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Sobolev Spaces

WmP(Q) ={u e LP(Q)| Du € LF(Q) V|a| < m}
For example
L2(Q) = {u] fyuldQ < oo}
HYQ) = {u| D% € L*(Q), |a] <1}

Norm for a function g belonging to H™(£2):

lollh = = h(D9)de

Sobolev spaces related to the Navier-Stokes equations:

L3(Q) = {u € LXQ)| fyud2 = 0}
Hy(Q)={ue H(Q)|u=0 onI}

H'(Q) = {ue H'(Q)| fud? =0}



Curls and Vector Products.

Curl operator in 3D:

curlu=V xu

Curl operator(s) in 2D:

) and curlu = ug, — uyy, .

“Vector product” in 2D:
¢ - <07 07 ¢>

u— (ula u2, O)

vV — (Ula V2, O)

then we define:

U XV — UiV — UsVq

Vorticity in 3D/2D:

w=curlu (=V xu)

w=curlu (=V xu)



What is a Least Squares Method

Boundary value problem

LU=F 1inf{)
RU =0 onl

where £ : X — Y:; X and Y are Hilbert spaces.

1. Least squares functional

JWU)= (LU - F,LU — F)y = ||LU — F||} .

2. Least squares principle

Seek U € X such that J(U) < J(V) VV € X.

3. Euler-Lagrange equation

d
5J(U) = liy  J(U +eV) =0 YV e X,

Equivalent variational problem

Seek U € X such that
QU;V)=F(V) for allV € X.



Existence of minimizers.

Assume the a prior: estimate

IUllx < CILUly -

Then Q(+;-) is coercive on X x X:

QU:U) = (LU, LU)y = | LU[ly = CU | -

—> Existence and uniqueness of the minimizer will follow
from the Lax-Milgram Lemma, if one can establish an
a priort estimate for the PDE.

4. Discretization

Choose X" € X and then solve the problem

Seek U" € X" such that
QU™ VM = FVM for allVh € X"
e Typically, X is a Sobolev space constrained by the

boundary conditions.

e Discrete problem is equivalent to a linear system hav-
ing symmetric, positive definite matrix.

e Approximations are optimaly accurate.



Least Squares Strategy: How and Why

1. Transformation of the original PDE or system of PDEs
to a first order system:

— Discretization by C" finite elements may be pos-
sible.

—> Direct and optimall approximations of physically
important fields, e.g., vorticity, stresses.

2. Identification of spaces X and Y such that an a prior:
estimate holds and, formulation of the LS functional
for the (first order) system:

— Existence and uniqueness of the minimizers

—> Stability of the discretizations is guaranteed by
the inclusion X" C X and inf-sup (LBB) type
conditions are not required for X

—> Discretization results in linear systems with sym-
metric, positive definite matrices

—> Discrete equations can be solved by robust itera-
tive methods (e.g., CG methods)

—> Assembly free methods are feasible.



Applications of least squares methods

e [ecast squares finite element methods are based on
minimization principle:

— very competitive when Galerkin formulation cor-
responds to a saddle point optimization, because
inf-sup (LBB) condition is avoided.

e Boundary conditions can be imposed in a weak sense
by including into the functional the term

IRU - Gp

—> Approximating functions need not satisfy the es-
sential boundary conditions.

Examples of LS applications

e Stationary, incompressible flow
e Time dependent incompressible flow
e Convection-diffusion problems

e Purely hyperbolic problems



LS References

General

1970,73 - Bramble, Schatz (LS for 2m' order BVP)
1973 - Baker (Simplified proofs for Bramble, et.al.)
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Convection-diffusion and hyperbolic problems
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Stokes in H~! norms)
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1992 - Lefebvre, Peraire and Morgan (LS for VVP Navier-
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1993 - Bochev, Gunzburger (LS for velocity-pressure-
stress Stokes)

1994 - Bochev (LS for VVP Navier-Stokes)
1994 - Bochev, Gunzburger (WLS for VVP Navier-Stokes)

10



Velocity-Vorticity-Pressure Navier-Stokes
Equations

Differential equations in 2D

veurlw +gradr+wxu =f in) — 2
curlu —w = 0 in€) —1
diva =0 inQ —1

Differential equations in 3D

veurlw +gradr+wxu =1 in) -3
curlu—w =0 inQ —3
diva =0 inQ) — 1.

Boundary conditions

RU =0 onl

e u - velocity

e 2D: w = curlu; 3D: w = curlu - vorticity

e r =p+ 1/2|ul? - total head, (p = pressure)
JordQ2 =0

e v = 1/Re - kinematic viscosity

o f - body force
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The ADN Theory

e Success of the LS method depends on the proper choice
of the spaces X and Y ( coercivity!)

e The spaces X and Y should be such that an a prior:
estimate holds for the linearized system

e The ADN theory identifies the spaces in which a pri-
ori estimates of the form ||U||x < C||LU||y hold for
solutions of elliptic BVP

e The norms appearing in these estimates are chosen so
that the operator £ and boundary operator R satisty
a certain precise condition known as the complement-
ing condition.

e The complementing condition guarantees that the
boundary operator R is compatible with the operator
L i.e., that the BVP is well-posed in the spaces X and
Y.

e Different boundary conditions may result in different
a priori estimates, i.e., the choice of X and Y may
depend on R.
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In two-dimensions:

e Four equations and unknowns
e Elliptic system of total order 4

e Needs 2 conditions on I'; same as for the (u, p) Navier-
Stokes in 2D: can use the same R.

In three-dimensions

e Seven equations and unknowns:

e The VVP system cannot be elliptic in the sense of
Agmon, Douglas and Nirenberg because
detLP (€ + 7¢") = 0 will have a real root.

To derive a well-posed system:

e We add a seemingly redundant equation and a new
“slack” variable ¢:
divw =0 in ;
curlu —w+grad¢ =0 in ().
e Elliptic system of total order 8

e Needs 4 conditions on I'; one more than the (u,p)
Navier-Stokes in 3D: must supplement 'R by an ad-
ditional condition on I'!
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Principal parts and a priori estimates

S1 Wy Ty 0 0
So | —Wwy Ty 0 0
s3 | —w 0 —uy, u,

Sy 0 0  wy, uy,
S/t tl t2 tg t4

o s, < 0 determine norms for the data

e {; > 0 determine norms for the solution
o degl;; < s;+1;

o LV ={L;;|degL;; = s; + t;}

The ADN a priori estimates

o £ is uniformly elliptic
o L7 satisfies the Supplementary Condition (2D)

e B(Cs satisty the Complementing Condition

Ul = 3 Jlojlly < € £ IIfill- = CILUy
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Classification of the Boundary Conditions

The principal part £ of the VVP linearized equations is
not unique! There are two sets of indices such that £1
and L4 are uniformly elliptic.

Type 1 BC: CC holds with

curlw + gradr
LY = curl u
divu
8128220, 83284:0 iDQD,
momentum
S1=...=8=0: s5=...=s3=0 n3D.

momentum and redundant

Example: RU = (u-n,r)

Type 2 BC: CC holds with

curlw + gradr

Ly = —w| + curlu
divu
s1=8,=0, s3=s4=—1 in 2D,
momentum
S1=...=8=0: s5=...=s3=—1 in3D.

momentum and redundant
Example: RU =u
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The Modified Navier-Stokes Equations:

In two-dimensions

Let wp, ro and ug solve

1 1
curlw+ —gradr = —f in )
v v

curlu —w = 0 1in €
diva = 0 in ()
RU =0 onl

Least squares methods will be formulated for

curlw +gradr + v wy x ug)+

v wyxu+twxug+wxu) =0 inQ
curlu —w = 0 in ()

diva = 0 in Q)

RU =0 onT

In three-dimensions

The “redundant” equation
divw =0

must be added for the stability of the method. The slack
variable is identically zero and can be ignored
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LS for the Navier-Stokes Equations

Least squares functional:

J(w,u,r) =
1
=5 (lcurlw + a(w, ) + b(w, u, wp, ug) + grad ||

+ ||curlu — w||§ + Hdivu||§) ,

where s = 0, 1 for Type 1,2 BCs and

M%ugwy:iwxu+§xv>

CL(U.J, u) — b<w07 u, w, 110) :

Euler-Lagrange equation

Seek (w,u,r) € Xy such that
Q(w,u,7);(€,v,q)) =

= (curlw + grad r + a(w, u) + b(wy, ug, w, u),
curl§ +grad ¢+ a(&,v) + b(&,u,w, v)),
+ (curlu — w, curlv — &),
+ (divu,divv), =0 for all (§,v,q) € X

where

X, = [HYQ) x H(Q) x H*"HQ)?|N[RU =10].
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Least Squares Finite Element Method

1. Choose the discrete space X C X,:
2. Solve the Euler-Lagrange equation

Seek UM = (wh u, r") € X such that
QIS VM) =0 WV = (€ V", ¢") € X

Implementation Issues
The Euler-Lagrange equation is a nonlinear system that

must be solved in an iterative manner.

Newton’s method:

e Locally has quadratic convergence

e In a neighborhood of a minimizer the Hessian is
symmetric and positive definite.

—> Continuation methods are required to get an initial
approximation inside the attraction ball:

e Continuation along the constant: simple,
but cannot handle turning points

e Continuation along the tangent: can be made
to handle turning points.
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Navier-Stokes Equations:
Advantages of the Least Squares Methods

e Approximating spaces are not subject to the LBB (
inf-sup) condition

e All unknowns can be approximated by the same finite
element space

e Newton linearization results in symmetric, positive
definite linear systems, at least in the neighborhood
of a solution:

—> Using a properly implemented continuation (with
respect to the Reynolds number) techniques, a so-
lution method can be devised that will only en-
counter symmetric, positive definite linear systems
in the solution process

—> Robust iterative methods can be used

—> A solution method that is assembly free even at
an element level can be devised

e No artifictal boundary conditions for w need be in-
troduced at boundaries at which u is specified

e Accurate vorticity approximations are obtained.
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Error Analysis of the Least Squares Method:
Abstract Approximation Theory

Abstract problem | (Girault, Raviart, 1984)

FANU)=U+T-G\U) =0,

where A C R is compact interval; X and Y are Banach
spaces and T' € L(Y, X).

Regular branch of solutions

Assume that {(X, U(X) | A € A} is such that

FO\UA)=0 for A €A.

1. The set {(A\,U(N) | A € A} is called branch of solu-
tions if the map A — U(\) is a continuous function
from A into X

2. The set {(A\,U(N) | A € A} is called regular branch if

Dy F (A, U()N)) is an isomorphism from X into X for
all A € A.
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Discretizations

e Choose a discrete subspace X" C X;

e Choose T}, € L(Y,X") to be an approximating oper-
ator for the linear part T of F'.

e Then, consider the approximate problem

F'0\UN =U"+T,- GO\, U") =0.

e Approximation in F” is introduced by approximating
only the linear operator 1"

— F" has the same differentiability properties as the
nonlinear map F'.
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Abstract approximation result

We make the followng assumptions:

A1 {(\,U(N)|X € A} is a branch of regular solutions;
A2.Gisa C? mapping G : A x X —Y;

A3. All second derivatives D#G are bounded on all bounded
subsets of A x X:

AA4. There exists a space Z C Y, with a continuous
imbedding, such that

DyG(\,U) € L(X,Z) VU € X;
A5. The operator T}, satisfies conditions
lim [[(T" = Th)gllx = 0 VgeY;

hm |7 =Tl zx) = 0.

Then, for h sufficiently small there exists a unique C?
function A +— U" € X" st. {(A\,UN)|X € A} is a
branch of regular solutions of F*(\, U") = 0 and

U = Ullx < CIT —Th) - G U)|x YA€EA
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Application to the least squares method

Q((wa u, T>; (57 Vv, Q>>5 —
= (curlw + gradr, curl ¢ + grad ¢),
+ (curlu — w, curlv — &), + (divu,divv), .

Y, = H Q) x HHQ) x H175(Q)?

The operator T/Tj:

Vge Y, ;Tg=U € X, if and only if U solves

Seek U € X, such that
QU;V)s=(g,V) VV €X;.

For Tj, take U™, V" € Xi; T and T}, are the Stokes

LS solution operator and its discretization.

The operator G:

VU € Xs; G\ U) =g € Y, if and only if

(curlw + grad r + a(w, u) + b(w, u, wy, ug),

b(f? uO? 57 u) _|_ b<w07 V? w? V))O

+ (a(w,u) + b(w, u,wp, uy), curl € + grad q),
= (91,€)0+ (92, V)o+ (93,90 V(& ,v,q € X,.
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With the identification

1
U= (w,u,r), Ul = (wh,uh,rh) and \ = —
v

the Fuler-Lagrange equation and its discretization can be
cast into the canonical forms

U+T-G\U)=0 and U+ T, -G\, U =0

Concerning the error estimates one can show that the
assumptions [Al.] - [A5.] hold. As a result one can prove
the following:

Theorem 1 Assume that {(\,U(X))|\ € A} is a reg-
ular branch of (sufficiently smooth) solutions. Then,
for h sufficiently small, the discrete Euler-Lagrange
equation has a unique branch {(\,U"\))|\ € A} of
reqular solutions such that

lw(A) = "Ml + [[a(d) = u" (V)1
+ [lr() =" (V)]s
< Ch([lwMl2 + [[aM) 245 + [|7(A)]l2)

where s =0 for Type 1 and s =1 for Type 2 BC(s.
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Table 1: Boundary Conditions

Boundary conditions 3D 2D Type

BC1 | Velocity u u 2
Slack variable 1) -

BC1A | Velocity u u 2
Normal vorticity w-n -

BC2 | Pressure P P
Normal velocity u-n u-n 1
Normal vorticity w-n -

Slack variable ) -

BC2A | Pressure P P not well
Normal velocity u-n u - n | posed in 3D
Tangential vorticity |n X w X n| - 1in 2D

BC3 | Pressure P D 1in 2D
Tangential velocity |nxuxn|u-t 2 in 3D
Slack variable ) -

BC3A | Pressure D D
Tangential velocity |nXuxn|u-t 1
Normal vorticity w-n -

BC4 | Normal velocity u-n u-n
Tangential vorticity |n X w X n| w 1
Slack variable 1) -

BC5 | Tangential velocity |nXxuXxXn|u-t 1
Tangential vorticity |n X w Xn| w

BC6 | Vorticity w w not well
Pressure P 2 posed
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