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Least-Squares 101

 Using C0 nodal elements
 Avoiding inf-sup conditions
 Solving SPD systems
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Ru = h on  #

 Conservation
 Conservation
 Conservation

We will show that
 Using nodal elements is not necessarily the best choice in LSFEM, and so it is
    arguably the least-important advantage attributed to least-squares methods

 By using other elements least-squares acquire additional conservation properties
 Surprisingly, this kind of least-squares turns out to be related to mixed methods
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Compatibility matters even for least-
squares: magnetic diffusion

LSFEM solution using C0 elements
Ker(curl)={0}
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Further evidence that compatibility matters

Discrete models must reflect mathematical
structure of continuum models

Lax-Wendroff theorem:
If approximation computed by a conservative and consistent method
converges, then the limit is a weak solution of the conservation law.

Grid decomposition property (Fix, Gunzburger, Nicolaides, 1978)
A discrete Hodge decomposition property is necessary and sufficient for
stable and accurate LSFEM discretization of the Kelvin principle.

Staggered FD and FV (MAC, Yee’s FDTD, Box integration)
Conservation requires placing different variables at different grid locations
so as to achieve a discrete Stokes theorem.
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How to achieve compatibility?
Compatible discretization requires:

Differential forms provide the tools to encode such relationships

  Integration:  an abstraction of the measurement process

  Differentiation: gives rise to local invariants

  Poincare Lemma: expresses local geometric relations

  Stokes Theorem: gives rise to global relations

  Fields are observed indirectly by measuring global quantities (flux, circulation, etc)
  Physical laws are relationships between global quantities (conservation, equilibrium)

In most physical models

  Mathematical tools to discover and encode structure of PDEs
  A discrete framework that mimics that structure: mutually consistent notions of

- Discrete vector calculus, Hodge theory, entropy condition, conservation…
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Algebraic topology approach

Framework for mimetic discretizations (Bochev, Hyman, IMA Proceedings)

– Translation: Fields → forms → cochains
– Basic mappings: reduction and reconstruction

 Combinatorial operations: induced by reduction map
 Natural operations: induced by reconstruction map
 Derived operations: induced by natural operations

Branin (1966), Dodzuik (1976), Hyman & Scovel (1988-92), Nicolaides (1993), Dezin
(1995), Shashkov (1990-), Mattiussi (1997), Schwalm (1999), Teixeira (2001)

Algebraic topology provides the tools to mimic the structure
– Computational grid is algebraic topological complex
– k-forms are encoded as k-cell quantities (k-cochains)
– Derivative is provided by the coboundary
– Inner product induces combinatorial Hodge theory
– Singular cohomology preserved by the complex
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Differential Forms
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Chains and cochains
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Basic mappings
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Combinatorial operations

Discrete derivative

Discrete integral

Forms are dual to manifolds 
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Natural and derived operations
Inner product
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Mimetic properties (I)
Discrete Poincare lemma (existence of potentials in contractible domains)
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Mimetic properties (II)
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Discrete ∗ operation

Natural definition

Derived definition
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Problems with the discrete ∗
Action of ∗ must be coordinated with the other discrete operations

IRδ∗∧(•,•)

———✓✓∗D

—✓———∗N

Analytic ∗ is a local, invertible operation ⇒ positive diagonal matrix

Construction of ∗ is nontrivial task unless primal-dual grid is used!
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Implications

A consistent discrete framework requires a choice of a primary operation
either ∗ or (⋅,⋅) but not both

– Sufficient to give rise to combinatorial Hodge theory on cochains
– Easier to define than a discrete ∗ operation
– Incorporate material laws in the natural inner product, or
– Enforce material laws weakly (justified by their approximate nature)

The natural inner product is the primary operation in our approach

A discrete ∗ is the primary concept in Hiptmair (2000), Bossavit (1999)

– Inner product derived from discrete ∗ 
– Used in explicit discretization of material laws
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Algebraic equivalents

SPDMk(⋅,⋅)
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squareMk
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Reconstruction and natural inner products
Co-volume Mimetic Whitney
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Mimetic discretization: translation to forms
1st order PDE with material laws

1st order PDE with codifferentials

2nd order PDE
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Direct and conforming mimetic models

Direct
Conforming
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Mimetic models with weak material laws
Translate to an equivalent 4-field constrained optimization problem
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– Does not require a primal-dual grid complex
– Explicit discretization of material laws is avoided
– Construction of a discrete ∗ operation not required 
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So, where are the least-squares?
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Properties of discrete spaces imply that constraints can be satisfied exactly.
⇒  we can eliminate the variables in the ranges of the differential operators:

We start from the (fully) mimetic discrete 4-field principle
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The least-squares solution                             has the discrete involutions 
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Properties
Theorem 1 The mimetic LSP has the following properties:

It is conservative in the sense that there exist                            such that
the pairs                                 solve the discrete eddy current equations
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The least-squares solution converges optimally.

Duality is fundamental to Maxwell’s equations
 (e,j) provide two complementary viewpoints on electric fields (line vs. surface)
 (h,b) provide two complementary viewpoints on magnetic fields (line vs. surface)
 In the continuum world the two viewpoints can coexist at the same point in space
 In the discrete world the two viewpoints cannot coexist:

– Line fields are encoded by circulations ⇒ live on edges
– Surface fields are encoded by fluxes ⇒ live on faces
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Least-squares “as usual” vs. the
4-field principle

4-field variational
principle

(E,B),(H,J) mimetic
discretization

Elimination of
range vars (B,J)

Mimetic least-
squares in (E,H)

Eddy current eqs
with material laws

Completely equivalent

Elimination of
some variables
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What can go wrong?

Elimination followed by a least-squares principle may obscure the origin of the fields:
For example, the primal first-order system gives rise to a functional in (E,B)

Mimetic least-squares  are a result of a fully mimetic discretization of the 4-field
principle followed by elimination of range variables (B,J)
 ⇒ Duality of viewpoints is inherited and represented in mimetic least-squares by (E,H)

! 

" #E + ˙ B 
2

+ " #µ$1
B $%E

2

where the primal range variable B is also asked to be in the domain of curl (the home of
the other primal variable E), i.e., B has to be simultaneously a surface and a line field.
Recall that in the discrete world a vector field can  be either surface or line field but not
both!
Attempts to fix this problem by using C0 elements and adding a div B=0 term completely miss
the point that div B=0 is an involution rather than a constraint!

The inadequacy of C0 spaces is further obscured by the fact that coercivity of the LSP is
inherited on any proper subspace of H(curl), and so it seems OK to use such spaces.
However this introduces spurious modes because C0 elements cannot approximate well
the (large) nullspace of the curl!
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Where are the mixed methods?

! 

"
1
d,K( ) # "2 d,K( )$ e

h

1
,b

h

2( )

uses mimetic approximations for both the primal and the dual variables:

A fully mimetic discretization of the semidiscrete 4-field principle

  

! 

min
1

2
" #

" $1 j $ e( )
2

+ µ% #
µ $1 b $ h( )

2& 

' 
( 

) 

* 
+ subject to   de = $% b $ b ( )  and   dh = j

A primal mimetic method

! 

"
1
d,K( ) # "2 d,K( )$ eh

1
,bh
2( )

"
2
d,K( ) # "1 d,K( )$ hh

2
, jh
1( )

! 

e,b( )

h, j( )

! 

eh
2
,bh
1( )" #

2
d,K( ) $ #1 d,K( )

hh
1
, jh
2( )" #

1
d,K( ) $ #2 d,K( )

! 

e,b( ); h, j( )

! 

hh
1
, jh
2( )" #

1
d,K( ) $ #2 d,K( )

and reduces to a mimetic least-squares. However, we can apply mimetic discretization
to just one of the two pairs of variables, either the primal or the dual:

A dual mimetic method

It turns out that this leads to methods of the mixed type!
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The primal mimetic method
We start from the primal mimetic discrete 4-field principle

  

! 

min
1

2
" "#1

jh

1 # eh

1( )
2

+ µ$ µ#1
bh

2 # hh

2( )
2% 

& 
' 

( 
) 
* subject to   deh

1 = #$ bh

2 # b h
2( )  and   d*hh

2 = jh

1

  

! 

de
h

1 = "# b
h

2 " b 
h

2( )   and   µ"1
b

h

2
,d ˆ e 

h

1( ) + h
t
, ˆ e 

h

1

$1

= %e
h

1
, ˆ e 

h

1( ) & ˆ e 
h

1 ' (1
d,K( )

! 

d
*
h

h

2
, ˆ e 

h

1( ) = h
h

2
,d ˆ e 

h

1( ) + h
t
, ˆ e 

h

1

"2

# ˆ e 
h

1 $ %1
d,K( )Using that gives the mixed problem

Clearly, the minimum is achieved when                                      .  After the dual
variables
are eliminated from the constraints we are left with the discrete equations
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The range variable can be eliminated to obtain a Rayleigh-Ritz type equation
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It is a fully discrete version of the equivalent, second order eddy current equation

! 

" ˙ E +# $µ%1
# $E = 0
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The three methods: summary
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Fully mimetic

Primal mimetic

Dual mimetic
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A surprise!
Theorem 2 Let                        be the mimetic least-squares solution. Then

! 

eh
1
,bh
2( ), hh1 , jh2( )

! 

e
h

1
,b

h

2( ) is the solution of the primal mimetic method

! 

hh
1
, jh
2( ) is the solution of the dual mimetic method

This means, mimetic LS is equivalent to simultaneous solution of the primal and dual methods

4-field variational
principle

! 

e
h

1
,b

h

2( )

! 

hh
1
, jh
2( )

Primal  mimetic method
(mixed or Ritz)

Dual  mimetic method
(mixed or Ritz)

Fully mimetic method
(least-squares)

If b(x,0)=0, or we solve in frequency domain, we also have that
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Proof
The first order necessary condition for the least-squares principle is

! 

"#1/ 2
dh

h

1 #"1/ 2
e

h

1
,"#1/ 2

d ˆ h 
h

1 #"1/ 2 ˆ e 
h

1( ) + (µ$)
#1/ 2

de
h

1 + (µ$)
1/ 2

h
h

1
,(µ$)

#1/ 2
d ˆ e 

h

1 + (µ$)
1/ 2 ˆ h 

h

1( )
= µ#1

(µ$)
1/ 2

b 
h

2
,(µ$)

#1/ 2
d ˆ e 

h

1 + (µ$)
1/ 2 ˆ h 

h

1( )

! 

"#1/ 2
dh

h

1
#"1/ 2

e
h

1
,"#1/ 2

d ˆ h 
h

1
#"1/ 2 ˆ e 

h

1( ) = "e
h

1
, ˆ e 

h

1( ) + "#1
dh

h

1
,d ˆ h 

h

1( ) # dh
h

1
, ˆ e 

h

1( ) # e
h

1
,d ˆ h 

h

1( )

Expand each term
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The least-squares optimality system uncouples into two independent equations
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Primal mimetic

If b(x,0)=0, or in frequency domain, then the 2nd LS equation is identical to 
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Compatibility matters even for least-squares!

Nodal C0 LSFEM solution
Ker(curl)={0}

Mimetic LSFEM solution
Ker(curl)={grad p}
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Conclusions

Even in least-squares:
Compatibility pays  and there’s no free lunch
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