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An Overview

• Babuska Theory: solvability and stability of general linear
systems

• Origins of saddle-point problems
• Structure of saddle-point problems

– Geometrical
– Variational

• Brezzi Theory: solvability and stability of SP linear systems

• Regularization and stabilization of SP problems
– Reasons to stabilize
– Modification of Lagrangians
– Modifications of optimality equations
– Residual and non-residual stabilization
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Resources
• Saddle-point problems

– Brezzi, RAIRO B-R2  (1974)
– Bramble, Math. Comp. 37 (1981)
– Boland, Nicolaides, SINUM 20 (1983)

• Mixed methods
– Brezzi, Fortin, Mixed FEM, Springer (1991)
– Brezzi, Bathe, CMAME 82, (1990)
– Arnold, Numer. Math. 37 (1981)

• Stabilization
– Hughes, Franca, Balestra, CMAME 59 (1986)

– Hughes, Franca CMAME 65 (1987)

– Brezzi, Douglas, Numer. Math. 53 (1988)

– Douglas, Wang, Math. Comp. 52 (1989)

– Silvester, Kechkar, CMAME 79 (1990)

– Codina, Blasco, CMAME 182 (2000)
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Finite Element Modeling

Variational principle
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FEM = Variational principle + Finite Dimensional Subspace
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Babuska Theory: Solvability and Stability
for General Sequences of Linear Systems

A single linear system:
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Domain and Range of Kh
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Standard condition number viewpoint on Kh:

Range and domain must be measured differently!
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Choosing the right norms
Domain (solution) norm: 
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Easily identified from continuity of the bilinear form

Range (data) norm:  complete sets of homeomorphisms (ADN-1962)
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Stability bound
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Stability Conditions
Lemma
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Algebraic interpretation
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The continuous case
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Origins of Saddle-Point Problems
Physical models
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Matrix Form
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PDE Examples

BatteryN/ABatteryHeat batteryN/Ag

Applied
current

Applied loadSource CurrentHeat SourceFluid Sourcef

CurrentStressCurrentHeat flowFlow ratev

Conductivity
Ohm’s law

Compliance
Hook’s law

Conductivity
Ohm’s law

Thermal
conductivity

PermeabilityA-1

VoltageStrainElectric fieldHeat fluxVelocityu

PotentialDisplacementPotentialTemperaturePressurep

Electrical
network

Linear
elasticity

Electro
statics

Thermal
diffusion

Potential
flow
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Geometrical structure

Kinematic
Constitutive 

Continuity
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• Kinematic and continuity
equations
  depend only on “network topology”
  (incidence matrices!)

• Metric properties are introduced

by
  the constitutive equation.This distinct pattern appears over

and over in physical models
(Tonti, 1974).

Recall the discrete network of pipes…

Mathematical tools for the study of such patterns are
provided by differential forms on manifolds

(Hyman, Scovel, Shashkov 1987-, Bossavit 1989, Nicolaides, 1989-, Demkowicz, 1999, Hiptmair,2000)
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A crash course in differential forms
De Rham Cohomology (exact sequence) Factorization diagram
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Variational Structure
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Other sources of saddle-point problems
Domain decomposition, Hybrid methods (DG)

! 

J q( ) =
1

2
"q

2

d#$ fqd#
#

%
#

%

! 

J q( ) =
1

2
"q

2

d#$ fqd#
# i

%
# i

%
& 

' 
( 

) 

* 
+ 

# i

,

! 

"
i

eij

! 

"
j

Optimization problem

! 

X = H
1 "

i
( )

i

#
  

! 

min
q"X

J q( )  subject to  q " H
1

#( )

Note that
  

! 

q " H
1

#( ) $ q
i
= q

j
  in  H

1/ 2

e
ij( )

! 

inf
q
sup
"

=
1

2
#q

2

d$% fqd$% " u
i
% u

j( )d&
eij

'
$ i

'
$ i

'
( 

) 
* 

+ 

, 
- 

$ i

.



Computational mathematics and algorithms  

Constrained Interpolation

Given: weakly divergence free nodal velocity

Wanted: divergence free RT velocity
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Brezzi Theory: Solvability and Stability
for Saddle-Point Linear Systems

Specialization of the Babuska theory for
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Problem structure
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Solvability
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Stability

A priori bound

Domain and range norms
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The Brezzi theory: stability conditions
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Comments and remarks

For an algebraic interpretation of the second inf-sup condition
talk to Rich or see e.g. Silvester, Wathen et.al.

 There are two (2) inf-sup conditions - one for A and one for B!
 Together they imply an inf-sup condition for the big matrix K
 A is often SPD on the kernel (Darcy flow)
 A may be SPD on the whole space (Stokes equations)!!!

⇒ The inf-sup condition on A is often overlooked and Brezzi
     conditions are identified solely with the second inf-sup
     condition!

 May lead to serious embarrassment, both conditions are
    needed for uniform stability!
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The roles of
geometrical and variational structures

Variational
 Operator-centric point of view

 Problem          = operator equation on function spaces
 Discretization = operator equation + functional approximation

 Stability conditions
 Error estimates

stability conditions not constructive - 
do not reveal structure of stable discretizations

Geometrical
 Topology-centric point of view

 Problem          = equilibrium relation on manifolds
 Discretization = equilibrium relation + manifold approximation

 Forces physically compatible discretization patterns

 Leads to identification of stable functional approximations
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Stabilization of saddle-point problems
Why stabilize?

Z

V

Zh
Vh

FE spaces must be compatible
-Stable pairs too complicated or not available (3D mixed elasticity)
-Unequal order approximation and/or different grids
-Less uniformity in data structures 

Indefinite algebraic problems
-more difficult to solve iteratively

Compatibility impinges on efficiency! 

! 

"Conformity   /   stability & accuracy

Goals of stabilization 

Stability for arbitrary conforming spaces (including equal order)
⇒ More regular data structures (improved parallel efficiency)

Improve the type of the algebraic problem
⇒ Allow application of more efficient iterative solvers
⇒ Allow definition of better preconditioners 
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Stabilization ≠ regularization
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Regularization: modification of the original equation that
• makes it “easier” to solve while requiring compatible spaces

Modification of the Lagrangian 
Modification of the equations
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Stabilization: modification of the original equation that
• makes it stable for any conforming spaces
• maintains the asymptotic order of the stable discretization

Stabilization and regularization look alike and are easy to confuse
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However, stabilization ensures that the sequence                 is stable: 
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Top 4 Modified Lagrangians

  

! 

min
v

J(v) subject to Bv = 0
! 

J(v) + Bv,q( )

Lagrange multipliers

! 

J(v) +
r

2
Bv

2

penalty

! 

"
2

r
q

2

! 

r

2
Bv

! 

J(v) + Bv,q( ) "
2

r
q

2

! 

J(v) + Bv,q( ) +
r

2
Bv

2

! 

q =
r

2
Bv

! 

q = 0

! 

J(v) + Bv,q( ) " Av+ BT
q " f

2

! 

J(v) + Bv,q( ) " Av+ BT
q " f

2

+ Bv
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! 
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T
p = f ← Optimality system →
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Quiz: Which are stabilized and
which are regularized?
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2

! 

J(v) +
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Augmented Lagrangian

Full Least-squares

Least-squares

Penalized Lagrangian

Classical penalty
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The regularized methods:

! 
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Augmented and Penalized Lagrangian are related to classical penalty!

As ε→0 classical penalty converges to the original problem  →
⇒ Unstable unless Ah and Bh generated by stable spaces!

Classical penalty is not a stabilization procedure but rather a
solution method to uncouple the variables  
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Augmented Lagrangian vs. Penalty

! 

J(v) + Bv,q( ) +
r

2
Bv

2

Augmented Lagrangian - modification by the constraint

 Constraint equation retained: Bv=0 !
⇒ There’s no penalty error and r  does not have to approach ∞
⇒ Stable pairs required: constraint not relaxed!

 Problem still indefinite but better conditioned than penalty!
 Example of consistent regularization:

goal is to make the equations easier to solve by iterative
methods (see Glowinski et.al. 1988) but without incurring a
penalty error.

 Unlike penalty, AL cannot uncouple the variables!
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The stabilized methods
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 Constraint equation relaxed: Bv≠0 !

⇒ Potentially stable for all conforming pairs
⇒ May require tunable parameters (the magic τ) for stability:

 Example of consistent stabilization:
Modification is effected by terms that vanish on the exact
 solution and so the formal order of accuracy is retained
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Modification of the equations
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 Modification effected at the equations level
 May be designed to act only on the constraint equation 
 Resulting problem may not be related to optimization
 Stabilized problem not symmetric even if original was

 All stabilized methods considered so far are examples of  
residual based stabilization

Original equation
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Examples of stabilized methods
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+
Galerkin term

Stabilizing term

Residual based stabilization

    Consistency requires at least quadratic spaces    

Hughes, Franca, Brezzi, Douglas…1986-
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Non-residual based stabilization

 Stable and optimally accurate for any parameter value
 Almost a residual-based stabilization
 Avoids problems with computation of -Δ for P1-P1, Q1-Q1
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Stabilized problem

Replaces Laplace operator by a discrete operator

Bochev, Gunzburger SINUM (2004)

Absolutely stable Pressure-Poisson method 
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Non-residual based stabilization
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Stabilized problem

 Motivated by fractional step methods for transient Navier-Stokes
 Projects onto continuous velocity space ⇒ global problem
 Parameter dependent

Relaxes constraint by the difference between ∇p and its projection

Codina, Blasco, CMAME 143 (1997)

Pressure Gradient Projection method (PGP) 
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Non-residual based stabilization
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Stabilized problem

 Motivated by velocity-pressure mismatch penalization
 Projects onto discontinuous pressure space ⇒ local problems
 Parameter independent

Relaxes constraint by the difference between p and its projection

Dohrmann, Bochev, submitted

Pressure Polynomial Projection method (PPP) 



Computational mathematics and algorithms  

Non-residual based stabilization

Relaxes constraint by the jump of the pressure field
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Global PJ Stabilized problem

Local PJ Stabilized problem

patch
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Silvester, Kechkar CMAME 79 (1990)

Pressure Jump Stabilization

 GPJ forces pressure into H1 - not the natural pressure space
 LPJ forces pressure into H1 on the patch only ⇒ L2 in Ω
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Concluding remarks
(Cliff Notes on stabilization)

Modification of equations is more flexible
Connection with optimization is lost

Regularization vs. stabilization
Goal of regularization is to make the problem more convenient to
solve, not to circumvent the inf-sup conditions.

Goal of stabilization is to circumvent inf-sup conditions and
make the problem stable for any conforming spaces

Modification of Lagrangians vs. equations
Modification of Lagrangians preserves symmetry
Equations remain connected to optimization

Is there any intrinsic value and potential benefit to solver design
when problems are connected to optimization?

Question
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Residual vs. non-residual
(Cliff Notes on stabilization)

Residual stabilization:
Retains the order of the Galerkin method
Easy to develop for any problem - just add residuals…
Can be very sensitive to parameter choice
May require computation of higher order derivatives

Non-residual stabilization:
Avoids computation of second order derivatives
Works better for the lowest order nodal elements (P1-P1 & Q1-Q1)
Parameter dependence can be avoided
Must be developed on a case by case basis

Non-residual stabilization causes less change to the mixed matrix.
Can this be beneficial to solvers?

Question


