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The Abstract Problem
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– State variables → describe the system being modeled
– Control variables → can be used to affect the state variables
– State system → PDE relating the state and control variables
– Cost functional → a function of the state and control variables

The optimal control problems we consider consist of the following ingredients:

We restrict attention to

–  Linear, elliptic state systems
–  Quadratic functionals

Find state and control variables that
minimize the given functional, subject

to the state system being satisfied



Objective Functional
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Often Θ is finite dimensional. Then θ is referred to as the vector
   of design variables
The second term is penalty that limits the size of the control θ
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← continuity

← continuity

← non-negativity

← coercivity

← state

← control
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Linear Constraint Equation
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Λ       ← another Hilbert space

g∈Λ* ← a given function

These assumptions are sufficient to guarantee that given any control
θ the constraint equation is uniquely solvable for the state φ.! 
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← continuity

← continuity

← weak coercivity

← weak coercivity

Assumptions



The Optimal Control Problem
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Lagrange Multiplier Solution
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Assumptions imply that (using the Brezzi theory)

– The optimal control problem has a unique solution

– That solution can be determined by solving the saddle point optimality system

– The optimality system has a unique solution

– That solution depends continuously on the data 
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Saddle point optimality system



Galerkin approximation of the
optimality system

Approximation spaces
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Discrete problem
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Weak coercivity not inherited on subspaces ⇒ Discrete inf-sup conditions 
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The Algebraic Problem
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The discrete optimality system is equivalent to the linear system

 The discretized optimality system is formidable
– At least twice the size of the state system
– One shot solution is often impractical
– Many strategies for uncoupling the equations have been proposed

The saddle point nature of optimality system cannot be avoided
– It occurs even when the state system is strongly coercive, i.e.,
   even if the form b1(.,.) is coercive

The Galerkin approach will always yield indefinite matrix problems

Necessitates an iterative approach to solving the system



Least-Squares Methods I:
Application to the Optimality System
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Starting point

← solution space
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← data space

Least-squares functional
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Minimization problem
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Our assumptions imply that
– B(.,.) is symmetric, continuous and coercive:
– F(.) is continuous

 And since                                                     the least-squares functional is norm-equivalent
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Optimality condition
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The least-squares minimization problem has a unique minimizer and
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Least-Squares Finite Element Method
Approximation spaces

Discrete problem
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Coercivity is inherited on subspaces ⇒ no inf-sup conditions are needed! 
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Practicality of this approach requires one to cast the
constraint equations as first-order systems



The Algebraic Problem
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The discrete least-squares optimality
system is equivalent to a linear system

The coefficient matrix of this system is symmetric and positive definite
– this should be compared to the Galerkin linear system for which the
   coefficient matrix is symmetric and indefinite

 This system is also formidable and calls for uncoupling strategies for its solution

Uncoupling strategies
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– Rely on invertibility of B1 and A2
– B1 is, in general, non-symmetric and indefinite

– Rely on invertibility of K1, K2 and K2
– all are symmetric and positive definite
– true even if discrete inf-sup for b1 does
   not hold



A Simple Uncoupling Strategy

An example of a simple uncoupling strategy is to apply block-Gauss Seidel method 

Start with initial guesses φ(0) and θ(0) for the discretized state and
control; then, for k=1,2…successively solve the linear systems
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until satisfactory convergence is achieved

– The matrices K1, K2 and K3 are all symmetric positive definite so that efficient
   solution strategies are available

– of course, more sophisticated uncoupling strategies can also be defined



Least-Squares Methods II:
Bi-level Minimization Problem

Least-squares form of the constraint

! 

B
1
" + B

2
# = g Treat the control θ as being a given function

Define the least-squares functional 

! 

H ";#,g( ) =
1

2
B
1
" + B

2
# $ g

%*

2

Consider the minimization problem 

! 

min
"
H ";#,g( )

Euler-Lagrange equation

! 

˜ b 
1
",µ( ) = g,B

1
µ( )

#* $ ˜ b 
2
%,µ( ) &µ' (

! 

˜ b 
1
",µ( ) = B

1
",B

1
µ( )

#*

! 

˜ b 
2
",#( ) = B

2
",B

2
#( )

$
*

! 

C
2
"

#

2
$ H ";0,0( ) $ C2

"
#

2

! 

˜ b 
1
","( ) # C "

$

2Norm-equivalence: ⇒

– The least-squares form of the constraint is a well-posed problem for all  θ
– Its approximation does not require inf-sup conditions
– The discrete problem leads to symmetric and positive definite systems 



Bi-level Minimization problem
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Instead of considering the optimal control problem

we consider the equivalent problem
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– This is a bi-level optimization problem

– There are, of course, many ways to address such problems

– We will describe two possible approaches



Direct Penalization
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Form the penalized functional

Unfortunately, this approach does not take full advantage of the least-
squares formulation of the constraint equation:

– in particular, the discrete inf-sup condition on the bilinear form b1(.,.)
  cannot be circumvented;

– one also has to worry about choosing a “good” value for the penalty
   parameter ε.



Constraining by Least-Squares
First Order Necessary Conditions
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And the first-order necessary condition for the least-squares principle in operator form is:
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is an equivalent reformulation of our optimal control problem



Lagrange Multiplier Solution
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The Euler-Lagrange equations corresponding to the reformulated bi-level optimization

– This is a saddle-point problem and so the resulting matrix problem is indefinite

– The only advantage over Galerkin is that         is positive definite even when     is not   
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There are several effective means for discretizing the new optimality system 

– Penalty methods are one approach

– One also has the choice of discretize-then-optimize and optimize-then-discretize



A Taxonomy of Optimization Approaches

1. LM FE

LM PEN FE ELIM2. 

LM LS FE3. 

LS-PEN OPTIM FE4. 

LS-CON LM FE5. 

LS-CON LM PEN FE ELIM6. 

LS-CON PEN OPTIM FE7. 



The score card

7654321

××Positive definite linear system
×××Reduced number of unknowns
Symmetric matrix system
××Optimal error estimate

××Locking impossible
××Discrete inf-sup not required

MethodCriteria

From the table we see that only Method 6

LS-CON LM PEN FE ELIM

has all its boxes checked ⇒ it seems to be the preferred method 



But…

For further details see:

P. Bochev and M. Gunzburger, Least-squares finite element methods for optimization and control problems for the
Stokes equations. Comp. Math. Appl., Vol. 48, No.7, 2004, pp. 1035-1057.
P. Bochev and M. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and
control problems. Accepted in SIAM J. Num. Anal.

P. Bochev and M. Gunzburger, Least-squares/penalty finite element methods for optimization and control problems.
To appear in “Proceeding of Santa Fe workshop on PDE constrained optimization”.

There are additional issues that arise in practice and must also be considered:

– Use standard finite elements

– Ease of asembly of the discrete system
– Manageable conditioning of the discrete system

When these are added to the mix, it seems that method 3 wins out:

LM LS FE


