λ(u, U) = 0, (4.6b)

for all v ∈ Rc
D and V ∈ Ra

D.11

Again, we can write (4.6a) as

Ac
θ(u, v) +Aa

θ(U, V ) = 0.

A positive feature of this approach, which is not shared by the previous methods,
is that the purely atomistic and continuous solutions cancel Aa

θ(U, V ) and Ac
θ(u, v)

for any AtC bridging problem. The following theorem is a direct consequence of this
observation.

Theorem 4.2. The AtC system (4.6) is consistent and, subsequently, passes any
patch test problem.

The consistency of this method makes its use appealing and will be the subject of
future work.

4.4 Method IV

Our fourth method can be viewed as a dual of Method I.

(LθaU, V ) + ` (u, θcv) = 〈f , θcv〉+ 〈F, ΘaV 〉
Λ(u, U) = 0

for all v ∈ Rc
D and V ∈ Ra

D. In this case, the purely continuous solution cancels
the continuous operator Ac

θ, while Aa
θ(U

a, V ) 6= 0. As a result, this method is not
consistent and so does not pass the patch test.

4.5 Summary of the four methods

Table 4.1 summarizes the consistency of the different methods.

10In [7] a similar blending method has been discarded for not passing the patch test. The reason
seems to be the fact that ghost forces were not accounted for.

11This method can be understood as a blending of forces (instead of stresses), because it is Lu
and L(U) that are blended. Mechanically, the unconditional consistency of the method is related to
the fact that force is well-defined both for the atomistic and continuous problem.
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Table 4.1: Values of the atomistic and continous operators of AtC blending methods
evaluated at [Ua, uc].

Method Ac
θ(u

c, v) Aa
θ(U

a, V ) Consistent
I 6= 0 = 0 No
II 6= 0 6= 0 Depending on Lθa

III = 0 = 0 Yes
IV = 0 6= 0 No
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5 On a consistent method based on the blending

of stresses

Let us consider a family of quasi-uniform finite element partitions Th(t) of Ωc∪Ωb. As
usual, h represents the maximum size of the elements of Th. Let Rc

h be a nodal-based
finite element space approximating Rc. Analogously, we define (Rc

0)h and (Rc
D)h. We

introduce the Lagrange basis {φj}j∈N associated to Rc
h, where N is the set of finite

element nodes. The approximation to the continuous displacement is denoted by uh

and we let σh = σ(uh). We denote by {vj
h}j∈N a basis for Rc

h. Then, we can write the
finite element discretization of the AtC coupling method (4.5) as: find uh ∈ (Rc

D)h

and U ∈ Ra
D such that

(LθaU, V ) +

∫
Ω

θcα(uh)β(vh)dΩ = 〈f , θcvh〉+ 〈F, ΘaV 〉 (5.1a)

Λ(uh, U) = 0 (5.1b)

for all vh ∈ (Rc
D)h and V ∈ Ra

D.

Theorem 5.1. When the constraint operator enforces slave atoms, system (5.1) can
be written in the following equivalent way: find uh ∈ (Rc

D)h and U ∈ Ra
D such that

(LθaU, V ) +

∫
Ω

θcα(uh)β(vh)dΩ = 〈f , θcvh〉+ 〈F, ΘaV 〉 (5.2a)

Λ(uh, U) = 0 (5.2b)

for all vh ∈ Rc
0 and V ∈ Ra

0 satisfying Λ(vh, V ) = 0.

Proof. Let us introduce the following finite element matrix:

Kjk = ` (φj, φk) , j, k ∈ N . (5.3)

We denote by U the array of nodal values for uh. On the other hand, the constraint

u(xα)i = (Uα)i ∀α ∈ B, i = 1, ..., d.

can be written as

CuU + CUUB = 0, (5.4)

where

Cαk
u = φb(xα), α ∈ B, k ∈ Nk,

Cαβ
U = δαβ := Iαβ

B , α, β ∈ B. (5.5)
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We can write this problem as:

L(U)A = FA

L(U)B + IBλ = FB

KU− Ct
uλ = F

−CuU + IBUB = 0.

where L(U)A and L(U)B represent the sub-systems (non-linear) equilibrium equations
for atoms in A and B respectively. These equations imply that

KU + Ct
uL(U)B = F + Ct

uFB. (5.6)

Now, we can multiply (5.6) by the set {Vj}j∈N , arrays of nodal values of {vj
h}j∈N :

Idem for F . We define V j
B = Ct

uV
j for j ∈ N . Thus, the set of test function V such

that Λ(vh, V ) = 0 can be written as V = VA + Ct
uV, for VA arbitrary. With these

ingredients, we get the form of the statement.

We will use this expression in the following theorem and subsection. In the next
theorem we analyze the conditions under which this method is consistent.

Theorem 5.2. Method (4.5) is consistent if the operator Lθ is constructed in such
a way that, for any consistency test problem, the appropriate restrictions of the pair
[uc

h, U
a] satisfy

(LθaU
a, V )− (L (Ua) , V Θa) = −

[∫
Ω

θcα(uc
h)β(vh)dΩ− ` (uc

h, θcvh)

]
(5.7)

for all vh ∈ Rc
D and V ∈ Ra

D holding Λ(v, V ) = 0. A method passes the patch test if
(5.7) is only satisfied for patch test solutions.

Proof. In order to have a consistent method, the consistency error

ε(θc, u
c
h, vh) := Aa

θ(U, V ) +Ac
θ(u, v) (5.8)

must be equal to zero. We know that [uc, Ua] satisfies:

(L (U) , ΘaV ) = (F, ΘaV ) ,

` (u, θav) = 〈f , θav〉,
Λ(u, U) = 0.

Invoking this system of equalities in (5.8) we prove the theorem.

The remaining point is how to build an operator Lθ for which condition (5.7) is
satisfied for every consistent (or, less demanding, patch) test problem. We construct
this operator below and prove condition (5.7) for some particular patch test problems.
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5.1 Mechanical motivation and some test problems

For the numerical solution of the atomistic problem we consider that, in addition to
an externally applied force, the force on the particle α located at the position xα is
due only to the set of particles Bα = {β ∈ P : |xβ − xα| ≤ δ} within the ball of
radius δ (the cut-off distance). Here, we consider interatomic potentials such that the
force at atom α due to its interactions with all other atoms can be written as

fα =
∑

β∈Bα

fα,β (5.9)

where fα,β is the force on atom α due to its interaction with atom β. See Figure 5.1.
This model clearly applies to all pairwise interatomic potentials, such as Lennard-
Jones, as well as models such as the embedded atom method (EAM) [3, 4]. In the
case of EAM, the energy associated with atom α can be written as

Eα =
∑
β 6=α

Epair(rαβ) + Eembed

(∑
β 6=α

ρ(rαβ)

)
,

where rαβ = ‖rα − rβ‖. We see that the negative gradient of the previous expression
has the form (5.9). In the atomistic region, force equilibrium requires that, for any
particle α, we have the force balance

fα + f e
α = 0

or ∑
β∈Bα

fα,β + f e
α = 0 (5.10)

where f e
α denotes the external force applied to the particle α.

According to Cauchy, if we take any continuum volume ω enclosing the point x,
the force acting on that volume by the material surrounding it is given by

fγ = −
∫

γ

σ · n dγ (5.11)

where γ denotes the boundary of ω and σ denotes the stress tensor. See Figure 5.1.
We assume that σ(x) = σ

(
x,∇u(x)

)
and is possibly nonlinear in both its arguments;

here u(x) denotes the continuous displacement at the point x. For a homogeneous
material, σ(x) = σ

(
∇u(x)

)
, i.e., it does not explicitly depend on position. This is

due to the observation that −σ · n is the stress force acting on a point on γ. In the
equilibrium state, we have that

−
∫

γ

σ · n dγ +

∫
ω

f dω = 0

where f is the externally applied volumetric force. We then have that∫
ω

(
∇ · σ + f

)
dω = 0.
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Figure 5.1: Force balance at a particle for the atomistic model (left) and at a point
for the continuum model (right).

Since ω is arbitrary, we conclude that at any point x in the continuum region, we
have the force balance

∇ · σ + f = 0. (5.12)

In the bridge region Ωb, we have assumed that both the atomistic and continuum
model are valid. We want to “blend” the two models to create a single model for
that region that transitions, across the bridge region, from the atomistic model to the
continuum model. We choose to blend the two models at the level of forces acting at
points.

We have that (5.10) and (5.12) hold in the bridge region. The most straightforward
blending of forces produces the blended model

−
∫

Ω

θcσ : ∇w dω +
∑
α∈P

θα

a

∑
β∈Bα

fα,β ·w(xα)

= −
∫

Ω

θcf ·w dω −
∫

Γt

θct ·w dγ −
∑
α∈P

θα

af
e
α ·w(xα).

(5.13)

We claim that the blended model (5.13) violates Newton’s third law of motion.12

Consider the atomistic term in (5.13); it implies that the force on particle α due to
particle β is given by θα

afα,β. But, if we reverse the roles of α and β, the force on
particle β due to particle α would be θβ

afβ,α = −θβ
afα,β. Since, in general, θβ

a 6= θα
a ,

we have a violation of Newton’s third law that requires the force on particle α due
to particle β to be equal and opposite to the force on particle β due to particle α.
A similar argument can be presented to show that the continuum part of (5.13) also
violates Newton’s third law.13

12This may account why this method fails the patch test.
13Another problem with (5.13) is that it is not a symmetric formulation, even when each of the
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To obtain a blended model that satisfies Newton’s third law we have to start with
the more “basic” force definitions. We now define the force on particle α due to the
other particles in its cut-off region Bα by14

fα =
∑

β∈Bα

θα,β

a fα,β. (5.14)

See Figure 5.2. If we require that

θα,β

a = θβ,α

a (5.15)

then Newton’s third law is satisfied, i.e., θα,β
a fα,β = −θβ,α

a fβ,α.15 Then, the atomistic
contribution to the blended model is given by∑

β∈Bα

θα,β

a fα,β + θα

af
e
α = 0. (5.16)

Note that if θa(x) = 1, then (5.16) reduces to the atomistic model (5.10).

A similar approach can be followed to determine the continuum contribution to
the blended model. We replace (5.11) by

fc = −
∫

γ

θcσ · n dγ (5.17)

where θc(x) will be defined later. See Figure 5.2. This leads to the force balance

−
∫

γ

θcσ · n dγ +

∫
ω

θcf dω = 0

which in turn leads to, instead of (5.12),

∇ · (θcσ) + θcf = 0. (5.18)

Note that if θc(x) = 1, then (5.18) reduces to the atomistic model (5.12).

atomistic and continuum models are symmetric as is the case, e.g., for linear spring-mass systems
coupled to the equations of linear elasticity.

14The definition in (5.14) should be contrasted with what is used in (5.13) where that force is
defined as

θα
a

∑
β∈Bα

fα,β .

15One way to define θα,β
a is to first define a function θa(x) over the bridge region and then define

θα,β
a from θa. The obvious choices are

θα,β
a = θa

(
xα + xβ

2

)
or θα,β

a =
θα

a + θβ
a

2

where θα
a = θa(xα).

27



Figure 5.2: Blended force balance at a particle in the bridge region.

The blended model is then the force balance given by the sum of the weak forms
of (5.16) and (5.18), i.e.,

−
∫

Ω

θcσ : ∇w dω +
∑
α∈P

∑
β∈Bα

θα,β

a fα,β ·w(xα)

= −
∫

Ω

θcf ·w dω −
∫

Γt

θct ·w dγ −
∑
α∈P

θα

af
e
α ·w(xα)

(5.19)

where Γt that part of the boundary of Ωc ∪ Ωb on which traction force t is specified.
In (5.19), w is a test function chosen from a suitable class of funtions.

In addition to (5.19), we will pose additional constraints in the blended region.
These will be discussed in the next section.
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5.2 The discrete equations

In order to get a first set of discrete equations, we test (5.19) with w = wh
j , j ∈ N ,

to obtain the first set of discrete equations

−
∫

supp(wh
j )

θcσ
h : ∇wh

j dω +
∑

α such that

xα ∈ supp(wh
j )

∑
β∈Bα

θα,β

a fα,β ·wh
j (xα)

= −
∫

supp(wh
j )

θcf ·wh
j dω −

∫
Γt∩supp(wh

j )

θct ·wh
j dγ

−
∑

α such that

xα ∈ supp(wh
j )

θα

af
e
α ·wh

j (xα) for j = 1, . . . , J.

(5.20)

Note that, in (5.20), test functions are defined with respect to finite element nodes in
both Ωc and Ωb.

As commented in the previous section, we impose the following constraints on the
particle displacements in Ωb:

uα = uh(xα) α ∈ B (5.21)

i.e., the particle displacements are determined by evaluating the finite element dis-
placement at the position of the particle.16 If we view (5.21) as a set of essential
constraints for the discrete system (5.20)–(5.23) that are to be enforced strongly, we
should not include17 in that system those equations that correspond to test functions
that are associated with particles in Ωb, i.e., we do not include (5.23).18 Thus, the dis-
crete system reduces to (5.20)–(5.22) and (5.21). Note that the constraints (5.21) can
be explicitly substituted into (5.20) in which case (5.20)–(5.22) reduces to a system
of |A|+ |N | equations in the same number of unknowns.

Remark 2. Instead of using slave atoms, we would consider test functions that corre-
spond to the particles. We define these test functions by

wα(x) = eiχ(|x− xα]) α ∈ A, i = 1, ..., d

16This is reminiscent of the quasi-continuum method for which the displacement of slave atoms
are determined from the displacement of a few master atoms.

17This is entirely analogous to the Dirichlet problem for the Poisson equation for which the equa-
tions corresponding to test function associated with nodes on the boundary are not included in the
discrete system.

18This is not the only possibility for improving the system (5.20)–(5.22). For example, all of
the equations of that system could be retained and the essential constraints (5.21) applied via the
Lagrange multiplier rule or by penalization. Again, these choices are entirely analogous to what is
possible for the Poisson equation.
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where χ(r) is an integrable function with support in a small neighborhood19 of r = 0
and such that χ(0) = 1; here, ei is the unit vector in the i-th direction.

We then have from (5.19) with w = wα that∑
β∈Bα

θα,β

a fα,β = −θα

af
e
α α ∈ A ∪B20 (5.22)

and ∑
β∈Bα

θα,β

a wα(0) · fα,β −
∫

supp(wα)

θcσ
h : ∇wα dω = −θα

awα(0) · f e
α

−
∫

supp(wα)

θcb ·wα dω −
∫

Γt∩supp(wα)

θct ·wα dγ α ∈ B.

(5.23)

The (nonlinear) system of discrete equations (5.20)–(5.23) consists of |A ∪B|+ |N |
equations in |A ∪B|+ |N | unknowns. However, it may not be a “nice” system. For
one thing, it may be singular21 and for another, the appearance of the derivative of
the test function wα in (5.23) can lead to serious ill-conditioning.22

5.3 A simple 1D example and the patch test

5.3.1 A simple, linear 1D example

We let Ωa = (0, a), Ωb = (a, c), and Ωc = (c, 1). In Ωc∪Ωb = [a, 1], we have a uniform
finite element triangulation with grid size h given by xj = a + (j − 1)h, j = 1, . . . , J .
We choose the space Rc

h to be the continuous, piecewise linear finite element space
with respect to the triangulation. We let uh

j = uh(xj), i.e., the nodal value of the
finite element approximation to the continuum displacement evaluated at the node
xj. We also assume only nearest-neighbor atomistic interactions. In Ωa ∪ Ωb = [0, c],
we have a uniform particle lattice23 with lattice spacing s given by xα = (α − 1)s,
α = 0, . . . , N . The displacement of particle α is denoted by uα. Without loss of
generality,24 we assume that there exists a particle α such that xα = a, i.e., there is a
particle positioned at the interface between the atomistic and bridge regions Ωa ∩Ωb.

19In fact, the support neighborhood should be small enough so that it encloses only one particle.
Moreover, the support of χ(r) should be small enough so that for all particles α located in Ωa,
suppχ(|x − xα|) ∈ Ωa. This last assumption guarantees that the integral terms in (5.19) vanish
whenever the test function wα corresponds to a particle in Ωa.

20In case of α ∈ A without “neighbors” belonging to B, θα,β
a = 1.

21The situation is entirely analogous to the Neumann problem for the Poisson equation. The lack
of essential boundary condition results in a discrete problem with a singular coefficient matrix.

22The fact that the support of wα is small, i.e., less than the inter-particle spacing, means that
its derivative is large relative to size of the function itself.

23Recall that here x denotes positions in the reference, or undeformed configuration.
24A simple redefinition of the bridge region, i.e., of a and c may be necessary.
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Likewise, we assume that there is a finite element node located at x = c, i.e., at
the interface between the continuum and bridge regions Ωc ∩ Ωb. Again without loss
of generality, we assume that h = Ms for some integer M > 0, i.e., that the finite
element grid spacing is an integer multiple of the particle lattice spacing. See Figure
5.3.

Figure 5.3: Particle positions and finite element nodes for the 1D example problem.

We assume that u1 = A and uh
J = B for given A and B, i.e., the atomistic displace-

ment is specified for the particle located at x = 0 and the continuum displacement is
specified at x = 1.

We consider the example of the linear elasticity/linear spring-mass model in 1D
for which we have the constitutive relations

σ(u) = Kc
du

dx
and fα,β = Ka

(
uβ − uα

s

)
where Ka and Kc respectively denote the spring constant and the elastic modulus
which we assume are constants.

Since θc = 1, θα
a = 0, and θα,β

a = 0 in Ωc = [c, 1], (5.20) reduces to

−Kc

(
uh

j+1 − 2uh
j + uh

j−1

h

)
=

∫ xj+1

xj−1

bwh
j dx for j such that xj ∈ Ωc = (c, 1).

(5.24)
In the bridge region Ωb, we have

−Kc

{(∫ xj+1

xj

θc dx

)(
uh

j+1 − uh
j

h2

)
+

(∫ xj

xj−1

θc dx

)(
uh

j−1 − uh
j

h2

)}

−Ka

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)

{
θα,α+1

a

(
uα+1 − uα

s

)
+ θα,α−1

a

(
uα−1 − uα

s

)}

=

∫ xj+1

xj−1

θcbw
h
j dx +

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)θα

afα for j such that xj ∈ Ωb = [a, c].

(5.25)
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Since θc = 0, θα
a = 1, and θα,β

a = 1 in Ωa = [0, a], (5.22) reduces to

−Ka

(
uα+1 − 2uα + uα−1

s

)
= fα for α such that xα ∈ Ωa = (0, a). (5.26)

At this point we have to choose a quadrature rule for the finite element method
and we have to choose a definition for θα,β

a . These are not to be chosen independently.
First, we choose θc(x) in Ωb = [a, c] such that θc(a) = 0 and θc(c) = 1. We then
apply a trapezoidal rule approximation to the integrals appearing in (5.25), e.g., if
θj

c = θc(xj), we have∫ xj+1

xj

θc dx ≈ h

2

(
θc(xj) + θc(xj+1)

)
=

h

2
(θj

c + θj+1
c ).

Next, we let θa = 1− θc in Ωb = [a, c] and, if θα
a = θa(xα), we define

θα,β

a =
θa(xα) + θa(xβ)

2
=

θα
a + θβ

a

2
.

Then, (5.25) reduces to

−Kc

{(
θj+1

c + θj
c

2

)(
uh

j+1 − uh
j

h

)
+

(
θj

c + θj−1
c

2

)(
uh

j−1 − uh
j

h

)}

−Ka

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)

{(
θα+1

a + θα
a

2

)(
uα+1 − uα

s

)
+

(
θα

a + θα−1
a

2

)(
uα−1 − uα

s

)}

= θj
cb(xj) +

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)θα

afα for j such that xj ∈ Ωb = [a, c].

(5.27)
Finally, we have that (5.21) reduces to

uα = uh(xα) for α such that xα ∈ Ωb = [a, c].

Of course, uh(xα) is determined from the nodal values of uh at the vertices of the
elements that contains xα. Specifically, since we are using continuous piecewise linear
finite element spaces, we have that

uα =

(
xα − xj

h

)
uh

j+1 −
(

xα − xj+1

h

)
uh

j if xα ∈ [xj, xj+1] ⊂ Ωb = [a, c]. (5.28)

The fully discrete system is given by (5.24), (5.26), (5.27), and (5.28).25

25Other choices for the quadrature rule and for θα,β
a are possible. For example, we could use the
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5.3.2 A patch test for the 1D example

Now, let us look at the patch test. We choose Ka = Kc, b = 0, and fα = 0. We test
whether or not the uniform strain solution satisfies the discrete system (5.24), (5.26),
(5.27), and (5.28). For the uniform strain solution we have that, for some constant
Q,

uh
j+1 − uh

j

h
= Q for j = 1, . . . , J − 1 (5.30)

and
uα+1 − uα

s
= Q for α = 1, . . . , N − 1. (5.31)

In fact, we have that Q = B − A where u1 = A and uh
J = B. Note that (5.30) and

(5.31) are consistent with (5.28) in the bridge region, i.e., the (5.28) and (5.30) imply
(5.31). For example, using (5.28) and (5.30),

uα+1 − uα

s
=

1

s

{(
xα + s− xj

h

)
uh

j+1 −
(

xα + s− xj+1

h

)
uh

j

−
(

xα − xj

h

)
uh

j+1 +

(
xα − xj+1

h

)
uh

j

}
=

uj+1 − uj

h
= Q

for xα ∈ [xj, xj + 1) ⊂ [a, c).

With b = 0 and fα = 0, we clearly have that the uniform strain solution (5.30)–
(5.31) satisfies (5.24) and (5.26), respectively. We have also shown that they satisfy
(5.28).

Now, let us examine (5.27). We assume that the particle lattice is commensurate
with the finite element grid, i.e., that h = Ms, where M > 0 is an integer, i.e., the

midpoint rule so that ∫ xj+1

xj

θc dx ≈ hθc

(
xj + xj+1

2

)
= hθ

j+ 1
2

c

and then define

θα,β
a = θa

(
xα + xβ

2

)
.

Then, instead of (5.27), we would obtain

−Kc

{
θ

j+ 1
2

c

(
uh

j+1 − uh
j

h

)
+ θ

j− 1
2

c

(
uh

j−1 − uh
j

h

)}

−Ka

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)
{

θ
α+1

2
a

(
uα+1 − uα

s

)
+ θα− 1

2

(
uα−1 − uα

s

)}

=
1
2

(
θ

j+ 1
2

c b(xj+ 1
2
) + θ

j− 1
2

c b(xj− 1
2
)
)

+
∑

α such that
xα ∈ (xj−1, xj+1)

wj(xα)θα
afα for j such that xj ∈ Ωb = [a, c]

(5.29)
where θ

α+1
2

a = θa(xα+1+xα

2 ) and xj+ 1
2

= x(xj+1+xj

2 ).
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finite element grid size is an integer multiple of the particle spacing s, and we also
assume that every finite element node is occupied by a particle. See Figure 5.4.

Figure 5.4: Particle positions and finite element for commensurate grids with h = 2s.

Substituting (5.30) and (5.31) into the left-hand side of (5.27), we obtain, with
with b = 0, fα = 0, and Ka = Kc = K,

LHS(5.27) = −KQ

2

{(
θj+1

c − θj−1
c

)
+

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα) (θα+1

a − θα−1

a )

}

= −KQ

2

{(
θc(xj+1)− θc(xj−1)

)
+

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)
(
θa(xα+1)− θa(xα−1)

)}

for j such that xj ∈ Ωb = [a, c]
(5.32)

where we have recalled that θj
c = θc(xj) and θα

a = θa(xα).

Note that if M = 1 so that h = s, then the only particle in the support of wj(x),
i.e., in (xj−1, xj+1), is the particle located at xα = xj. Then, since wj(xα) = wj(xj) =
1, (5.32) reduces to

LHS(5.27) = −KQ

2

{(
θc(xj+1)+θa(xj+1)

)
−
(
θc(xj−1)+θa(xj−1)

)}
= −KQ

2
(1−1) = 0

where we have recalled that θc(x) + θa(x) = 1 everywhere. Thus, if in the bridge
region, every particle occupies a finite element node, the uniform strain solution also
satisfies (5.27) and thus the discrete system (5.24), (5.26), (5.27), and (5.28) passes
our patch test.

For the more general case of commensurate grids with M > 1, we choose in (5.32)
θa(x) and θc(x) that are linear in the bridge region Ωb = [a, c], i.e.,

θc(x) =
x− a

c− a
and θa(x) = 1− θc(x) =

c− x

c− a
for x ∈ Ωb = [a, c].

Then,

θc(xj+1)− θc(xj−1) =
2h

c− a
and θa(xα+1)− θa(xα−1) = − 2s

c− a
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so that, from (5.32), we obtain

LHS(5.27) = − KQ

c− a

{
h− s

2M−1∑
m=1

wj(xj − h + ms)

}
(5.33)

where we have used the fact that in the open interval (xj−1, xj+1), we have that the
particles are located at the points xj − h + ms, m = 1, . . . , 2M − 1. Note that since
wj(xj−1) = wj(xj+1) = 0, we have that

2M−1∑
m=1

wj(xj − h + ms)

=
1

2

(
wj(xj−1) + 2

M−1∑
m=1

wj(xj − h + ms) + w(xj)
)

+
1

2

(
w(xj) + 2

M−1∑
m=1

wj(xj + ms) + wj(xj+1)
)

=
1

s

{∫ xj

xj−1

wj(x) dx +

∫ xj+1

xj

wj(x) dx
}

=
h

s

(5.34)

where we have used the fact that for the piecewise linear function wj(x), the trape-
zoidal rule is exact.26 Substituting (5.34) into (5.33), we obtain that LHS(5.27) = 0.
Thus, if, in the bridge region, the finite element grid is commensurate with the lattice
spacing and the blending functions θc(x) and θa(x) are linear polynomials, then the
uniform strain solution also satisfies (5.27) and thus the discrete system (5.24), (5.26),
(5.27), and (5.28) passes our patch test.27

Let us now explore what happens with the patch test if the finite element grid
is not commensurate with the lattice spacing. We again assume that the blending
functions θc(x) and θa(x) are linear in the bridge region and that the particle spacing
is denoted by s and the finite element grid size is denoted by h. Furthermore, we
consider that there are nodes and atoms positioned at a and c. But, now we assume
that (for some finite elements) the particles are offset by a distance s0 with respect

to the finite element grid and we denote by M̃ the number of particles in each finite
element interval. We assume that h = M̃s See Figure 5.5

If we follow the same process that led to (5.33), we are instead led to

LHS(5.27) = − KQ

c− a

{
h− s

2fM∑
m=1

wj

(
xj − h + s0 + (m− 1)s

)}
. (5.35)

26The commensurate nature of the lattice spacing and the finite element grid is needed so that
the locations of the particles become equally spaced quadrature points for the integrals in (5.34).

27In the same way, it can be shown that the discrete scheme (5.24), (5.26), (5.28), and (5.29) that
results from using the midpoint quadrature rule also passes the patch test in the two cases discussed.
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Figure 5.5: Non-commensurate particle lattice and finite element grid with M̃ = 6
and offset s0.

Now,

fM∑
m=1

wj

(
xj − h + s0 + (m− 1)s

)
=

M̃

h

(
s0 +

s

2
(M̃ − 1)

)
=

1

s

(
s0 +

s

2
(M̃ − 1)

)
and

2fM∑
m=fM+1

wj

(
xj−h+s0+(m−1)s

)
=

M̃

h

(
s− s0 +

s

2
(M̃ − 1)

)
=

1

s

(
s− s0 +

s

2
(M̃ − 1)

)
so that, substituting in (5.35) we obtain that

LHS(5.27) = − KQ

c− a

(
h− M̃s

)
= − KQ

c− a
(h− h) = 0

so that again the uniform strain solution satisfies (5.27) and thus the discrete system
(5.24), (5.26), (5.27), and (5.28) passes our patch test even when the particle spacing
is offset from the finite element grid.

We can easily infer that, for a general case in which M̃ is not an integer, and no
assumptions over the position of nodes and atoms are made, we can easily prove:

LHS(5.27) ≤ Cs2h

C being uniform with respect to h.

5.4 Quadrature rules and blending functions

5.4.1 Choosing the quadrature rule

We now consider the two-dimensional case. The one-dimensional case was discussed
in Section 5.3.

We use continuous, piecewise linear finite element spaces with respect to a par-
tition of Ωb ∪ Ωc into a set of T triangles T h = {∆t}T

t=1. For j = 1, . . . , J , we let
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T h
j = {∆t : ∆t ∈ supp(wj)} ⊂ T h, i.e., the set of triangles sharing the finite element

node xj as a vertex. Thus, we have that

∫
supp(wh

j )

F (x) dω =
∑

t such that

∆t ∈ T h
j

∫
∆t

F (x) dω. (5.36)

The standard choice for the quadrature rule, since we are using piecewise linear
finite element functions, is the mid-side rule for triangles. Thus, if x̂∆;k, k = 1, . . . , 3
are the vertices of a triangle ∆, we have the quadrature rule

∫
∆

F (x) dω ≈ V∆

3

3∑
q=1

F (x∆;q) (5.37)

where V∆ denotes the volume of the triangle ∆ and

x∆;1 =
x̂∆;1 + x̂∆;2

2
, x∆;2 =

x̂∆;2 + x̂∆;3

2
, and x∆;3 =

x̂∆;3 + x̂∆;1

2
.

We also need a quadrature rule for the boundary integral appearing in (5.20). Let
Ih

j = {∆t ∩ Γt : ∆t ⊂ supp(wh
j ) and length(∆t ∩ Γt) > 0}, i.e., Ih

j is the set of sides
of the triangles ∆t in the support of wh

j that intersect with the boundary Γt. We
then have that ∫

Γt∩supp(wh
j )

F (x) dγ =
∑

t such that

∆t ∩ Γt ∈ Ih
j

∫
∆t∩Γt

F (x) dγ. (5.38)

Integrals over individual line segments are approximated using the trapezoidal rule.
Without loss of generality, assume that x̂∆;1 and x̂∆;2 are the two boundary vertices
of a triangle ∆.28 We then have that

∫
∆t∩Γt

F (x) dγ ≈ L∆

2

2∑
q=1

F (x̂∆;q) (5.39)

where L∆ denotes the length of the boundary segment ∆t ∩ Γt.

28By triangulating into corners, we can guarantee that no triangle has three vertices on the
boundary.
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Using (5.36)–(5.39) in (5.20) results in

−
∑

t such that

∆t ∈ T h
j

{
V∆t

3

3∑
q=1

(
θc(x∆t;q)σ

(
(x∆t;q),∇uh(x∆t;q)

)
: ∇wh

j (x∆t;q)

)}

+
∑

α such that

xα ∈ supp(wh
j )

∑
β∈Bα

θα,β

a fα,β ·wh
j (xα)

= −
∑

t such that

∆t ∈ T h
j

{
V∆t

3

3∑
q=1

(
θc(x∆t;q)f(x∆t;q) ·wh

j (x∆t;q)

)}

−
∑

t such that

∆t ∩ Γt ∈ Ih
j

L∆t

2

{ 2∑
q=1

(
θc(x∆t;q)t(x∆t;q) ·wh

j (x∆t;q)

)}

−
∑

α such that

xα ∈ supp(wh
j )

θα

af
e
α ·wh

j (xα) for j = 1, . . . , J.

(5.40)

Thus, in two dimensions, the fully discretized system is given by (5.22), (5.22), (5.21),
and (5.40).29

In three dimensions, one cannot use mid-face or mid-edge rules as we can in one
and two dimensions, even for uncoupled continuum problems. Instead, one must
use rules for which at least some of the quadrature points are in the interior of
tetrahedra. Other than this, the development of a fully discretized method follows
the same process that led to (5.40) in the two-dimensional case.

5.4.2 Choosing the blending functions

We now want to give a recipe for choosing the blending functions θc(x) for x ∈ Ωb and
θα,β

a and θα
a for xα ∈ Ωb that appear in (5.20).30 In two dimensions, we triangulate the

29We note that if the continuum material is homogeneous, then σ = σ(∇u). Then, since both uh

and wh
j are linear functions in any triangle, the first term of (5.40) simplifies to

∑
t such that
∆t ∈ T h

j

{
V∆t

3

3∑
q=1

(
θc(x∆t;q)

)
σ
(
∇uh(x̃∆t)

)
: ∇wh

j (x̃∆t)
}

where x̃∆t is any point in ∆t.
30Of course, in Ωa we have that θc = 0, θα,β

a = 1, and θα
a = 1 and in Ωc we have that θc = 1,

θα,β
a = 0, and θα

a = 0.
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bridge region Ωa into the set of triangles having vertices {xb;i}l
i=1. In practice, this

triangulation would be the same as that used for the finite element approximation
of the continuum model in the bridge region, but, in general, it may be different.31

We then choose θc(x) = θh
c (x), where θh

c (x) is a continuous, piecewise linear function
with respect to this triangulation. The nodal values of θh

c (x) are chosen as follows.
First, set θh

c (xb;i) = 0 at all nodes xb;i ∈ Ωa ∩ Ωb, i.e., on the interface between the
atomistic and bridge regions and θh

c (xb;i) = 1 at all nodes xb;i ∈ Ωb ∩ Ωc, i.e., on
the interface between the continuum and bridge regions. For the remaining nodes
xb;i ∈ Ωb, there are several ways to choose the value of θh

c . One way is to choose

θh
c (xb;i) =

dist
(
xb;i, Ωa ∩ Ωb

)
dist
(
xb;i, Ωa ∩ Ωb

)
+ dist

(
xb;i, Ωb ∩ Ωc

) for xb;i ∈ Ωb.

Once θh
c (x) is chosen, we choose θa(x) = θh

a(x) = 1− θh
c (x) for all x ∈ Ωb. Then,

we can choose

θα

a = θh
a(xα) and θα,β

a =
θh

a(xα) + θh
a(xβ)

2
.

31For the two triangulations to be the same, we must have that the finite element triangulation is
conforming with the interfaces between the bridge region and the atomistic and continuum regions,
i.e., those interfaces have to be made up of edges of triangles of the finite element triangulation.
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6 Numerical Experiments

In this section we conduct simple experiments to numerically demonstrate the results
of Theorem 4.1 regarding Method I, and also the discussion of Method II in Section
5.3. In all cases, we construct our discrete system as described in Section 5.1. All
examples are one-dimensional, and consist of an atomistic domain and finite element
domain joined by a bridging domain. A unit point force will be applied to the end
finite element node, and the end atom will be constrained at the origin. For our
atomistic or finite element models, the resulting solution is one of uniform strain. We
thus desire that our blended models also recover this solution.

The first numerical example we will consider is the simplest case possible, where
the lattice constant s is equal to the mesh width h (M = 1). In this situation, we
constrain the atoms in the blend region to move with the finite element nodes. In
Figure 6.1, we show computed displacements and strains for a case of 16 atoms and
14 nodes for Methods I and II. Method I is unable to recover the patch test solution.
Even for this simple test problem the solution obtained with this method is very
inaccurate. On the contrary, Method II recovers the patch test solution.

In our second numerical example, we set the mesh width h to twice the lattice
constant s (M = 2). For the atoms in the blend region, we constrain the atoms
coincident with finite element nodes to move with the nodes, and atoms in the interior
of an element to move in accordance with a the corresponding shape functions. In
Figure 6.2, we show computed displacements and strains for a case of 15 atoms and 8
nodes for Methods I and II. Again, whereas Method II pass the patch test problem,
the results obtained with Method I are extremely inaccurate.
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Figure 6.1: Plots for example 1. Atoms are represented in red, and finite element
nodes in blue.
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Figure 6.2: Plots for example 2. Atoms are represented in red, and finite element
nodes in blue.
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7 Conclusions

In this article we have analyzed blended AtC coupling techniques. This family of
methods has been stated in an abstract form, and a well-defined concept of consistency
has been suggested. We have considered how to design these methods without being
affected by ghost forces. Four different methods have been listed.

Based on the consistency properties of the methods, we have chosen one, for which
an accurate AtC blending model for the bridging region which pass some patch test
problems has been constructed. This model has been motivated using mechanical
arguments, based on the blending of forces on points.

Numerical experimentation supports the accuracy of the method in comparison
with the method proposed in [7] based on the blending of stresses.
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