SANDIA REPORT

SAND2010-xxxx
Unlimited Release
Printed January 2010

A Linear Algebra Interpretation of
Non-Euclidean Scalar Products and
Vector Spaces and their impact on
Numerical Models and Algorithms

Roscoe A. Bartlett
Optimization and Uncertaintly Quantification

Denis Ridzal
Optimization and Uncertaintly Quantification

Prepared by
Sandia National Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2010-xxxx
Unlimited Release
Printed January 2010

A Linear Algebra Interpretation of Non-Euclidean Scalar
Products and Vector Spaces and their impact on
Numerical Models and Algorithms

Roscoe A. Bartlett
Optimization and Uncertaintly Quantification

Denis Ridzal
Optimization and Uncertaintly Quantification

Sandia National Laboratori¢g\lbuquerque NM 87185 USA,

Abstract

Many numerical algorithms are derived, analyzed and esprewith respect to Euclidean
vector spaces. However, many applied mathematicians Hexensthe utility of expressing
and implementing many different types of numerical aldonis with respect to non-Euclidean
vector spaces. Coming from a functional analysis backgipitinatural to express many types
of numerical algorithms in non-Euclidean form by introchugthe notion of an scalar (or inner)
product. The introduction of a non-Euclidean vector spatsaalar product fundamentally
changes the meaning of linear operators, derivatives, #ret oonstructs commonly used the
express numerical algorithms. The purpose of this papersdvide a foundation for under-
standing the meaning and implications of expressing nwakailgorithms in non-Euclidean
form in a way that does not require any knowledge of functi@malysis. This discussion
is based purely on basic finite-dimensional linear algeftae goal is to provide the reader
with a level of confidence in expressing and implementing ewical models and algorithms
in non-Euclidean form. A simple procedure is presentedd&inig any numerical model and
algorithm expressed using Euclidean vector spaces ansldtany it to non-Euclidean form in
the most general way possible. Examples and analysis osshies involved are demonstrated
for different types of numerical algorithms such as Newtagthmds, quasi-Newton methods,
optimization globalization methods, and inequality coaistts. The goal of this paper is to not
require anyone who writes numerical algorithms to becomexpert in functional analysis in
order to take advantage of non-Euclidean scalar produotsged by the application. Instead,
the goal is to empower non-functional-analysis experth e ability to write numerical soft-
ware with enough hooks to allow application domain expeith Wnowledge of the (infinite

dimensional) structure of the problem to customize therilgms in an efficient and practical
way.

*Sandia is a multiprogram laboratory operated by Sandia@atjon, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94R085

Acknowledg

The authors would like to thank ...

men
The format of this report is based on informatio nd7h [

2
&
Q

iv

Contents

A 1o o [T o) PSPPI 1
2 Introduction to vector spaces, basis representatioafargeroducts, and natural nofms... 3
2.1 Basis and coefficient representations of vectors anbvepaces 3
2.2 Standard/ectoroperation\s ... 3

2.3 Square, invertible basis representations e
2.4 Definition of the scalar (or inner) product foravectoa®p
2.5 Definition of the natural norm for a vectorspaceceoovvvvi...
2.6 Orthonormal and orthogonal basis representétions e
2.7 Equivalence of basis representations and the scalduogrro.

4
4

5

5

5

2.8 Linear operato\rs .. 6
8
9

9

11

2.9 Dealing only with scalar products and vector coeffigentalgorithm construction .
3 Impact of non-Euclidean scalar products on matrix remagiens of linear operators. . . .
3.1 The Natural matrix representation of a linear operad@) (.
3.2 The Euclidean matrix representation of a linear opei(#

3.3 Converting between Natural and Euclidean matrix regredions 13
4 _Impact of non-Euclidean scalar products on derivativeasentations 15
4.1 Derivatives of multi-variable scalar funCtionsooeereeoi... 15
4.2 Derivatives of multi-variable Vector funCtions . . . we....oo.oooeeeoeoe ... 17
5 Impact of non-Euclidean scalar products on various nuwakalgorithms............... 19
5.1 NEWON MENOUS . . vttt e e e e et e e e e e e e 21
5.2 Minimization, merit functions and globalizaton medlso. 22
5.3 Least-squares merit FUNCHONS '+« v o v e e e e e et e 24
5.4 Variable metric quasi-Newton methods oo 25
5.5 Inequality CONStraints e e 27
6 Vector Coefficient Forms of Numerical Algorithms 29
S 1V 150110 30
REMEIENCESo e e 31
Appendix
A TODO e e 32

1 Introduction

Many numerical algorithms are written in terms of Euclideactor spaces where dot products are
used for the scalar inner product. For example, the inngy tda linear conjugate gradient (CG)
methodk = 0. .. for solving Ax= b, initialized usingr = ro = b— AXx, is often written in Euclidean
(or dot-product) form as

H

Pk = 1,
Pk
e r+— X
P Pk—lp
q = Ap
Pk
o0 = —,
pq
X = X+ap,
r = r—aq.

An experienced mathematician with knowledge of functiceradlysis will look at the above algo-

rithm an immediately write down the generalized form for si€urclidean vector spaces by replacing
the dot products™r and p™q with the scalar product&,r) and(p,q) and restate the inner loop of

the above CG algorithm as

ok = (nr),

Pk
= r+— X
P pkflp
= Ap,
Pk
a = —,
(p,0)
X = X+ap,
r = r—ag

Just as with linear CG, many numerical algorithms expregsé&diclidean form with dot prod-
ucts and Euclidean nornfis||> (such as various optimization algorithms, stability aseynethods,
time integration methods, etc.) have straightforward resittns to non-Euclidean vector spaces.
What we would like is to have a straightforward process byclwhie can analyze many different
types of existing numerical algorithms expressed in Eedidform and then write out, if possible,
the more general non-Euclidean form of these algorithms.ala want to do this in such a way
that we do not have to revisit all of the mathematical assiomptand theorems that went into the
development of the algorithm.

Someone not intimately familiar with general scalar pradwiemnd non-Euclidean vector spaces
will naturally ask the following questions. What's the bigad in replacing dot products with scalar
products? What is this scalar prodyct) and what does this mean? What is the relationship be-
tween vectorgp andq for algorithms stated in Euclidean form and in non-Euclidé&am? By what
justification can one just replace dot products littéq with scalar productgp,q)? What other
changes do we need to make due to this subtle change of mpldei products with scalar prod-
ucts? How are the definition of linear operators, model fionaderivatives, and other mathematical

objects affected by the introduction of non-Euclidean aicgaloducts? What does all of this buy
you?

Here we seek to answer all of these questions in a way thatsmmpeavithout knowledge of
functional analysis or other advanced mathematics canrsiaahel and appreciate. All that we
assume is that the reader has a basic understanding of $ifggdora and a familiarity with multi-
variable numerical algorithms like Newton’s method [?Z#]rfonlinear equations.

Here we present a linear algebra interpretation of finiteedisional non-Euclidean inner prod-
uct spaces and how they influence numerical algorithms aridbemetical models. The goal of
this treatment is to present this topic in a way that non-eratticians can understand and appre-
ciate. The basic approach will be to show the relationshipvéen typical Euclidean-based vectors
and vector spaces (i.e. where the dot product is used fomtier iproduct and a linear operator
is equivalent to a matrix) and non-Euclidean basis reptasens, vectors, and vector spaces (i.e.
where the inner product is defined by a positive-definite iaind a linear operator is not neces-
sarily equivalent to a matrix). What we will show is a strafghward way to take many different
types of numerical algorithms that are expressed in Euatiderm and then to analyze them for
non-Euclidean vectors and spaces and see if they can béotrarsl for use with general scalar
products. What we will show is that the expression of a nuca¢mlgorithm in a non-Euclidean
space is essentially equivalent to performing a linear jgnitdiagonal) transformation of variables
and model functions except that we do not need to actualljiaitkp perform the transformation
which has many different advantages which include:

e Performing the type of general transformations descritexd bxplicitly can be very difficult
to implement in the code and can be very expensive to applytdlenting the desired trans-
formations as just inner product operations can be muchlemapmd more efficient to code
up and maintain from the application developers point ofwie

e Explicitly performing a linear transformation of variabland functions in general will de-
stroy the sparsity of derivative objects like Jacobiansldedsians. For large scale problems
this type of transformation can make the algorithms inalet.

e Keeping the coefficients for the unknowns, and model funstiand derivatives in the original
form (and units) makes it easier for the user to inspect whnatraerical algorithm is doing.
Even simple diagonal scaling that is explicitly applied ecaake it more difficult to make
sense of the variables and the functions that a numericatitdg is working with and makes
it more difficult to debug numerical problems when they ocdgeeping the unknown and
function coefficients in original form also makes it eastes¢lect convergence tolerances and
other algorithmic parameters since the units are more @éduhe user and knowledge of the
physics or the engineering domain can be applied. Once aadimear transformation is
explicitly applied, this becomes very difficult for a gerlaraer to do.

2 Introduction to vector spaces, basis representations, atar
products, and natural norms

In this section, we provide a quick overview of the conceptfinite-dimensional vector spaces,
vector basis and coefficient representations, scalar ptedand norms. The mathematical system
described here is that of finite-dimensional Hilbert spd@€®]. Here we show straightforward
connections between Euclidean and non-Euclidean repegsers of vectors and their relationship
to linear transformation of variables. In this introdugtonaterial, we deal with general vectors in
a complex spac&" with complex scalar elements.

2.1 Basis and coefficient representations of vectors and wec spaces

Consider a complex-valued vector space C" with the basis vectorg € €™, fori =1...m, such
that any vectok € C" can be represented as the linear combination

x5 %o ®

wherexe s is known as theoefficient vectofor x in the space . In order for the set of vectoks }

to form a valid basis, they must minimally be linearly indegent andn < n must be true. (Note:
This condition can be violated in some code implementatibasactually have an overdetermined
basis representation where the basis vectors are linegplgrdient.) In a finite dimensional setting,
when we say that some vectors in some spacg what we mean is that can be composed out of
a linear combination of the space’s basis vectors as shod).in

Another way to represent|(1) is in the matrix form
x = EX 2)

whereE € €™M is called theBasis Matrixwho's columns are the basis vectors for the space
other words

E=[e & .. én]. (3)

The basis matrix form (2) will allow us to use standard linglgebra notation later in various types
of derivations and manipulations.

The choice of which of the two different representations wéetorx or X has a dramatic impact
on the specification of the mathematical model’s functiord@n the interpretation of the operations
in a numerical algorithm.

2.2 Standardvector operations

A few different types of operations can be performed on jhstdoefficients for a set of vectors
which have the same meaning for the vectors themselveseHreghe set of classi@ctoropera-

3

tions of assignment to zero, vector scaling, and vectortiatidivhich are stated as

e Xx=0:

o Z=X+Y:
z=EZ=x+y=ER+EJ=E(X+Y) = Z=X+V.

Note that other types of element-wise operations on thdicimfts such as element-wise products
and divisions are not equivalent to the corresponding dipeimon the vectors themselves and are
hence notrectoroperations.

2.3 Square, invertible basis representations

Up to this point, the vector spacecan be a strict subspace @f sincem < n may be true. We
will now focus on the case whera = n which gives a non-singular basis matfixe C™" that
can be used to represent any veotar C". As a resultE~! is well defined and can be used in
our expressions and derivations. However, we do not asshatehte basis vectorg € C" are
orthonormal or orthogonal.

2.4 Definition of the scalar (or inner) product for a vector space

Now consider the dot inner product of any two vectang< C" which takes the well known form
n -
XMy = Zlcomugatém)yi- (4)
i=
Using the substitutio = EX andy = EY, the inner product in (4) can be represented as

Xy = (R'E™)(E9) = %" Qy, (5)

whereQ = E"E is a symmetric positive-definite matrix. It is this mat@xthat is said to define the
scalar (or inner) product of two coefficient vectar§ € s as

Xy =%1Q¥ = (%.9);- (6)

2.5 Definition of the natural norm for a vector space

The natural norni|.||s of a general vector space is defined as

[IX] = VXix =/ {XR) s = [IK]]s (7)

where(X,X) ; is defined in terms of the scalar product matgin (6).

2.6 Orthonormal and orthogonal basis representations

Note that all orthonormal sets of basis vectors, i.e.

1 ifi=]
ePeJ_{Oifi;ej

result in anorthogonal matrix E that gives identity for the scalar product matfx= ENE = I.
Therefore, all orthonormal sets of basis vectors resultEneidean scalar product, even if the basis
vectors are not Cartesian (i@€. # [0 ... 1 ... 0]). Also note that all orthogonal sets of
basis vectors give a scalar product ma@ix= EME that is diagonal.

When the scalar product matr@Xis diagonal, it is trivial to compute a diagonal scaling matr
E= Ql/2 and then use this scaling matrix to scale all vectors andatger before the numerical
algorithm even sees them. In these cases, it is questionddgdther the more general concept of
scalar products is worth the effort in expressing and impleing numerical algorithms, which is
our ultimate goal here. Therefore, we are primarily focusadoroblems that require more than
simply diagonal scaling. However, keeping the originaliatsles and not performing the scaling
explicitly can help in debugging and in interpreting theputform a numerical algorithm.

2.7 Equivalence of basis representations and the scalar pidact

One important detail to mention is that given a particulactee spaces with its corresponding
scalar product defined usir@in (6), there are infinitely many different selections foe thasisE
that give the same scalar product maifix= E'E. To see this, leF € C"™" be any orthogonal
matrix (i.e.F"F = 1). We can use any particular choice forto transform the scalar product as

Kly=%"Qy=x"(E"E)y=%'E" (F"F)Ey =" (FE)" (FE)y = (R'E")(EY) =Xy (8)

wherex= EX, X= EX, andE = FE. We see thakE € C"™" actually forms a different vector space
S, but, for the same coefficient vectors, its scalar produekactly the same as for. Therefore,

1 In most linear algebra text books and literature, the tertinogonal matrixs used to denote a matrix who's columns
are orthonormal. This means that a matrix with just orth@goolumns (i.ee{4 ej =0# 1 wheni = j) is not an orthogonal
matrix. It would seem to make more sense that a matrix withogwnal columns should be called an “orthogonal matrix”
and a matrix with orthonormal columns should be called athtmrormal matrix” but this is unfortunately not the starttlar
meaning.

when we define a vector space by its scalar product, we ailg dedining an infinite collection of
vector spaces instead of just one. This is because therafarigely many different sets of basis
vectors that give infinitely many different vector represéions for a particular set of coefficients
but all have the same scalar product.

2.8 Linear operators
A linear operator Ac C™|C" is an object that maps vectors from the spatéso C™ as

y=AX 9)
wherex € C" andy € €™, and also obeys the linear properties

z=A(au+ Bv) = adAu+ BAv (20)

foralla,B € Candu,v e C".

The vector coefficient linear operator,ﬁdenoted,&, is defined as the operator that directly
computes the coefficient vectgigiven the coefficient vector as

y = AX
Ery = ERAE;(EpX)
= (12)
J = AR (12)

The coefficient form of a linear operatéris what is actually implemented in a software since it
directly deals with the stored coefficient vectors themshOnN the other hand, the general linear
operatorA is primarily a mathematical tool but it can also be a softwatvstraction in an abstract
interface layer like Thyra [1].

The last type of linear operator to define is timatrix form of a linear operatordenotedA
which either stores actual matrix elements or could stagmthThe linear operator matrixis what
actually implements the coefficient form of the linear oper#. As described in the upcoming
Section 3, the matrix form may just be coefficient linear operatior it may be augmented with a
scalar product operator. When using a Euclidean Hasid, x = X andA = A= A. More generally,
A+A+£A.

Note that every linear algebra quantity (exgy, A, A, etc.) can be represented in simple element-
wise coefficient form which we will denote here using squackets as.]| (e.g.[X], [J], [A], [A [A]
etc.). For example, the vectarc C" can be represented using the elemexitg for i =1..
L|keW|se a linear operator such Ass CM|C" can be represented using the matrix elem{aﬁ@J
fori...m, j =1...n. Therefore, every linear operator application involvingecof these linear
algebra objects can always be broken down into elementfoigeas

y = AX

=
m

[y](l) = Z[A](i_j)[X](j), fori=...n. (13)

Therefore, in the sequel when we use this notaftjoand state thgid| = [B], we mean that applying
[A] element by element as defined!in (13) is equivalent to applBhelement by element and doing
so will give the same output vector coefficiefys;, .

For every linear operatdk it is possible to define another linear operator object aataxtwith
it called theadjoint linear operator, denote#’ < C"|C™, which maps vectors from the spacB8
toC" as

y = Ax (14)

wherex € €™ andy € C".

For linear operator#\ in a Euclidean space, it will be shown in Sectidn 3, the adjbimear
operatorA” is equal to the matrix element-wise conjugate transposéor [A]" where we use
the notation[A]" to denote the matrix element-wise conjugate transpose. eMewfor general
vector spaces, this is not true.

Dumb Fact 2.1 An adjoint linear operaton{,&] is not the same as the matrix Hermitian transpose
[A]F with respect to the action on the vector coefficients whetirdgavith non-Euclidean vector
spaces.

In other words, while the adjoint linear opera®@i in Euclidean space is equal to the Hermi-
tian transpose of the forward opera#rthis is not generally true for the vector coefficient linear
operatordA in general vector spaces.

The forward and adjoint vector coefficient linear operatdendAr, respectively, are related to
each other with respect to the scalar products through tleénadelationship

VH(AU) = (3,A0),, = (A"v)"u= (A9, 0) (15)

D

for all e » andv'e £ . In (15) we see the relationship between a linear operascoefficient
linear operator, its adjoint, and the scalar products aatsatwith its range and domain spaces. The
identity in (15) will be used in a number of derivations in folowing sections.

A linear operator is designated asiawvertible linear operatoiif another unique linear operator
denotedA 1l e » |®_ exists such that

AA=AAT1=].

Likewise, the inverse linear operatar! also has aadjoint inverse linear operatodenotedA—H
R |D associated with it which satisfies

AHAR = AHAH —

While the adjoint of a coefficient linear operator is not gaflg equal to the element-wise
Hermitian transpose of the forward linear operator, thelse is the element-wise matrix inverse
in all cases. In other words, the inverse of a coefficientaineperatorA 1 is in fact equal to the
matrix inverse of the forward linear operafdi .. This will be shown out in Section 3.

Linear operators are used to represent a variety of diffaypes of objects in a numerical algo-
rithm. The origin of many linear operators that appear in merical algorithm are the derivatives
of the smooth model functions such as Jacobian, gradiemdd;lassians. These derivative operators
play important roles in a number of numerical algorithmsgiag from basic Newton methods all
the way up through optimization methods. Even vectoesC" can be viewed as linear operators
x € C"|C where the domain space for the forward operator is sinplyhich gives the forward
operatory = xv (wherev € € andy € €") and the adjoint operatgr= x"v (wherev e C" andy € C
). Here we see that a vectrwith the corresponding coefficient vectoican take on a dual role.
In one role Xis just an array of coefficients with a scalar product attddieeit. In another rolex
can represent a linear operator where the actiofi'ginvokes the scalar produ¢®,). In turns out
that in a abstract interface like Thyra [1], the vector audton can be interpreted either way.

2.9 Dealing only with scalar products and vector coefficierstin algorithm construc-
tion

It is important to recognize that both a vectoand its corresponding coefficient vectofwhere

x = EX) can be represented as arrays of scalars in a computer progtawever, our goal is to go
about formulating and implementing numerical algorithmd applications so as to only manipulate
arrays of the natural coefficient vectorsafid never manipulate the coefficients of the Euclidean
representation of the vectors= (EX) themselves. The reason that one would only want to deal
with the natural coefficients of the vectors in a vector sgatthe scalar product is that it may be
inconvenient and/or very expensive to build a set of basisove so that the Euclidean form of the
vectors themselves can be formed and manipulated diréctigneral linear transformation would
also destroy the sparsity of many derivative operator magpresentations which is unacceptable
for most large-scale algorithms. This is the case, for exeyrip many different finite-element
discretization methods for PDEs [?77].

3 Impact of non-Euclidean scalar products on matrix
representations of linear operators

As stated above, for every general linear operAttitere is a correspondingector coefficient linear
operatorform A. In addition, every finite-dimensional linear operator bag of several potential
matrix representationé. The different representations éfdepend on how the domain and range
space basis matric&and inner product operatogrelate to the matrix representatidrand these
relationships are explored below.

Here we consider the impact that non-Euclidean vector spand scalar products have on
Euclidean linear operatos € 9{|a> their non-Euclidean coefficient formﬁ; and their different
possible matrix representatloWs We consider two such matrix representations in the folhgwi
two subsections, the Natural matrix representaﬂgrand the Euclidean matrix representaum

3.1 The Natural matrix representation of a linear operator (Ay)

First, lets consider th&latural matrix representatiomf a linear operator denotetly of a linear
operatorA in terms of the basis vectors for the spageand® which takes the form

A=E, AET. (16)

Note that if one considers a vectwre= EX to be a linear operator, then the “matrix coefficients”
for the vectorx™are always stored in the Natural form whefg = E andE,, = C. This will
have important implications when considering the storagkraanipulation of function gradients
as vector objects.

Given this matrix formA, the vector coefficient form of the linear operaﬁw is

y = EgVy
AX
(Ex AE})(En%)

Ex (ANQopX)
= EK(ANQ@))z
=
Av = AvQ, (17)

whereQ,, = Eg' E, is the scalar product matrix for the spape Hence, we see that applying
the operatorA using (16) to transform the vector coefficient$o™y involves injecting the scalar
product matrixQ,, before multiplying by the Natural coefficient matry,. Using this notation, we

differentiate between the adjoint vector coefficient oma‘rdenoted&H and the Hermitian element-
wise transpose of the forward vector coefficient operataotk|[Ay]".

9

Now lets consider the form of the Natural adjoint vector @iogfnt linear operator using the
Natural matrix shown in (16) which gives

v = E,V
Au
= (E,AJEN)(Ex)
= Ep(AJQg0)
= E@(AHQK)G
=

A = AJQq (18)

whereQy = Eg Ex is the scalar product matrix for the spage This time, the application of the
adjoint requires the injection of the scalar product ma@ix.

Here we see the definition of the adjoint vector coefficienedir operato A = AHQK is
not equal to the Hermitian transpose of the forward vectaffimient linear operato{AN]H =
[Qu]H AT (.e. [AR] # [An]™). Here we now see the critical difference between a linear op
erator and a matrix when dealing with linear operators tiperate on the vector coefficients of

vectors with non-Euclidean basis representations.

Dumb Fact 3.1 When writing algorithms in vector coefficient form with nGoelidean scalar
products, the adjoint non-Euclidean coefficient linear raper A" is not the same as the matrix
conjugate transpose of the forward non-Euclidean coefficimear operator,&. In other words,
using our notation[A"] [A] in general.

It is easy to show thahy andAll given in (17) and (18) satisfy the adjoint relationship (15)

0,AQV), O (19)

If the linear oper~atoA is invertible such thafA~1 exists, then the Natural inverse vector coeffi-
cient linear operatoAg1 is given by
y = Epy
A 1x
(Ex ANE}) H(Ex %)
“HA-1/--1 G
N ED AN (ER EK)X
= (E,E,HE,HAL'R
= En(E,'E, AR

10

= Ep(Q"AVNX
AV = QAL (20)

Therefore, applying the Natural inverse vector coefficiemar operatorAgl involves applying
the inverse of the matrix representatiAﬁ1 followed by applying the inverse of the scalar product
matrix Q,*.

The Natural adjoint inverse vector coefficient linear optmr&gH € R |D is also easy to derive
and is given by

y = Eg¥
= A Mx
= (ExAnED) M(EpX)
= E."AJME,'ExX
= (ExEHE, AR
= Eq (B 'E. AR
= Eg (Q;ilANHX)
= Ex (Q"AVM)X

AP = QA (21)

Therefore, applying the adjoint inverse of the natural ficieht representation of linear operator to
the vector coefficients involves applying the inverse ofgbalar product matri@;il.

Here we see that the Natural inverse vector coefficient fahaad adjoint linear operatoﬁ@\,*1
andAgH, respectively, actually are to the simple matrix inversethe Natural vector coefficient
forward and adjoint linear operatofg, andAfl, respectively.

Dumb Fact 3.2 The Natural inverse coefficient linear operaﬂ&ﬁ1 actually is the same as the
matrix inverse of the Natural forward vector coefficientldm operatorAy. In other words, using
matrix element notatiorfAyY] = [An] .

3.2 The Euclidean matrix representation of a linear operato (Ag)

Now consider another matrix representation of a linear atper denoted here as tlgiclidean
representation, which defines forward vector coefficiergrafor Az as the matrix representation
Ag as

>
Il
>
m
X

& &

(22)

|%>l
Il

11

wherex = E,X andy = E;x §. This representation is quite common in many different soaled
makes good sense in many cases. This is the assumed form furtveed linear operator by
Heinkenschloss & Vicente [2] for instance.

Dumb Fact 3.3 The Euclidean form of the forward vector coefficient Iinealemtor,&E is (by
definition) invariant to the selection of the basis repreagan.

_ Given the matrix representation of the Euclidean forwaitarecoefficient linear operatd\g =
Ag in (22) one can derive the Euclidean adjoint vector coefficigperatorAf from the adjoint
relationship as

(Ael,0), =

A? = Q,'AHQy (23)

From (23) we can see that applying the adjoint in this caseiresjapplying the inverse of the scalar
product matrixQ,*.

From (22) or((28), one can derive the exact representatidtheobperato that is consistent
with this matrix representation. First, from (22) we seé tha

y = EgY
Ex (AeX)
= EgAe(E,'Ep)R
= (ExAeE,)(En%)
= AeX
=
Ae = E4xAeE,L (24)

We can also derive the Euclidean representatiofdsafrom (23) as

= (ExE N (E,MAZEN) (Ex%)

12

= Alx

=
Al = E MAZEY
=
Ae = EzAeE,™ (25)

Note that we already know thég: in (24) and|(25) satisfies the adjoint relationship, sin@ (#as
derived from the adjoint relationship.

Given the Euclidean formd in (24), the action of the Euclidean inverse linear operatot
(should it exist) in the operation= A~1x is given by

y = Epy
A~x
= (ERAEEgl)_l(ERi)
= EnAgH(EEq)R
= En(Ag'%)
=
At = At (26)

Likewise, the action of the adjoint inverse linear oper#of of the formy = A-Hxis also easy
to derive and is given by

y = Egy
AHx
(Ex AeE, ") M (EnR)
E, HA"EDE, K

= (ExE)E,"AzH (EDE,)R

= ER(QZJAEHQ@X)

=

Ae" = QfAL"Q, (27)

Dumb Fact 3.4 The Euclidean form of the adjoint inverse vector coefficiier@ar operatorAgH is
notthe same as Ehe element-wise Herrpitian transpose of thedeaalform of the inverse coefficient
linear operator[Az1]". In other words Az # [Agt]H.

3.3 Converting between Natural and Euclidean matrix repregntations

In this section, we use the results from the prior sectiorsutinctly define the relationship and
the conversions between the Natural and the Euclideanxrapresentations of a linear operator.
The various vector coefficient linear operators defined énpifevious sections are given in Table 1.

13

Natural forward vector coefficient linear operator: Ay = AvQp
Natural adjoint vector coefficient linear operator: Al = AR
Natural inverse vector coefficient linear operator: Al = QA
Natural adjoint inverse vector coefficient linear operator A" = Qg'AH
Euclidean forward vector coefficient linear operator: Ag = AE
Euclidean adjoint vector coefficient linear operator: AH = leAE Qr
Euclidean inverse vector coefficient linear operator: Azt = Aft
Euclidean adjoint inverse vector coefficient linear operat A"~ = QA Qp

Table 1. Summary of the definitions of vector coefficient linear op-
eratorsA, A, A1, andA~ for the Natural and the Euclidean matrix
representation8y andAg.

Comparing the different equivalent vector coefficient ferfar the Natural and the Euclidean
matrix representations shown in Table 1, it is clear how tovedt back and forth between any two
matrix representations. Converting between the two maspxesentations is given below.

|
T
m
O
(Wl
AR

e Converting from the Euclidean to the Natural formAy
e Converting from the Natural to the Euclidean formA:s = AyQp

Therefore, converting between the Natural and the Eudilideatrix representations of a lin-
ear operator requires either applying the domain spaceriproduct operato®p or its inverse
le. This type of transformation will become important lateramhdiscussing the impact of non-
Euclidean basis representations on the derivatives of hfiadetions in Section ??7.

14

4 Impact of non-Euclidean scalar products on derivative
representations

Here we describe how to correctly compute and/or apply thieatere of a multi-variable (vector)
function so as to be consistent with the function’s domathramge spaces when non-Euclidean ba-
sis representations are being used. We will see that thesesigire closely related to the discussion
of different matrix representations in Section 3.

Here, we will deal with real-valued vector spaces denotet Ri". The reason we do this is
that while derivatives for complex-valued functions ardlwefined, their use in optimization and
other types of numerical algorithms can be a little trickyl dherefore we stick with real-valued
functions here to avoid trouble.

We now consider multi-variable scalar functions and mudtirable vector functions in the next
two subsections.

WARNING: In the derivative discussion below, the usage the spacé¢iota is incorrect and
should be replaced witR" in many cases and visa versa.

4.1 Derivatives of multi-variable scalar functions

Consider the scalar-valued functidx) in Euclidean space
xeR"— feR.

The definition of the first derivative of this function comesrh the first-order variation

of
of = &Bx.

Therefore, the derivative@f /ox first and foremost is a linear operator that when applied toeso
variation inx of dx gives the resulting variatiodf in the functionf (to first order). For scalar-valued
functions, it is common to define tiggadientof the function which is defined asf = of /ox" ¢ R"
and is usually represented as a vector in the spdatand this gives

of = OfTdx.

Let the coefficients of the gradient vector be denoted & x such that1f = ED~f, whereE is
the basis for the space C R" and we consider the coefficient vectoe X .

Now consider an implementation of the functié(x) that takes in the coefficientsc x and
returnsf as

Xex —geR.

15

The functiong is what would be directly implemented in a computer code imyngases. Since
% = E~!x, we see that

of _9go% _0g__

ox 0%ox 0%
which gives
Of =E~TOg. (28)

Equating[(28) tdf = ECf and performing some manipulation we see that

0f = EOf
= E g
=
Of = EE TOg
= (ETE)'0g
= Q'Og (29)

whereQ = ETE. Therefore, to compute the coefficierits for the gradient vector]f given the

gradient(g for the functiong(X), one must apply the inverse of the scalar product ma&rix as

shown in((29). In some codes, it is actually just as naturdirectly computeff as itis to compute
g(X) and therefore there is not need to ap@ly* as shown in/(29).

Note that this definition of the gradient results in the tetiation inner product
df =0f Tax= ()T Q(dx) = (Q*0g)T Q(dx) = 0g" (Q1Q)dx = [g" dx

which is nothing more than the simple dot product involvimgags of data that are directly stored
and manipulated in the computer. This is the first case thatvillesee of ascaling invariant
computation where the gradient’s scalar product with thenown variationdx is independent of
the choice of the basis (scaling invariance is seen by mamyvasy desirable algorithmic feature
[22]). In the case whei® ! must be applied just to have it removed again, it would be raffigient

to implement the gradienff " as a linear operatdfif' = df /dx instead of as a vector in order to
avoid having to apply the invers@ ! just to remove its effect later usin@ in the scalar product.
This scale invariance also means that the total varialibican be approximated with directional
finite differences on the underlying functig(X) without any concern for what basis representation
or inner product is used.

16

The vector form of the gradiefntf € R" (storingﬁf € $) is critical in many types of numerical
algorithms since it gets assigned to other vector objedsgats passed to linear operators (i.e. it
becomes the right-hand side for a linear system). Theréfigpeementations have little choice but
to implement gradients a vector objects.

Note that the vector representatiori = ECT, where(f = Q10g, is equivalent to the Natural
matrix representation of the linear operaibi € R"|R. The transformation dflf = Q~*Ogin (29)
is nothing more than the transformation form the Euclideathe Natural matrix representation

shown in Sectioh 3.3 whery = (0f ', Az = [1g", andQp = Q.

While the selection of the basis and inner product has no ¢inpa the total variatiodf =
OfTx, it has a tremendous impact on the inner produiet 0 f shown as

OfT0f =(0§'Q TEM)(EQ 0§ = 0§' Q 'QQ 0= 0g' Q*01g. (30)
This inner product]fTOf is used in many different types of algorithms and therefbesé algo-

rithms are strongly influenced by the definition of the innerduct.

ToDo: Derive and describe the impact of the scalar product on tteside matrix forf (x). | do
not know what this is exactly but | need to derive this so thedn determine that the Newton step
for the minimization algorithm is not effected! In think thissian operator i§°f = Q~1[12gQ 1
but we need to verify this for sure.

4.2 Derivatives of multi-variable vector functions

We now consider the extension of the above discussion ofusealued functions to vector-valued
function f(x) defined in the Euclidean space of the form

xeR" - feRM

Again, many different algorithms consider the first-ordariation

of
of = &6x.

In this notationd f /dx is a linear operator that maps vectors frore R" to 8f € R™.

_ The vectors take the form= E& f = E¢f, 8 = Edx and8f = E¢3f wherex; f, &, and
of are the coefficient vectors that would typically be direstigred and manipulated in a computer
program.

Now consider the case where functidiix) is implemented in coefficient form through the
function

Xex —-gerF.

17

where
f(x) = Efg(X).

The functiong(X) is what would typically be implemented in a computer code taednatrixdg/dx
could be efficiently and simply computed using automatitedéntiation (AD) [??7?] for example.
The full forward linear operator would then be

of _ 0gox _ dg_ ,
ax ~ Fogax ~ B ot &

which takes the same form as the Euclidean representatitire dihear operator described in Sec-
tion[3.2. This operatoA = 0f /0x can either be formed and stored using some matrix repregenta
or can be applied implicitly.

There are one of two choices for how to actually implementaperatorA = df /0x using a
matrix representation. The first option is to just explicigtore the matrixdg/oX that would be
directly computed from the functiog(X) using AD for instance. The forward operation application
y = (af /ox)x would then be applied in vector coefficient form as

y=5. X = §=Q =] Qi (32)

as shown in[(23), which requires the application of the isgesf the scalar product matri@, !
with each application of the adjoint.

The other option for a matrix representation is to computesiareA = (09/0%)Q, " and this
gives the Natural representation

of _09-9 ~09_ 1 7T\ 99 T\ 1-T - ApT
S —EisJE =B B (B TE]) = B (E[E0) E] — E(AE]. (33)

Note that forming the produ¢dg/o%)Q,~ may be very expensive to do in practice and can destroy
the sparsity obg/0X. Note that this is equivalent to the vector representatiothe gradient f
described in Sectian 4.1.

ToDo: Look at the practical issues of computing and directly s@iidg/0%)Q, ! for a few
different discretizations. Is there special structure thakes this easy to compute a sparse matrix?
How do people actually do this in practice?

18

5 Impact of non-Euclidean scalar products on various numeircal
algorithms

Here we discuss the bread and butter of the impact of scaddupts in how they affect numerical
algorithms that we develop and implement. The approachthkee is to first start with the algo-
rithms stated in Euclidean form without regard to issuescafas products. This is fine as long as
we recognize that the vectorsfor instance, that we are dealing with will eventually besithted
for there basis and coefficient for= EX from which we do manipulations. What we will try to do
is to see how the expressions in the algorithm change and Iivieyato perform the manipulations
so that we are left with the only the vector coefficients @)escalar product matrices (i.8y), and
linear operators. We will also try to remove any explicit degence on the exact form of the basis
representation (i.e. the bagg should not appear in any final form of the coefficient expass).

The general approach is summarized as:

1. State the algorithm in Euclidean form using vectors watspect to a Euclidean basis (exy.
with simple dot products (e.y).

2. Substitute the basis representations for all vectogsXe~ EX) in all expressions.

3. Manipulate the expressions and try to decompose all tipasainto coefficient form involv-
ing only the vector coefficients (e.g), Scalar product matrices (e.@y), and other model-
defined linear operators if needed.

4. Go back and investigate how to implement the remaininggliroperators (especially those
that are model function derivative operators like Jacabemd Hessians).

To demonstrate the process, consider the Euclidean forhreahter CG iteration

H

Pk = 1T,
Pk
= r+— R
] pkflp
= Ap,
Pk
O = —,
pHq
X = X+ap,
r = r—aq.

In this algorithm, the linear operatéy € s|s is symmetric so we are dealing with just one vector
spaces with scalar producQ. Let E € €C"™" be any basis representation such t@at EME.
Substitutingr = Ef, p=EpP, g= E§, andx = EXin the above inner loop expressions yields

ok = FTENEF,
Ep = Ef+-P<Ep,
Pk-—1

EG = (EAETER

19

Pk

Q
|

EX = EX+aEp,
Ef = Ef—oaEqg,
=
p = FQF,
Ep = E(f+—<p),
Pk—1
EG = E(AP),
_ P
Qg
EX = E(X+ap),
Ef = E(f—ag),
=
Pk = <F>F>>
~ o Pk ~
e |’—|—— R
P Pk-1
d = Ap,
Pk
a = —,
(P,)
X = X+ap,
f = f—ad.

As seen in the above example, if after this transformatiorcare manipulate the expressions
such that the coefficient forms do not explicitly involve thesis matrixe but instead only involve
the scalar product matri® = EHE and the non-Euclidean coefficient forms of the linear opesat
then we have succeeded in deriving a general form of the igdgorthat will work for all non-
Euclidean vector spaces. The one lingering issue is whaeenirby the vector coefficient linear
operatorA used ing’= Ap? Can we just simply assume the Euclidean form such that the szatrix
representation (or operator application code) can be usBd=A? Who makes this decision?

ToDo: Do a careful analysis of this linear transformation of vialéa for linear CG. Consider
the classic form that uses a symmetric preconditioner asitiez product and make that consistent
with a linear transformation of variables. We may have to gokbto first principles of CG to do
this.

It is critical to note that when the selection of the scalaxdoicts affects an algorithm then a
good selection for the scalar products can positively imgiae performance of the algorithm. The
dramatic improvement in the performance of various nunaggtgorithms that is possible with the
proper selection of scalar products is documented in [?R&][2??]. Many numerical algorithms
applied to applications that are based on discretizatibR®&s can show mesh-independent scaling

20

when using the proper scalar products for instance [??7?].

ToDo: We need to dig up these references for ourselves and reraduce of the finding.

5.1 Newton methods

The first set of methods that we will consider are Newton nagH87??]. In their most basic form,
a Newton method seeks to solve a set of multi-variable nealirquations

f(x)=0
wherex € R™ and
xeR"— feR"

is a vector function of the form described in Section 4.2 wehigix) = E;g(X) andg(X) is what is
implemented in the computer. The undampened Newton metnedsso improve the estimate of
the solutionx, by solving the linear system

of
5= —10) (34)

and then update the estimate using
Xer1 = X+ d. (35)

It can be shown than wheg is sufficiently close to a solutiox® such thatf (x*) = 0, and ifd f /ox
is non-singular, then the iterat®g xo, ..., Xk, X1 converge quadratically with

X2 =] < Clfxe— x| 12

for some constant € R [??7?]. In a real Newton method, some type of modification rsegally
applied to the step computation iin (34) and/or the updat85hif order to insure convergence from
remote starting pointsp.

We now consider the impact that non-Euclidean basis reptatsens and scalar products have
on two forms of the Newton step computation: exact and inexac

5.1.1 Exact Newton methods

In an exact Newton method, the Newton system in (34) is sdlvachigh precision. Now let’s con-
sider the impact that substituting non-Euclidean basiseememtations have on the Newton method.

21

The basis representations are E,X and f = E; f for the spaces € R"and# < R". Now, let us
assume the Euclidean representation is used ffgdx which gives the coefficient form of (34) as

Jg ~
&d =—g. (36)
We then substitutd into the update in (35) which is

Rr1 =R+ d. (37)

Comparing/(34)+(35) with (36)—(37), it is clear that the ickecof the basis vectors for the spaces
or # have no impact on the Newton steps that are generatediniisanceproperty of Newton’s
method is one of its greatest strengths. However, solvisg\iewton system exactly can be very
expensive and taking full steps can cause the algorithmviergt and therefore modifications to
handle these issues are considered later. First, howhedandxact computation of the Newton step
is discussed in the next subsection.

5.1.2 Inexact Newton methods

In an inexact Newton method, the linear system in (34) is obtesl exactly, but instead is only
solved to a tolerance of

of
15 d-+ fills

<n (38)
[fil|

wheren € R is known as the forcing term and typically is selected suelirjil || fy|| - to ensure
quadratic convergence. The coefficient representatioB8)fdfter squaring takes the form

g ~ T og ~
<&d+gk> Qg (&d‘i‘gk)

QI Qr Ok

<n® (39)

From (39) we see that the selection of the scalar product@ir that defines the norii.||, (as
defined in[(7)) can have a large impact on quality the inexaotton step computation. However,
assuming the Euclidean form of the forward operator is useih §36), then the selection of the
scalar product for the space has no impact on the computed Newton step. Such a invariant
computation is said to baffine invariant[??7?].

5.2 Minimization, merit functions and globalization methods
Let's consider the minimization of a multi-variable scaianction
min f(x) (40)

22

wheref(x) € R" — R of the form described in Section 4.1 whefrex) = g(X) andg(X) € x — R
is what is actually implemented in a computer program.

As stated in Section 4.1, the vector coefficient for the gratlil f, which takes the fornil f =
Q, Mg, is affected by the definition of the badis but total variation

~ ~

5f =0f"d = (Qc t0g)TQx(d) = Og’ (d) (41)

is not affected, wherd = Eche R", d € x is some search direction.

One of the most basic requirements for many minimizatiorignms is the descent require-
ment which can be stated as

Of'd <0 (42)

for Of #£ 0.

Consider the steepest-descent direction —ylIf wherey > 0 is some constant. With a Eu-
clidean basis, the coefficient vector for this directionetakhe formd = —yllg. However, when a
non-Euclidean basis is used, the coefficient vector forlibesteepest-descent direction is

d=—yQ, *0g.

Therefore, the choice of the scalar product can have a diamapact on the steepest-descent
direction. The descent property for the steepest-desaettion then becomes

0fTd = (09" Q« H)Qx(—yQ« *0g) = —ylg' Qg < 0.

for [0g # 0. Therefore, the descent property for the steepest-desigettion is changed even
though the scalar product definition itself is not.

Another selection for the step direction takes the fores —B~10f whereB is some approx-
imation for the Hessian of (x). Sincellf changes with a non-Euclidean basis, so will this search
direction. The choice oB for variable-metric quasi-Newton methods will be addrdsseSec-
tion[5.4.

Descent alone is not sufficient to guarantee convergencgedd, more stringent conditions
must be met. One such set of conditions include a sufficiezredse condition

f(x+ad) < fx+ca(0f)'d (43)
(often know as thérmijo conditior), and a curvature condition

(Of (4 +ad)'d < cp(Dfi)'d (44)
where 0< ¢; < ¢; < 1. Together, (43)(44) are known as thelfe conditiong??7?].

23

Now let's consider the vector coefficient form of the coratis in (43)-+(44) for non-Euclidean
basis’ which from((41) become

(% +ad) < g+ cra(Dgy) Td (45)
and
(Og(% +ad))"d < c(Ogi) Td. (46)

It is clear from |(45)-+(46) that even through the selectiothefscalar product defined Ig) affects
the steepest-descent direction, for instance, it does ctatlly affect the Wolf conditions for a
general directiond. The computation of the directiahcan, however, be impacted by the choice of
the scalar product as described above. What this meanstighéhslolfe conditions are invariant
to the selection of the basis for the spaceAgain, invariance with respect to the selection of the
basis is consider a very attractive property for numeridgbrithms [??7?]. It is those parts of a
minimization algorithm (like the step computation) thaids to seek out better scalar products.

5.3 Least-squares merit functions

Here we consider the impact that non-Euclidean scalar jgtediave on standard least-square merit
functions of the form

ox) = F(x)"f(x) (47)

where f (x) is a multi-variable vector-valued function of the form deised in Section 4.2 which is
implemented in terms af(X) where f(x) = E;g(X). The least-squares function definedlin (47) is
used in a variety of contexts from globalization methodsnfonlinear equation$(x) = 0 [??7?] to
data fitting optimization methods [??7?].

The gradientlg € R" of @(x) defined in[(47) is given by

af T
o= f. (48)

Whenof /dx is represented in Euclidean form as shown in (31), the caaffidorm of the adjoint
Jacobian-vector product in (48), shownlin|(32), is given by

%T

Jo=Qc '3 Q0 (49)

In (49) we see that the gradient direction for the least-sepimerit function in[(47) is impacted by
both the scalar product matric€ andQ .

24

5.4 Variable metric quasi-Newton methods

Non-Euclidean scalar products can dramatically improeepirformance of optimization methods
that use variable-metric quasi-Newton methods [???]. Merewill consider a popular form of
variable-metric approximation the BFGS formula [??7?] vahidefined as

o (By(BY" yy"
By=B- s'Bs JryTs

whereB is the current approximation to the Hessiaff andB, is the updated approximation.

Generally, the update vectors are defineg asldfy — Ofg_1 ands= xx — X_1 but the analysis
here is independent of the actual choices for these vecitisat will be made clear here is the
impact that non-Euclidean scalar products have on thewsiioplementations of this method.

We will consider two forms of the above approximation. Fimse consider an explicit im-
plementation that directly stores the coefficients of thdrixan the Natural form (Section 3.1).
Second, we consider an implicit implementation that ontyest pairs of update vectors and ap-
plies the inverse implicitly. The implicit representatitimen leads naturally to a limited-memory
implementation.

5.4.1 Explicit BFGS matrix representation

For the explicit matrix representation we will assume BaindB ., are being stored in the Natural
coefficient forms ofB = EBET andB, = EB.E". Note that the basis matrix is generally not
given explicitly and a unique choice is not known; only thalac product matrixQ = ETE is
known. By substituting in the coefficient forms Bf= EBE', B, = EB.ET, y= EY, ands= E§
into (5.4) and performing some manipulation we obtain

21 [(EBET)(ES)J[(EBET)(E9]" | (EY)(EY)

o) T _ T
e (E9T(EBETES | (EV)(E
_ EBET_E(@Q§)(I§AQ§)TET Eyy'ET
§'Q(BQY) ¥y Qs

(BQ)(BQ3)" . WA
§Q(BQY Y'Q5

B, = B- (éQg)(?Qg)T + 57! . (50)

§Q(BQ) ¥TQs

— E|B-—

What (50) shows is that the Natural matrix representatioB oc&n be updated tB, by using the
coefficients of the vectorsandy, the matrix coefficient® themselves, and the action of the scalar
product matrixQ. Note that the final expressions for the update do not conkarbasis matrix

E itself since this matrix is not known in general. Also notattfj = BQS is just the coefficient
vector from the output of the action gf= Bsand the remaining operations involvigywhich are

8" Qg ands' Qg are simply applications of the scalar produgts)) and(y,y) and therefore no direct

25

access the th® operator is needed here. However, note that applying therélaepresentation of
B does require the ability appl as a linear operator and not just a scalar product.

What all this means is that code that currently implementsxaticit BFGS update assuming a
Euclidean basis should only need minor modifications in otal&ork correctly for non-Euclidean
scalar products.

Note that applying the inverse Bf= EBET asv = B~luis simply a special case of (21) and is
given as

v = EV
= B lu
= (EBE")"Y(EQ)
= E(Q7'80
=
v = QB (51)

Therefore, applying the inverse of the natural coefficiepresentation dB involves applying the
inverse of the scalar product matQx .

Note that storing3 € R"|R" as a dense matrix requir€@{n?) data withO(n?) flops to do the
updates (see the update formulas from [??7?]), this woulchrttest it might be reasonable to also
storeQ € R"|R" as a dense matrix and then do a Cholesky factorizafieaLLT. Applying the
inverseQ~* would then just involve doing back-solves with the CholefdgtorL—t andL~".

5.4.2 Implicit BFGS matrix representation

For the implicit representation of a BFGS approximation witeonsider the approximation of the
inverseH = B~! and the update = H;ly using the update vectossandy which is given by the
formula ([??77])

H, =VTHV + pss. (52)
where
1
p = yTS, (33)
V = |—pys. (54)

Here we consider a limited-memory implementation (L-BFE3)?] wherem sets of update quan-
tities {s,yi, pi} are stored for the iterations=k—1,k—2, ... ,k—mwhich are used to update from
the initial matrix inverse approximatiody = By ! to giveH after them updates (see [???] for de-
tails). The implementation of the inverse Hessian-vectodpctv = Hu is provided by a simple
two-loop algorithm involving only simple vector operat®like dot products, vector scalings, vec-
tor additions, and the application of the linear operadgr Therefore, we will go and skip ahead

26

and write the general non-Euclidean coefficient form of #dgorithm. This simple algorithm is
called the two-loop recursion [??7?] which is stated as

L-BFGS two-loop recursion for computing ¥ = H(i

g=ad

fori=k—1,...,k—m
ai = pi(§,0)
G=34-—aiy;

end

F = Hof

fori=k—-m,....k—1
B=pi (%M
F=Ft (o~ B)S

end

V="

While it is subtle, the insertion of the general scalar pasl(s, §) and (V,7) can result in a
dramatic improvement in the performance of minimizatioritmods that use it and it has been shown
to have mesh-independent convergence properties (i.authber of iterations does not increase as
the mesh is refined) for some classes of PDE-constraineshiggtion problems [??7?].

5.5 Inequality constraints

Consider a simple set of simple bound inequality constsasfthe form
a<x (55)

wherex;a € § with basis representations= EX anda = E&. Inequality constraints of this form
present a difficult problem for numerical algorithms usimg+Euclidean basis matric&ssince the
inequality constraint in (55) is really a set of elementemi®nstraints

g <x,fori=1...n (56)

The element-wise nature of (56) means that we can not simgigtisute the coefficient vector
components;andd; in for x; anda;. One could, however, simply substitute in the coefficiemtore
components and have the algorithm enforce

i <%, fori=1...n, (57)

but then that may fundamentally change the meaning of tr@sdraints and may destroy the phys-
ical utility of these constraints for the application. Adtigh, note that in some categories of appli-
cations this type of substitution may be very reasonable. ekample, in standard finite-element

27

discretizations of PDEs, the vector coefficients directiyrespond to physical quantities such as
temperature, stress, and velocity at the mesh nodes. Dhergflacing inequality constraints di-
rectly on these types of coefficients may be very reasonalde #hrough a non-Euclidean scalar
product is desirable in order to introduce mesh-dependsting into other parts of the algorithm.
In other types of discretizations, such as those that usectrap basis [??7?], there is no physical
meaning for these coefficients so direct inequalities wingl these types of coefficients are mean-
ingless.

Note that imposing the inequality constraints in non-Ededin coefficient form as in (57) is
equivalent to imposing the inequalities in Euclidean fosn a

E-la<Ex (58)

which is important when performing the initial transformatfrom the Euclidean form (i.e. the form
using dot productx"y) to the non-Euclidean coefficient form (i.e. using scalavdoicts (X,)).
Here, we hope that in doing the transformation of the entigerdhm that we can remove any
explicit mention of the basis matri itself.

In cases where component-wise inequalities on vector caffs is not meaningful, one has
no choice but to form an explicit basis and to pose these @nt as general linear inequality
constraints of the form

b < EX, (59)

whereb = Ed is a new vector directly manipulated in the software. Evaaniexplicit basis matrix
E € R"|R" must be formed in order to preserve the meaning of the inggualnstraints, there is
still utility in expressing an algorithm in general non-BHdean coefficient form since it avoids hav-
ing to convert all vectors back and forth using the basisasgmtation or having to invert the basis
matrix. Also, it avoid other problems like killing the spaysstructure of the derivative matrices.

In conclusion, if it is reasonable to impose inequality ¢oaiats on the elements of the coef-
ficient vectors themselves such aslin (57), then ANAs invg)vinequalities with non-Euclidean
scalar products can be very reasonable and straightfortwdandplement. When replacing the Eu-
clidean inequalities with the vector coefficients is not miegful, then the an explicit basis repre-
sentation is required to express the constraints as generplality constraints as in (59).

TODO: Finish editing from here!

28

6 Vector Coefficient Forms of Numerical Algorithms

Here we finally come back to reality. Up to this point in thecdission we have been very careful
to differentiate the vectox € R" in Euclidean space from the vector coefficierts X in non-
Euclidean space related by the equatienEX. We have viewed algorithms in Euclidean form using
the vectorsx andy and simple Euclidean dot product8y and then in non-Euclidean coefficient
form using coefficient vectors andy and scalar product&,). However, when mathematicians
write numerical algorithms in coefficient form they do nopisally use math accents likeahd A

or acknowledge the related Euclidean forms. Instead, tlseynon-accented identifiers and often
the only clue that we are dealing with non-Euclidean vecteestor spaces, and linear operators
expressed in vector coefficient form is that simple dot peteliike x'y are replaced withix,y). As
we have show above, expressing algorithms in vector cosfidorm with non-Euclidean scalar
products has a dramatic impact on the definition linear dpesaderivative computations, and the
meaning of certain types constructs like inequality caists. For example, we showed in Section
2?7 that the adjoint non-Euclidean coefficient linear dped is not the same thing as the matrix
conjugate transpose of the forward non-Euclidean coefiidieear operatoA (i.e. [AH] [A]H).

Dumb Fact 6.1 When most mathematicians write a numerical algorithm usiiregscalar product
notation(x,y), the vectors x and y are the coefficients of the vectors anaf #fle linear operators
become non-Euclidean coefficient operators whichrenteequivalent to matrices in general!

Using the approach outlined above, one can comfortably geess the Euclidean dot product
form (i.e.x"y) and the non-Euclidean scalar product form (f>ey)) of most algorithms. However,
when doing so one has to be careful to keep straight which feroeing expressed or things can
get confusing very quickly. This is where a software implatagon using an abstract interface like
Thyra can really help manage the complexity of implementirgse types of algorithms.

29

7 Summary

Here we have presented an approach to looking at non-Eaaoligiealar product spaces that deals in
very straightforward terms using simple concepts fromdimegebra. The idea is to first look at all
algorithms assuming Euclidean vector spaces and explidlidean coefficient vectors and then to
substitute in the basis representation for non-Euclidesotov spaces. After this substitution, one
then tries to manipulate the expressions to come up withufdibg blocks of scalar products and
linear operators and only considers the explicit repregem and manipulation of the coefficient
vectors and never the Euclidean coefficients of the vechaimselves.

There are numerous advantages to both using well seleetesfarmations of variables and to
not applying them directly but instead only performing thensformations indirectly by injecting
scalar products. Explicitly applying the needed lineansfarmation of variable is just not practi-
cal for large-scale problems from a number of perspectivelsiding the difficulties in computing
the needed transformation matrices, destroying the spatsucture of large Jacobin and Hessian
matrices, and making the algorithm output more difficultrt@rpret.

30

References

[1] R. A. Bartlett. Thyra linear operators and vector s: Qi@w of interfaces and support software
for the development and interoperability of abstract nacaéralgorithms. Technical report
SAND2007-5984, Sandia National Laboratories, Albuquerddéew Mexico 87185 and Liver-
more, California 94550, 2007.

[2] M. Heinkenschloss and L. N. Vicente. An interface betweptimization and application for the
numerical solution of optimal control problem&CM Transactions on Mathematical Software
25(2):157-190, June 1999.

31

A ToDo

e To make this type of discussion more helpful, it would be nahave a concrete application
and numerical algorithm example to work through to show thpact of all of this. This
could, in fact, make a nice journal paper to show off Thyraoifie well.

o 777

32

@ Sandia National Laboratories

	Introduction
	Introduction to vector spaces, basis representations, scalar products, and natural norms
	Basis and coefficient representations of vectors and vector spaces
	Standard vector operations
	Square, invertible basis representations
	Definition of the scalar (or inner) product for a vector space
	Definition of the natural norm for a vector space
	Orthonormal and orthogonal basis representations
	Equivalence of basis representations and the scalar product
	Linear operators
	Dealing only with scalar products and vector coefficients in algorithm construction

	Impact of non-Euclidean scalar products on matrix representations of linear operators
	The Natural matrix representation of a linear operator ("705EAN)
	The Euclidean matrix representation of a linear operator ("705EAE)
	Converting between Natural and Euclidean matrix representations

	Impact of non-Euclidean scalar products on derivative representations
	Derivatives of multi-variable scalar functions
	Derivatives of multi-variable vector functions

	Impact of non-Euclidean scalar products on various numerical algorithms
	Newton methods
	Minimization, merit functions and globalization methods
	Least-squares merit functions
	Variable metric quasi-Newton methods
	Inequality constraints

	Vector Coefficient Forms of Numerical Algorithms
	Summary
	References
	ToDo

