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The Abstract Problem

The optimal control problems we consider consist of the following ingredients:

— State variables  — describe the system being modeled

— Control variables — can be used to affect the state variables

— State system — PDE relating the state and control variables
— Cost functional =~ — a function of the state and control variables

We restrict attention to

— Linear, elliptic state systems
— Quadratic functionals
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Objective Functional

1 a1 a,(;) < symmetric bilinear on @ x ®
J(9,0) = ~a,(p-9.¢ - d) +~a,(0,0) .
2 2 a,(',’) <= symmetric bilinear on © x©®

Assumptions

(a,(,w) < C,|¢|l,ull, < continuity :

@)= Clel |~ continuit PED st
V) < v —

: “ el e d 10 E 0O <« control

a,(¢,¢)=0 < non-negativity

pED < given

4,(0,0) = K, 0], < coercivity

» Often O is finite dimensional. Then 0 is referred to as the vector
of design variables

»The second term is penalty that limits the size of the control 6 @ ﬁ:{‘.ﬂﬁa.
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Linear Constraint Equation

b(;) < bilinear f D x A
b(d.9) + b, (0.) = (), , () ilinear form on @ x

b,(,) < bilinear form on © x A
A <— another Hilbert space

Assumptions gEA* < a given function

b(py)<c|¢|,Jw|, < continuity
b,(0.9) = c,||0), ||, < continuity

< supM = k¢, < weak coercivity
vEA ”w A
sup (@) >0 < weak coercivity
9D || @

These assumptions are sufficient to guarantee that given any control Sandia
0 the constraint equation is uniquely solvable for the state ¢. @ 'l\laalﬂﬂg?clnies
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The Optimal Control Problem

r%n](cp,e) subject to  b,(¢.y) + b, (0.9) = (&)

Operator notation

a() = A D> P’ A A
» J(¢,0) =%<A1(¢—¢),(¢—¢)>é*ﬁ) +%<A29’0>@*,®

a,(;) > A,:0->0
b(y)—=B : P A

. » B¢+ B,0=g
b,;) >B,:A—> 0O

n(;ienJ(d),H) subjectto B¢+ B,0=g in A
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‘/’ Lagrange Multiplier Solution

Saddle point optimality system

’al(qbnu) + bl(ﬂ,)") = al(qlsnu) Vue o rA1¢ +BA= Al(/,S in @
4 a,(0,v) +by(v,A)=0 VveEe® 4 AO0+BA=0 in ©
b(p.p) +b,(0.) =(gy), , YYEA B+ B,0 =g in A

Assumptions imply that (using the Brezzi theory)

— The optimal control problem has a unique solution (¢,6) € ®x©

— That solution can be determined by solving the saddle point optimality system
— The optimality system has a unique solution (¢.6,A) E ®xO x A

— That solution depends continuously on the data

¢
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cf)) Sandia
National
Laboratories



A

Galerkin approximation of the
optimality system

Approximation spaces P"CP O"CO A CA
Discrete problem
a(¢".u") +b (W' N)=a(pu") Vu' €D

a2(0h,vh)+b2(vh,)»h)=0 Vv €@’

Weak coercivity not inherited on subspaces = Discrete inf-sup conditions

b(@"y")
BN, WL e e

i)
Sandia
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The Algebraic Problem

» The discrete optimality system is equivalent to the linear system

A, B/ ¢\ (f
A, Bl|6|=]0
B, B, Al \g

»The saddle point nature of optimality system cannot be avoided
— It occurs even when the state system is strongly coercive, i.e.,
even if the form b,(.,.) is coercive

The Galerkin approach will always yield indefinite matrix problems

» The discretized optimality system is formidable
— At least twice the size of the state system
— One shot solution is often impractical
— Many strategies for uncoupling the equations have been proposed

Necessitates an iterative approach to solving the system @ ﬁg{‘,ﬂ‘:a.
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- Least-Squares Methods I:

Application to the Optimality System

Starting point

Ag +BA=A¢ in @ dxO®xA < dataspace

. A0+BA=0 in © Well-posed in
® xO® x A" < solution space

B¢+ B0 =g in A

Least-squares functional

Ap+B A-Ag

~ 1 2 . 112 2
K(905:0.8) =  Hao+ BiAl +[Bo+Bo-of

Minimization problem

min K (q), 0,A; qAb, g)
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Optimality condition  B({¢.0,A}.{uv.y})= F({M,v,q}},{A]dA),O,g})

B({¢.0.A}.{uv.y}) = (Alqﬁ + B AAu+ Bl*’/))q)*"‘ (A20 + BJAL AV + B;w)®*+ (31‘/) + B,0,B,u+ Bzv)A*

F({M’V’w}’{Alqs’O’ g}) = (Al(z” Au+ Bﬁ/’)@;“ (gthu + Bzv)A*

Our assumptions imply that

~ B(.,.) is symmetric, continuous and coercive: B({¢.6,A}.{¢.0,A}) = C(||¢||fp +|lo]; + ||A||i)
— F(.) is continuous

And since K(¢,6,4:0,0) = B({¢.6,A}.{¢.6,A}) the least-squares functional is norm-equivalent

(Il + 16l + 41, ) = K(9.6.2:0.0) = ([l + el + A

The least-squares minimization problem has a unique minimizer and

Sandia
) ) National
@ Laboratories

¢

loll, + el + 121, = C(lel, +



‘/’Least-Squares Finite Element Method

Approximation spaces

"CP ©'CO ANCA
Discrete problem

B({¢h,0h’)\’h}’{‘uh,vh,wh}) _ F({Mh,vh,llih},{Al(lg,O,g})
Coercivity is inherited on subspaces = no inf-sup conditions are needed!

s({ot %21 {o.0n 1)) = o[, + e[ + 121

~
o'l + 16, + 1, = e +

.

="l +lo-0"], + |22, < Cint(lp-w'], +o- "], +[2-v"], )

¢

Practicality of this approach requires one to cast the

. ' . Sandia
constraint equations as first-order systems @ National



The Algebraic Problem

K, C Cy|¢) (f
C] K2 Cg

The discrete least-squares optimality * 0
C, C, K, \A

system is equivalent to a linear system

» The coefficient matrix of this system is symmetric and positive definite

— this should be compared to the Galerkin linear system for which the
coefficient matrix is symmetric and indefinite

» This system is also formidable and calls for uncoupling strategies for its solution

Uncoupling strategies

A B! \(¢\ (f
i N B; ol_lo * — Rely on invertibility of B, and A,
S — B, is, in general, non-symmetric and indefinite
B, B, A \g

~
Q
=S
@)
NS
<
-

— Rely on invertibility of K;, K, and K,
=|h ’ —all are symmetric and positive definite

0
C, C, K, 1 lg — true even if discrete inf-sup for b, does @Sandia
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A Simple Uncoupling Strategy

An example of a simple uncoupling strategy is to apply block-Gauss Seidel method

Start with initial guesses ¢(© and 6© for the discretized state and
control; then, for k=1,2...successively solve the linear systems

K3)\’(k+1) — g _ C2¢(k) _ C38(k)
K1¢(k+l) —f- C}T@(k) _ Cg)\.(kﬂ)
K29(k+1) —h- C1¢(k+l) _ Cg)\,(kﬂ)

until satisfactory convergence is achieved

— The matrices K, K, and K; are all symmetric positive definite so that efficient
solution strategies are available

— of course, more sophisticated uncoupling strategies can also be defined
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d -’ Least-Squares Methods lI:
Bi-level Minimization Problem

Least-squares form of the constraint

B¢o+B,0=g Treat the control 6 as being a given function

Define the least-squares functional H(¢$:6,g) = %Hqub +B0-g|.

Consider the minimization problem m¢inH(¢;9,g)

Euler-Lagrange equation

51 ((P, M) (Bl¢’BIM)A*

b(g.u)=(8.B), ~by(6.u) YuE D .
by(0.v) = (B,0.B,v) .

Norm-equivalence: b,(¢,¢) = CH‘Ppr = Csz)Hi =< H(¢;0,0) = C2H¢Hi

— The least-squares form of the constraint is a well-posed problem for all 6
— Its approximation does not require inf-sup conditions

Sandia
— The discrete problem leads to symmetric and positive definite systems @ P'aal}:)"rgg'mes



Bi-level Minimization problem

Instead of considering the optimal control problem

%n](qb,@) subjectto B¢+ B,0=g in A

we consider the equivalent problem

r%n](cp,e) subject to m¢inH(¢;0,g)

— This is a bi-level optimization problem
— There are, of course, many ways to address such problems
— We will describe two possible approaches
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Direct Penalization

Form the penalized functional

7.(6.0) =J<¢,0>+§H(¢;6,g)

Unfortunately, this approach does not take full advantage of the least-
squares formulation of the constraint equation:

— in particular, the discrete inf-sup condition on the bilinear form b,(.,.)
cannot be circumvented;

— one also has to worry about choosing a “good” value for the penalty
parameter &.

G
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- Constraining by Least-Squares
First Order Necessary Conditions

The bi-level optimization problem is

r%n](gb,@) subject to m(PinH(qb;O,g)

And the first-order necessary condition for the least-squares principle in operator form is:
BB¢+BB,0=Bg in ®

Therefore,
r%nf(cp,e) subjectto B/ B¢+ B B,0=B/g in ®

: : : : Sandia
is an equivalent reformulation of our optimal control problem National
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Lagrange Multiplier Solution

The Euler-Lagrange equations corresponding to the reformulated bi-level optimization

A +BBA=Ag¢ in @
4 AO+BBA=0 in ©

B/B,¢ + B,B,0 =B/g in A

— This is a saddle-point problem and so the resulting matrix problem is indefinite
— The only advantage over Galerkin is that B, B, is positive definite even when B, is not

There are several effective means for discretizing the new optimality system

— Penalty methods are one approach
— One also has the choice of discretize-then-optimize and optimize-then-discretize
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A Taxonomy of Optimization Approaches

ELIM




The score card

Criteria

SNISNISSN NS

From the table we see that only Method 6

has all its boxes checked = it seems to be the preferred method

ELIM
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But...

There are additional issues that arise in practice and must also be considered:

— Use standard finite elements

— Ease of asembly of the discrete system
— Manageable conditioning of the discrete system

When these are added to the mix, it seems that method 3 wins out:

For further details see:

P. Bochev and M. Gunzburger, Least-squares finite element methods for optimization and control problems for the
Stokes equations. Comp. Math. Appl., Vol. 48, No.7, 2004, pp. 1035-1057.

P. Bochev and M. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and
control problems. Accepted in STAM J. Num. Anal.

P. Bochev and M. Gunzburger, Least-squares/penalty finite element methods for optimization and control problems.
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