SANDIA REPORT

2010-2234
Unlimited Release
Printed Feburary 2011

Teuchos C++ Memory Management
Classes, Idioms, and Related Topics

The Complete Reference

A Comprehensive Strategy for Safe and Efficient Memory Manag ement

in C++ for High Performance Computing

Roscoe Bartlett

Prepared by
Sandia National Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




2010-2234
Unlimited Release
Printed Feburary 2011

Teuchos C++ Memory Management Classes, Idioms, and
Related Topics

The Complete Reference

A Comprehensive Strategy for Safe and Efficient Memory Managment in
C++ for High Performance Computing

Roscoe Bartlett

Abstract

The ubiquitous use of raw pointers in higher-level code éspghimary cause of all memory usage
problems and memory leaks in C++ programs. This paper descwhat might be considered a radical
approach to the problem which is to encapsulate the use Ealpointers and all raw calls tew and
delete in higher-level C++ code. Instead, a set of cooperating tataglasses developed in the
Trilinos package Teuchos are used to encapsulate every ts& €++ pointers in every use case
where it appears in high-level code. Included in the set ahory management classes is the typical
reference-counted smart pointer class similavomst::shared  _ptr (and therefore C++0x
std::shared  _ptr ). However, what is missing in boost and the new standardrjbare non-reference
counted classes for remaining use cases where raw C++ powdeld need to be used. These classes
have a debug build mode where nearly all programmer errersarght and gracefully reported at
runtime. The default optimized build mode strips all rurgichecks and allows the code to perform as
efficiently as raw C++ pointers with reasonable usage. Alstuded is a novel approach for dealing
with the circular references problem that imparts littlérexoverhead and is almost completely invisible
to most of the code (unlike the boost and therefore C++0xagmir). Rather than being a radical
approach, encapsulating all raw C++ pointers is simply digéchl progression of a trend in the C++
development and standards community that startedstdtfauto  _ptr and is continued (but not
finished) withstd::shared  _ptr in C++0x.






Contents

PrE aCE . . .ot e Viii

A o o [T o) 1
2 Fundamental problems with raw C++ POINEETS . . . . ... v v et 5
2.1 Problems using raw C++ pointers for handling singleabje. . ... .................... 5
2.2 Problems using raw C++ pointers for handling arraysm ....................... 6
\2.3 Problems with the incompatibility oew/delete  andtry/throw/catch . .............. 7
3 Problems with common approaches for addressing memorggeament in C++................ 10
3.1 Problems with usinegid::vector for handling all arra)}s ............................ 10
3.2 Problems with relying on standard memory checkingti@f#fi . . . .. .................... 13
4 IMPOMANT PrErEQUISITES . . . o oottt ettt e s i e e e et e e e 16
4.1 Value types versus reference t\}pes ............................................... 16
4.2 Non-persisting versus persisting and semi-persiaLWciatioﬁs ...................... 18
5 Teuchos classes for safer memory management and USAQE. uuu « v e e ee e eiiinneeennns 23
5.1 Overview of basic approach employed by Teuchos memonagement classes . . . . .. . . . . 23
5.2 The proper role of raw C++ pointérs ............................................. 26
5.3 Common aspects of all Teuchos memory managementclasses. .. ................. 27
5.4 Memory management classes replacing raw pointersrigresobjects . . .. .............. 27
5.4.1  TeUChoS: Pl > | e e e e 28
5.4.2 Teuchos: RO P<T > | . e 30
5.4.3  RaW CH+ EfEIENGES . . ..\t o ettt e e 32
5.5 Memory management classes replacing raw pointers faysiof objects . . .. ............ 32
5.5.1 Teuchos::ArrayView<T> | 34
5.5.2  TeUCh0S:AITAYRCPSTS | .o\ttt e 36
5.5.3  TeUChOS Ay > i e 93
5.5.4 Teuchos: Tuple<T, N> 41
5.5.5  AITAY VIEWS . .+ .o s ettt e e e e e e e e e e 43
5.6 Const versus non-const pointers and ijects ....................................... 44
D7 CONVEISIONS . . ittt ettt et e et e e e e 45
5.7.1 Implicit and explicit raw-pointer-like conversions . . . . .......... ... .. oL 45
5.7.2 Conversions between different memory managemeastyp. . .. ............... 49
5.7.3 Implicit type conversion problems and shortcoMings ....................... 52
5.8 Core idioms for the use of the Teuchos memory managenss®ses . ... ... 58
5.8.1 The non-member constructor function idiom . . . . . oo o vo oo 58
5.8.2 General idioms for handling arrays of objects ... .o 60
5.8.3 Idioms for class object data members and local vagabl. .. .................. 61
5.8.4 Idioms for the specification of formal arguments forGunctions . ............. 63
5.8.5 _Idioms for returning objects from C++ functions . . . ................o.o.... 68
5.9 Reference-counting machinery in—dépth ......................................... 76
5.9.1 Basic reference counting machitﬁery ................................... 76
5.9.2 Circular references and Weak POINtErS . . ... ....oeoee oo, 79
5.9.3  Customized dealloCators . . .. ... ..o ot e 86
5.9.4 Embedded ObJeCtS . . . 90
5.9.5  EXUAAAIA ..ottt et ettt et e e e e 92
5.10 Roles and responsibilities for persisting associatiéactories and clients ............... 94
5.11 Debug-mode runtime checl&ing ................................................. 95
5.11.1 Detection of null dereferences and range checking..... . .......... ... ... ... 95




\5.11.2 Detection of circular referenCces .. ... .o 96

5.11.3 Detection of dangling referenCes. . .. .. .. v v oo 98
5.11.4 Detection of multiple owninBCPobjects . ......... ... . . . ... 100
5.11.5 Performance of debug-mode checking versus memeokity tools . ........... 102
5.11.6 Limitations of debug-mode runtime checking ... ........................... 103
5.11.7 Exception handling and debugging . .......... . cuee i 105
5.12 Optimized PErfOIMANCE . . ... ..ottt et e e e e 107
5.12.1 Reference counting OVETNEAT . .. oo oo 108
5.12.2 Array access anditeratoroverhead ........ ... .ccocuueiiii i 113
5.12.3 Performance tuning strategies, semi-persistiggcaions. ... . ................ 116
5.13 Related idioms and design PAtErNS . .. .. .. ..\ e 119
5.13.1 The inverted object ownershipidiom . ........ . oo 119
5.13.2 The separate construction and just-in-time ifgtdion idioms ................. 121
5.13.3 The object self-reference idiom. .. ... ... . i 124
5.13.4 The generalized View design Pattern . . ... ......o.eu oo 128
5.14 Comparison with other class libraries and the stan@ardllibrary . .. .................. 139
5.15 Advice on refactoring existing SORWAIE . . . . .+ . oo e ee e 141
6 Miscellaneous 10 0 023 144
6.1 Essential and accidental complexity, making implicihcepts explicit . . . ............... 144
6.2 Philosophy of memory management: Safety, speed, fliéxiahd 100% guarantdes ....... 146
7 Conclusioﬂs .............................................................................. 148
Referencés .............................................................................. 149
Appendix
A Summary of Teuchos memory management classes andidioms.......................... 151
B Commandments for the use of the Teuchos memory managetaesés. ...................... 159
C Argument for using a signed integer fze _type inthe Teuchos arrayclasses................ 162
D Raw performance dala . ... ..ot e 166
D.1 Raw RCP performance data . . . . .. ... vuv et e e 166
D.2 Raw Array performance data . . . . ... ...uou oo o e e 169
Figures
1 UML Class Diagram showing non-persisting and persistggpaiations ................ 20
2 Conversions between different single-object memory memeent types. ................ 46
3 Conversions between array memory managementtypes. . ...............oooo... 47
4 Basic design of the Teuchos reference-counting machinery .. ..................... 76
5 Example of severd&®CPaobjects pointing to the sanRCPNodelmpl object. .............. 78
6 Simple circular reference betweentwo objects. ... ... ... . . .. e 80
7 Simple circular reference between two objects brokengusinEAK RCP. . .. ............ 81
8  Weak pointer scenario whe@dientA is deleted fIESE o e e 82
9 Weak pointer scenario whe@ientB is deleted firSt ... ..........oeeeeoeneeenni, 84
10 Example of a circular chain involving many objects andynelasses. .................. 85
11 Example of duplicate owningCPNodelmpl objects . . .......... ... . ... 101
12 Timings for allocating and deallocating objects usinthC .......................... 111
13 Timings of basic RCP operations on for three Compilers. . . ...........ccoovovoni. .. 112

Vi



14 Timings for basic Array, ArrayRCP, and ArrayView opemaé ........................ 115
15 Depiction of contiguous and non-contiguous multi-vecumn views. .. .............. 129
16 Parent and child classes for “generalized view” desigtepﬂ ........................ 130
17  State behavior for parent object in “generalized viewsige pattern. .. ................. 130
Tables
1 Basic Teuchos memory management utility classes for entatjng raw pointers. ........ 24
2 Summary of capabilities of the basic Teuchos memory manageclasses. ............. 24
3 Teuchos array CoNtaiNer ClasSSES. . . ...ttt e e e e e e a 25
4 Common members and non-members for all ﬂypes Y
5 Additional non-members for array tyﬂ)es .......................................... 33
6 Equivalences between raw pointer and smart pointer tyesohst protection .. ......... 45
7 Basic implicit and explicit conversions by smart-poirntgres. . ....................... 46
8 Summary of basic conversions supported involving singjeats. ..................... 50
9 Summary of basic conversions supported for contiguowérr ....................... 51
10 Idioms for class data member declarations for value-djpects. . ..................... 62
11 Idioms for class data member declarations for referéyes objects. .................. 62
12 Idioms for passing value-type objects to C++functions.... . . ....................... 64
13 Idioms for passing reference-type objects to C++ funetio. . . .. ......ovoveeenren... 65
14 Idioms for returning value-type objects from C++funoBo. . ........................ 69
15 Idioms for returning reference-type objects from C++clions. ....................... 70
16 Overhead of runtime checking for serial Tpetratestsuite . . ....................... 103
17 Performance testing platforms. .. ... .. . i e e 108
18 Sizes of RCP and boost::shanetl objects for 64 bit GCC4.1.2. ..................... 910

Vii



Preface

This document describes the basic problems with raw memanagement in C++ and presents an
approach to addressing the problems by encapsulatingnalCteat pointers in a system of cooperating
types. Almost every aspect is presented and issues ofatbtzbge, safety, performance, suggested idioms
and many other topics are discussed. This is a fairly lendtitument with more than 140 pages in the
main body and with 20 pages of appendices. This may seem likeodmaterial to read through but
consider that the 1500+ pages of mainstream literature a@lemdC++ usage in just the references

[29, 31, 12, 26] still leaves a language that makes it too easyite programs with undefined behavior

(i.e. segfault) and memory leaks.

While this is a long document, there is a much shorter patbrgibelow that gives the basics for the
anxious reader that does not need all the background maiettze information on the many interesting
side topic discussed.

Abbreviated table of contents:

e Section 1 [Introduction”
e Section 4.2
e Section 5.1
e Section 5.4
e Section 5.5
e Section 5.8

“Non-persisting versus persisting and semsiging associations”

“Overview of basic approach employed by Teuchesiory management classes”

“Memory management classes replacing raweasifior single objects™:

“Memory management classes replacing rawegsifor arrays of objects”

“Core idioms for the use of the Teuchos memoryagement classes”

e Section 5.10

“Roles and responsibilities for persistingpammtions: factories and clients”

e Section 5.14/“Comparison with other class libraries andstaedard C++ library”

e Appendix A {Summary of Teuchos memory management classg&lams”

e Appendix B {Commandments for the use of the Teuchos memonagement classes”

The material shown above should be enough to a) give a basamitthe motivation for the Techos
memory management classes, b) describe the basic founsi&tiothe classes, c) present the names,
identities, and basic usage for each of the classes, d)ibesbe core idioms for the use of the classes, and
e) mention how these classes compare with other classes Buothst and the standard C++ libraries. This
is the most basic material that should answer the most basgtigns that most developers will have. The
material in Appendix A and Appendix|/B should be used as at{velg) short reference guide for the use
of these classes. This material together with some existidg examples (e.g in Trilinos) should give an
experienced C++ developer enough to get started using theesses in a productive way. Finally, the
reader should go through the full table of contents at lelasé @0 get an idea of the variety of topics
covered and where to look when more information is neededl fawst developers will need to know most
of this extra information at some point).

The rest of the material covered in this document eitheriges/more background that might be needed to
persuade some readers or expands on a number of topicsrtitat @very developer will need to consider

viii



at some point while using these classes including a) howdbwligh type conversion problems, b) how the
basic reference-counting machinery works, what types bfigenode runtime checking is performed and
how to debug problems when exceptions are thrown, c) whaha&d performance should look like and
how to better optimize code, d) what related idioms are Usgfoeeded to fully exploit these classes, €)
guidance on how to refactor existing software, and f) otb&ted topics like a discussion of essential and
accidental complexity.

Hopefully this document will be educational and help opendhe’s mind to what is possible to achieve in
terms of safety and performance in modern C++ programs.

The classes and idioms described in this document have Ipeerperated into the coding guidelines
document described in [5].






1 Introduction

A critical problem in computational science and enginag(i@S&E) software as well as in other types of
software developed in C++ is in the effective and safe mamagé of memory and data. CS&E software
often has the goal of high performance where arbitrary dapg ads to undue overhead and can actually
complicate the software in many cases. Itis common for CS&Evare to share and pass around large
blocks of memory in order to do work efficiently (however, aoon approaches such as described in [13]
lead to many of the problems that exist in CS&E programs).hatrhost basic level, large arrays of integral
and floating point data are managed along with more comple&rgéobjects and arrays of objects. In
C++, the only universally accepted way to deal with memonsfogle objects and arrays of objects is to
use raw C++ pointers. However, raw C++ pointer facilitiestfe manipulation and sharing of basic
memory are inherently unsafe and error prone. The problduartiser exacerbated when larger programs
composed out of different separately developed and maegdatomponents are integrated together.
Assumptions about the origin, ownership, and process fairming memory and other resources remain
the most basic problems with lower-level C++ programmirghteques and are unfortunately still
ubiquitous in the C++ community and even in the current C+stipeactices literature [31, 26]. The
general C++ and CS&E communities inability to effectivetideess the basic problem of the usage of
memory in large-scale modular C++ codes affects every aspsoftware quality, productivity and
reusabliltiy, and undermines the most basic software eatifin foundation for these codes. The
challenges of writing software that uses raw memory managénesults in components that are overly
rigid in how they can be used and reused which fundamentatiyadts from the impact that such software
could otherwise have and makes it more difficult develop aathtain. The problems created by the use of
raw memory management can single-handily derail the visfanlarge interconnected network of
reusable CS&E software components developed and used hydifferent CS&E organizations [33].
Therefore, the issue of memory management has as much onimmaeaiet on the macroscopic properties of
CS&E software components as it does on low-level interntihvsoe development.

C++ is an incredibility large and complex language that \fevy people really know how to use in a
confident and successful way. Arguably the most serioudi@mbin C++ are related to dynamic memory
management which must be used with any moderately compjextedwriented program. The built-in C++
support for dealing with dynamic memory allocation witw anddelete is fundamentally incompatible
with the built-in exception handling mechanism using, throw , andcatch . One cannot effectively build
large-scale integrated software using just these low-lamguage features at the application programming
level. Software developed this way yields undefined belmgeiq. segfaults) and leaks memory
unpredictably and is nearly impossible to integrate witheotcode. The only successful way to use C++ to
create complex robust software is to develop and rigoroadopt a set of programming idioms for safely
dealing with memory. By developing the right support sofisvand associated idioms, we make C++
programs safer, better defined, faster to develop, and nfitcceet when run.

The reason that C++ is in this state of affairs is due to how €arhe into being and how it evolved over
many years [28, 30]. C++ was first developed in the early 1980n extension to the popular C
programming language and was first called “C with Classesth@time, high efficiency, very low

runtime overhead, and strong compatibility with C wereicaitrequirements to the success of the new
language. Without this, the original creator of C++, Bja8teoustrup, concluded that C++ would be “still
born” [29]. The first C++ compilers were little more than pregessors putting out C code on the back-end
which was then compiled into executable binary code.

As the years went on, however, object-oriented programmwiagrefined, computers become faster with



more memory, and it was realized that more runtime suppastreguired to enable more advanced usages
of C++. As new features were added to C++ to support new pnoagiiag idioms, a strong need for
backward compatibility constrained the design of the laggy sometimes making different language
features incompatible when used together in raw form. Thst mafortunate example of this, which was
already mentioned, is the fundamental incompatibility wiftin dynamic memory management (i.e. using
new/delete ) and built-in exception handling (i.e. usitrg /throw /catch ) that was added more than a
decade later [28].

Because of the way that C++ “evolved” along with a strong Meetbackward compatibility, we have a
language that is a disaster when used in raw form on complgg-lscale programs. Many programming
teams have exploited this natural capability of C++ to &reéetvesties of software which in turn have
dumbfounded many a C++ programmer (and entire teams) ardrbaulted in giving C++ a bad name in
the general software engineering community (see Secti@D@D' Matters Today” in [1] and “The Case of
the Construction Blob” in [15, Chapter 9] for a few examples)

More specifically, using low-level manual memory managentey.new/delete , raw pointers
everywhere) at all levels in C++ has resulted in several thegaonsequences in the development of C++
(and C) software that other more modern languages (e.gadavBython) have avoided:

e Programs that use raw memory management are more difficwititto and debug because it is
difficult to track down invalid memory usage that results indafined behavior (e.g. segfaults),
double deletes, and memory leaks. (Also, memory checkioig tixe Valgrind and Purify do not
catch enough of these types of errors to adequately mitigatproblem.)

e Programs that use raw memory management can have many fihichdenory usage errors (i.e.
undefined behavior) that can linger in the code for monthsearywhich damage the most basic
foundations of software quality and verification. Many aégke programs are “ticking time bombs”
just ready to go off, sometimes with disastrous consequeifmcaisers and developers alike.

e Dealing with raw memory management at all levels consunrgg lamounts of developer focus
which detracts from more general design focus. This regulisftware with lower quality designs
compared to software written in other modern languagesloleeéd using the same amount of effort.

e Developers maintaining C++ programs that use raw memonagement typically have a high
degree of paranoia and fear about modifying the software {@ngood reason because modifying
such software is dangerous and error prone). This resufkeitendency to not refactor software as
requirements and domain knowledge change [14] which there®sults in software that dies the
slow painful death of software entropy [8].

e Software that uses raw memory management at all levels seadgshave designs that overly
constrain how the software is used and reused. For examegch programs factory objects
typically have to outlive the products they create and misst lae responsible for deleting the
objects. This results in large numbers of “static” factobjests that make the software hard to
maintain and reuse in reasonable contexts.

The consequences of raw memory management described alemiétao common in C++ development
organizations and software produced by such organizatibmis is why the general software development
community is largely moving away from C++ and instead movimgse more modern languages that do
not require manual unchecked memory management [1].

2



However, C++ has some unique features that differentidternt every other language in wide use which
include:

e Strong typing (leads to high-performance code)
e High-performance native code

e Support for creating very efficient concrete data types wificiency on par with built-in data types
that do not require dynamic memory management

e Support for operator overloading
e Support for object-oriented programming
e Support for generic programming (i.e. templates)

e A powerful turing-complete compile-time programming mauwitsm (i.e. template
meta-programming)

No other programming language with wide availability has trowerful set of features. For instance, C++
can be used to create class libraries for capabilities likeraatic differentiation [18] for computing
derivatives of functions that achieves a level of gensralitd efficiency that has no rival in a software
library in any other programming language (e.g., see tHandg: package SacaBm). Itis precisely the
above feature set along with wide availability of high gtyatiompilers on every major platform (including
the cutting-edge massively parallel computers), goodadpierability with other languages (through C
interoperability), and strong support for next generatiochitectures [20] that makes C++ so attractive for
writing computational science & engineering software ia finst place.

It is also this unique feature set that is C++'s saving graitk respect memory management problems. In
C++, one can actually develop a set of new data types thasanee can be used to develop new
programming environments in C++. This essentially allows t define a new programming language
within C++ with a level of efficiency and flexibility that doemt exist in any other programming language.
This is exactly what this paper advocates with respect tizlmasmory management in C++; developing a
new higher-level programming language in C++ for abstngcéind encapsulating all raw memory usage as
well as dynamic memory management that is very compatiltle thé built-in C++ exception handling
mechanism. The approach being described here is realljhgisystematic and (arguably) elegant
application to the approaches advocated in [24, Sectidlt Bainters] for instance.

This pifer describes a set of low-level C++ classes and stipgpsoftware in the Trilinos package
Teucho$ that are used to encapsulate all raw pointers and enabfeysiebug-mode runtime checking
while allowing for very high performance in non-debug-mag&imized builds.

The Teuchos memory management classes and the idiomseékdtelp to define (which are described in
this paper) do not remove the need for programmers to leatmiaderstand the intricate details of the C++
memory model and type system. On the contrary, learningféctefely use these memory management
classes requires more effort over just learning raw C++. él@n the payoff is that the programs that result

Lhttp:/trilinos.sandia.gov
2http:/ftrilinos.sandia.gov/packages/sacado/
Shttp:/ftrilinos.sandia.gov/packages/teuchos/



from the use of these classes and idioms will be more likelyetgorrect on first writing, will be easier to
debug when there are defects, will be easier and safer taamaiand will be more self documenting
(which helps all of the above). In fact, the self-documen&xpressiveness of the resulting programs
written using these classes and idioms is unmatched in dug@y ptogramming language currently in
popular use, including Java and Python. This statemenb&iblacked up throughout this paper and then
reiterated in Sectian 6.1.

The remainder of this paper assumes that the reader has ssine&kbowledge of C++ and is somewhat
familiar with smart reference-counted pointer classeastdost::shared  _ptr (which is the basis for the
new C++0xstd::shared  _ptr class). The Teuchos equivalent for these smart pointesesas
Teuchos::RCP which is abbreviated here as jUBEPin sample code. If the reader is not familiar with the
basics of smart reference-counted pointer classes, tiegrstiould refer to [2] and [31]. If the reader is not
familiar with fundamental C++ concepts like implicit typerwersions, templates, object lifetime models,
raw references and pointers and other basic topics, thea swre basic background will be needed.
However, specific references to basic C++ material in botkg26, 29, 31] are made throughout this
document. So if the reader is a novice C++ programmer andlisgvio look up the mentioned references,
then this paper can be a good guide to help learn this basicm@terial as well.

A final warning: the material in this document is fairly dégdi and will take a significant investment in
time and experience writing code involving the Teuchos memuanagement classes using the idioms
described here before a developer will be proficient. lt$ajears just to master raw C++ so it should be no
surprise that learning a new set of idioms to fix a large nurobére problems with raw C++ will also take
a significant amount of time and effort. What is needed is tupellchange in the C++ programming
community where this type of approach and the idioms desdritere are taught at a very early stage;
much like the STL is now being taught in introductory C++ @ms. What we need is a revolution in C++
education but we have to start somewhere and that is whatdbisr is all about, getting started and on the
road to a better generation of C++ programmers and C++ sdtvirdsowever, note that this document is not
a tutorial but instead is a complete reference guide to tlhiefi@s memory management guide that covers
almost every possible issue and reasonably related topic.

The body of this document is organized as follows. The furetaad problems with raw C++ pointers is
described in Section-2. Common (suboptimal) approachesddressing memory management problems
are discussed in Section 3. Some important prerequisiteept® like value-types versus references-types
and persisting versus non-persisting associations aneedkifi Section 4. With all this background and
context in place, the Teuchos memory management classpsesented in Section 5. The basic outline of
the approach in Section 5.1 is perhaps the first section ondghviigmp to in order to get a quick idea what
the Teuchos memory management classes are all about.y-takihg a step back, the concepts of
essential and accidental complexity and a philosophicaugision of the trade-offs between speed, safety
and generality related to memory management are discussgettion 6. Concluding remarks are given in
Section 7.



2 Fundamental problems with raw C++ pointers

This section summarizes some of the fundamental problerinsbasic C++ features related to raw
pointers. What is going to be argued is that while many pewjllelaim that C++ pointers are strongly
typed, it will be shown that raw pointers are actually veryallg typed in many respects and how this
weak typing is the cause of many programming errors thattrigsimcorrect programs and with undefined
behavior (e.g. segfaults).

In the following examples, the simple classes shown in hggfi are used in demonstration code:

Listing 1 :

class A {
char *char_ptr_;
public:
A(...);
void incrementA() { ++(*char_ptr ); }

I3

class B : public A {

int size_;

int *int_ptr_;
public:

B(...);

void incrementB() { ++(*int_ptr ); }
3

The concrete class hierarchy in Listing 1 was chosen to detraie some insidious and perhaps less well
known flaws in the C++ type system when dealing with raw C+-niaos.

2.1 Problems using raw C++ pointers for handling single objets

There are a number of problems with using raw C++ pointersanage single objects. For example, given
a class object of typB in Listing/1 consider a pointer declared as:

B some_b(...);
B *b_ptr = &some_b;

Some of the legitimate things that one can do with this poiate:

/I Call member functions
b_ptr->incrementA();
b_ptr->incrementB();

Il Extract reference

B &b ref = *b_ptr;

II' Copy pointer



B *b ptr2 = b_ptr;

Il Implicit conversion to const
const B *b ptr3 = b _ptr;

Il Implicit conversion to base type
A *a_ptrd = b_ptr;

However, nothing good can eveome of any of the following operations when a pointer is guoynting to
a single object:

b_ptr++
b_ptr--
++b_ptr
--b_ptr
b_ptr+i
b_ptr-i
b_ptr(i]

No C++ compiler | have ever worked with will even issue a wagmvhen array operations are invoked on
a raw C++ pointer for which it is clear is only pointing to agli& object.

The problem here of course is that there is no way to tell the €mpiler that a raw pointer is only

pointing to a single object. With respect to differentigtsingle objects and arrays of objects, C++ pointers
are untyped and the compiler provides no help whatsoeveaiically asserting correct usage. This is
strike one for the notion that C++ pointers are strongly tifpe

2.2 Problems using raw C++ pointers for handling arrays of olects

When considering the semantics of raw C++ pointers onezesathat raw pointers are really designed
primarily for dealing with contiguous arrays of objectsy@dor one exception that is mentioned below).
This is because almost every operation that C++ definesyiopoenters makes sense and is fairly well
defined when raw C++ pointers are pointing with contiguouayar of objects. Every valid C++ operation
will not be reviewed for raw pointers to contiguous array®hjects (see [29] for a complete listing).
Instead, a few examples are shown where the C++ type sysiamnasv pointers falls flat on its face when
dealing with arrays of memory.

One patrticularly troubling example where the C++ type sysfails when dealing with raw C++ pointers
to contiguous arrays of memory is shown in Listing 2.

Listing 2 :

void foo(const int n)

{
B *b_array = new|n];
A *a_array = b_array; /[ Compiles just fine :-(
for (int i =0; i< n; ++) {

a_array[i]->incrementA(); // KABOMMMMM!



}

delete [] b_array;

}

There are a lot of beginning and even some more experienced@grammers that would think that the
C++ code in Listing 2 is just fine. The resulting program hagafimed behavior and may seem to run okay
in some cases but in the above case will almost certainlyaséigight away. The above code fragment is
wrong, wrong, wrong as described in [12, Gotcha 33] [ 1100]. Without going into great detail,
converting from a pointer for an array of typdo a pointer of type of base tygeis almost always asking

for disaster because the alignment of the base Ayw#l be wrong according to the full typB (again see

[12, Gotcha 33] all the gory details). As a result, for theosgtiteration=1 , the embedded pointer in
a_array[1].char _ptr _is pointing to garbage because on most 32 bit machines wit coonpilers, the
address ira_array[1].char _ptr _is actually the binary representation of the intelgearray[0].size
Therefore, callinga_array[1]->incrementA() on most 32 bit machines is equivalent to performing:

++(*reinterpret_cast<char*>(b_array[0].size )); // KA BOMMMMM!

If this sort of thing comes as a surprise to C++ developees they should probably fear using raw
memory in C++ more than they currently do and should senocshsider using the safer approach to
encapsulating raw memory usage that is being advocatedsipdber.

So how did C++ come to allow such completely wrong and dangeoperations like shown in Listing 2?

It is because of the untyped dual nature of raw C++ pointetiying to handle both single objects and
contiguous arrays of objects with one data type where thedétlof operations are not appropriate for
either. The ability to cast raw C++ pointers from deriveddypo base types only ever generally makes
sense when the pointer is pointing to a single object andnetlbe interpreted as a pointer to a contiguous
array of objects. Note that C does not have this problem shere is no such thing as type derivation and
the designers of C never even envisioned that raw C pointeatdie used for such a thing. However,
when the original designer of C++ adopted the C type systemgalith raw pointers and tried to apply it
to an object-oriented language, he inadvertently openedruypmber of serious language gotchas that we
are still living with to this day. This is another strike fdret notion that C++ pointers are strongly typed!

2.3 Problems with the incompatibility of new/ del et e andtry/t hrow cat ch

The use of raw pointers and raw callsnew anddelete is also fundamentally incompatible with the
built-in C++ exception handling mechanism using /throw /catch . For example, the following code will
leak memory if the functiosomeFunc() throws a C++ exception:

void foo()
{
A *a = new A(..);
someFunc(); // Could throw an exception
delete a; // Will never be called if someFunc() throws!

}



According to current C++ best practices relating to memoapagement and exception handling as
described in [26, Item 29] and [31, Item 71], code like sholwowe that leaks memory is totally
unacceptable in production quality C++ programs. This &mental incompatibility of the built-in C++
dynamic memory management facilities usiregy/delete and the built-in exception handling mechanism
usingtry /throw /catch was clear even to the committee that created the official t398standard.
However, again, because of the need for backward comttitiiey were powerless to fix the problem at
the language level. Instead, the C++ standards commitbhedied the first standard C++ smart pointer
class;auto ptr . The classuto _ptr solves only the most basic problem with raw C++ pointers &atlis
that it ensures that memory will be reclaimed when exceptare thrown. For example, the following
refactored function will not leak any memory whssmeFunc() throws:

void foo()

{
std::auto_ptr<A> a(new A(...));
someFunc(); // Could throw an exception
Il NOTE: delete will get called on the A object no matter how th is
Il function exists (i.e. normal exit or with a throw) since it is
Il called by the destructor of the stack object 'a’ of type
Il std::auto_ptr<A>,

The introduction oftd::auto  _ptr is perhaps the first example of where a user-defined type vegsiad
the standard C++ library in order to define an idiom meant ta fisndamental C++ language flaw due to
incompatible language features. Note the term “flaw” is um®di not “deficiency”. It is generally excepted
in most modern programming languages that the languageipvaf not support every programming
model or idiom that is of general interest and instead (Ylissries are provided to fill in the gaps. The
problem is that the language definition itself is flawed wéhpect to the raw use oéw/delete along

with try /throw /catch and is not just simply missing some desirable feature. On&l@rgue that what
C++ is really missing is garbage collection (GC) but evett ihaot the case because to add GC would be
fundamentally incompatible with the current user-coidimemory management facility usingw and
delete . There is a lot of C++ code out there that requires that detstrsi for objects be called exactly
when expected such as wheglete is called (and there are idioms such as defined in Sectionbthiat
depend on this behavior). Any form of language-supporteda@i®reak some backward compatibility of
C++ and therefore we may never see a C++ standard with fullAB0, removing the ability to precisely
control when destructors are called and memory is reclawmdd make C++ less attractive for many
domains where such low-level control is critical (e.g. eddsd programming, systems programming,
scientific programming).

The Boost library and the up-coming C++0x standard add mygestthat continue in this trend of
providing new user-defined types and idioms to address faed#al C++ language flaws and deficiencies.
However, as described in meat of this paper, both the BoaktrenC++0x standard libraries fall short of
providing a complete and comprehensive solution to thelpneb with raw C++ pointers and raw access to
memory.

Note that the upcoming C++0x standard as it is currently @dfifat least the time of this writing) will do
nothing to fix the majority of these nonsensical raw C++ paigiotchas because to do so would destroy
backward compatibility of millions of lines of existing Ciebde. Because of the need for backward
compatibility, we cannot rely on any future C++ standard xdtie basic problems with raw C++ pointers.
Instead, this document advocates using new C++ user-ddfiped to create a new safer type-system in

8



C++ and avoiding the direct use of raw C++ pointers exceptrevhequired to interact with non-compliant
code.



3 Problems with common approaches for addressing memory magement
in C++

Because of some of the obvious problems with using raw C+raters to access raw memory and using
raw calls tonew anddelete to perform dynamic memory management, various authors édwecated a
number of different approaches for addressing these prshlé few of these approaches will be described
along with arguments as to why they are far too sub-optimal.

3.1 Problems with usingst d: : vect or for handling all arrays

A very common approach to try to get around using raw C++ poator managing contiguous arrays of
data is to use the container clas:vector in everyuse case where a raw C++ array or pointer to an
array would be used. Before describing use cases vettenector is being poorly used, first a review
is given for whaistd::vector is and what it is good for. The standard library clasisvector is a
general-purpose concrete contiguous data containerfolassring and retrieving value objdgtsWhat
makes usingtd::vector attractive as compared to a simple class that a developddwaiie for
themselves is that:

e std::vector is a Standard Template Library (STL) compliant data comawhich makes it easy to
use with STL-like generic algorithms.

e std::vector contains functions for efficiently expanding and shrinkihg size of the array that can
have platform/compiler specific optimizations with muclitéeperformance than what a developer
would roll on their own.

e std::vector is standardized so one can use it as a means for interopgrabth other software in
appropriate situations.

These are pretty much the advantages of ustgector over other alternatives. When used as a
general purpose data container where one will be changagitle of the array on the flgtd::vector is
convenient, general, and efficient (just what componeots & standard library should be). However, in
other use casestd::vector is far from convenient, general, or efficient. As one exampb@sider using
std::vector to replace raw C++ pointers for array arguments irCatl functions as some authors have
suggested (e.g. see [21]). For example, consider a VISITKORfterface that operates on blocks of data
(similar to the RTOp interface described in [6]) along witbamcrete subclass shown in Listing 3.

Listing 3 :

template<class T>
class BlockTransformerBase {
public:
virtual "BlockTransformerBase();
virtual void transform(const int n, const T a[], T b[]) const =0

3

4See Sectioh 4.1 for a definition of “Value Types”.

10



template<class T>
class AddintoTransformer : public BlockTransfomerBase<T > {
public:

virtual void transform(const int n, const T a[], T b[]) const

{
for (int i = 0; i < n; ++)
bli] += ali];

The VISITOR interface shown in Listing 3 allows clients taapt anyBlockTransformerBase object

and allow it to transparently implement any number of usdirgd transformations. Note that virtual
funtions cannot be templated so it is not possible fortidresform(...) function to be templated on an
iterator type but must instead accept some fixed repregamiaitthe arrays of data to be operated on. The
advantages of thigansform(...) function in Listing 3 are that a) it is clean, b) the arrays afadcan be
sub-views of large arrays, and c) it will yield very fast co@¥ course the problem with the above function
transform(...) is that is uses raw C++ pointers. How does the functiamsform(...) know thata
andb are valid pointers and really point to valid arrays of datthwvait leasn elements. It is impossible for
the functiontransform(...) to assert anything about the data and completely relieseooather of the
function to validate the data. Even in a debug build of theegdidere is no way for the implementation of
the functiontransform(...) to validate that the preconditions concerning arguments baen met. This
is not good and does not allow for even the most basic appesdcih defensive programming.

Therefore, some C++ programmers look at this and then thaygehfunctions likéransform(...) in
Listing|3 to usestd::vector which is shown in Listing 4.

Listing 4 :

template<class T>
class BlockTransformerBase {
public:
virtual "BlockTransformerBase();
virtual void transform(const std::vector<T> &a, std::vec tor<T> &b) const = 0;

3

template<class T>
class AddintoTransformer : public BlockTransfomerBase<T > {
public:
virtual void transform(const std::vector<T> &a, std::vec tor<T> &b) const
{
DEBUG_MODE_ASSERT _EQUALITY( a.size(), b.size() );
for (int i = 0; i < asize(); ++)
bli] += ai];

The advantages of the function in Listing 4 are that a) the sfz2ach array is kept with the pointer to the
array itself inside of eacktd::vector object, b) The sizes of the arrays can be asserted by the

11



implementation of the functiotmansform(...) , C) it is easy for callers who already use single
std::vector objects.

While this use oktd::vector replaces raw C++ pointers as basic array function argumigiizs several
serious problems in both usability and performance in sonmitant use cases. The primary
disadvantages of usirsyd::vector as general array arguments to functions is a) there is ndofligxiin
how the arrays are allocated, and b) one cannot pass subk-widarger arrays of data.

To illustrate the problems with usirsid::vector for all array arguments to functions, consider a
situation where the application wants to allocate big ari@fydata and then operate on pieces of the array
based on different logic. One motivation for allocating hrgays of data is to avoid memory fragmentation
and improve data locality. Now consider in Listing 5 what dtient code would have to look like when
using the form ofransform(...) in Listing/4 which takes irstd::vector objects.

Listing 5 : Client code that has to create temporasy d: : vect or objects to call function that takes
std: :vect or arguments

void someBlockAlgo( const BlockTransformerBase &transfo mer,
const int numBlocks, const std::vector<double> &big_a,
std::vector<double> &big_b )
{
DEBUG_MODE_ASSERT_EQUALITY( big_a.size(), big_b.size( ) )
const int totalLen = hig_a.size();
const int blockSize = totalLen/numBlocks; // Assume no rema inder!

const int blockOffset = 0;
for (int block k = 0; block_k < numBlocks; ++block k, blockO ffset += blockSize)

if (big_a[blockOffset] > 0.0) {

Il Create temporary std::vectors to do function call

std::vector a(big_a.begin()+blockOffset,
big_a.begin()+blockOffset+blockSize);

std::vector b(big_a.begin()+blockOffset,
big_b.begin()+blockOffset+blockSize);

Il Do the operation

transfomer.transform(a, b);

Il Copy back into the output array

std::copy(b.begin(), b.end(), big_b.begin() + blockOffs et);

As itis clear to see, the above client code that usestthigector version oftransform(...) is
neither clean, nor efficient since temporary copies of alhefdata have to be created just to make the
function call and then data has be be copied back into tharfly.

Now consider the client code in Listing 6 which uses the raw @einter version ofransform...) in
Listing|3.

Listing 6 : Example driver code that uses the raw-pointer versiohrodnsf orn{. . .)

12



void someBlockAlgo(const BlockTransfomerBase &transfor mer,
const int numBlocks, const std::vector<double> &big_a,
std::vector<double> &big b )

DEBUG_MODE_ASSERT_EQUALITY( big_a.size(), big_b.size( ) ); const int
totalLen = big_a.size(); const int blockSize = totalLen/nu mBlocks;

const int blockOffset = 0;

for (int block_k = 0; block_k < numBlocks; ++block k, blockO ffset += blockSize)
{
if (big_a[blockOffset] > 0.0) {
transformer.transform(blockSize, &big_a[blockOffset] , &big_b[blockOffset]);
}
}
}
As one can clearly see, using the raw C++ pointer versidraagform(...) makes the client code much

cleaning and much more efficient. However, of course, if iflentmakes any mistakes with its arrays of
memory, then the resulting program will yield undefined wétraand (in the best case) will segfault, or
will silently produce the wrong result, or (in the worst cpaetually produce the right result on the current
platform but will fail on other platforms.

The Teuchos memory management array classes make algeirithoiving sub-views like shown above
very clean, very efficient, and very safe (see the same versibthis example code using these new
Teuchos classes in Section 5/5.5).

In summarystd::vector is notan efficient or convenient general-purpose replacememafoIC++
pointers as function arguments in many important use cases.

3.2 Problems with relying on standard memory checking utilties

Some programmers simply use raw C++ pointers and think taatlard memory checking tools like
Valgrind® and Purifi# will catch all of their mistakes. When | first started codingQd++ back in 1996, |

was very aware of the problems with using raw pointers in Citer &xperiencing the segfaults and
memory leaks that all C++ programmers experience. At the,tirhad experimented some with writing

my own utility classes that encapsulated raw C++ pointetsl @onsidered taking that further. However, at
that time, | conjectured that going through the effort ofagsulating all raw C++ pointers might be a waste
of time because it would not be long until someone came up avitb0% bullet-proof memory checking
tool for C++ that would make my feeble programmer-contbkidtempts to wrap raw pointers obsolete.
After more than 10+ years of C++ programming experience ehéave written hundreds of thousands of
lines of C++ code on a number of different platforms/compgilé have come to regret that decision.

Through painful experience and then through some morewdarefught, | have come to realize that
memory checking tools like Valgrind and Purify will never &lle to provide an even sufficient (certainly
not 100%) means to validate memory usage in C++ programs M&jpect to existing tool
implementations, | have experienced cases where bothindlgnd Purify have reported not even a single

Shttp:/ivalgrind.org
Bhttp://www.ibm.com/software/awdtools/purify

13



warning before the program segfaulted (while running intted) with essentially no feedback at all. 1 will
not go into detail about what techniqgues memory tools likkghfad and Purify use to verify memory usage
other than to say that they can do a lot by just taking contradatioc(...) andfree(...) and in
inserting checks into the execution of the program by cdiimigbthe manipulation of the program stack.

One such case where Valgrind and Purify were completelylpilieccurred with an off-by-one error
with std::vector using Linux/gcc (before | learned the GCC had a checked STldmentation). In the
end, the way that | found the off-by-one error was by justistpat the code over and over again until |
happened to see the problem. However, what | discovereddhrtwo days of debugging was that
std::vector used its own allocator which allocated big chunks of membrgughmalloc(...) . Itthen
proceeded to do its own memory allocation scheme, which wasfast but was invisible to the watchful
eyes of Valgrind and Purify. Any reads to this block of memiagked fine to Valgrind and Purify because
it was all contained within the block returned fronalloc(...) . What the off-by-one error did was to
write over a library managed part of the memory block and ¢iiant corruption would doom a later
attempt bystd::vector to allocate memory.

There are other categories of use cases where external mehewking tools like Valgrind and Purify will
never be able to verify correct memory usage. One examplmsasstic off-by-one errors committed in
larger blocks of data. To demonstrate this type of errorsiciar the example code in the function

someBlockAlgo(...) in Listing/6 which uses the raw C++ pointer version of the fiowc
transform(...) in Listing[3. Now consider what happens when a developeoduices an off-by-one
error such as shown transform(...) in Listing|7.
Listing 7 :

template<class T>

void AddIntoTransformer<T>::transform( const int n, cons tTal Thl)

{

for (int i = 0; i <= n; ++)
b[i] += A]i];

In case it is not obvious, the off-by-one error shown in lngt is the replacement of the loop termination
statement < n withi <= n which is a very common C++ programming error.

Now let’s consider the implications that the off-by-oneocgrshown in Listing 7 will have on the data in

big _b as driven by the code in Listing 6. If the last blodkck _k=numBlocks-1 of data is processed, then
there is a reasonable chance a memory checking tool likeikdlgvould catch the off-by-one error being
committed at the very end of the arrbig _b. However, as described above, Valgrind may not catch even
this type of error. Also, note that turning on bounds cheghkirith std::vector (i.e. by enabling

_GLIB _CXX.DEBUGWith gcc) will not catch this error either because of the wag/ taw pointers are
extracted in and and passed in the function call:

transformer.transform(blockSize, &big_a[blockOffset] , &big_b[blockOffset]);

Now consider a defect caused by this off-by-one error forclvimo automated memory checking tool that
will ever be devised will ever be able to catch. This type dedewill occur, for example, when for the last

14



block block _k=numBlocks-1 we havebig _a[(numBlocks-2)*blockSize] > 0.0 and

big _a[(numBlocks-1)*blockSize] <= 0.0 . In this case, only the next-to-last block of data will be
processed by the defectitransform(...) function. This will not result in a classic off-by-one eritbat

a memory checking tool would catch because it would not tauemory outside of what is stored in

big _b. However, this off-by-one error committed in Listing 7 wduksult in the array entry

big _b[(numBlocks-2)*blockSize+blockSize] being erroneously modified. This is a defect that might
only slightly damage the final result of the program for theidgl use case and might therefore go
unnoticed for years. However, when the program was reallygogsed for something important years later
for a non-typical use case, this small off-by-one error daekult in reporting incorrect results with
perhaps disastrous consequences.

The point that is trying to be made in the above example isahtdmated memory checking tools like
Valgrind and Purify will never be able to check teemanticcorrectness of the usage of memory. The
semantic off-by-one defect described above is 100% cofreat a strict memory usage point of view (i.e.
only allocated memory can be written to and only allocatedliaitialized memory can be read from) but is
100% wrong from a semantic point of view (i.e. the functi@mmsform(...) can only operate on the
elements of data frofhi to n-1 ). The array memory management classes in Teuchos desaribi@d
document help to verify that memory is used in a semanticatyect way and throws exceptions for these
types of errors in a debug-mode build.

15



4 Important prerequisites

Before finally discussing the Teuchos memory managemesg&sa a set of prerequisite concepts are
presented that are needed in order to understand the tiofisthory management approach.

4.1 Value types versus reference types

Because of the flexibility of C++, many C++ programmers cath dmimplement a wide variety of types
yielding objects with different types of usage semanticgiuick summary of common “accepted” class
types in C++ is given in Item 33 “Be clear what kind of class yewvriting” in [31]. There is little point
here in trying to classify all of the crazy ways that peopleehased to code objects in C++ that stray from
these “accepted” class types. Instead, the recommendatienis to classify the majority of classes as
eithervalue typeor reference typesvalue types and reference types are said tovaige semanticand
reference semanticsespectively, and that is sometimes how these data-typedescribed in various C++
literature.

Value typesn general:

have public destructors, default constructors, copy coasirs, and assignment operators (all
implementing deep copy semantics),

have an identity that is determined by their value not thedrass,

are usually allocated on the stack or as direct data membethér class objects,

are usually noallocated on the heap (but can be for most value-type clpsaes

do not have any virtual functions and are not to be used asdi@sses (see Item 35 in [31]).
If Sdenotes a typical value type, the class definitios ofcludes:

class S {
pubic:
"S();
S0
S(const S&);
S& operator=(const S&);

All of the built-in intrinsic C++ data-types likehar , int , anddouble are value types. Likewise, class
types likestd::complex  andstd::vector are also value types. Value types have also been called by
other names in the C++ literature. Stroustrup refers toevitpes as “true local variables” in [28]. The
term Abstract Data Type (ADT) in older C++ literature sucH®susually maps to the concept of a value
type, but usually carries greater significance in implyingttoperator overloading is used to make an ADT
look more like a built-in C++ type (such as is the casestdr.complex ).

Alternatively, reference typem general:

16



e do not have a public copy constructor or assignment operator

e are manipulated through a (smart) pointer or reference,

¢ have an identity that is primarily determined by their addrand not their value,
e are allocated on the heap,

e typically are not permitted to be or cannot be allocated ersthck,

e are copied through an abstract clone function (if copyirallmved at all),

e have one or more virtual functions, and

e are usually designed to be used as base classes or are davivdahse classes.

Reference types (employing reference semantics) areatypicsed for base classes in C++. Examples of
base classes in the C++ standard library inclstdgios  _base andstd::basic =~ _streambuf . Reference
types in the form of abstract base classes form the foundédivobject-oriented programming in C++.

If Adenotes a typical reference type class, the class defimfidrgenerally includes:

class A {

pubic:
virtual "A();
virtual A* clone() const = 0; // NOTE: Should use RCP (see late r)
virtual void someFunc() = 0;

protected: // or private
A(const A&);
A& operator=(const A&);

Note that one can almost always choose to manipulate a wgleausing reference semantics. For
example, it is very common to choose to dynamically allotatge value objects likstd::vector and

then pass around (smart) pointers and references to thet dbj@void unnecessary and expensive copying
and to facilitate the sharing of state.

While the ideas of value types and reference types and velmarstics and reference semantics are long
established in the C++ literature (even if the terminolagnat very uniform), many C++ programmers
either seem to not know about these idioms or choose notltwfdhem for some reason. By forcing the
majority of classes into either usinglue semanticer reference semantiamne eliminates meaningless
variability in C++ programs and frees one’s self to think atimore important things (see the discussion of
using standards to actually improve creativity in [24]).

Side Note: The somewhat rigid classification of C++ types into valuestypnd reference types is similar
in motivation and in many other respects to Eric Evans’ défgiation of all domain types intdalue
ObjectsandEntitiesin Domain Driven Design (DDD) [14]. While there are simitzs between DDD’s
Value Objects and Entities and C++'s value types and reéeréypes, respectively, there is not a
one-to-one mapping. In DDD, the distinction between a V&bgect and an Entity has more to do with the
nature of the object in relation to the domain model and igelated to how memory is manged. Evans
assumes that one is using a language like Java where alt®bfge reference semantics.

17



4.2 Non-persisting versus persisting and semi-persistingssociations

Another important prerequisite for understanding the iesanemory management classes is the
distinction betweemon-persisting associatiorendpersisting associationdNorking definitions for these
are:

e Non-Persisting associatiorare associations between two or more objects that existvaitiiyn a
single function call for formal function arguments, or aggénstatement for function return objects,
where no memory of any of the objects is retained as a sideteffeer the function returns or the
statement ends.

e Persisting associationare associations that exist between two or more objecte#tand past a
single function call for formal function arguments, or aggenstatement for function return objects.

To help define these two different types of associationssiden the class and function definitions in
Listing/8.

Listing 8 : Classes using raw pointers with both non-persisting angigéng associations

class A {
public:
void fooA() const;

3

class B {

public:
void fooB1(const A &a) { a.fooA(); }
void fooB2() const { ... }

3

class C {
B* b ;
public:
C0 : b_(0) {
void fooC1(B &b, const A &a)
{ b_ = &b; b_->fooB1(A); }
void fooC2() const
{ b_->fooB2(); }

Y
void someFunc(C &c, B &b, const A &a)
{
c.fooCl(b, a);
c.fooC2();
}
The functionB::fooB1(...) in Listing/8 involves a non-persisting association withpest to theA andB
objects since no memory of the objectemains after the functioB::fooB1(...) exists. Non-persisting

associations represent typical input/output-only arguséo a function.

18



The functionC::fooC1(...) in Listing(8 creates a persisting association betwe€lgject and & object
since the memory of thB object is retained in th€ object that persists after the functi@nfooC1(...)

exits. This memory of th8 object stored in th€::b _ pointer data member is then used to implement the
functionC::fooC2() . Note that the functio::fooC1(...) also involves a non-persisting association
with the A objecta since it is only used to caB::fooB1(...) and no memory o lingers after

C::fooC1(...) exists.

Another interesting case is the nonmember funcsmmeFunc(...)  also shown in Listing 8. While
someFunc(...) is a free function, it actually involves the creation of agi&ting association between the
CandB objects as a side effect because it callsGhieoCl(...) function.

In the idioms advocated in this paper, smart reference edyminters are used for all persisting
associations and never for non-persisting associatiosisigihe basic Teuchd¥CPclass, the raw pointer
code in Listing 8 would be refactored into the code shown stihgl 9.

Listing 9 : Refactored classes to uREP for persisting associations

class A {
public:
void fooA() const;

3

class B {

public:
void fooBl(const A &a) { a.fooA(); }
void fooB2() const { ... }

3

class C {
RCP<B> b _;
public:
void fooCl(const RCP<B> &b, const A &a)
{ b_ = b; b_->fooB1(A); }
void fooC2() const
{ b_->fooB2(); }
Y

void someFunc(C &c, const RCP<B> &b, const A &a)

{
c.fooCl(b, a);
c.fooC2();

}

Note that the classelsandB remain unchanged because they do not involve any persissaciations. It
is only the clas€ that needed to be refactored to handle the persisting asi@ocivithB. The non-member
function someFunc(...) is also be modified since the creation of a persisting assaeis involved.

Most programming languages do not provide any means taeliffate between non-persisting
associations and persisting associations (see Sectidarah expanded discussion). However, note that
the Unified Modeling Language (UML [16]) does differentmteetween them in that persisting

19



A €-=-----1 B
fooA() {const} fooB1(in a:A)
A fooB2() {const}
: b
Cc
fooC1(b:B, in a:A)
fooB2() {const}

Figure 1. UML Class Diagram showing non-persisting and persisting
associations for classes in Listing 8 and Listing 9.

relationships are shown with a solid line while non-pensgstelationships are shown with a dotted line as
depicted for these example classes in Figure 1.

Another situation where the concepts of persisting andpemsisting associations comes up relates to how
objects are returned by C++ functions as return values. gigterg relationship is made through a function

return object if that object is remembered past a singleistant. For example, consider the following code
fragment:

Listing 10 : Example of a dangerous type of persisting association ¢hatresult in undefined behavior
(e.g. segfault)

std::vector<int> v(n);
int &ele = v[0]; // Creates a persisting return object relati onship

ele = 5; II' Changes v[0] much later!

The above code fragment shows a presenting relationshiyebatthe client code that is initializing the
local referencele and thestd::vector container object. This is very fragile and dangerous code
because it/ is re-sized, grown or have some other type of change, themefeence pointed to bsle can
be invalid. For example, the following code fragment wilidiy result in a runtime memory usage error
with undefined behavior and (if one is lucky) will segfault:

Listing 11 :

std::vector<int> v(n);

int &ele = v[0];

v.resize(10*n);

ele = 5; |/l ele is likely to be invalid here!

If one is unlucky, the statemenle = 5 will work just fine on one platform with one implementation of
thestd::vector but will break on another platform when run with a differeatalset. Note that tools like

20



Valgrind and Purify may not flag the problem due to the way thahy implementations td::vector
deal with memory.

Basically the problem here is that thig::vector:.operator[](size _type) function returns a raw
C++ reference that should never be remembered past a statgenent. The safe way to change an
element is:

Listing 12 :

std::vector<int> v(n);
v[0] = 5; /I Non-persisting relationship!
v.resize(10*n);

Therefore, functions liketd::vector::operator[](size _type) which return raw C++ references
should only be used for non-persisting associations asrshtave.

Before leaving the topic of persisting and non-persistisgpaiations, one has to recognize that there exists
a third category of associations that lie in between stigcsigting and non-persisting associations. This
gray area will be referred to here as semi-persisting aaons defined as:

e Semi-persisting associatioase associations that (like persisting associations} brisveen two or
more objects that extend past a single function call for &drfunction arguments, or a single
statement for function return objects except where the tifeembjects and the lifetime of the
association have more rigid constraints requiring grezdes in use.

An example of a semi-persisting association is the use akeaator to access an STL container as shown in
Listing[13:

Listing 13 :

void someFunc(std::vector<int> &v)

{

typedef std::vector<int>:iterator itr t;
for (itr_t itr = v.begin(); itr = v.end(); ++itr) {
itr = 5;
}
}

As shown in Listing 13, the iterator objeiat is used well past (perhaps thousands of loop iterations)
where it was created by the statemigmt_t itr = v.begin() . There are, however, significant

restrictions on how such iterators can be used: a) thedtecannot be accessed after the originating parent
object has been destroyed, and b) the iterator cannot bessttafter the structure of the originating parent
has changed (e.g.resize(...) was called). For the sake of performance, one has to allothéouse of
semi-persisting associations such as this where the @gaihiuild of the code lacks the machinery to
detect invalid usage. However, note that in the case of thec®mtainers that in a debug-mode checked

21



STL build (supported by GCC and the Microsoft compiles fatamce), these types of dangling iterator
references will typically be detected. This type of debugdmruntime checking is the saving grace for the
use of iterators and other types of semi-persisting assamasawhich makes their use acceptable. If
iterators tostd::vector where simply hard-coded as raw pointers, this type of debade runtime
checking would not be possible.

Semi-persisting associations also play a role in the useeoféuchos memory management classes in
situations where performance is critical (see Section.8.48d Commandmernits 6 8 in Appendix B).

22



5 Teuchos classes for safer memory management and usage

The primary purpose for the Teuchos memory managemeneslé&sso encapsulate all raw C++ pointers
in all high-level code. These classes are efficient and géaed, in a debug-mode build of the code, will
catch and gracefully report 99% or more of the programmimgrertypically made with the ubiquitous
high-level use of raw C++ pointers.

5.1 Overview of basic approach employed by Teuchos memory magement classes

The basic approach being advocated here and implemented ifretichos memory management classes is
to:

e Encapsulate all raw C++ pointers in high-level code usirecily designed memory management
classes, capture raw C++ pointers as soon as possible, eapliseitate raw calls teew in library and
application code.

e Provide a complete set of cooperating types that work tegethsafely and conveniently implement
all hand-offs of encapsulated raw C++ pointers using cHlyesagrutinized conversion code provided
with the classes. Also, never define implicit conversionsfithese safe types to raw C++ pointers
(or safety of the entire type safe system falls apart).

e Differentiate memory management classes for handlingesiolgjects from those for handling
contiguous arrays of objects.

¢ Differentiate memory management classes according tespiagsand non-persisting (and
semi-persisting) associations.

— Use reference counting for memory management classesdedig handle persisting
associations.

— Do not impose the overhead of reference counting for memeanyagement classes designed to
handle non-persisting associations.

— Do not impose the overhead of reference counting for memeanyagement classes designed to
handle semi-persisting associations (but provide the maghfor strong debug-mode runtime
checking).

e Provide encapsulations for all uses of raw C++ pointers fi@ys of contiguous objects including
dynamically sized arrays, statically sized arrays, anckskeased arrays.

e Provide a defaulbptimized mod&here maximum performance and minimal overhead are the goal
where raw C++ pointer performance is achieved for all realnuse cases.

e Provide an optionadlebug modevhose goal is to provide maximum runtime checking with
reasonably low overhead in order to catch all sorts of comeraors like:

— Dereferencing null pointers (Section 5.11.1)
— Array access errors like off-by-one and other errors (8ad$il11.1)
— Incorrect iterator usage (Section 5.11.1)

23



Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting
Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Table 1. Basic Teuchos memory management utility classes for encap-
sulating raw pointers.

Summary of operations supported by the basic Teuchos smartginter types
Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |

Raw pointer-like functionality

Implicit conv derived to base X X

Implicit conv non-const to const X X X X
Dereferenceperator() X X X
Member accesgperator->() X X X
operator{](i) X X
operatorst+, -- , +=(i) , -=(i) X
Other functionality

Reference counting machinery X X
Iterators: begin(), end() X X
ArrayView subviews X X

Table 2. Summary of capabilities of the basic Teuchos memory man-
agement classes.

— Circular dependencies (Section 5.11.2)
— Dereferencing dangling pointers (references) (Sectit.3)
— Multiple owning reference-counting node object (Sectiatil54)

e Structure debug-mode checking such that it does not akeotibervable behavior of correct
programs in any way. However, when debug-mode checkingabled, the software should never
yield undefined behavior (e.g. segfault).

The basic templated Teuchos memory management classextpselating raw C++ pointers for single
objects and arrays aRd#r , RCP ArrayView , andArrayRCP shown in Tablé 1. A summary of the
capabilities of these classes is shown in Table 2. What omsea from this table is that raw pointer-like
functionality is partitioned across these various setdasfses in logical and safe ways. For example,
array-related operations are not defined on the singlecbblasse®tr andRCPbut implicit conversion

from derived types to base types is allowed. Alternativilg, array classefrayView , andArrayRCP do

not support the dangerous and ill-conceived ability to imgijatonvert arrays of derived types to arrays of
base types that is discussed in Section 2.2. Note that tegAstayView does not support all of the raw

24



Other Teuchos array container classes
| Array class | Specific use case |
Array<T> Contiguous dynamically sizable, expandable, and coridiacirrays
Tuple<T,N> | Contiguous statically sized (with si2é arrays

Table 3. Teuchos array container classes.

pointer iterator-like operations thatrayRCP supports like the dereference operatperator*() or the
pointer offset functions that change the pointer. The nedlsatArrayRCP does support these iterator-like
operations is so that it can be used as a general purposeitenglementation whilérrayView objects

do not need to be used in this way. Note that all of the arregseladefined in Teuchos all support a basic
iterator interface with théconst] _iterator ~ member typedefs and the functiopegin() andend() . In
optimized mode, these iterators are simply raw C++ pointilsling maximum performance. However, in
debug mode, the iterators are implementedresyRCP objects resulting in fully checked iterators.

In addition to the four basic memory management classesrsitoWable 1 (which provide the most
fundamental encapsulations for all raw C++ pointers in @hHevel code) Teuchos also contains a few
other array container classes for a few more specific use sagsvn in Table 3. The array container
classed\rray andTuple pretty much cover the majority of use cases in C++ where raw @inter arrays
are used for containers. The clasgy is a direct replacement fatd::vector and actually wraps it
internally.

Note that all of these classes are templated on value tygkararthemselves value-types (see Section 4.1).
This means that one can embed these types in each other intatngtrgt order to create any type of data
structure that one would like. For example, one could have
Array<RCP<ArrayRCP<ArrayView<Tuple<Ptr<T>5> > > > > > . By understanding what each of these
types provide and what each type means (in terms of the idifefised in Sectionh 5.8), one can achieve
almost anything in a way that is self documenting.

These classes all work together to provide a high level ofigebhode runtime checking to catch the
majority of common programming errors and report theseregoacefully with informative error
messages. A debug-mode build of the code is facilitated bigidg the preprocessor macro
TEUCHODEBUGthrough the CMake configuration variatileuchos _ENABLEDEBUG=0N When
TEUCHOSEBUGS not defined, the Teuchos memory management classes diguced to impart minimal
overhead and yield fast performance. WA&WJCHOSDEBUGSs defined, these classes are configured to
perform maximal debug runtime checking. These classedsvearefully designed so that if a program is
implemented correctly using these classes and executextipin optimized mode, then the program
compiled with the debug checking turned on will execute iactly the same way. However, if any
undefined, dangerous, or just plain wrong behavior is bessgl uthen these memory management classes
will throw exceptions and the exception objects will havepngood error messages embedded in them
making it easier to debug and fix the problems.

What is important to understand is that all of these memormyagament classes must be developed
together with knowledge of each other’s internal impleragahs in order to provide solid debug-mode
runtime checking. For example, in general, one cannot mothier memory management classes like
boost::shared  _ptr (i.e.std::shared _ptr in C++0x) andstd::vector and provide the same high level

25



of runtime checking that is supported by the complete seeatfios memory management classes. More
details about why this is so are given in Section 5.11 in theteod of debug-mode runtime checking for
and reporting of dangling references.

As with the development of any set of C++ classes, a set offapanying idioms must also be developed
for maximizing their effective use. The idioms describedhis paper involving the Teuchos memory
management classes result in code with maximum compile-tinecking, maximum debug-mode runtime
checking, and maximally self-documenting.

5.2 The proper role of raw C++ pointers

The main thesis of this paper is that the use of all raw C++tpanshould be fully encapsulated in all
high-level C++ code and instead a system of safe speciadiigded types tailored to specific use cases
should be used instead. Does that mean that raw C++ poittentdsnever be used in any C++ code? The
answer of course is naince raw C++ pointers will always have to be used in someiapsituations (but
perhaps not directly used as described below).

Given the full use of the Teuchos memory management claseesare the valid situations where it is
appropriate (or required) to use raw C++ pointers in fullyjnpliant C++ programs:

e Use raw C++ pointers (indirectly) for extremely well-encayated, low-level, high-performance
algorithms

In order to achieve high performance in computationallgmsive code, one will always have to use
raw C++ pointers (at least indirectly) in a non-debug optidi build. This includes using raw C++
pointers to build specialized data structures and simi@pgses. In this context, one can think of
raw C++ pointers as a fairly compact and efficient way to comicate with the compiler about how
one wants to manage memory at the hardware level. The alaildg this type of fine-grained
manipulation of memory has always been one of the strendtBsaod C++ in systems-level
programming. Therefore, one can think of using raw pointeS++ as a kind of portable assembly
language that one always has at one’s disposal on evergiptatind with every compiler. However,
instead of using raw pointers, one can always use the BipesrrayView or

ArrayType::iterator (whereArrayType is Array , ArrayRCP , or ArrayView ) to yield raw pointer
performance in a non-debug optimized build but still mam&irong debug-mode runtime checking.
This approach is discuss in more detail in Section 5/12.3.

e Use raw C++ pointers to communicate with legacy C++ code anthwther languages through C
bindings
The only remaining valid reason to use raw C++ pointers igtse and communicate with legacy
C++ code and to call functions in other languages througmtive universal approach of using C
bindings. However, one must endeavor to minimize the amolu@t-+ code that has naked raw C++
pointers and one should only expose a raw C++ pointer at gi@tssible moment (such as in the
call to the external functions themselves). Again, one roasfully encapsulate access to
non-compliant code that requires the exposure of raw C+rters.

One point is worth nothing here which is that in this new modeét+ software one must never use raw
C++ pointers in the basic interfaces between the variousuteeds that is where a majority of mistakes in

26



Common member functions

T* getRawPtr() [const]

Common nonmember functions

void swap(Type<T>&, Type<T>&)

bool is _null(const Type<T>&)

bool nonnull(const Type<T>&)

bool operator==(const Type<T>&, ENull)

bool operator!=(const Type<T>&, ENull)

bool operator==(const Type<T>&, const Type<T>&)
bool operator!=(const Type<T>&, const Type<T>&)
bool operator<(const Type<T>&, const Type<T>&)
bool operator<=(const Type<T>&, const Type<T>&)
bool operator>(const Type<T>&, const Type<T>&)
bool operator>=(const Type<T>&, const Type<T>&)

Table 4. Common members and non-members fir , RCP
Array[RCP,View] , andTuple

the use of memory will be made. This goes somewhat contrahetadvice in Item 63 “Use sufficiently
portable types in a module’s interface” in [31]. If this nevodern safe C++ software must be called by
non-compliant software that uses raw C++ pointers, thercangrovide specialized C-like interfaces for
those clients that use raw C++ pointers for communicatidrcddrse, once one does this, one will have to
rely on clients to pass in memory correctly and keep it vadidbag as local modules need it.

5.3 Common aspects of all Teuchos memory management classes

Table 4 gives the member and non-member functions commamealleuchos memory management
classedtr , RCP Array , ArrayView , ArrayRCP , andTuple . The comparison operators allows all of these
types to be used as keys in associative containerstilkenap . The member functiogetRawPtr() is
actually an incredibly useful function that will return allpointer (i.e. 0) when the underlying smart
pointer is null (such as witBtr , RCR ArrayRCP , andArrayView ) or when the container has size zero
(such as withArray ).

5.4 Memory management classes replacing raw pointers forrsgle objects

The templated class®r andRCPdescribed in the next two sections are used to encapsulat€+a
pointers to single objects. AgaiRir is used for non-persisting (and semi-persisting) assoomandrRCP
is used for persisting associations. Below, and in all ofcibée listings, it is assumed that the code is
enclosed in th@euchos namespace or there are approprigiag Teuchos:: XXX  declarations (as is safe
and appropriate) for the various names in place.

27



5.4.1 Teuchos:: Ptr<T>

The templated clag®tr is the simplest of all the Teuchos memory management classeptimized
mode it is just the thinnest of wrappers around a raw C++ paimtisting 14 shows what the
implementation oPtr looks like in optimized mode:

Listing 14 : Teuchos::Ptr class

template<class T>
class Ptr {
public:
Ptr( ENull null_in = null ) : ptr_(0) {}
explicit Ptr( T *ptr ) : ptr_(ptr) {}
Ptr(const Ptr<T>& ptr) : ptr_(ptr.ptr ) {}
template<class T2> Ptr(const Ptr<T2>& ptr) : ptr_(ptr.ptr BRI
Ptr<T>& operator=(const Ptr<T>& ptr) { ptr_=ptr.ptr_; ret urn *this; }
T* operator->() const { return ptr_; }
T& operator*() const { return *ptr_; }
T* getRawPtr() const { return ptr_; }

T* get() const { return ptr_; } // For compatibility with shar ed_ptr
const Ptr<T>& assert not_null() const;

private:
T *ptr_;

b

In optimized mode, the only overhead impartedAy is the default initialization to null (0). All other
functions are just inline accessors to the underlying raw @ainter membeptr _. Therefore, the
performance when using this type is the same as when usivg @& pointer.

However, in debug mode (enabled whdtUCHOSDEBUGS defined), thé’tr class becomes more complex
and performs a number of runtime checks like for null deexfees and dangling references (see

Section 5.11.3).

One note about the default null constructor shown in Lisfidgvhich is:

template<class T>
Ptr<T>::Ptr( ENull null_in = null ) : ptr_(0) {}

is that the typeENUll is the simple enum in th€euchos namespace:

enum ENull { null }

This simple enum allows for the safe implicit conversiomfrthe enum valuaull to anyPtr<T> object.
For example, one can write code like:

Ptr<A> a_ptr = null;

28



This implicit conversion frormull  is shared by the other Teuchos memory management smatépoin
classeRCP<T> ArrayView<T> , andArrayRCP<T> . This allows calling functions that accept one of these
objects and by just passingmall when appropriate and the implicit conversion will be done
automatically if possible (see Section 5.7.3).

The main purpose for the existence of &#ie class is to replace raw C++ pointers in function calls for
typical input, input/output, and output arguments wher@ausisting relationship is present. (the clBss
should also be used for semi-persisting associations vgiegée objects are involved.) For example,
consider the function that modifies a typ@bject shown in Listing 15.

Listing 15 : Simple function using unsafe raw pointer

void modifyA( A *a )
{
assert(a);
a->increment();

}
UsingPtr , the functionmodifyA(...) in Listing[15 would be changed to the form shown in Listing 16.

Listing 16 : Simple function refactored to use s@er wrapped pointer

void modifyA( const Ptr<A> &a )
{

a->increment();

}

In this context, the primary advantage of the form shown stihg 16 as apposed to Listing/15 is that in
debug mode, a check for a null pointer or a dangling referermdd be performed automatically. If a null
dereference occurred, then an exception would be throwmawery good error message. | have seen
platforms where a null dereference did not automaticakbyltan a graceful assert, stopping the program. |
have seen cases where somehow memory was corrupted anognanprcontinued! A good philosophy is
to make as few assumptions as possible about undefined bebétlhe compiler and platform because |
have found that “typical and obvious” behavior for undefitethavior is not universal. Many have learned
the hard way that one will pay a price for such assumptionsshtime debugging obscure things like a
null pointer dereference that should have stopped the gnodput did not. Don’t take chances with
undefined behavior in the code, take control!

When all of the high-level code has been converted over tathes® memory management classes and
there are no more raw C++ pointers, then client code showldrrireave to constructRir object using a
raw C++ pointer. However, as code is being transitioned amdrwhen such code is called by
non-compliant code, construction from a raw pointer is eeed he recommended way to convert from a
raw C++ pointer tcPtr is to use the following templated non-member function:

Listing 17 : Teuchos::ptr(...)

template<class T> Ptr<T> ptr(T *p);

29



Using this non-member constructor function, client codeildhen be written as shown in Listing 18.

Listing 18 :

void foo( A* a )

{
using Teuchos::ptr;
modifyA(ptr(a));

}

A more typical use case for the construction ¢fta object is from a raw C++ object or reference. This
type of construction should always be performed using orteehon-member constructor functions
shown in Listing 19.

Listing 19 : Safe nonmember constructors for Teuchos::Ptr

template<typename T> Ptr<T> ptrFromRef( T& arg );
template<typename T> Ptr<T> inOutArg( T& arg );
template<typename T> Ptr<T> outArg( T& arg );
template<typename T> Ptr<T> optinArg( T& arg );

template<typename T> Ptr<const T> constOptinArg( T& arg );

The different forms of non-member constructor functionsvamin Listing 19 are to allow for
self-documenting code for calls to functions that acédptwrapped objects. A complete and
comprehensive set of idioms for usiRg along with the other Teuchos memory management types is
given in Section 5.8.

5.4.2 Teuchos: : RCP<T>

The clasRRCR the real workhorse of the Teuchos memory management sldssesed to manage single
objects in persisting associatioRCPis very similar to other high-quality reference-countedasinpointer
classes likéboost::shared  _ptr and of course the upcoming standard C++0x césshared — _ptr .
However,RCPhas some key features that differentiate it from these dib#er known smart pointer
classes. In particulaRCPhas built in support for the detection of circular referen¢®ection 5.9.2), has
built in support for resolving circular references withIbim weak pointers (Sectidn 5.9.1), and other
strong debug runtime checking such as detecting multipteretatedRCPobjects owning the same
reference-counted objects (Section 5.11.4) and othestypehecks.

Because the clag¥CPis described in [2] and is so similar in usebwost::shared  _ptr (described some
in [26]), this class will not be described in too much detaitdn However, a fairly complete definition of
the clasRCPis shown in Listing 20 (the full listing can be found in the Boyen documentation).

Listing 20 : Class and helper function listing fdRCP

template<class T>
class RCP {

30



public:

Il General functions

RCP(ENull null_arg = null);

explicit RCP(T* p, bool has_ownership = false);
template<class Dealloc_ T> RCP(T* p, Dealloc_T dealloc, bo ol has_ownership);
RCP(const RCP<T>& r_ptr);

template<class T2> RCP(const RCP<T2>& r_ptr);
"RCP();

RCP<T>& operator=(const RCP<T>& r_ptr);

bool is_null() const;

T* operator->() const;

T& operator*() const;

T* getRawPtr() const;

Ptr<T> ptr() const;

Il Other shared_ptr compariblity functions
Il Reference counting member functions

private:
T *ptr_;
RCPNodeHandle node_;

b

Il General non-member constructor functions

template<class T> RCP<T> rcp(T* p, bool owns_mem = true);
template<class T> RCP<T> rcpFromRef(T& r);

template<class T> RCP<T> rcpFromUndefRef(T& r);

Il Deallocation policy functions
Il Embedded objects functions
Il Extra data functions
II' Conversion functions
/I Other common non-member functions
Again, basic usage of tiRCPclass is described in [2] and the functions for decallocafiolicies,
embedded objects, extra data, conversion functions ard fathctions are discussed in other sections in a

more general setting. The basic idioms for smart pointedsraference counting are fairly well known, are
well documented in the literature, and there is a good ogarvi [2] so basic information will not be

31



replicated here. However, some of the more advanced furadiip for RCPthat is not described in [2] or an
any of the existing C++ literature is described in later isest of this document.

5.4.3 Raw C++ references

Why is there a subsection on raw C++ references under theiarséescribing Teuchos Memory
Management classes for single objects? The reason is th&+a references to single objects are used in
the idioms described in this paper for non-persisting dasons for single objects and this was a
reasonable place to discuss issues with raw C++ references.

While this paper argues that raw C++ pointers have no plaagjtication-level code because they are
fundamentally unsafe, are C++ references also not inHgrensafe as well? After all, under the covers
raw C++ references really are just raw C++ pointers in dsguiVhile this is true, in practice raw C++
references are significantly safer than raw C++ pointepge@ally if the idioms outlined in this paper are
carefully followed. In addition, the use of raw C++ refereads exploited (as explained in Section 5.4.3)
in defining idioms that increase the self-documenting ratfitC++ code and play a role in defining
non-persisting associations related to function formgliarents and return objects. All in all, the increased
expressiveness in using raw C++ references is worth theased risk of misuse (this is still going to be
C++ after all).

Basically, a raw C++ reference is relatively safe as long)disimalways initialized to point to a valid

object, and b) it is only used for non-persisting relatiopsi{especially as const input arguments in C++
functions). If araw C++ reference is initialized directhpin an object or from dereferencing a smart
pointer, then it is guaranteed that the object will be valltew the reference is first created (at least in a
debug build where dereferencing null smart pointers thyoW#hile raw C++ references are fairly safe
when used with the idioms described in this paper, there @af00% guarantees. There are typically no
guarantees that the object pointed to by a raw referencestaifl valid (because dangling references cannot
be detected as described in Section 5.11.6). This can hagpemone breaks one or more of the idioms or
guidelines defined in this paper (which will happen becausgrammers make mistakes).

Note that raw C++ references should never be used for raginegesemi-persisting associations because it
is impossible to catch invalid usage like dangling refeesndnstead, when a semi-persisting association is
involved, always usetr instead of a raw C++ reference (even if the object being sgmied is not allowed

to be null). Semi-persisting associations are describedaire detail in Section 4.2 and Section 5.12.3.

5.5 Memory management classes replacing raw pointers for aays of objects

The Teuchos memory management module actually defines ififenedt C++ classes for dealing with
contiguous arrays of objectarrayView , ArrayRCP , Array , andTuple . As stated in Section 5.1 each of
these classes is needed in order to address different iamparse cases for dealing with contiguous arrays
of objects. The conventions outlined in the paper never higle-level code exposing a raw C++ pointer to
an array or directly using built-in (statically sized) C+tays.

In addition to the common members shown in Table 4, all of th@chos array classes provide a common
subset of the interface sfd::vector which includes the typedefs and member functions shown in

Table 5.

32



std::vector compatible member typedefs

value _type

size _type
difference  _type
pointer

const _pointer
reference

const _reference
iterator

const _iterator
element _type

std::vector compatible member functions

size _type size()

[const _]reference operator(size _type) [const]
[const _Jreference front() const

[const _Jreference back() const

[const _Jiterator begin() [const]

[const _Jiterator end() [const]

ArrayView returning member functions

ArrayView<[const] T> view(size _type offset, size _type size) [const]
ArrayView<[const] T> operator[]()(size _type offset, size _type size) [const]
ArrayView<[const] T> operator()() [const]

Additional common member functions

[const _]pointer getRawPtr() [const]
std::string toString() const

Table 5. Additional common members and non-members for
ArrayView , ArrayRCP , Array , andTuple .

33




A few things to note about the common array interface compisnghown in Table 5 include:

e All of the Teuchos array classes are drop-in replacemen@nfp code that usesd::vector that
does not grow or shrink the container by supporting the rsacgsypedefs, query functions, element
access, and iterator access. This helps in migrating ducoele that usestd::vector but should
be usingArray , ArrayView , ArrayRCP or Tuple .

e All of the array classes support returniAgayView subviews of contiguous ranges of elements.

e All of the array classes support a hargigRawPtr()  function that allows a client to get the base
pointer address to the array or null. The standédcvector class supports no such function
which is very painful for users since it makes it hard to getitypointer then the container can
legitimately be unsized in some use cases.

The exact functions shown in Table 5 farayView andArrayRCP are a little different than foArray due
to the different nature of these view classes as apposee totitainer clasarray . As described in
Section 5.6, the classésrayView andArrayRCP can encapsulate both non-const and const tJzes
their template argument whikaray can only accept a non-const typeTherefore, thetd::vector
compatible functions irrayView andArrayRCP are allconst functions since they don’'t change what
data these objects point to, but only change the data itself.

One other aspect to note about the Teuchos array classes kel deviate from the standard C++ library
convention of using an unsigned integer $@e _type . Instead, they use a signed integerdiae _type
typedefed to the signed tygdeuchos _Ordinal which is guaranteed to be 32 bit on a 32 bit machine and
64 bit on a 64 bit machifle The reasoning for breaking from thl::vector standard fosize _type is
described in Appendix[C.

5.5.1 Teuchos:: ArrayVi ew<T>

The clasArrayView , the simplest of the Teuchos array memory management slassiesigned to
encapsulate raw pointers in non-persisting associatidgnggly for formal function array arguments.
(ArrayView is to be used for semi-persisting associations as well.hlopimized build, arrayView
object simply holds a raw base array pointer and an integer & an optimized buildirrayView looks
like Listing[21.

Listing 21 : Teuchos: : Arr ayVi ewdeclaration (See Table 5 for common array members.)

template<class T>
class ArrayView {
public:

Il Constructors/Assignment/Destructors
ArrayView( ENull null_arg = null );

"Teuchos _Ordinal is typedefed by default to the standard C library tppeiff  _t which is always signed and is 32 bit on a
32 bit machine and 64 bit on a 64 bit machine.

34



ArrayView( T* p, size_type size );
ArrayView(const ArrayView<T>& array);
(

ArrayView(std::vector<typename ConstTypeTraits<T>::N onConstType>& vec);
ArrayView(const std::vector<typename ConstTypeTraits< T>::NonConstType>& vec);
ArrayView<T>& operator=(const ArrayView<T>& array);

“ArrayView();

Il Implicit conversion to const
operator ArrayView<const T>() const;

Il Deep copy
void assign(const ArrayView<const T>& array) const;

/I Common array class members and other functions
private:

T *ptr_; /I Optimized implementation

size_type size_;
Y
Il Non-member helpers

template<class T>
ArrayView<T> arrayView( T* p, typename ArrayView<T>::siz e type size );

template<class T>
ArrayView<T> arrayViewFromVector( std::vector<T>& vec ) ;

template<class T>
ArrayView<const T> arrayViewFromVector( const std::vect or<T>& vec );

template<class T>
std::vector<T> createVector( const ArrayView<T> &av );

template<class T>
std::vector<T> createVector( const ArrayView<const T> &a V)

Il Other common non-member helpers

Il Explicit conversion functions

A few specific things to note aboAtrayView shown in Listing 21 in addition to the comments in
Section 5.5 and other sections include:

e ArrayView is extremely lightweight in an optimized build, carryinglp®a pointer and an integer
size. This allows one to replace the typical pointer and isg¢@aize argument with a single
aggregate light-weight object. Therefore, it yields veificeent code.

35



e ArrayView in optimized mode has all trivial inlined functions that Wwavith the raw pointer so it is
as efficient as raw pointer code (Section 5.12.2).

e ArrayView is a drop in replacement for any code that ustdsvector that does not grow or
shrink the container by supporting the necessary typedatsy functions, and iterator access. This
helps in migrating current code that usés:vector but should be usingrrayView .

e ArrayView implicitly converts from arstd::vector so functions called by existing client code that
usesstd::vector can be safely and transparently refactored toAmsgView instead of
std::vector (subject to the limitations for implicit conversions deabed in Section 5.7.3).

e ArrayView directly supports the creation of subviews of contiguouses of elements.

What makeg\rrayView non-trivial and special, however, is that in a debug buhé, implementation takes
on a variety of runtime checking to catch all sorts of errarshsas dangling iterators, dangling sub-views
(Section 5.11.3), range checking (Section 5.11.1), anerdfpes of runtime checking.

It should be noted that one should almost never createrayView object directly from a raw pointer but
instead create them as viewsAsfay , ArrayRCP , Tuple and otherArrayView objects. If client code is
routinely creatingArrayView objects from raw pointers, then the code is not safe and oedsrne study
the core idioms described in Section 5.8.

The clasArrayView has no equivalent in boost or the current C++ or proposed &€stdhdard. This is a
critical class needed to allow for flexibility, high-perfoance, safety, and maximaly self-documenting
code. One cannot develop an effective type system withoirtegrated type likérrayView .

5.5.2 Teuchos: : ArrayRCP<T>

The clasArrayRCP is the counterpart térrayView for general flexible array views except it is used for
persisting relationships where reference-counting nmeckiis required. ArrayRCP object can provide

a contiguous view into any array of data allocated in anywassjble and can allow the user to define what
is done to release memory in anyway they would like.

The class declaration fdieuchos::ArrayRCP  is shown in Listing 22.

Listing 22 : Teuchos: : Arr ayRCP declaration (optimized build)

template<class T>
class ArrayRCP {
public:

Il Constructors/initializers

ArrayRCP(ENull null_arg=null);

ArrayRCP(T* p, size_type lowerOffset, size type upperOff set,
bool has_ownership);

template<class Dealloc_T>

ArrayRCP( T* p, size type lowerOffset, size type upperOff set,
Dealloc_T dealloc, bool has_ownership);
explicit ArrayRCP(size_type lowerOffset, const T& val = T( );

36



ArrayRCP(const ArrayRCP<T>& r_ptr);
“ArrayRCP();
ArrayRCP<T>& operator=(const ArrayRCP<T>& r_ptr);

Il Object/Pointer Access Functions

T* operator->() const;

T& operator*() const;

ArrayRCP<T>& operator++();

ArrayRCP<T> operator++(int);

ArrayRCP<T>& operator--();

ArrayRCP<T> operator--(int);

ArrayRCP<T>& operator+=(size_type offset);
ArrayRCP<T>& operator-=(size_type offset);
ArrayRCP<T> operator+(size_type offset) const;
ArrayRCP<T> operator-(size_type offset) const;

Il ArrayRCP  Views
ArrayRCP<const T> getConst() const;
ArrayRCP<T> persistingView(size_type lowerOffset, size _type size) const;

Il Implicit conversions
operator ArrayRCP<const T>() const;

Il Explicit ArrayView
ArrayView<T> operator()() const;

Il Size and extent query functions
size_type lowerOffset() const;
size_type upperOffset() const;
size_type size() const;

Il std::vector like and other misc functions
void assign(size_type n, const T &val);
template<class Iter>

void assign(lter first, lter last);
void deepCopy(const ArrayView<const T>& av);
void resize(const size type n, const T &val = T());
void clear();

/I Common array class members (see above)

Il Reference counting (same as for RCP)

private;
T *ptr_; // NULL if this pointer is null
RCPNodeHandle node_; // NULL if this pointer is null
size_type lowerOffset ; // 0 if this pointer is null
size_type upperOffset ; // -1 if this pointer is null

3

/I Nonmember constructors

37



template<class T>

ArrayRCP<T> arcp(T* p, typename ArrayRCP<T>::size type |
typename ArrayRCP<T>::size_type size, bool owns_mem = tru

template<class T, class Dealloc_T>

ArrayRCP<T> arcp(T* p, typename ArrayRCP<T>::size type |
typename ArrayRCP<T>::size_type size, Dealloc T dealloc

template<class T>
ArrayRCP<T> arcp( typename ArrayRCP<T>::size type size )

template<class T>
ArrayRCP<T> arcpClone( const ArrayView<const T> &v );

template<class T>
ArrayRCP<T> arcp(const RCP<std::vector<T> > &v);

template<class T>
ArrayRCP<const T> arcp(const RCP<const std::vector<T> > &

template<class T>
ArrayRCP<T> arcpFromArrayView(const ArrayView<T> &av);

template<class T>
RCP<std::vector<T> > get_std_vector(const ArrayRCP<T> &

template<class T>
RCP<const std::vector<T> > get std_vector(const ArrayRC

/I Customized deallocators

Il Embedded object functions

/I Extra data functions

/I Conversion functions

/I Common non-member functions

/I Other nonmember functions

template<class T>

typename ArrayRCP<T>::difference_type
operator-(const ArrayRCP<T> &pl, const ArrayRCP<T> &p2);

template<class T>
std::ostream& operator<<( std::ostream& out, const Array

38

owerOffset,
e);

owerOffset,
, bool owns_mem);

ptr);

P<const T> &ptr);

RCP<T>& p );



Some of the main features of tAgayRCP class are:

ArrayRCP allows the user to allocate the contiguous array of dataymwawy they would like and can define
how that array is deallocated anyway they would like.

ArrayRCP returns persisting subviews of data through the membetitumpersistingView(...) . This
means that the underlying array of data will not be deletdd alhthe persisting subviews are destroyed.

ArrayRCP is a full replacement for a general raw pointer and can be asedgeneral iterator that always
remembers the allowed upper and lower bounds. It suppdittseahppropriate pointer array-like
operations includingtr+i , i+ptr , ptr-i , ptr+=i , ptr-=i , , ptr++ , ptr-- , *ptr , ptr->member() , and
of courseptr[i] . This is what allowsArrayRCP to be used as a checked iterator implementation in a
debug-mode build.

ArrayRCP can be used safely as a contiguous array by using it throegbnit interface which disables
all of the pointer-like functions that change the frame déérence (e.gptr+=i , ptr-=i , , ptr++ , and
ptr-- are disabled in theonst interface).

ArrayRCP can be used in place efd::vector (and therefordrray ) that only needs to size or resize the
array in baulk and does not need to flexibly grow or shrink thaya It does this by supporting functions
like assign(...) , resize(...) , andclear() . Because of the reference counting machinery that is
always part ofArrayRCP and support for all raw C++ pointer functionality (e.ptr++ ), one may not want
to useArrayRCP instead ofArray in many types of code. However, if the overhead is not goingeto
significant, then going withrrayRCP instead ofArray can be a good choice because it is much more
flexible in how memory is allocated and has built-in supportshared ownership (again, which may not be
needed). The clagsrayRCP does not attempt to replaéeray but can be a better choice in many cases
where amArray may otherwise be used.

ArrayRCP supports explicit shallow conversion AorayView . Requiring an explicit conversion from
ArrayRCP to ArrayView in consistent with the required explicit conversion fr@@Pto Ptr . As explained
in Section 5.8.4, requiring this type of explicit conversis meant to increase the type safety and
self-documenting nature of all code (including the calliogle as well). Note that the
ArrayRCP::operator()() function is a very short-hand way to perform conversioArayView .

ArrayRCP supports owning conversions froRCRwrappedArray andstd::vector objects. This allows
for better interoperability between code and uses solieregice-counting ownership semantics.

Some of the other features of tAgayRCP class that are common with the other classes are discussed in

Section 5.7, Sectian 5.9, and Section 5.11.

5.5.3 Teuchos:: Array<T>

The clasdArray is a complete drop-in replacement &bd::vector that is integrated with thAarrayView
class for debug-mode runtime checking. In an optimizeddbaitay is nothing but an inline wrapper
around a fully encapsulatestt::vector object. This means that in an optimized buidttay takes
advantage of all of the platform-specific optimizationsteamed in the nativetd::vector

implementation and imparts no extra space/time overhesdtf® timing results in Section 5.12.2 for
evidence of this claim). However, in a debug build, a full@ggplatform-independent runtime checking is
performed that is as strong or stronger than any checked @plementation (see [31, Item 83]) and in

39



addition includes dangling reference detectiodwdyView views or direct conversions trrayRCP
objects (see Section 5.11.3yray also supports better runtime debug output with better eiaeprror
messages.

The class declaration for theray class is shown in Listing 23.

Listing 23 : Teuchos: : Arr ay declaration (optimized build)

template<typename T>
class Array {
public:

Il Constructors/initializers

Array();

explicit Array(size_type n, const value type& value = valu e_type();
Array(const Array<T>& Xx);

template<ypename Inputlterator> Array(Inputlterator fi rst, Inputlterator last);
Array(const ArrayView<const T>& a);

template<int N> Array(const Tuple<T,N>& t);

“Array();

Array& operator=(const Array<T>& a);

Il Other std::vector functions

void assign(size_type n, const value_type& val);

template<typename Inputlterator> void assign(Inputlter ator first,
Inputlterator last);

iterator begin();

iterator end();

const_iterator begin() const;

const_iterator end() const;

reverse_iterator rbegin();

reverse_iterator rend();

const_reverse_iterator rbegin() const;

const_reverse_jterator rend() const;

size_type size() const;

size_type max_size() const;

void resize(size_type new_size, const value_type& x = valu e_type();

size_type capacity() const;

bool empty() const;

void reserve(size_type n);

reference operator(](size_type i);

const_reference operator[](size_type i) const;

reference at(size_type i);

const_reference at(size_type i) const;

reference front();

const_reference front() const;

reference back();

const_reference back() const;

void push_back(const value type& X);

void pop_back();

iterator insert(jterator position, const value_type& x);

void insert(iterator position, size_type n, const value_t ype& X);

template<typename Inputlterator> void insert(iterator p osition,

40



Inputlterator first, Inputlterator last);
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(Array& Xx);
void clear();

Il Conversions to and from std::vector
Array( const std:vector<T> &v );
std::vector<T> toVector() const;

Array& operator=( const std:vector<T> &v );

Il Implicit conversion to ArrayView

operator ArrayView<T>();

operator ArrayView<const T>() const;

/I Common array class members (see above)

private:
std::vector<T> vec_; /| Optimized implementation

3

II' Non-member helper functions

template<class T> ArrayRCP<T> arcp( const RCP<Array<T> > &

template<class T> ArrayRCP<const T> arcp( const RCP<const
template<class T> ArrayRCP<T> arcpFromArray( Array<T> &a
template<class T> ArrayRCP<const T> arcpFromArray( const
template<typename T> std::ostreamé& operator<<(std::ost

const Array<T>& array);
template<typename T> std::vector<T> createVector( const
std::string toString(const Array<T>& array);
template<typename T> Array<T> fromStringToArray(const s

/I Other common nonmember functions

The usage of thérray class is identical to the usage sidi::vector
creation ofAraryView objects that can detect and report dangling referencesemnpts to resize the
container when one or mo¥erayView objects are active. The unit tests faray provide a complete
catalog of all the debug-mode runtime checking thredy performs. A more general discussion of

Vo)

Array<T> > &v );
);
Array<T> &a );

ream& os,

Array<T> &a );

td::string& arrayStr);

debug-mode runtime checking can be found in Section 5.11.

5.5.4 Teuchos: : Tupl e<T, N>

The last array class discussed here isTilpge class which represents a compile-time sized array that
implicitly converts into arArrayView object. The class listing fofuple is shown in Listing 24.

Listing 24 : Teuchos: : Tupl e declaration (optimized build)

template<typename T, int N>

41

except that it naively supports the



class Tuple {
public:

/I Constructors/initializers
inline Tuple();
Tuple( const Tuple<T,N> &t );

Il Implicit conversion to ArrayView
operator ArrayView<T>();
operator ArrayView<const T>() const;

/I Common array class members (see above)

private:
T array_[N]; // Optimized implementation

}v
/I Non-member constructors

template<typename T>
Tuple<T,1> tuple(const T& a);

template<typename T>
Tuple<T,2> tuple(const T& a, const T& b);

template<typename T>
Tuple<T,3> tuple(const T& a, const T& b, const T& c);

template<typename T>

Tuple<T,15> tuple(const T& a, const T& b, const T& c, const T& d, const T& e,
const T& f, const T& g, const T& h, const T& i, const T& |, const T & k,
const T& I, const T& m, const T& n, const T& 0);

The classTuple is very small and efficient in an optimized build. All the fiioms are inlined and all data
is allocated on the stack (or statically) and does not usé&éeestore. In an debug build, howevéuple
takes on all the debug checking of all the other Teuchos atesges including the detection of dangling
ArrayView views and dangling iterators.

One of the most useful featuresTiple is that a number of overloaded non-member constructor ifumet
with nametuple(...) are provided (show above) to make it easy to pass in arraystiéns that accept
them adArrayView arguments. Overloads afple(...) are currently provided from one up through 15
arguments. For an example for usitagle(...) to call a function call, consider the function to be called:

void doSomething(const ArrayView<const int>&);
To call the function with three int arguments, one would use:

doSomething(tuple<int>(1, 2, 3)); // Implicitly converts to ArrayView<int>

42



Note that in an optimized build for the above function caditthll data would be allocated on the stack and
would not involve the free store. This results in very efiitieode which is important when this is being
used in an inner loop.

5.5.5 Array views

One of the most powerful features of the Teuchos memory nemagt array types is that they allow for
the creation of arbitrary contiguous subviews of data tla&ethhe strongest debug-mode runtime checking
possible. All of the array classdsrayView , ArrayRCP , Array , andTuple provide contiguous views as
ArrayView objects. The functions the providerayView views are shown in Table 5. ThgrayRCP

class can also provide persisting contiguous subviewswa#\nayRCP objects using the function
ArrayRCP::persistingView(...) . Persisting views will remain even if the parémtayRCP objects

have been released.

As soon as a contiguous array of data is correctly capturddap or an owningArrayRCP object, all
childrenArrayView objects will be protected in that if the parent array getetel, a debug-mode runtime
check will detect and report a dangling reference if a cligas to access the data after the parent has gone
away (see Sectian 5.11.3 for details).

To demonstrate the elegance and superior error checkiAgay¥/iew subviews, consider a refactored
version of code in Listing 4 and Listing 5 that tried to ws:vector but resulted in verbose clumsy
code that was really no more correct or safe than the raw Cirtgrosersion. This refactored version to
useArrayView is shown in Listing 25 and Listing 26.

Listing 25 : Refactored version of Listing 4 to user ayVi ew

template<class T>
class BlockTransformerBase {

public:

virtual "BlockTransformerBase();

virtual void transform(const ArrayView<const T> &a, const ArrayView<T> &b) const = 0;
3
template<class T>
class AddintoTransformer : public BlockTransfomerBase<T > {
public:

virtual void transform(const ArrayView<const T> &a, const ArrayView<T> &b) const

{

DEBUG_MODE_ASSERT_EQUALITY( a.size(), b.size() );
for (int i = 0; i < asize(); ++i)
bli] += ali];

Listing 26 : Refactored version of Listing 5 to use r ay Vi ew
void someBlockAlgo( const BlockTransformerBase &transfo mer,

const int numBlocks, const ArrayView<const double> &big_a ,
const ArrayView<double> &big_b )

43



DEBUG_MODE_ASSERT_EQUALITY( big_a.size(), big_b.size( ) );
const int totalLen = hig_a.size();
const int blockSize = totalLen/numBlocks; // Assume no rema inder!

const int blockOffset = 0;
for (int block k = 0; block_k < numBlocks; ++block k, blockO ffset += blockSize)

{
if (big_a[blockOffset] > 0.0) {

transformer.transform(big_a(blockOffset, blockSize),
big_b(blockOffset, blockSize));

The advantages of the refactored code in Listing 25 andrgs?6 are that they are nearly as compact as
the raw pointer versions in Listing 3 and Listing 6 but in dubai also have full debug-mode runtime error
checking. To see the improved safety, let's consider the wdere theransform(...) function is
incorrectly implemented with an off-by-one error as showhisting[27.

Listing 27 : Refactored version of off-by-one error in Listing 7 to use ayVi ew

template<class T>

void AddIntoTransformer<T>::transform(const ArrayView <const T> &a, const ArrayView<T> &b)
{
DEBUG_MODE_ASSERT EQUALITY( a.size(), b.size() );
for (int i = 0; i <= asize(); ++i)
bli] += a[i]; // Throws when i == a.size()
}
If the erroneougransform(...) function in Listing 27 were called from Listing 26 then in depmode,
a runtime exception would immediately be raised whenrrsform(...) function tried to access one

past the last element. As mentioned in Section 3.2, memagkihg tools like Valgrind or Purify will
never be able to catch semantic usage errors like this itrivvial to catch these mistakes when using the
Teuchos memory management classes.

As mentioned in Section 5.7, subviews can also be used al@hghe reinterpret cast functions to create
very efficient memory management schemes for POD (plain atial) dvhere large untypetthar arrays are
created and then subviews are broken off and reinterpretacapecific data types. Examples of this can be
found in the unit testing code.

5.6 Const versus non-const pointers and objects

The core smart-pointer pointer clas$s, RCRE ArrayView andArrayRCP allow for the inner object (or
array of objects) to be const or non-const and for the out@tg@oobject to be const or non-const, just like
with regular C++ pointers. To draw the analogy with raw peist consider the equivalent declarations of a
raw pointer and the pointer encapsulation class in Table 6.

44



Equivalencies for const protection for raw pointers and Tewhos smart pointers types

| Description | Raw pointer | Smart pointer |
Basic declaration (non-const obj) | typedef A* ptr _A RCP<A>
Basic declaration (const obj) typedef const A* ptr _const _A | RCP<const A>
non-const pointer, non-const objecptr _A RCP<A>
const pointer, non-const object | const ptr _A const RCP<A>
non-const pointer, const object | ptr _const _A RCP<const A>
const pointer, const object const ptr _const _A const RCP<const A>

Table 6. Equivalences between raw pointer and smart pointer types
for const protection. Her&yCPis a stand-in for all four typeBtr , RCPR,
ArrayView andArrayRCP .

The majority of problems that beginners have with the Teaghemory management classes is related to
the inability to make the basic equivalencies between ramt@s and smart pointers shown in Table 6 (see
Section 5.7.3 for specific examples). It is critical that phegrammer recognize this equivalence with raw
pointers because it impacts many things especially imlipe conversions to satisfy function calls

(again, see Section 5.7).

5.7 Conversions

Type conversions exist both for a single smart pointer typeatfe embedded type argument (e.g.
RCP<Derived> implicitly converts toRCP<const Derived> , RCP<Base> andRCP<const Base> ) and
also between different smart pointer types (Arqay implicitly converts toArrayView ). There are
implicit conversions and explicit conversions. These twmes of conversions are depicted in Figures 2
and 3 and shown in more detail in more detail in Table 8 andeT@b(Note: All of the conversions shown
in Table 8 and Table|9 are not shown in Figure 2 and Figure $fesake of not making the figures to
complex.) These conversions are described in the followirggsections.

5.7.1 Implicit and explicit raw-pointer-like conversions

The core Teuchos memory management smart pointer BtpeRCP, ArrayView andArrayRCP support

all of the reasonable implicit and explicit type conversidhat are defined by raw C++ pointers. C++
defines implicit conversions for raw pointers from non-d¢dosconst and from derived to base types.
Table€ 7 shows what implicit and explicit conversions arepsuiied for the four core memory management
smart pointer types.

As seen in Table 7, the smart pointer types for single objtctsandRCPdo not support the same implicit
and explicit conversions that are supported for the arregrspointer typedrrayView andArrayRCP . As
explained in Section 2.2, it almost always incorrect anchdanus to allow implicit conversions from
derived to base type for pointers that point into contiguaays of objects. Therefore, the types
ArrayView andArrayRCP do not support implicit conversions from derived to basesyue to similar
logic, it almost never makes any sense to perform a stattcocasdynamic cast on a pointer to an array of

45



.getRawPtr () AVOID THIS!

<Derived> to <Base> | ! |

|
<T> to <const T> .operator* () I
-1 RCP<T> F—~=—====—=—- 18|
1 -7l I
| x ( /// |
| pt () »(/O—£ - |
et? -~
Fm——— | LoPY_ -~ |
<Derived> to <Base> i v 3 //// :
<T> to <const T> ' _ | Ptr<T> T* la—|
I

.getRawPtr () AVOID THIS!

Legend

<<implicit conversion>>
______________________ 5

<<explicit conversion>>

Figure 2. Conversions between different single-object memory man-
agement types.

Basic implicit and explicit supported conversions for Teutios smart pointer types

| Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Implicit conv derived to base X X
Implicit conv non-const to const X X X X
const _cast X X X X
static _cast X X
dynamic _cast X X
reinterpret  _cast X X

Table 7. Basic implicit and explicit conversions by smart-pointgres.

46



RCP<std::vector<T> >

N v I <T> to

RCP<AI’I’ay<T> > _;r:p_(,j__> ArrayRCP<T> ___: <const T>

v I S~ Op,
o -getRawp ~ S
v tr() ~Jhar

O *
et w T ¥~ —_ _gerg
- ~ < -Rawpg
—=I0

~_0x
\\‘~Ciﬁ
~

~
~
~
~

svector<T>

Legend

<<implicit view conversion>>

____________________ »

<<implicit copy conversion>>

<<explicit copy conversion>>

IS
7 et
| el N
Array<T>

ArrayView<T>
DA

<T> to
<const

Tuple<T,N>

Figure 3. Conversions between array memory management types.

47

>



contiguous objects so the typasayView andArrayRCP do not support static and dynamic casts.

In well formed programs, there is a justification to perfoemterpret casts for contiguous arrays of POD
(plain old data) types. It is perfectly reasonable to allealarge array athar (untyped) data and then
create subviews and reinterpret cast to separate arralgsité andint data, for instance. However, in a
well formed program in high-level code there is not a singlidvreason to perform a reinterpret cast for
single objects and therefore reinterpret cast is not stipgdor the type®tr andRCP

The allowed implicit conversions fditr andRCPare implemented through templated copy constructors
(see Section 5.4.1 and Section 5.4.2). However, the ordwell implicit conversion fokT*> to <const

T*> for ArrayView andArrayRCP are instead supported through conversion member functsees
Section 5.5.1 and Section 5.5.2). The supported explicit@sion operators for these four types are

shown in the Listings 28, 29, 30, and 31.

Listing 28 : Conversion functions foet r

template<class T2, class T1> Ptr<T2> ptr_implicit_cast(c

template<class T2, class T1> Ptr<T2> ptr_static_cast(con

template<class T2, class T1> Ptr<T2> ptr_const_cast(cons

template<class T2, class T1> Ptr<T2> ptr_dynamic_cast(co
bool throw_on_fail = false);

Listing 29 : Conversion functions for RCP

template<class T2, class T1> RCP<T2> rcp_implicit_cast(c

template<class T2, class T1> RCP<T2> rcp_static_cast(con

template<class T2, class T1> RCP<T2> rcp_const_cast(cons

template<class T2, class T1> RCP<T2> rcp_dynamic_cast(co
bool throw_on_fail = false);

Listing 30 : Conversion functions for ArrayView
template<class T2, class T1> ArrayView<T2> av_const_cast
template<class T2, class T1> ArrayView<T2> av_reinterpre

Listing 31 : Conversion functions for ArrayRCP

template<class T2, class T1> ArrayRCP<T2> arcp_const cas

template<class T2, class T1> ArrayRCP<T2> arcp_reinterpr

template<class T2, class T1> ArrayRCP<T2> arcp_reinterpr
const ArrayRCP<T1>& pl, const T2& val = T2());

onst Ptr<T1>& pl);
st Ptr<T1>& pl);
t Ptr<T1>& pl);
nst Ptr<T1>& pl,

onst RCP<T1>& pl);
st RCP<T1>& pl);
t RCP<T1>& pl);
nst RCP<T1>& pl,

(const ArrayView<T1>& pl);
t_cast(const ArrayView<T1>& pl);

t(const ArrayRCP<T1>& pl);
et_cast(const ArrayRCP<T1>& pl);
et_cast_nonpod(

These conversion functions are used very similarly as ®bthilt-in conversion operations in that only the
output type needs to be explicitly specified. For examplstithg 32 shows some example conversions
involving RCP(but the conversion function usage for the other types amatical). One function worth

noting in Listing 31 isarcp _reinterpret

_cast _nonpod(...)

which performs a reinterpret cast from a
POD (plain old data) datatype (edpar ) to a non-POD datatype (e.sid::vector<int>

). This function

calls (copy) constructors on the array elements and defisps@alized deallocation policy to call
destructors on the elements when the MstyRCP<T2> object is released.

48



Listing 32 : Example usage of the explicit conversion functions

RCP<const Base> = chase(new Derived);
RCP<Base> hase = rcp_const_cast<Base>(chase);

RCP<const Derived> cderived = rcp_dynamic_cast<const Der ived>(chase, true);
RCP<const Derived> cderived2 = rcp_static_cast<const Der ived>(chase);

Il NOTE: Static casting of Base to Derived is not safe when

Il using virtual base classes or multiple inheritance. Only dynamic

Il casting is always safe with polymophpic types.

Note that the dynamic cast conversion functiptis_dynamic _cast() andrcp _dynamic _cast() both
take an option extra argumethtow _on_fail that if set totrue will result in an exception being thrown
on a dynamic cast failure which is embedded with a very hékrftor message (accessed through the
std::exception::what() function).

5.7.2 Conversions between different memory management tgs

It is critical that all conversions between the various Teagcmemory management classes be performed
using conversion code provided by the memory managemesgadaor by associated helper functions in
the Teuchos library. Client code should never convert betwaemory management types by exposing a
raw C++ pointer. As soon as a raw C++ pointer is exposed, ynalf the debug-mode runtime checking
will be disabled. If a raw C++ pointer is exposed in order tof@an a needed valid conversion, then either
the programmer overlooked an already provided conversioation or the function needs to be added to
Teuchos (please contact the developers of Teuchtescabs-users@software.sandia.gov ).

Figures 2 and 3 show many of the types of conversions thaugmosted between the different memory
management types. Specific conversions are shown in mai idetables 8 and|9. (Note: All of the
conversions shown in Tables 8 and 9 are not shown in Figures|3 for the sake of not making the
figures to complex.) For single objects, the conversionaden differenRCPandPtr objects of various
kinds shown in Figure 2 and Table 8 include both implicit arglieit conversions (but do not show the
explicit conversion functions already shown in Listingse2&l 29). Conversions between different array
types shown in Figure 3 and Table 9 include both implicit axglieit conversions and view and copy
conversions yielding various types of conversions (butatosshow the explicit conversion functions
already shown in Listings 30 ahd31).

The conversions shown in Tables 8 and 9 (and also in ListiBg22, 30, and 31) are the most basic
conversions supported by the Teuchos memory managemest ygh are not the only supported
conversions. The see the full set of type conversions stgghoronsult the Doxygen generated
documentatioh. Note that full debug-mode runtime checking is fully endbiler every conversion
between Teuchos memory management types, including foglotey-reference detection and reporting
when creating non-reference-counting types andArrayView . In general, dangling references cannot be
detected when converting from raw C++ point&tsand raw C++ reference or for shallow views
involving std::vector . However, there are a few special cases where non-owaiingRCRE, and

ArrayView , ArrayRCP objects created from raw C++ pointers (or references) wilable to detect
dangling references through the sophisticated debug-mode tracing system (see Sections 5.11.3 and
’5.11.6 for details).

8http:/ftrilinos.sandia.gov/packages/teuchos

49



Most Common Basic Conversions for Single Object Types

| Type To | Type From | Properties | C++ code

RCP<A> A* Ex, Ow rep(@ _p) 1]

RCP<A> A* Ex, NOw rcp(a _p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)

RCP<A> A& Ex, NOw rcpFromUndefRef(a)

RCP<A> Ptr<A> Ex, NOw, DR | rcpFromPtr(a)

RCP<A> boost::shared  _ptr<A> | Ex, Ow, DR | rcp(a _sp)

RCP<const A> RCP<A> Im, Ow, DR | RCP<const A>(a _rcp)

RCP<Base> RCP<Derived> Im, Ow, DR | RCP<Base>(derived _rcp)

RCP<const Base> RCP<Derived> Im, Ow, DR | RCP<const Base>(derived  _rcp)

boost::shared  _ptr<A> | RCP<A> Ex, Ow, DR | shared _pointer(a _rcp)

A* RCP<A> Ex, NOw a_rcp.getRawPtr() S

A& RCP<A> Ex, NOw *a_rcp 4

Ptr<A> A* Ex, NOw ptr(@ _p) 2

Ptr<A> A& Ex, NOw outArg@) 2

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp.ptr()

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp()

Ptr<A> RCP<A> Ex, NOw, DR | ptrFromRCP(a _rcp)

Ptr<const A> Ptr<A> Im, NOw, DR | Ptr<const A>(a _ptr)

Ptr<Base> Ptr<Derived> Im, NOw, DR | Ptr<Base>(derived  _ptr)

Ptr<const Base> Ptr<Derived> Im, NOw, DR | Ptr<const Base>(derived _ptr)

A* Ptr<A> Ex, NOw a_ptr.getRawPtr() Kl

A& Ptr<A> Ex, NOw a_ptr()

A* A& Ex, NOw gal®

A& A* Ex, NOw *a _p‘3
Types/identifiersA* a_p; A& @, Ptr<A> a _ptr ; RCP<A> arcp ; boost::shared  _ptr<A> a _sp;

Properties: Im = Implicit conversion, Ex = Explicit convins, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection (NOTE: All conwessare shallow conversions, i.e. copies pointers not
objects.)

1. Constructing an ownin@®CPfrom a raw C++ pointer is strictly necessary but must be doitk great care
according to the commandments in Appendix B.

2. Constructing a non-owningCPor Ptr directly from a raw C++ pointer should never be needed iryfodm-
pliant code. However, when inter-operating with non-caamg! code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation sthoever be necessary in compliant code but
may be necessary when inter-operating with external cae$sctioh 5.2).

4. Exposing a raw C++ reference will be common in compliant cdogieshould only be used for non-persisting
associations.

5. See other helper constructors for pas$imgdescribed in Sectidn 5.4.1.

Table 8. Summary of basic conversions supported involving single ob
jects.

50



Most Common Basic Conversions for Contiguous Array Types

| Type To | Type From | Properties | C++ code (or impl function)
ArrayRCP<S> St Sh, Ex, Ow arcp(s _p,o,n) 1
ArrayRCP<S> St Sh, Ex, NOw arcp(s _p,0,n,false) 2
ArrayRCP<S> Array<S> Sh, Ex, NOw, DR| arcpFromArray(s _a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR| arcpFromArrayView(s _av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s  -av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR | arcp(s _a_rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR | arcp(cs _a_rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR | ArrayRCP::operator()()
S* ArrayRCP<S> Sh, Ex, NOw s_arcp.getRawPtr() El
S& ArrayRCP<S> Sh, Ex, NOw s_arcp[i] 4
ArrayView<S> St Sh, Ex, NOw arrayView(s _p,n) 1
ArrayView<S> Array<S> Sh, Im, NOw, DR/| Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR| Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s  _v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR| ArrayRCP::operator()()

ArrayView<const S>

const Array<S>

Sh, Im, NOw, DR

Array::operator ArrayView()

ArrayView<const S>

const Tuple<S>

Sh, Im, NOw, DR

Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs  _v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR| ArrayRCP::operator ArrayView()
St ArrayView<S> Ex, NOw s_av.getRawPtr() El
S& ArrayView<S> Ex, NOw s_av[i] 4

Array<S> St Dp, Ex Array<S>(s  _p,s _p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s  _v)
Array<S> ArrayView<S> Dp, Im Array<S>(s _av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s  _t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s _arcp());
std::vector<S> Array<S> Dp, Ex s_a.toVector();

S* Array<S> Ex, NOw s_a.getRawPtr() S
S& Array<S> Ex, NOw s_ali] 4

Types/identifiersS* s _p;
std::vector<S> s v;

ArrayView<S> s _av; ArrayRCP<S> s _arcp ; Array<S> s _a;
RCP<Array<S> > s _a_rcp; RCP<const Array<S> > ¢s _a_rcp ;

Tuple<SN> s _t;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling egfees not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references noitssue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointen mnaningArrayRCP object directly. Instead, use
the non-member constructancp<S>(n)

2. Constructing a non-owningrrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operatingtwiton-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed

3. Exposing a raw C++ pointer should never be necessary in ¢éanmode but may be necessary when inter-
operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant cadteshould only be used for non-persisting
associations.

Table 9. Summary of basic conversions supported for contiguous ar-
rays. 51



5.7.3 Implicit type conversion problems and shortcomings

Implicit conversions between different Teuchos memory agg@ment types, especially in templated
application code, is one of the most confusing aspects ofjubiese classes. As shown in Figures 2/and 3,
many different implicit conversions are defined. An imglwonversion will only be performed by the C++
compiler to satisfy the formal arguments for a function @allen several conditions are satisfied: a) when
it is needed to call a function where no other better funstiprovide a better match, b) when only a single
implicit conversion for each argument is sufficient, and dew calling a non-template function (or a
template function where all of the template arguments apéatty specified). Also, the C++ compiler

will not be able to do implicit conversions to satisfy a funatcall when ambiguous function calls exists.
Explaining the behavior of these implicit conversions irtGyets down to the low-level details of the C++
type system that many C++ programmers take for granted ¢t dioderstand all that well in the first place.

Almost all of the problems that programmers have with imptonversions occur when trying to call
functions where implicit conversions are required to $atise signature of the function. Some of these
problems occur when developers fail to understand the Cpe gystem. Other problems are due to a
fundamental handicap that smart pointer types have wiftertgo raw C++ pointers.

Implicit conversions of the Teuchos memory managemensetar any other C++ classes in any other
library) needed to call a given function fail for one of théldaving reasons:

1. Implicit conversions to functions fail because the mgmmanagement types are not passed by const
reference (or by value) and are mistakenly (or on purposgygubby non-const reference. (This is a
programming error.)

2. Implicit conversions fail because templated functioasmot perform implicit conversions in order to
satisfy a call. (This is a language usability annoyancea@atal with templates but also represents a
fundamental shortcoming of smart pointers compared to raw inters.)

3. Implicit conversions fail due to ambiguous overloadelsda overloaded functions that would
otherwise work just fine when raw C++ pointers are involvdthig is a fundamental shortcoming of
smart pointers or any other class as compared to raw C++gueijt

Each of these types of problems are examined one at a time fioltbwing three subsections.

Implicit conversions failing due to passing by non-const rierence

First, consider implicit conversion problems caused bgrepusly passing Teuchos memory management
objects by non-const references instead of by const referebonsider the user-written function in
Listing/33 that mistakenly passes RGPby non-const reference.

Listing 33 : User function with a bad pass by non-const reference prable

class Base { ... };
class Derived : public Base { ... };

52



void someUserFunction(RCP<const Base> &base); // Should b e 'const RCP<>&’

void someOtherUserFunction()

{
RCP<Derived> derived(new Derived);
someUserFunction(derived); // Compile error, no implicit conversion!
RCP<const Derived> cderived = derived;
someUserFunction(cderived); // Compile error, no implici t conversion!
RCP<Base> bhase = derived;
someUserFunction(base); II' Complile error, no implicit co nversion!
RCP<const Base> chase = base;
someUserFunction(chase); /I Compliles fine, exact match!

}

When user code tries to cabbmeUserFunction...) as shown in Listing 33, the C++ compiler refuses

to perform the implicit type conversions because the coenpiill never perform an implicit type
conversion for an argument passed by non-const referefmetype of error is made at least once by most
developers when they first start using the Teuchos memonagesment classes and they can't understand
why the code does not compile. To understand why the implaritzersions in Listing 33 are not

occurring, one must understand the C++ type system in hoanitlles basic type conversions. The C++
standard specifies that implicit type conversions to fet#i the call of a C++ function will only occur for
arguments passed by value ordpnstreference. For example, a C++ compiler will converirdn into a
double to call a function taking double argument but only if the double is passed by value (ioable

X) or by const reference (i.eonst double& x ). The same holds true for C++ pointer types. Note that
every pointer type (e.gnt* , SomeType*) is a new C++ value data type that is automatically definedby t
compiler for every defined type. The C++ compiler also autiically defines implicit conversions

between pointer types fdi* toconst T* and forDerived* to Base* (or combinations of both with
Derived* toconst Base* ). While C++ pointer data types have a special place in the I@aguage, they
behave exactly like every other data type in C++ with resfmaobn-const references and implicit
conversions. That is, if a pointer object is passed by nastceference instead of by value, the compiler
will refuse the perform the implicit conversion. For examphe equivalent code to Listing [33 replacing
RCPwith raw pointers shown in Listing 34 will also result in cottfat will not compile.

Listing 34 : User function with a bad pass by non-const reference prohlsing raw pointers

typedef const Base* ptr_const Base; // Equivalent to RCP<c onst Base>
void someUserFunction(ptr_const_Base &base); // Bad pass by non-const ref!

void someOtherUserFunction()

{
Derived *derived = new Derived;
someUserFunction(derived); ~ // Compile error, no implicit conversion!
const Derived *cderived = derived;
someUserFunction(cderived); // Compile error, no implici t conversion!
Base *base = derived;
someUserFunction(base); II' Complile error, no implicit co nversion!
const Base *chase = base;
someUserFunction(chase); /I Compliles fine, exact match!

delete derived:;

53



The way to fix this problem is to pass the Teuchos memory maneagetypes (or any other type one wants
the compiler to perform an implicit conversion on) by coreference. For example, fixing the code in
Listing[33 to pass by const reference shown in Listing 35Itesu code that compiles just fine with the
C++ compiler performing all of the expected implicit corsiens.

Listing 35 : User function with corrected pass by const reference

void someUserFunction(const RCP<const Base> &base); // No w correct!

void someOtherUserFunction()

{
RCP<Derived> derived(new Derived);
someUserFunction(derived); // Compiles fine, Derived* -> const Base*
RCP<const Derived> cderived = derived;
someUserFunction(cderived); // Compiles fine, const Deri ved* -> const Base*
RCP<Base> base = derived,;
someUserFunction(base); II' Compiles fine, Base* -> const B ase*
RCP<const Base> chase = base;
someUserFunction(chase); /I Compliles fine, exact match!

}

Implicit conversions failing due to templated function

Another situation where implicit conversions will fail t@lperformed to satisfy a function call are when
the function being called is a template function. The C++@8dard does not allow the implicit
conversion of input arguments in order to call a templatetion [26, Iltem 45]. For example, consider the
code in Listing 36 that fails to compile:

Listing 36 : Situation where implicit conversion fails due to a temgl&inction.

template<class T> class Base { ... };
template<class T> class Derived : public Base<T> { ... };

template<class T>
void someTemplateUserFunction(const RCP<const Base<T> > &base);

template<class T>
void someOtherTemplateUserFunction()

{
RCP<Derived<T> > derived(new Derived<T>);
someTemplateUserFunction(derived); ~ // No implicit conv, no compmile!
RCP<const Derived<T> > cderived = derived;
someTemplateUserFunction(cderived); // No implicit conv , ho compmile!
RCP<Base<T> > bhase = derived;
someTemplateUserFunction(base); /I No implicit conv, no c ompmile!

RCP<const Base<T> > chase = base;

54



someTemplateUserFunction(chase); /I Exact match, compil es!

What is frustrating and yet interesting about this situat®that if theRCFs are replaced with raw pointers,
as shown in Listing 37, the C++ compiler will perform the inafiltype conversions just fine.

Listing 37 : Example where implicit conversion to call a template fumtiworks fine when using raw
C++ pointers.

template<class T>
void someTemplateUserFunction(const Base<T> *hase);

template<class T>

void someOtherTemplateUserFunction()

{
Derived<T> *derived = new Derived<T>;
someTemplateUserFunction(derived); // Okay, Derived<T> * -> const Base<T>*
const Derived<T> *cderived = derived;
someTemplateUserFunction(cderived); // Okay, const Deri ved<T>* -> const Base<T>*
Base<T> *base = derived,;
someTemplateUserFunction(base); Il Okay, Base<T>* -> con st Base<T>*
const Base<T> *chase = base;
someTemplateUserFunction(cbase); /I Okay, exact match!
delete derived;

Comparing the templated code in Listing 36 and Listing 3% tlear that C++ assigns special privileges
and abilities to the conversion of raw C++ pointer data tyihas are not afforded to any other data type.
This is the first example of where smart pointer classes in &e#put at a fundamental disadvantage with
respect to raw C++ pointers. This is an unfortunate sitnabigt the problem can be dealt with by either
forcing the conversion of the input arguments or by explicdpecifying the template arguments as shown,
for example, in Listing 38.

Listing 38 : Example of methods for addressing implicit conversionalitmw the call of templated
functions

template<class T>
void someTemplateUserFunction(const RCP<const Base<T> > &base);

template<class T>

void someOtherUserTemplateFunction()

{
RCP<Derived<T> > derived(new Derived<T>);
/I Force the conversion Derived<T>* -> const Base<T>*
someTemplateUserFunction(RCP<const Base<T> >(derived) );
Il or, specify template argument allowing implicit convers ion
/I Derived<T>* -> const Base<T>*
someTemplateUserFunction<T>(derived);

55



As shown in Listing 38, typically the least verbose way td agkmplate function that requires a
conversion of input arguments is to just explicitly spedHg template argument(s) which turns the
template function into a regular function in the eyes of the-Compiler and then implicit conversions will
be allowed to satisfy the function cll

Implicit conversions failing due to ambiguous overloaded dinction calls

The last situation to discuss where implicit conversioni fail to be performed for the Teuchos memory
management types occurs when calling overloaded functimisequire a conversion of the internal
pointer type that would otherwise work just fine for raw C+ppers. Consider the example code in
Listing[39 showing the use of overloaded functions thatediiifi the const type of the object.

Listing 39 : Example of ambiguous calls to overloaded functions

class Base { ... };
class Derived : public Base { ... };

void someUserFunction(const RCP<Base> &base); II' Overloa d #1
void someUserFunction(const RCP<const Base> &base); // Ov erload #2

void someOtherUserFunction()

{
RCP<Derived> derived(new Derived);
someUserFunction(derived); // Compile error, ambiguous ¢ all
RCP<const Derived> cderived = derived;
someUserFunction(cderived); // Compile error, ambiguous call
RCP<Base> base = derived,;
someUserFunction(base); Il Okay, exact match for Overload #1
RCP<const Base> chase = base;
someUserFunction(chase); /I Okay, exact match for Overloa d #2
}

The reason that the first two function calls in Listing 39 w®P<Derived> andRCP<const Derived>

result in ambiguous function call compile errors is that@¥er compiler is not smart enough to know that
a conversion fronRCP<Derived> to RCP<Base>is better than a conversion froRCP<Derived> to
RCP<const Base> which would allow the first function call to result in a call@verload #1, for instance.
However, if raw C++ pointers are used in same code, as showisting(40, the compiler will make the
right implicit conversions and call the right overloadeddtions just fine.

Listing 40 : Example of implicit conversions for overloaded functidimst work just fine for raw pointers

void someUserFunction(Base *base); Il Overload #1
void someUserFunction(const Base *base); // Overload #2

void someOtherUserFunction()

9Enabling emplicit conversions of input arguments for teatglfunctions with explicitly defined template argumentssinot
work on always work on even recent versions of the Sun C++ demp

56



Derived *derived = new Derived,;

someUserFunction(derived); // Calls Overload #1: Derived * -> Base*

const Derived *cderived = derived;

someUserFunction(cderived); // Calls Overload #2: const D erived* -> const Base*
Base *base = derived;

someUserFunction(base); Il Okay, exact match for Overload #1

const Base *chase = base;

someUserFunction(chase); /I Okay, exact match for Overloa d #2

delete derived:;

Again, similar to the templated function example given ah@momparing Listing 39 and Listing 40, it is
clear that the conversions of raw C++ pointer types to caklmaded functions are given special privileges
and abilities that are not afforded to any other data typetih.(’he C++ compiler will resolve overloaded
functions for the conversion of C++ pointer types based erdhst required conversions (eDgrived* to
Base* is better tharberived* toconst Base* ). This is wonderful behavior for raw C++ pointers (or
perhaps confusing depending on how one looks at it) but petia abilities are not afforded to smart
pointer types likePtr or RCP(or any other smart pointer type includibgost::shared  _ptr @

Problems in calling overloaded functions like this can s®head but only through explicitly converting
the input arguments as shown in Listing 41.

Listing 41 : Example of resolving ambiguous calls to overloaded fumsithrough explicit argument
conversions

void someUserFunction(const RCP<Base> &base); /I Overloa d #1
void someUserFunction(const RCP<const Base> &base); // Ov erload #2

void someOtherUserFunction()

{
RCP<Derived> derived(new Derived);
someUserFunction(RCP<Base>(derived)); /I Calls Overloa d #1
someUserFunction(RCP<const Base>(derived)); // Calls Ov erload #2
}

Having to explicitly convert input arguments to satisfy deaded function calls gets annoying very quickly
for any reasonable-minded programmer. A much better wagabwlith the problem of overload functions
and smart pointer types is to not use overloaded functiottseifirst place as demonstrated in Listing 42.

Listing 42 : Example of resolving ambiguous calls to overloaded fumsiby not using overloaded
functions in the first place

void someNonconstUserFunction(const RCP<Base> &base);
void someUserFunction(const RCP<const Base> &base);

10Fixing the problem of implicit conversions for template anerloaded functions to put smart pointers at the same ss/ew
pointers would require a C++ language extension.

57



void someOtherUserFunction()

{

RCP<Derived> derived(new Derived);

/I Compiles fine, implicit conv: Derived* -> Base*
someNonconstUserFunction(derived);

/I Compiles fine, implicit conv: Derived* -> const Base*
someUserFunction(derived);

Avoiding problems with ambiguous function calls to oveded functions by avoiding overloaded
functions (as demonstrated in Listing 42) may seem like aftibp-out but in general function
overloading tends to be abused in C++ anyway. In many casds,@an be much more clear by using
different function names in cases where most developersdyost use overloaded functions (perhaps
because they cannot think of better non-overloaded names).

5.8 Core idioms for the use of the Teuchos memory managemenbsses

Well designed C++ class libraries are created togetheravsbt of idioms for their use and this is
especially true for the Teuchos Memory Management clagsds.paper describes idioms related to the
creation of single dynamically allocated objects, for defijrand using local variables and data members,
for passing objects and arrays of objects to and from funstiand for returning objects and arrays of
objects as return values from functions. It is critical tthegse idioms be used consistently in order to yield
the safest, highest quality, clearest, most self-docuimgicbde.

5.8.1 The non-member constructor function idiom

The mainstream C++ literature espousing the use of smamemefe-counted pointers like
boost::shared  _ptr seems to lack a solution for an effective, safe, and cleantavageate new
dynamically allocated objects. To demonstrate the issuasvied, consider the C++ claBfaget shown
in Listing[43:

Listing 43 : A class taking multiple dynamically allocatable objects

class Blaget {
public:
Blaget(const RCP<Widget> &widgetA, const RCP<Widget> con st widgetB);
widgetA (widget), widgetB (widget) {}

private:
RCP<Widget> widgetA _;
RCP<Widget> widgetB_;
13

Now consider how one might go about constructirBjaget object on the stack given newly dynamically
allocatedwidget objects. A compact, clean, and seemingly safe way to do $wisrsin Listing 44.

58



Listing 44 : A leaky way to construct

Blaget blaget( rcp(new Widget()), rcp(new Widget()) ):

The problem with the code in Listing 44 is that it might resola memory leak if an exception is thrown

by one of the constructors faYidget (see[31, Item 13]). The reason that a memory leak might dscur
that a C++ compiler is allowed to evaluate batw Widget() calls before calling thecp() functions. If

the second construct@idget() throws an exception after the fingidget() constructor has been

invoked but before thRCPobject wrapping the firsdVidget object is constructed, then the memory created
by the firstnew Widget() will never be reclaimed.

The current C++ literature (see [31, Item 13]) recommenudsitiég constructor code like shown in
Listing[44 using temporary local variables as shown in higt5.

Listing 45 : A sound but verbose way to construct

RCP<Widget> widgetA(new Widget());
RCP<Widget> widgetB(new Widget());
Blaget blaget(widgetA, widgetB);

While the code in Listing 45 will avoid a memory leak beingatesl in case an exception is thrown,
competent Java and Python programs will rightfully be détgd that they have to create temporary
variables just to call another constructor. From a softvesigineering perspective, it is undesirable to
create useless local variables likielgetA andwidgetB because they might be inadvertently copied and
used for other purposes, resulting in undesirable sidsstsif

The way to solve the problems described above is to providenmember constructor functions for all
dynamically allocatable reference-type classes and theaya call them to creatRCRwrapped objects in
client code. In fact, to avoid mistakes when using referagpe classes, one should disallow the creation
of reference-type objects except through a provided nominee constructor. Aon-member constructor
compliantWidget class declaration is shown in Listing 46.

Listing 46 : The non-member constructor idiom for reference-typeseas

class Widget {
public:
static RCP<Widget> create() { return rcp(new Widget); }
void display(std::ostream&);
private: // or protected
II' Not for user's to call
Widget();
Widget(const Widget&);
Widget& operator=(const Widget&);
Y

/I Non-member constructor function
inline RCP<Widget> createWidget() { return Widget::creat e(); }

59



Using the non-member constructor functioeateWidget() , the unsafe constructor call in Listing/44 can
be written as shown in Listing 47.

Listing 47 : Clean and bullet-proof way to construct dynamically alited objects using the
“non-member constructor function” idiom

Blaget blaget(createWidget(), createWidget());

The code in Listing 47 will never result in a memory leak if aweption is thrown because each argument
is returned as a fully formeBCPobject which will clean up memory if any exception is thrown.

Note that the use of theon-member constructor idiorrot only means that raw calls tielete are
encapsulated in all high-level C++ code (due to the ugRGS§, but it also means that raw callsriew
should be largely encapsulated as well!

The non-member constructor idiom as shown in Listing 46 wleereference-type object can only be
dynamically allocated and returned wrapped irR@®object is recommended for all reference-type
objects. The reason for this is that, as described in Sebt@nwhen an object is dynamically allocated in
managed in aRCPobject, a number of important debug-mode runtime checkdegrerformed which
cannot be when the object is first allocated on the stack oagethas a static object.

5.8.2 General idioms for handling arrays of objects

Before describing specific idioms for class data membergdbfunction arguments, and function return
types it is worth discussing how arrays of objects are tceaste@ common way in all of these idioms and
why. A common set of idioms that is used throughout is howyara value-type objects and
reference-types objects are handled. When dealing withrag ef value-type objects, typically a
contiguous array of objects will be allocated. For examigereate an array of value-type objects one
would declare:

Array<S> valTypeArray;

In this case, the storage for the array holding the value-tigjects and the storage for the value-type
objects themselves are one and the same. This is also trper&sting and non-persisting views of array
of value-type objects representedfasyRCP<[const] S>  andArrayView<[const] S> , respectively. It

is common for numerical programs to create very large amméyslue-type objects of integers and floating
point numbers. Therefore, it is usually important to shaesé arrays and pass them around instead of
creating copies. Because if this, it is typical to semyRCP<[const] S>  being used to share large
value-type arrays of objects.

On the other hand, one cannot generally allocate a contiyaoay of reference-type objects. Instead, one
has to allocate and use a contiguous array of (smart) pabjects that then point to individually allocated

reference-type objects. For example, to store an arrayrrdjcally allocated reference-type objects, one
would declare:

Array<RCP<A> > refTypeArray;

60



Anyone familiar with object-oriented programming in C++osld already knows this, but they might be
accustomed to allocating and working with arrays of raw fmolikestd::vector<T*> . Thisis areally
bad idea of course which is mentioned in Item 79 “Store onlyesmand smart pointers in containers” in
[31]. In this case, one can think of the storage for the arfaGPvalue-type objects and the storage for the
reference-type objects of typethemselves to be different sets of storage. For examplecamehange
whatA object is pointed to in thRCP<A>object stored in the contiguous array to without changiregth
object itself such as in Listing 48:

Listing 48 : Code that changes memory in the contiguous array but doenoh the memory in the
reference-type objects themselves

void foo(Array<RCP<A> > &refTypeArray, const RCP<A> &some A)

refTypeArray[0] = someA,
}

Note in Listing 48 that technically the memory stored in thea (of RCP<A>objects) was changed but the
memory stored in the reference-type objects being poimtechere not changed at all. Likewise, one can
change am object itself without disturbing the array storage insidéhe Array<RCP<A> > object itself
such as shown in Listing 49:

Listing 49 : Code that changes the memory associated with the refettypeeobjects but does not change
the memory of the contiguous array at all

void foo(const Array<RCP<A> > &refTypeArray)

refTypeArray[0]->someChange();
}

As opposed to arrays used to store value-type objectsife.gfloat , double , std::complex<double> ,
etc.) which can be huge (with millions of elements) one tgfhycdoes not create large arrays of
reference-type objects. (Note that creating large arraysference-type objects would generally imply
that the reference-type objects are small and cheap arefaheicreating a large array BEPobjects could
impart a large storage and runtime overhead as describegttin8 5.12.1.) Since arrays of reference-type
objects tend to be small in well designed programs, one lystiaés not care to share the array storage of
Ptr or RCPobjects itself, only the reference-type objects they ptminBecause of this, one typically will

not seeArrayRCP<[const] RCP<[const] A> > objects being passed around and stored. Instead, one
would typically just pasérrayView<[const] RCP<[const] A> > objects and then use this array to
create a nevirray<[const] RCP<[const] A> > object to copy the smart pointers. In general, we use

arrays ofRCPobjects for representing persisting associations angsoiPtr objects for representing
non-persisting associations when dealing with referdgype-objects.

5.8.3 Idioms for class object data members and local variabk

In general, class object data members and local variabpeesent a persisting relationship and therefore
should have unique ownership or use reference counting.riiéans that the typdédr andArrayView

61



Class Data Members for Value-Type Objects

| Data member purpose | Data member declaration |
non-shared, single, const object const S s _;
non-shared, single, non-const object S s_;
non-shared array of non-const objects Array<S> as _;
shared array of non-const objects RCP<Array<S> > as _;

non-shared statically sized array of non-const objecksple<S,N> as _;

shared statically sized array of non-const objects | RCP<Tuple<S,N> > as _;
shared fixed-sized array of const objects ArrayRCP<const S> as _;
shared fixed-sized array of non-const objects ArrayRCP<S> as _;

Table 10. Idioms for class data member declarations for value-type
objects.

Class Data Members for Reference-Type Objects
Data member purpose \ Data member declaration

non-shared or shared, single, const object | RCP<const A> a _;

non-shared or shared, single, non-const objeREP<A> a;

non-shared array of const objects Array<RCP<const A> > aa _;
non-shared array of non-const objects Array<RCP<A> > aa _;

shared fixed-sized array of const objects | ArrayRCP<RCP<const A> > aa _;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;
shared fixed-sized array of non-const objectsArrayRCP<RCP<const A> > aa _;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;

Table 11. 1dioms for class data member declarations for referenpesy
objects.

should almost never be used for class object data membearsainariables (especially not for data
members). However, local variables of typte andArrayView will be created in a function when that are
created off othePtr andArrayView objects (passed through the formal argument list). ThestRge and
ArrayView will also be used as local variables when semi-persistisg@ations are involved (see
Section 5.12.3 for an example).

Tables 10 and 11 give some idioms for class object data membsages for local variables are similar.
Table 10 shows a few use cases involving value-type obj@atse 11 shows use cases involving
reference-type objects. Every possible use case is notrshmothiese tables, only the most common ones.
There is almost no end to the number of different types of statectures that can be created by embedding
these memory management types in each other to addreseuliffeeeds. When creating these composite
data structures one just needs to understand the implisatio the selections of the class types and for the
use of const.

It is important to note that aRCP<S>data member for a value-type object is not shown in Table bat &

62



because once one declaresRélPobject pointing to a value-type object, at that point oneaating the
value-type object with reference semantics so it would besiciered to be a reference-type object (which
takes one to Table 11). Again, most value-type class obgectde treated as reference-types in certain
contexts (e.g. such as when dynamically allocating a lArgg object so it can be shared and avoid
expensive deep copy semantics).

Note that there are a few other important differences bettee way that value-type objects and
reference-type objects are handled. The main differermaposly, is that one can hold a value-type object
by value but not for a reference-type object. One can seértlhisw single objects are stored and how
arrays of objects are declared in Table 11.

5.8.4 Idioms for the specification of formal arguments for C+ functions

Described here are idioms for the specification of the forangliments for C++ functions that maximize
compile-time and debug-mode run-time checking, yield mgdimal raw pointer performance for
non-debug-mode builds, and result in highly self-docuingntode. A key component to this specification
is that no raw C++ pointers are used. Raw pointers are theecdusEmost all memory usage problems in
C++. Raw C++ references, on the other hand, are safe to usagas the object reference they are being
used to point to is valid and no persisting association exste Sectidn 5.4.3).

Tables 12 and 13 give conventions for passing single obgaaisarrays of objects for value-type and
reference-type objects, respectively. In this specificatine Teuchos classBs , RCR ArrayRCP , and
ArrayView are used as a means to pass objects of another type (sh@wamnd4 in Tables 12 and 13).
Conventions are shown for both passing in objects and f@ipg®ut objects through the formal

arguments to C++ functions. Note that value-type objeatsadaays be handled using reference semantics
so all of the passing conventions in Table 13 apply equallyelkfor value-type objects as they do for
reference-type objects. However, the conventions in Tablenly apply to value-type objects that can be
stored in contiguous arrays.

This specification addresses the five different propertiasmust be considered when passing an object to
a function as a formal function argument (or passing backgecothrough a formal function argument):

Is it a single object or an array of objects?

Does the object or array of objects use value semantics enerefe semantics?

Is the object or array of objects changeable or non-changdéiab. const)?

Is this establishing a persisting or non-persisting (origegnsisting) association?

Is the object or array of objects optional or required?

The first four of these properties are directly expresseterG++ code in all cases shown in Tables 12 and
113. The specification for whether an argument or object igired or optional must be documented in the
function’s interface specification (i.e. in a Doxygen doeamtationparam field). It is declared here that, by
default, an argument passed throughPan, RCR ArrayView , or ArrayRCP object will be assumed to be
required (i.e. non-null) unless otherwise stated. The erbeption for this implicit assumption for

63



Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \ Formal Argument Declaration \

single, non-changeable object (required s or const S s or const S &s
single, non-changeable object (optionalyonst Ptr<const S> &s
single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuiags
(Use cases not covered by reference semantics used fortypks

| Argument Purpose

\ Formal Argument Declaration

array of non-changeable objeq

tgonst ArrayRCP<const S> &as

array of changeable objects

const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as rg Args

(Use cases not covered by reference semantics used fortypks

| Argument Purpose

\ Formal Argument Declaration

array of non-changeable obje

gtsonst Ptr<ArrayRCP<const S> > &as

array of changeable objects

const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objestas Func Args

(Use cases not covered by reference semantics used fortypks

Argument Purpose

Formal Argument Declaration

array of non-changeable objeq

tgonst Ptr<ArrayView<const S> > &as

array of changeable objects

const Ptr<ArrayView<S> > &as

Table 12.Idioms for passing value-type objects to C++ functions.

64



Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

donst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Pitr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu€bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objedtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vaft) Objects as Func Args

| Argument Purpose

| Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Ptr<RCP<A> > &a

array of non-changeable objegtsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

Table 13.Idioms for passing reference-type objects to C++ functions

65



non-null objects igonst Ptr<const T>&  for single, non-changeable, non-persisting, objects a/tiese
always mean that the argument is optional. If such an argtimeequired, it is specified asnst T& .

An array of value objects is passed as contiguous storageghranArrayView<S>  or ArrayView<const

S> object. An array of reference objects, however, cannot Bsqghin contiguous storage for the objects
themselves and instead must be passed as contiguous stb(ageart) pointers to the objects using
ArrayView<const Ptr<const A> > for non-persisting associations AmrayView<const RCP<const

A> > for persisting associations. Thenst can be removed from the eitheir /RCPor A depending on
what is allowed to change or not change during the functidin ca

Note that in the case @ftr , RCP, ArrayView , andArrayRCP objects, that these can be treated as output
objects in their own right which is shown in Tables 12 and I3sfassing out persisting and semi-persisting
relationships to single objects and arrays of objects. kample, passing aRCP<T>object into a function
to be set to point to a differertobject would be specified in the function prototypecast Ptr<RCP<A>

>& or RCP<A>&depending on preference (only the casest Pir<RCP<A> >& is shown in the tables
which is a better self-documenting form and provides bel&tug-mode runtime checking since it can
detect dangling references). Note that semi-persistingcitions are always passed ouPas and
ArrayView objects. These types have essentially zero overhead intamizgd build but yet have full
runtime checking including detection and reporting of danggreferences in a debug-mode build (see
Section 5.12.3 for a discussion of the motivation and us&geri-persisting associations). The ty&P
andArrayRCP are always used to establish persisting associations.

Variations in passing single changeable objects

The only area of contention in this specification is how todlamarguments for required single changeable
objects. The specification described here allows eithesipgshem through a smart pointer @sst

Pr<T>& or as a raw non-const object referencé &slin Item 25 in [31], the authors recommend passing a
raw non-const object referen&@& for changeable required objects, which seems very reakoridbwever,
other notable authors [29, Section Section 5.5] and [24ti@e&3.2] and the Google C++ coding

standard! recommend passing a pointer instead, as it provides a \dhumthat the object is being

modified in the function call. Of course, the idioms definecerdo not allow raw pointers so one must
pass aonst Ptr<T>& object instead. To consider the issues, for example, Igo&irthe function call in
Listing[50, which (if any) argument(s) are being modified?

Listing 50 : Function call using all raw references where it is impossito determine what objects are
modified in the call

someFunction(a, b, ¢, d);

To tell for sure which objects are being modified in Listing 68e would have to look at the function
prototype shown in Listing 51 to see that it is thargument that is being modified in the function call.

Listing 51 : Function prototype where all objects are passed as raw Ceferences

void someFunction(const A& a, const B& b, const C& ¢, D& d);

Uhttp:/igoogle-styleguide.googlecode.com/svn/trunk/c ppguide.xml

66



Now consider the convention that all changeable argumenfmbsed in through a pointer@sst
Ptr<T>& , giving the new prototype shown in Listihg 52.

Listing 52 : Function prototype where modified objects are passed tiivéi r leading to
self-documenting client code

void someFunction(const A& a, const B& b, const C& c,
const Ptr<D>& d );

Now the new function call in Listing 53 is self-documentingtwegards to which object is modified in the
function call by using theutArg(...) templated non-member function (saeArg(...) in Listing[19).

Listing 53 : Self-documenting function call that shows what argumemhodified in the function call

someFunction(a, b, ¢, outArg(d));

Also, given that alPtr<T> arguments are assumed to be non-null by default, this spetifat passing an
argument asonst Ptr<T>& has all of the same meaning that passing an argumenit.b®f course now
one has given up a compile-time check for a non-null argurfaerii& with a debug-mode runtime check
thatconst Ptr<T>& is non-null. Theoretically, the compile-time check wouftbaar to be far superior but
in reality the debug-mode runtime check is usually what kagmnyway since the raw object reference
would typically be created from a smart pointer in most cgdsdsch can be null, resulting in a null
dereference runtime exception in a debug-mode build). &fibes the issue is not whether a compile-time
check will catch passing a null-object (because it can't)ibstead the issue is how soon a debug-mode
runtime check will catch a dereference of a null smart pointe

Converting from non-persisting to persisting references @ satisfy the defined idioms

There are legitimate instances where client code needst@da non-persisting reference (iTe,

Ptr<T> , or ArrayView<T> ) to a persisting reference (i.@CPor ArrayRCP ) in order to satisfy the idioms
outlined in Tables 12 and 13. The most common case is whernctidaris passed a raw reference d?ta
to a C++ object (for a non-persisting association) but timetfion’s implementation must create (and
destroy) and object what has a persisting association hétlpassed in object. Consider the clagsds
andC shown in Listing 9 wher€ maintains arRCPto B. Now consider a client function that needsAand
B object to perform its function but also needs to create asttagaC object internally giving it thé3
object. In order to be consistent with the idioms defined hiteB object must be passed as a raw C++
reference or throughRir object. Listing 54 shows how to convert from a raw C++ refeeeto a
non-owningRCPobject to satisfy the idioms.

Listing 54 : Converting from a raw C++ reference to arRCP object to satisfy function argument passing
idiom

void doSomeOperation(B &b, const A &a)
{

67



Cc

const RCP<B> b _rcp = rcpFromRef(b);
c.fooC1(b_rcp, a);

c.fooC2();

/I The C object is destroyed here!

In Listing/54, the standard conversion functiepFromRef{...) converts from a raw C++ reference to a
non-owningRCPobject. Creating aRCPlike is perfectly safe and correct. The lifetime of the ceedi
object is contained within the functiaioSomeOperation(...) so the promise of not creating a persisting

association inherent in the functions prototype (i.e. ipastheB object as a raw C++ reference) is being
correctly kept. Note that if the created non-ownR@Pis accidentally used to create a persisting
association then, in many cases, the dangling referentbevilaught by the built-in debug-mode runtime
checking (see Section 5.11.3).

A similar type of conversion is required when passing in gectithrough &tr object. For example, the
function in Listing 54 may instead pass iPa<B> object instead of a raw C++ referenB&and the
refactored function is shown in Listing 55.

Listing 55 : Converting from &Pt r object to anRCP object to satisfy function argument passing idiom

void doSomeOperation(const Ptr<B> &b, const A &a)

{

Cg

const RCP<B> b _rcp = rcpFromPtr(b);
c.fooC1(b_rcp, a);

¢.fooC2();

/I The C object is destroyed here!

Again, if a persisting association is accidentally credtgdopying theRCP<B>object created in Listing 55
then this can be detected in a debug-mode build. Note thaiieersion fronmPtr<B> to RCP<B>shown

in in Listing/55 actually generates much more efficient cada debug-mode build because
dangling-reference detection is implemented withoutmgto perform a more expensive node look-up as
described in Section 5.11.3.

5.8.5 Idioms for returning objects from C++ functions

Idioms for how objects are returned from C++ functions ase @nportant in order to achieve C++ code
that is efficient, safe (with both compile-time and debugdmoun-time checking), and is as
self-documenting as possible. Tables 14/and 15 give compexifications for returning single objects
and arrays of objects for both value-type and reference-tigects for non-persisting, persisting, and
semi-persisting associations. Five different types opprbes that must be defined and considered when
returning an object (or array of objects) from a function:

68



Returning Non-Persisting Associations to Value Objects
Purpose | Return Type Declaration

Single copied object (return by value) | S

Single non-changeable object (requiredjonst S&

Single non-changeable object (optionalpPtr<const S>
Single changeable object (required) | S&

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks
Purpose | Return Type Declaration |

Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks)
Purpose | Return Type Declaration |

Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Table 14.Idioms for returning value-type objects from C++ functions

Is it a single object or an array of objects?

Does the object or array of objects use value semantics enerefe semantics?

Is the object or array of objects changeable or non-changdéiab. const)?

Is this establishing a persisting or non-persisting (origegnsisting) association?

Is the object or array of objects optional or required?

These five different properties are the same five describefrfimal function arguments described in
Section 5.8.4. Again, the first four of these properties &arty defined in the C++ code itself. However,
again, it is not always possible to directly state in the Cedecdeclarations whether the object (or array of
objects) is optional or required. Here, we state by deféalt &ll array arguments of tygerayView and
ArrayRCP are assumed to be required non-null arguments by defadler@ise, documentation must exist
stating that the arguments are optional.

The semantics of return objects is different than for forfnattion arguments. There are several
differences that one can see from looking at Tables 12 andritBTables 14 and 15. The key difference
between formal functions arguments and return valueseetatusing constant references for formal
arguments versus returning objects by value as return tyfgbde the memory management objects of

69



Returning Non-Persisting Associations to Reference (or fae) Objects

| Purpose | Return Type Declaration |
Single cloned object RCP<A>
Single non-changeable object (requiredjonst A&
Single non-changeable object (optionalpPtr<const A>
Single changeable object (required) | A&
Single changeable object (optional) | Ptr<A>

Array of non-changeable objects

ArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)bjects

| Purpose

| Return Type Declaration |

Single non-changeable object

RCP<const A>

Single changeable object

RCP<A>

Array of non-changeable objectsAr

rayView<const RCP<const A> >

Ar

Array of changeable objects

rayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Re

turn Type Declaration \

Single non-changeable object

Ptr<const A>

Single changeable object

Ptr<A>

Array of non-changeable objec

ISArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Table 15. Idioms for returning re
tions.

ference-type objects from C++ func-

70



typePtr , RCP, ArrayView , andArrayRCP are all passed by constant reference in Tables 12 and 13,
alternatively they are always returned as objects (i.armeby value) in Tables 14 and[15. The reason that
these memory management objects should always be retuynedue is that this is needed to correctly set
up the reference counting machinery to properly set up gtergirelationships and to enable debug
runtime checking (e.g. to detect dangling references veithigersisting associations).

Note that it is critical that semi-persisting associatiforssingle objects must always be returned as

Ptr<T> objects and never as raw referen¢&svhich is otherwise acceptable for non-persisting
associations. The reason tlRaKkT> objects must always be used for semi-persisting assocgaisothat in

a debug-mode build, the runtime checking machinery willllle #o detect dangling references or changes
in the parent object that would otherwise invalidate theigsensisting view that is impossible to catch
when using raw C++ references.

In the following section, an extended example is given hidgttiing the need to return the Teuchos memory
management smart pointer objects by value. If one alreacypas the need for this, the example can be
skipped.

Extended example for the need to return smart pointers by vale

In order to understand the importance of returning memonyagament objects by value instead of by
reference, first consider Listing 56 that looks to be peljezfe code.

Listing 56 : A seemingly safe use of raw C++ references

void seeminglySafeFoo(Blob &blob, Flab &flab)

{
blob.doGoodStuff(flab);

}

The code in Listing 56 does not itself look unsafe. Howe\es,reason that it unsafe comes from the code
that callsseeminglySafeFoo(...) and the code that implemer®b shown in Listing 57.

Listing 57 : Code that makes seeminglySafeFoo(...) fail

class Blob
{
RCP<Flab> flab_;
public:
Blob() : flab_(createFlab()) {}
const RCP<Flab>& getFlab() { return flab_; }
void doGoodStuff(Flab &flab_in)

flab_ = createFlab(); // Using non-member constructor
flab_in.conflab(*flab_);
}
Y

71



void badCallingFunction()

{
Blob blob;

seeminglySafeFoo(blob, *blob.getFlab());
}

When the code in Listings 56 and/57 executes, it will mostyikause a segfault when it runs, if one is
lucky. However, if unlucky, the code will actually seem towerking correctly on the machine where the
code is initially tested it but will explode later (perhap=ays later) when run under different
circumstances. The reason that the code in Listings 56 amslfaidlty is because thglab object that is
passed through the calteminglySafeFoo(blob, *blob.getFlab()) to blob.doGoodStuff(flab) is
invalidated before it is used because it gets destroyedsamgiaced by a new object in the expression
flab _ = createFlab() . When this happens, the object now represented as the raweigrence

flab _in is deleted which causes the code in the exprediibn_in->conflab(*flab _) to bein error,
and the behavior of the program is undefined (and again vgfesgt if one is lucky).

How did it come to this situation? What if the raw C++ referemavere replaced with with RCP-wrapped
objects? Well, consider the updated code in Listing 58.

Listing 58 : Still unsafe code
class Blob

{
RCP<Flab> flab_;
public:
Blob() : flab_(createFlab()) {}
const RCP<Flab>& getFlab() { return flab_; }
void doGoodStuff(const RCP<Flab> &flab_in)

flab_ = createFlab(); // Using non-member constructor
flab_in.conflab(*flab_);

}
3

void seeminglySafeFoo(Blob &blob, const RCP<Flab> &flab)

blob.doGoodStuff(flab);
}

void badCallingFunction()

{
Blob blob;

seeminglySafeFoo(blob, blob.getFlab());
}

Is the code in Listing 58 correct? The sad answer is no, itisToeFlab object returned from
blob.getFlab() will still get deleted before it is used in the expressilah _->conflab(flab _in) .

72



What is going on here? The core of the problem is that the imm&ob::getFlab() is incorrectly
implemented. Functions must always retR@Pobjects by value and never by reference as shown in
Tables 14 and 15. By returning a raw C++ reference tRiBle<Flab> object, a persisting association with
the client is never properly established and this is the caase of the whole problem.

Now consider the updated code in Listing 59 that goes backituaw C++ references where appropriate
but now returns th&CP<Flab> object by value as it should.

Listing 59 : Correctly returning RCP by value yielding safe code

class Blob

{
RCP<Flab> flab_;

public:
Blob() : flab_(createFlab()) {}
RCP<Flab> getFlab() { return flab_; } / Returns by value now !
void doGoodStuff(Flab &flab_in)

flab_ = createFlab(); // Using non-member constructor
flab_in.conflab(*flab_);

}
I3

void seeminglySafeFoo(Blob &blob, Flab &flab)

blob.doGoodStuff(flab);
}

void goodCallingFunction()

{
Blob blob;

seeminglySafeFoo(blob, *blob.getFlab());
}

Is the code represented in Listing 59 now safe and correct?t ¥ The reason that it is now safe and
correct is that a persisting relationship is now being ailyecreated by the function calob.getFlab()

in that a new temporariRgCP<Flab> object is created (which increments the reference coungmEhis
new temporanRCP<Flab> object, a raw C++ reference is then returned friviob.getFlab() and
passed through. In this case, since the reference couneaxistingFlab object is now two instead of
one, the expressidiab _ = createFlah() will not delete the existingrlab object and the following
expressiorilab _in.conflab(*flab _) will have two validFlab objects. After the function
seeminglySafeFoo(blob, *blob.getFlab()) exits, the firstlab object will finally be deleted (but
that is just fine).

More exmaples of function return issues

Another difference between formal function arguments &tdrn values is what persisting and
non-persisting associations mean related to functionnstun the case of objects returned from C++

73



functions, a persisting association is one where the obgtgtned from a C++ function is remembered
past the end of the statement where the C++ function retgithie objects is called. For example, consider
the code in Listing 60.

Listing 60 : Example of a bad persisting association implemented asweCa+ reference (see thé ob
class defined in Listing 61)

void foo(Glob& glob)

{ const Flab &flab = glob.getFlab();
glob.doStuff();
flab.doMoreStuff();
}
The code in Listing 60 represents a persisting associateause because thlab object returned in the
expressiortonst Flab &flab = glob.getFlab() is remembered past the statement where it is called
and is used later in callinfipb.doMoreStuff() . This type of code is all too common in C++ programs

(including a lot of code | have written over the last 10 yedd)it is not safe because it is not properly
respecting the notion of persisting associations. To seethécode in Listing 60 is so bad, consider the
possible unfortunate implementation of f@ileb class shown in Listing 61:

Listing 61 : Bad implementation of th& ob class with respect to persisting associations

class Glob {
RCP<Flab> flab_;
public:
Glob() : flab_(createFlab()) {}
const Flab& getFlab() const { return *flab_; }
void doStuff()

{

flab_ = createFlab(); // Non-member constructor

What happens of course is that the behavior of the code imfs60 and 6/1 is undefined and will most
likely result in a segfault (if one is lucky). The reason tisi®ad code is that theab object reference that
gets returned fronglob.getFlab() is not used until after the functiadlob::doStuff() gets called

which will delete theFlab object and replace it with another one. This resultfamdoMoreStuff()

being called on a deleted object. Again, this will typicasult in a segfault, but on some systems in some
cases the program might actually seem to run just fine, per&agn for years. This of course is an error
that a tool like Valgrind or Purify would likely catch pretgasily which is why these tools are very useful

to have around. So what rule was broken in Listing 60? Consigain the definition of a persisting
association related to a return value which is:

e Persisting associationare associations that exist between two or more objecte#tand past a
single function call for formal function arguments, or aggénstatement for function return objects.

74



What this means is that any object that is returned as a rawr€fetence from a function must be used in
the same statement from where the returning function isd¢allherefore, the function in Listing 60
should be rewritten as shown in Listing 62.

Listing 62 :

void foo(Glob& glob)

{
glob.getFlab().doMoreStuff();

glob.doStuff();
}

Here, of course, one is assuming that the order of evaluafitite functions is not important.

Note that functions returning raw C++ references are comamuhare fairly safe to use as long as the
returned object is used in the same statement where thedanstcalled. For example, this is what is
commonly done when a non-const reference to an element fraseradefined array class object is
returned and set in the same statements such as shown imgl6&t

Listing 63 :
void foo(std::vector<int>& a)

al0] = 5; /I Non-persisting function return association

What is typically not safe, of course, is when one tries tesaveference to an object and then use it like in
Listing[64.

Listing 64 :

void foo(std::vector<int>& a)

{

int & 0 = a[0]; // Incorrect persisting association
a.resize(20);
a0 =5 II' Wil likely segfault if one is lucky!

The problem with the code in Listing 64 is that theesize(20) function might cause a new buffer to be
allocated and the existing buffer to be deleted. This wikafirse make the reference returneéin&a _0
= a[0] invalid when itis later written to im_0 = 5.

The whole point of the example code Listings 63 and 64 is toatesimate the working definition of
persisting & non-persisting associations as they relatdbjects returned from functions. This argument
supports the idioms shown in Tables 14 and 15.

75



1 '
, RCPNodeHandle :
node '
0..1| ptr strength : ERCPStrength
f'\ RCPNode 0.1 1.*
ﬂ) T strongCount : int
weakCount : int 1 0.1
hasOwnership : bool m| map<string, any> |

extra_data_map
ConcreteT 0... L¢ 0.*

ol T any §
ELConcreteT, DeallocT 1 o
L RCPNodeIrr-l-r;I“W ------------------- RCPNodeTracer {singleton}
addNewRCPNode(node:RCPNode*)

removeRCPNode(node:RCPNode*)
1 ExistingRCPN :T*): RCPNode*
DeallocT getExistingRCPNode(p:T*): RCPNode

dealloc printActiveNodes(out:ostream&)

Figure 4. Basic design of the Teuchos reference-counting machinery.

5.9 Reference-counting machinery in-depth

In order to effectively use these memory management claswbio debug problems when they occur, one
must understand the basic reference-counting approanh bsed. Basic reference counting with smart
pointers is well established in the C++ literature [25] binaaic overview and specific details about the
approach used in the Teuchos memory management classg@saprgite to describe here. Of equal
importance is to describe how the reference-counting sifsature can be used to address some boundary
cases that can help solve some fundamental problems wéterefe counting.

The basic reference counting machinery being used by tksedds first described. Next, the issue of
circular references and weak pointers are discussed.

5.9.1 Basic reference counting machinery

The foundation for the reference-counting machinery usealtof the reference-counting classes is shown
in Figure 4 (UML class diagram). The claREPNodeis an abstract base class that contains two different
reference counts (a strong count and a weak count) and fnlitéions for manipulating the counts as
efficiently as possible. The templated concrete sub&&&Nodelmpl is what actually stores the raw C++
pointer to the reference-counted object. This class istal®plated on an deallocation policy object that
determines how the object is reclaim&CPNodeHandle is a simple handle class that automates the
manipulation of the reference counts by overloading they @mstructor and assignment operator
functions. This avoids having to replicate reference dogrincrementing and decrementing in the

76



user-level classeBCPandArrayRCP that contain it. All of the functions oRCPNodeHandle are inlined

and the only data members are a pointer to the underRtijNodeobject and atrength  attribute (with
valuesRCP.STRON@GNARCPWEAK The clasRCPNodeHandle imparts zero space and time overhead and
removes all duplication in how the reference count nodeabligehandled. In future UML diagrams, the
RCPNodeHandle class will be considered to be part of the ownRigPor ArrayRCP classes to avoid clutter.
The classe®CPNode RCPNodelmpl, andRCPNodeHandle, are used unchanged for both heéPand
ArrayRCP classes (however, only tfRCPclass is shown for simplicity).

The member functions f®®CPandArrayRCP related to reference-counting are shown in Listing 65.

Listing 65 : Reference counting member functions R&P and Ar r ay RCP

template<class T>
class [Array]RCP {
public:

Il Reference counting member functions
ERCPStrength strength() const;

bool is_valid_ptr() const;

int strong_count() const;

int weak_count() const;

int total_count() const;

void set_has_ownership();

bool has_ownership() const;

Ptr<T> release();

RCP<T> create_weak() const;

RCP<T> create_strong() const;
template<class T2> bool shares_resource(const RCP<T2>& r _ptr) const;
const RCP<T>& assert_not_null() const;
const RCP<T>& assert valid_ptr() const;

Most of the functions in Listing 65 are never called by geheliants except in desperate situations.
Notable exceptions are the member functiorate _weak() (which is used to create\lEAK RCBbject
from aSTRONGbject) and andreate _strong()  (which is used to createSTRONG RCBbject from a
WEAKobject). The functiorereate _weak() is used to break a circular reference as described in
Section 5.9.2 whilereate _strong() is used in situations like the “object self-reference” ididescribed

in Sectio )

Figure 4 also shows that eveRZCPNodeobject has an optionatd::map object that can be used to store
and retrieve arbitrary extra data (represented aarthalata-type which can handle any value-type object).
A raw pointer is stored to thextra _data _mapobject that is initialized to null by default. Therefore nib
extra data is used, the only overhead for this feature is &ta printer member and its initialization to null.
The motivation for and the usage of extra data is discuss&eation 5.9.5.

It is critical to understand that the foundation for shariojects using reference counting is that only one
owning RCPNodeobject can exist for any object that is shared. Consider dde @ Listing 66 that creates
the reference-counting objects shown in Figure 5. All of#RCPobjects share the sarRE€PNodeobject.

77



:RCP<A> :RCP<B1> :RCP<B2>
strength=STRONG strength=STRONG strength=STRONG

\_¢

:RCPNodelmpl<C, DeallocDelete<C> >

strongCount =4
weakCount =1

hasOwnership=true T
:RCP<C> LJ :RCP<A>
strength=STRONG strength=WEAK

Figure 5. Example of severaRCP objects pointing to the same
RCPNodelmpl object.

Listing 66 : Example of setting up severBCP objects pointing to the same reference-counted object
shown in Figure 5.

RCP<C> c(new C);

RCP<B1> bl = ¢;

RCP<B2> b2 = ¢;

RCP<A> al = c;

RCP<A> a2 = a.create_weak();

If the programmer follows the idioms described in Sectidhdnd outlined in Appendix A and
Appendix B, it will always be the case that only one refereogenting node object will exist for a given
reference-counted object. Exceptions to the one owRERNodeobject per reference-counted object
guideline are allowed to facilitate some more advanced asesc(see Section 5.13.1 for an example). As
mentioned earlier, thRCPNodeobject stores both a strong and a weak reference count. fdmgsind

weak reference counts are equal to the number of strong aakiR@Pobjects pointing to the singlRCP
node object. When the strong count goes to zero, the undgrgference-counted object is destroyed but
the RCPNodelmpl object is not destroyed until the strong and weak counts gotio zero. The motivation
and the workings of strong versus weak reference countsdsised in Section 5.9.2.

Finally, one of the key integrated debug-mode capabiliethe Teuchos reference-counting machinery is
the ability to trace th&®CPNodeobjects that are created and destroyed and put them in aveviread

object database. TH&CPNodeTracer class/object is a global singleton object that stores ath@RCPNode
objects in active use. Astd::multimap object is used to store raw pointers to R@PNodeobjects and

the multi-map is keyed by thevid* address of the underlying reference-counted objects thlgpts
Therefore, one can query to see if @&gPNodeobject already exists for a given object. The cost of this
query isO(log(n)) wheren is the number of activBCPNodeobjects currently in use. Therefore, the cost of
node tracing quite scalable with the numbeR@PNodeobjects in use. The current implementation
optionally relies on Boost code which provides some triger determining at compile-time if a type is
polymorphic or not and thereby allowing the wy@amic _cast<const void*>(p) to determine the true
base address of any object (no matter if it uses virtual blasses and multiple inheritance or not). The

78



ability to trace activeRCPNodeobjects and look them up based on an object’'s address isatifiir many
debug-mode runtime checking capabilities including: gpréng objects involved in circular
dependencies after a program ends (see Section 5.11. Btda}tidn of dangling references of non-owning
RCPobjects (see Section 5.11.3), and c) detection of the oreafimultiple owningRCPNodeobjects (see
Section 5.11.4).

Note that node tracing is only an optional debug-mode featad is not required for the correct
functioning of the reference-counting machinery. In féog observable behavior of correct programs is
exactly the same whether debug-mode node tracing is enableat. For correct programs, the only
observable consequence of having node tracing enablebteniticreased runtimes.

5.9.2 Circular references and weak pointers

The fundamental weakness of low-overhead reference cmuas described in this paper and used in the
Teuchos memory management classes is that there is nojdlat way to address circular references that
otherwise result in memory leaks. Because of possible leircaferences, only system-level
garbage-collection methods, such as implemented in laygguiéke Java and Python, can robustly clean up
memory in every case of circular reference. As stated eagleen backward compatibility constraints,
many existing C++ programs cannot be used with any C++ im@hgation that might implement garbage
collection, not now or ever. A key issue is that many progragagiire the side-effects of the deletion of
objects as specific points in the program and changing thedfndeletion of the object (and the call of the
destructor) would break the program.

To understand the problem with circular references, cenghie code in Listing 67 which sets up a simple
circular reference between two objects.

Listing 67 : Setting up a simple circular reference between two objects

RCP<A> a = createA();
RCP<B> b = createB();
a->set B(b);
b->set_A(a);
RCP<ClientA> clientA
RCP<ClientB> clientB

createClientA(a);
createClientB(b);

}

Il The A and B objects will not be deleted when the above code bl ock ends!

The code fragment in Listing 67 sets up the objects in Figsiedving the circular reference. Here object
a contains arRCPpointing to objecb, and objecb contains arRCPpointing to objecg. In this situation,
whenClientA andClientB  destroy theilRCPobjects pointing to the underlyirgandb objects, the
reference counts will not go to zero because of the circet@rence betweemandb. This will result in a
memory leak that a tool like Valgrind or Purify should comiplabout. If lots of objects with circular
references are constantly being created and destroydtirrgsn these types of memory leaks, then
obviously one has a problem and the system could run out ofaneand bring the program down.

79



rcpA1 : RCP

rcpB1 : RCP

STRONG

STRONG

w_l

nodeA: RCPNode

strongCount=2
weakCount=0

—

nodeB: RCPNode

strongCount=2
weakCount=0

4% H
rcpA2 : RCP rcpB2 : RCP
STRONG STRONG
i 1
| clientA | | clientB |

Figure 6. Simple circular reference between two objects.

When debug-mode node tracing is enabled and circular refeseexist, the reference-counting node
tracing machinery will print out the remainiRCPNodeobjects when it exists (see Section 5.11.2 for more
details).

While there is no completely general and bullet-proof wagddress the circular reference problem, there
is a fairly simple and cheap approach supported by the Teudierence-counting machinery that
developers can use to effectively resolve circular refegenn most cases. The approach described here
supported by the Teuchos reference-counted classes ipltmteéke concept of weak reference-counted
pointers. As shown in Figure 4, this is accomplished throagirength ~ attribute with valueSTRONGnd
WEAKBY default, allRCPobjects areSTRONGWhen arRCPis STRONGthen the underlyingoncreteT

object is guaranteed to stay around. However, whe®R@#s WEAKthe underlyingConcreteT can get
deleted when strong count goes to zero (by the deletion ef STRONG RCBbjects).

So how can one deal with circular references like this? Tisavanin this case is to use a welkkPto
break the circular reference as shown in Listing 68.

Listing 68 : Breaking a simple circular reference using a weR®P

{
RCP<A> a = createA();
RCP<B> b = createB();
a->set B(b);

b->set_A(a.create_weak());
RCP<ClientA> clientA = createClientA(a);
RCP<ClientB> clientB = createClientB(b);

if (deleteClientAFirst)

clientA = null;
else
clientB = null;

80



— <
rcpAtl : RCP rcpB1 : RCP
WEAK STRONG
'— nodeA: RCPNode nodeB: RCPNode —
strongCount=1 strongCount=2
weakCount=1 weakCount=0
rcpA2 : RCP rcpB2 : RCP
STRONG STRONG
| clientA | | clientB |

Figure 7. Simple circular reference between two objects broken using
aWEAK RCP

}

Il Now all the objects will be deleted correctly no matter if
Il clientA or clientB goes away first.

The object structure set up by the code in listing Listing$8epicted in Figure|7. With the weak pointer
in place, all of the objects will get destroyed wh@lientA andClientB  remove theiRCPobjects, no
mater what order they remove them. The critical assump$idhat the “useful” lifetime of is a super-set
of the “useful” lifetime ofb. If a gets deleted before thenb had better not try to acceasanymore!
However, the goal is that whoever gets deleted first¢iisntA  orclientB ), then the objecta andb will
also be deleted gracefully and not result in memory leaks.

In the next section, detailed scenarios are given for thetidel of the objects shown in Figure 7. This
information is important if one wants to understand exalotw the weak pointers can allow the objects to
be deleted correctly while still catching mistakes gralbgfand avoiding undefined behavior. However,
this information is not critical to understand for basic gsaf the classes.

Detail scenarios for weak pointers and cicular references

Consider the scenario where ttientA  object goes away first (i.€eleteClientAFirst=true )
depicted in Figurel8 (UML communication diagram). This soémis shown in two phases in two separate
UML communication diagrams in Figure 8 with the followingps:

a) ClientA goes away first

a.1l) AsrcpA2 goes away, it deincrementsdeA::strongCount from 1 to O.

a.2) SincenodeA::weakCount > 0 , thennodeA is not deleted but sinaedeA::strongCount==
the objecta gets deleted.

81



3: <<delete>>

— nodeA: RCPNode

strongCount=1 —> 0
weakCount=1

rcpA2 : RCP
STRONG

r

clientA |

2: <<delete>> rcpAi : RCP rcpB1 : RCP
WEAK STRONG

{ 4: deincrCount(STONG)

1: deincrCount(STRONG), deleteObject

nodeB: RCPNode —

strongCount=2 —> 1
weakCount=0

,—/T\

rcpB2 : RCP
STRONG

i

| clientB |

a) ClientA goes away first

3: <<delete>>

2: <<delete>>

rcpAi : RCP rcpB1 : RCP
WEAK STRONG

7 4: deincCount(WEAK), <<delete>>

nodeA: RCPNode

strongCount=0
weakCount=1 -> 0

4\—\

‘—\V

nodeB: RCPNode —

strongCount=1 —> 0
weakCount=0

1: deincrCount(STRONG), <<delete>>

rcpA2 : RCP rcpB2 : RCP
STRONG STRONG

f

i

‘ clientA ‘ ‘

b) ClientB goes away second

Figure 8. Weak pointer scenario

82

whe@ientA is deleted first



a.3) Asa is deleted, it deletes iRCPobjectrcpBl .

a.4) SincercpBl is a strong pointer, it deincrementsdeB::strongCount from 2 to 1. Therefore,
neithernodeB or b gets deleted at this point. NOTE: At this point, the obgbias been deleted
andnodeA’s internal pointer has been setNOLL If the b object tries to accessafter this, it
will result in an exception being thrown in a debug build. Inan-debug build, any accessaf
from b will result in undefined behavior (e.g. segfault).

b) ClientB goes away second

b.1) AsclientB goes away, it takespB2 with it. SincercpB2 is a strong pointer, it deincrements
nodeB::strongCount from 1 to 0. SincenodeB::strongCount andnodeB::.weakCount are
both O this results inodeB being deleted.

b.2) AsnodeB is being deleted, it deletes theobject.
b.3) Ash is being deleted, it deletes iRCPobjectrcpAl .

b.4) With rcpAl being deleted it reducemdeA::weakCount  from 1 to 0. Since
nodeA::strongCount andnodeA::weakCount  are both 0, this results imdeA being deleted.
Since the objeca is already deleted, nothing more happens.

Now consider the scenario where tlientB  object goes away first (i.€eleteClientAFirst=false )
depicted in Figure|9 which involves the following steps:

a) ClientB goes awaly first

a.l) TheclientB  object goes away first and takesRSPobjectrcpB2 with it. This reduces
nodeB::strongCount from 2 to 1. No other objects are deleted yet.

b) ClientA goes away second

b.1) WhenrcpA2 goes away, it deincrememntsdeA::strongCount from 1 to 0. At this point,
sincenodeA::.weakCount > 0 , the node is not deleted but the referenced olgestdeleted.

b.2) The objecta is deleted.
b.3) Asa is deleted, it deletes iRCPobjectrcpBl .

b.4) AsrcpBl is deleted, it deincremeni®deB::strongCount from 1 to 0. Since
nodeB::weakCount==0 , thennodeB is deleted.

b.5) AsnodeB is deleted, it deletes tHeobject.

b.6) Ash is deleted, it deletes iRCPobjectrcpAl . What is critical here is thdt must not try to
access which is already in the process of being deletedh \Were to try to access as it is
being deleted, in debug mode an exception would be thrownoitrdebug mode, this would
result in undefined behavior (e.g. segfault). It is rare, évmy, that one object tries to access
another as they are deleted.

b.7) WhenrcpAl is removed, it deincrement®deA::weakCount  from 1 to 0. Since
nodeA::strongCount is already 0, this results imdeA being deleted. Sincais already in
the process of being deleted, nothing extra happens here.

83



rcpAl : RCP rcpB1 : RCP
WEAK STRONG
'"— nodeA: RCPNode nodeB: RCPNode —
strongCount=1 strongCount=2 —> 1
weakCount=1 weakCount=0
/t‘ ﬁ\ 1: deincrCount(STRONG),
rcpA2 : RCP rcpB2 : RCP
STRONG STRONG
| clientA | ‘ clientB ‘

a)ClientB goes away first

3: <<delete>>
5: <<delete>>

2: <<delete>> 6: <<delete>>

rcpAt : RCP rcpB1 : RCP
WEAK STRONG
J/ 7: deincrCount(WEAK), <<delete>> 4: deincCount(STRONG), <<delete>>
“— nodeA: RCPNode nodeB: RCPNode
strongCount=1 -> 0 strongCount=1 -> 0
weakCount=1 -> 0 weakCount=0
ﬁ 1: deincrCount(STRONG), deleteObj() ’—¢
rcpA2 : RCP rcpB2 : RCP
STRONG STRONG
A A
‘ clientA ‘ ‘ clientB ‘

b) ClientA goes away second

Figure 9. Weak pointer scenario whe@ientB is deleted first

84




someClient

Figure 10. Example of a circular chain involving many objects and
many classes.

What is especially interesting about the second scenahiovisdeleting the object in Figure 9.b triggers a
chain reaction that causes thebject to be deleted which recursively causesniteA object to be
deleted, all in the call stack where th@bject is being deleted. To accomplish this correctly, the
RCPNodelmpl::deleteObj() function has some special logic to avoid a double deletebeatig

performed on the reference-counted object.

Comparison to weak pointers in Boost

With respect the weak pointers, the Teuchos drzRdiffers substantially from the Boost and therefore the
C++0x standard reference-counting classes. With the Bl@Bshe attribution of strong or weak is made at
runtime. This allows an external client to decide at runttmenakea’s reference td weak orb’s reference
to a weak depending on the given circumstance. With the BoostCartx shared _ptr class, one has to
use a separate clagsak_ptr to represent a weak pointer. The problem with the Boost amprehen is

that one has to decide at compile time if a particular refegas going to be weak or strong. While there
are some cases where one can always assume the referensdaeashk (like in the self-reference case
described in Section 5.13.3), there are more complex casesevone cannot decide this so easily at
compile time. For example, if one were to use shared _ptr andweak_ptr classes, one would have to
decide at compile time to males reference ob’s reference weak. The decision one makes make might
work for one set of use cases that one currently knows aboufpbmore complex use cases not
discovered yet, one may need to switch it. In fact, in the seonepiled program there may be some use
cases where will be deleted beford and other use cases whérgvill be deleted befora. With the
classeshared _ptr andweak_ptr , this is impossible to handle (at least not without storinthtsmart
pointer types in each clagsandB object and then using one or the other which is not very etegian
efficient). The only argument for the compile-time approaskd by Boost and C++0x is improved
performance in both speed and memory overhead but thesés®ection 5.12/1 show that this extra
overhead is fairly minimal. Overall, the overhead inducgdhe flexible runtime approach to weak
pointers of theRCPclass (and therefore also thegayRCP class) is well worth this small extra overhead.
Typically, the classeRCPandArrayRCP are used to manage objects (or blocks of array datArfayRCP )
much larger than what is contained in the infrastructurgterreference-counting objects so the additional
memory overhead is usually insignificant as well.

85



Summary of circular references and weak pointers

While this section has focused on a simple example involeingcular reference between two classes and
two objects, in reality circular references typically i@ many different objects and classes which may be
in very distant parts of the code base which make them vefigulifto find by just examining the static

code or running the code in a debugger. For example, Figute/lML object diagram) depicts a circular
reference involving eight objects. When the extemualeClient object removes itRCP<H>object, the

chain of objects frona to h will not be deleted which results in a memory leak. Thesesyechains of
circular references can be very difficult to track down arat th where the debug-mode runtime node
tracing described in more detail in Section 5.11.2 comesadstrhandy.

Section 5.11.3 describes how weak pointers are used imrantebug checking for dangling
(non-persisting) references. Section 5.13.3 describesweak pointers are used in dealing with object
self-references.

In summary, the Teuchos reference-counting machineryrdigasdly addresses both strong and weak
references and is a very powerful tool but to use it effebtj\@ne needs to understand the basic semantics
for its use. The good news is that likely 90% of more casuatligers who use the classGPand

ArrayRCP will never need to know the difference between a strong arakweference and will by default
just use strong references. Weak references will get usger uhe hood for some debug-mode runtime
checking but they are totally transparent to client codethagrogrammer. It is only in cases of circular
references and with some more advanced idioms and desigmrzatsee Section 5.13.3 and Section 5/13.4
for examples) do typical programmers need to know anythbauaweak pointers.

5.9.3 Customized deallocators

The most common use &CPis to manage the lifetime of objects allocated using operaw and
deallocated using operatdelete (ornew [| anddelete []  for ArrayRCP ). For these use cases, the
built-in behavior inRCPdoes exactly the right thing for this average case. Howéherg are situations
when one cannot simply calklete to deallocate an object.

Some examples of situations where something other thaingadtlete needs to be performed include
when:

1. Reference counts for objects are managed by requiringtslinexplicitly call increment and
decrement functionsThis situation occurs when using CORBA [19] and COM [10] iftstance.
Such an approach is also presented in [25, Item 29] in theestiba “A Reference-Counting Base
Class”. In these protocols, deallocation occurs autormlftibehind the scenes when this other
reference count goes to zero and does not occur through &oitesall to operatordelete  as with
the default behavior foRCP

2. Objects are managed by certain types of object databdasesome object databases, an object that is
grabbed from the database must be explicitly returned tdatebase in order to allow proper object
deletion to take place later.

3. A different reference-counted pointer class is used téihitget access to the managed objeeor
example, suppose some piece of peer software worksbadgi::shared  _ptr (see[7])

86



referenced-counted objects while the resident softwamgsweith RCPobjects. It then becomes
critical no object is deleted until all the clients usingheit of these smart pointer types remove their
references to this underlying object (i.e. by destroyirgjrtemart pointer objects or setting them to
null).

4. A C struct object is allocated and deallocated through expC function calls Here, a C library
function must be called to deallocate the object (examplési®exist in unit test and library code).

There are many other additional situations where one caimgy assume that calling operatiglete is
used to release an object. The bottom line is that in ordee @emeral, one must allow arbitrary policies to
be used to deallocate an object after clients are finishew) tise object.

Perhaps the key differentiating property between a flexiidé quality reference-counted pointer
implementation and a poor implementation is the capahiitgdlow the user to define an arbitrary
deallocator policy that defines exactly what it means toasdea reference-counted object (or array of
objects). The reference-counted Teuchos claR€@aindArrayRCP , as well adoost::shared  _ptr all

allow the client to specify a user-defined deallocationgyotibject when the first reference-counted object
is constructed.

The code associated with customized deallocation polfoieRCP(which are also identical fokrrayRCP )
are shown in Listing 69.

Listing 69 : Declarations for customized deallocation policies RECP

Il Default decallocation policy for RCP
template<class T>
class DeallocDelete
{
public:

typedef T ptr_t;

void free( T* ptr ) { if(ptr) delete ptr; }
3

Il Other provided deallocation policy classes

template<class T> class DeallocNull { ... };

template<class T> class DeallocArrayDelete { ... };

template<class T> class DeallocFunctorDelete { ... };

template<class T> class DeallocFunctorHandleDelete { ... h
template<class T> class EmbeddedObjDealloc { ... };

template<class T>
class RCP {
public:

template<class Dealloc_T>
RCP(T* p, Dealloc_T dealloc, bool has_ownership);

3

/I Non-member constructors for deallocators and extractio n functions

87



template<class T, class Dealloc_T>
RCP<T> rcp(T* p, Dealloc_T dealloc, bool owns_mem);

template<class Dealloc_T, class T>
const Dealloc_T& get dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>
Dealloc_T& get nonconst_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>
Ptr<const Dealloc_T> get optional_dealloc(const RCP<T> & p);

template<class Dealloc T, class T>
Ptr<Dealloc_T> get optional_nonconst_dealloc(const RC P<T>& p);

All deallocator objects must support the typedef menglrert and function memberee(...) . The
concept of a template policy interface (also called a famctibject [29, Section 18.4]) should hopefully be
familiar to semi-advanced users of the STL (part of the stesh€++ library).

To demonstrate the use of a deallocator object, let us asthahthe code must wrap objects of type
managed by the object database shown in Listing 70.

Listing 70 : Example of a simple object database

class ObjectADB {

A& get(int id);
void release(int id);

In the object database in Listing |70, objects are accesstdetaased using an integer ID. How this ID is
specified and determined is not important here. Let us sepias one wants to define an abstract factory
that returns objects of typewrapped inRRCP<A>objects using a database object of t{jigectADB shown

in Listing|70. For this abstract factory, objects of typwill be allocated from a list of ids given to the
factory. The outline of this abstract factory subclass @nshin Listing[ 71:

Listing 71 : Factory subclass that allocates new objects usingdhnect ADB object

class ObjectADBFactory : public AbstractFactory<A> {
RCP<ObjectjADB> db_;
Array<int> ids_;
public:
ObjectADBFactory(const RCP<ObjectADB>& db, const ArrayV iew<const int>& ids)
. db_(db), ids_(ids) {}
RCP<A> create(); // Overridden from AbstractFactory
Y

88



The above abstract factory subcl&¥gectADBFactory  inherits from a generidbstractFactory base
class that defines a pure virtual mettwoehte() . In order to implement thereate()  function, a
deallocator class must be defined and used shown in Listing 72

Listing 72 : Custom deallocator class for releasing objects manage@tjyect ADB

class DeallocObjectADB

{
RCP<ObjectjADB> db_;
int id_;
public:
DeallocObjectADB(const RCP<ObjectjADB>& db, int id)
: db_(db), id_(id) {}
typedef A ptr_t;
void free(A* ptr) { db_->release(id ); }
3

Now one can define the implementation of tieate()  function override as shown in Listing 73.

Listing 73 : Implementation of the factory create function

RCP<A> ObjectADBFactory::create()

{
TEST_FOR_EXCEPTION(ids_.size()==0, std::runtime_erro r, "No ids are left!");
const int id = ids_.pop();
return rcp(&db_->get(id), DeallocObjectADB(db

, id), tr ue);
1

The program in Listing 74 shows the use of the factory sub@agctADBFactory  defined in
Listings[70] 71|, 72, and 73.

Listing 74 : Example driver program that transparently uses @i ect ADBFact or y class

int main()

{

Il Create the object database and populate it (and save the id S)
RCP<ObjectADB> db;
Array<int> ids;

Il Create the abstract factory object
ObjectADBFactory  ftcy(db, ids());

Il Create some A objects and use them
RCP<A> a ptrl = fcty.create();

return 0;

89



In the example program in Listing 74, all of the objects ofetyyare created and removed seamlessly
without the client code that interacts wiRCPandAbstractFactory knowing anything about what is
going on under the hood.

Examples of other types of deallocators are given in thetasttsuite for th&kCPclass.

5.9.4 Embedded objects

Support for customized template deallocator policy olsjeletscribed in Section 5.9.3 turns out to be a
pretty flexible feature. The ability to embed any arbitrabyeat in theRCPNodeobject gives one an

efficient way to define a different deallocation policy thainvoked by the destructor on the object instead
of requiring an explicit deallocation policy object. In atitth, one can also tack on any extra data desired
and embed it in the underlyirRCPNodelmpl object. The only restriction is that one has to make the &hoic
of what to embed in thRCPNodeobject when the very firRCPobject is created (which in turn creates the
concrete templateBCPNodelmpl object). If one wants the flexibility to embed other data ia timderlying
RCPNodeobiject after it has been created then the “extra data” feateeds to used which is described in
Section 5.9.5. The advantage of embedding objects in tHeodator in theRCPNodelmpl object is that it
can be quite a bit more efficient than using the “extra datatuiee which requires more runtime-support
and greater overhead.

The functions that are used to embed objects when creRGRgbjects and retrieve them again are shown
in Listing|75 (identical functions exist for tharayRCP class).

Listing 75 : Embedded object functions for RCP

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObjPreDestroy(T* p, const Embedde d &embedded,
bool owns_mems=true);

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObjPostDestroy(T* p, const Embedd ed &embedded,
bool owns_mems=true);

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObj(T* p, const Embedded &embedded , bool owns_mems=true);

template<class TOrig, class Embedded, class T>
const Embedded& getEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>
Embedded& getNonconstEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>
Ptr<const Embedded> getOptionalEmbeddedObj( const RCP<T >& p);

template<class TOrig, class Embedded, class T>
Ptr<Embedded> getOptionalNonconstEmbeddedObj( const RC P<T>& p );

90



The embedded object functions in Listing 75 simply use thetarn templated deallocator class
EmbeddedObjDealloc  shown in Listing 76 along with the public deallocator fuoet in Listing 69.

Listing 76 : RCP Deallocator using an embedded object

template<class T, class Embedded, class Dealloc>
class EmbeddedObjDealloc

{
public:
typedef typename Dealloc::ptr_t ptr_t;
EmbeddedObjDealloc(
const Embedded &embedded, EPrePostDestruction prePostDe stroy,
Dealloc dealloc
) : embedded_(embedded), prePostDestroy (prePostDestro y), dealloc_(dealloc)

{
void setObj( const Embedded &embedded ) { embedded_ = embedd ed; }

const Embedded& getObj() const { return embedded_; }
Embedded& getNonconstObj() { return embedded_; }
void free( T* ptr )

if (prePostDestroy == PRE_DESTROY)
embedded = Embedded();
dealloc_.free(ptr);
if (prePostDestroy == POST_DESTRQY)
embedded_ = Embedded();
}

private:
Embedded embedded ;
EPrePostDestruction prePostDestroy_;
Dealloc dealloc_;
EmbeddedObjDealloc(); // Not defined and not to be called!

The customized deallocator class in Listing 76 is then tatepl withDeallocDelete ~ (see Listing 69) and
set by the non-member constructor functions in Listing 7% istinction between pre- and post-destroy
can be critical depending on how the embedded data is uset/(@amples are given in this paper). In
most cases, the order the embedded object is reset to thdtdeflae is not important and therefore the
client would just usecpWithEmbeddedObj(...) to set the embedded object (in which case it uses
post-destruction by default).

Typically, the embedded object will be soREPsuch that when the embedded object is assigned to the
default state as iembedded_ = Embedded() then the destructor on that object will be called (which is
what happens when the strong count goes to zeroRG#. A simple example of embedding &CPthat
controls memory release is shown in Listing 77:

Listing 77 : A simple example of using embedded objects

RCP<A> a_ptrl(new A);
RCP<A> a ptr2 = rcpWithEmbeddedObj(a_ptrl.getRawPtr(), a_rcpl, false);

91



What the code in Listing 77 does it is creates a new now-owREBNodelmpl object with anRCPobject
embedded in it. This maintains the correct ownership seicgby resets the reference count in the new
RCPNodelmpl object. The use case shown in Listing 77 may look silly andaibut it is the foundation

for several more advanced use cases (see Section 5.13.fefatedd example). As a result of this code, the
underlyingA object will not be deleted until thRCPNodelmpl object associated witlptr2 , and all of the
RCPobjects created from it, are destroyed. Even the above ging@ case can be useful if one wants to be
able to use the reference count®@Pobjects derived froma_ptr2 to determine usage of the object by
other clients. There are concrete examples of this exagsiosage in production code.

A more general usage of embedded objects to perform arpiucions is demonstrated in the context of
the “generalized view” design pattern in Section 5.13.4.

5.9.5 Extra data

As mentioned in Section 5.9.1, the Teuchos reference-t@untachinery supports storing and retrieving
arbitrary objects as extra data stored onREG®Nodeobject itself. The functions supporting extra data for
theRCPclass are shown in Listing 78 (the functions forayRCP are identical).

Listing 78 : RCP extra data functions

template<class T1, class 72>

void set extra data(const T1 &extra_data, const std::str ing& name,
const Ptr<RCP<T2> > &p, EPrePostDestruction destroy when = POST_DESTROY,
bool force_unique = true);

template<class T1, class 72>
const T1& get extra_data(const RCP<T2>& p, const std::str ing& name);

template<class T1, class T2>
T1& get_nonconst_extra_data(RCP<T2>& p, const std::stri ng& name);

template<class T1, class 72>
Ptr<const T1> get optional_extra_data(const RCP<T2>& p, const std::string& name);

template<class T1, class T2>
Ptr<T1> get optional_nonconst_extra_data(RCP<T2>& p, ¢ onst std::string& name);

Given the support for embedded objects described in Se6tthd, extra data rarely needs to be used.
Embedding and retrieving objects in the templaR&PNodelmpl object is more efficient that using the
more generasdtd::map object andany wrapper that are used to implement the “extra data” featode a
therefore embedded objects should be used whenever mobsitdad of extra data. However, there are a
few key advantages to using extra data over embedded oljattshay be worth the performance overhead
or using extra data may be the only way to address an issueoamslexamples include:

e One can associate new extra data after the RCPNode objertased. With embedded objects, one
can only select the data-type for the embedded object ainttieavthen the firsRCPobject is created.

92



e One can retrieve data without having to know the concretelata types in th&CPNodel npl
object. With extra data, one only needs to know the string name antyfleeof the extra data that
needs to be retrieved. With embedded objects, the origypal of the underling reference-counted
object that is used to template tREPNodelmpl class also needs to be known (to see this compare
the template arguments for tgetEmbeddedObyj(...) andget _extra _data(...) ). If this type
changes (i.e. if the creating code changes the subclasermeptatiorifOrig used), then this will
break client code that tries to retrieve the embedded abJdwrefore, client code that retrieves
embedded object data is more fragile than code that retriextea data.

e One can completely change the deallocation policy at ruaitaiter the RCPNode object has been
created.With embedded obijects, the deallocation policy of a refegerounted object cannot be
changed after the initidCPNodelmpl object has been created; with extra data it can.

To demonstrate the power and flexibility of extra data, letasider a (perhaps unlikely) scenario where
some piece of code incorrectly associates the wrong dedilbocpolicy to an allocated object shown in
Listing[79.

Listing 79 : Example of incorrect deallocator

RCP<A> createRCPWithBadDealloc()
{

return rcp(new A[1]); // Will use delete but should use delet e ]!

}

Hopefully no one would write code like is shown in Listing #8{ shockingly | did once write code

similar to this). However, let's suppose that one has to iediinctioncreateRCPWithBadDealloc() to
allocateA objects and are stuck with a pre-compiled library and on@aiaaccess the source code to fix the
problem. On most systems an error like this will be tolerated not cause problems but tools like
Valgrind and Purify will complain about code like this to nedeand there may be some platforms where
this will actually cause the program to crash (since thisurakefined behavior).

With RCPand extra data, one can replace the deallocation policyefittio use the correct policy. The
first step is to create a class that will cddlete []  on the pointer correctly as shown in Listing| 80.

Listing 80 : Deallocator class for extra data deallocation

template<typename T>
class DeallocArrayDeleteExtraData {
public:
static RCP<DeallocArrayDeleteExtraData<T> > create(T* p tr)
{ return rcp(new DeallocArrayDeleteExtraData(ptr)); }
“"DeallocArrayDeleteExtraData() { delete [] ptr_; }
private:
Ptr<T> ptr_;
DeallocArrayDeleteExtraData(T* ptr) : ptr_(ptr) {}

3
The client code can then fix the deallocation policy as shawiristing/81.

93



Listing 81 : UsingDeal | ocArr ayDel et eExt r aDat a as extra data to fix deallocation policy

Il Create object with bad deallocator
RCP<A> a = createRCPWithBadDealloc();

Il Disable default (incorrect) dealloc and set a new dealloc ation policy as extra datal
a.release();
set_extra_data( DeallocArrayDeleteExtraData<A>::crea te(a.getRawPtr()),

"dealloc”, inOutArg(a));

The kind of flexibility shown in the above example is not pbksusing embedded objects and is not
possible with classes likmost:shared _ptr . There are numerous other uses for extra data to fix nasty
memory management problems (which is why the extra datareatas added in the first place). However,
in well designed software, there is no need for a featurethiseso a developer should count themselves
lucky if they never need to use the extra data feature.

5.10 Roles and responsibilities for persisting associatis: factories and clients

There are two fundamentally different sets of actors thay plvo different roles in the use of the
reference-counted classes used for persisting assosa#) factory entities that first create the
reference-counted objeRCP<A>which define the deallocation policy, and b) general cli¢inds$ accept
and use a shared reference-counted ol#je¢lstough arRCP<A>object.

Factory entities first create the reference-counted okgecrray) and construct the firRCP(or

ArrayRCP ) object containing it. The most basic type of factories ame-member constructor functions
described in Section 5.8.1. When the fiR€tPobject is created, the factory gets to decide exactly how
object (or array) will be released when the strong refereocmt goes to zero. The default behavior, of
course, is to just simply catlelete (ordelete [[  for arrays) on the contained raw pointer. However, the
factory can also choose any arbitrary action imaginabletwiowhen the reference-count goes to zero.
This is set up using a template deallocator policy objectessribed in Section 5.9.3.

Alternatively, the responsibilities of general clientatlise and share a reference-counted object are very
simple and these responsibilities are:

e Accept the persisting relationship for a shared referermeyted object through &CPobject (or
ArrayRCP for arrays) as described in Section 5.8.4.

e Share the reference-counted object with other clients éstitrg a copy of one’BRCP(or ArrayRCP )
object and giving it to them.

e When one is finished using the object, simply delete or setiicali of one’sRCPobjects. If some
other client is still using the object, it will remain alivi.the client’s is the last (strong) reference,
then the deallocator policy object that is embedded in tlerying RCPNodelmpl object is invoked
which knows exactly how to clean up and reclaim the undeglghject (or array of memory).

That is all there is to it. Factories create the underlyingctifs) wrapped in the fir®CPobject and define
how the referenced object(s) will be reclaimed when it istim do so. General clients just accept and

94



maintain their references to shared objects (or arraysrbgming and storin@CPobjects (orArrayRCP
objects) and then setting them to null when they are finislsathuhe object(s).

5.11 Debug-mode runtime checking

The primary reason that these Teuchos memory managemeséslaeed to be developed in tandem with
each other and know each other’s internal implementatiossine extend is to be able to implement
robust and effective debug-mode runtime testing. The dahode runtime testing that is built into these
classes is very strong and will catch nearly every type ofimmmer error that is possible, as long as raw
C++ pointers are never externally exposed and if raw C++eefes are only used for persisting
associations. The different categories of debug-modémertesting are described in the following
subsections along with what the typical diagnostic errossages look like that are attached to exceptions
when they are thrown.

5.11.1 Detection of null dereferences and range checking

One of the most basic types of debug-mode runtime checkirigrpged by the Teuchos memory
management classes are for attempts to dereference a miérpand range checking of arrays and
iterators.

Listing 82 : Debug-mode null dereference checking (all types)

RCP<A> a_ptr; Il Default constructs to null
A &a_ref = *a_ptr;  // Throws!
a_ptr->someFunc();  // Throws!

ArrayRCP<int> aa; /I Default constructs to null
a[o]; II' Throws!
int & _ref = *a.begin(); // Throws!

All of the Teuchos memory management classes throw on nidfelences. While most systems will abort
the program on null dereferences there are some platforiguss@me Intel C++ compilers) that will not
and it will result in memory errors that may not be seen uatiét in the program. Technically,
dereferencing a null pointer has undefined behavior and ters@nd runtime systems can do anything
they want with undefined behavior (including corrupting negynand continuing as is the case with some
Intel C++ compilers).

The Teuchos array classgsay , ArrayView , ArrayRCP , andTuple all perform array bounds checking in
debug-mode builds:

Listing 83 : Debug-mode array-bounds checking (all Teuchos arraygype

Array<int> a(n);
a[-1]; /I Throws!
a[nJ; II' Throws!

95



In a debug-mode build of the code, all the iterators retutmethebegin() andend() functions of the
classed\rray , ArrayView , ArrayRCP , andTuple are of the typérrayRCP which is a fully ranged
checked iterator.

Listing 84 : Debug-mode iterator range checking (all Teuchos arrayeg)p

Array<int> a(n);

*(a.begin()-1); II' Throws!
*(a.begin() + a.size()); /I Throws!
*a.end(); II' Throws!

In addition, comparisons between iterators will throwrhéy do not point into the same underlying
contiguous array of memory.

Listing 85 : Debug-mode iterator matching checking (all Teuchos atyges)

ArrayRCP<int> a_arcp = arcp<int>(n);

Array<int> a(n);

Il Simple mistake calling standard STL algorithm

std::copy( a.begin(), a_arcp.begin(), a_arcp.end() ); / Throws!

These types of checks are fairly straightforward but areeextly useful and work on every platform. This
checking is built into programs automatically in a debugdmbuild of the code. Contrast this to checked
STL implementations that may or may not exist on a given ptatfand if they do exist, the quality of the
implementations can vary widely. Note that in a non-debligglmf the code, none of these checks are
performed which leads to the fastest code possible.

5.11.2 Detection of circular references

One of the more sophisticated types of debug-mode runtiraekamg supported by the Teuchos memory
management classes is the detection and reporting of aifeGPreferences that result in memory leaks.
The issue of circular references and the concept of weakqrsiwas outlined in Section 5.9.2. When
debug-mode node tracing is enabled, the reference-caumtachinery keeps track of all tiRCPNode
objects that are created and destroyed. If the program entithare are one or moRCPNodeobjects that
are still remaining, then a error message is printesidccerr  that gives all the details of the objects
involved in the circular reference.

For example, consider the simple circular reference cddatkisting(67 and shown in Figure 6. If left this
way, when debug-mode node tracing is enabled, the progrdsiaerd prints an error message like the
following to std::cerr

Listing 86 : Example error message printed after a program ends whene thie unresolved strong
circular references

96



*kk

* Warning! The following Teuchos::RCPNode objects were ¢

*** not been destroyed yet. A memory checking tool may compla
*** objects are not destroyed correctly.

*kk

** There can be many possible reasons that this might occur i

*kk

*** a) The program called abort() or exit() before main() was

*

*

woxk All of the objects that would have been freed through dest
woxk are not freed but some compilers (e.g. GCC) will still cal
woxk destructors on static objects (which is what causes this

Hoxk to be printed).

** ) The program is using raw new/delete to manage some obje
woxk delete was not called correctly and the objects not delet
woxk other objects through reference-counted pointers.

k%

*** ¢) This may be an indication that these objects may be invo

Hoxk a circular dependency of reference-counted managed obj
k%

0: RCPNode (map_key void_ptr=0x4a3ff50)
Information = {T=A, ConcreteT=A, p=0x4a3ff50, has_owners
RCPNode address = Ox4a3ffa8
insertionNumber = 23

1: RCPNode (map_key void ptr=0x4a40548)
Information = {T=B, ConcreteT=B, p=0x4a40548, has_owners
RCPNode address = 0x4a405f0
insertionNumber = 24

NOTE: To debug issues, open a debugger, and set a break point i
the RCPNode object is first created to determine the context

gets created. Each RCPNode object is given a unique insertio
breakpoints in the code. For example, in GDB one can perform:

1) Open the debugger (GDB) and run the program again to get upd

2) Set a breakpoint in the RCPNode insertion routine when the
inserted. In GDB, to break when the RCPNode with insertionNu

(gdb) b 'Teuchos::RCPNodeTracer::addNewRCPNode( [TAB] [
(gdb) cond 1 insertionNumber==3 [ENTER]

3) Run the program in the debugger. In GDB, do:
(gdb) run [ENTER]

4) Examine the call stack when the prgoram breaks in the funct

reated but have
in that these

ncluding:
finished.
ructors

| the
message

cts and
ed hold

lved in
ects.

hip=1}

hip=1}

n the function where the
where the object first
nNumber to allow setting

ated object addresses

desired RCPNode is first
mber==3 is added, do:

ENTER]

ion addNewRCPNode(...)

This error message is enough information to allow one to @paebugger, and set a break-point in the
function RCPNodeTracer::addNewRCPNode(...) and then examine where these objects are getting
created that result in the circular reference (see SectithB).

97



Note that in reality, the circular references will involveany objects (sometimes more than a dozen as
shown in Figure 10) and therefore this output will contaimgBCPNodeobjects. A program may also
contain large numbers of smaller sets of circular deperiden©ne example in Trilinos had a test that
generated hundreds of thousands of smaller circular caclddeaked memory from hundreds of thousands
of objects.

5.11.3 Detection of dangling references

Another useful and necessary form of debug-mode runtimekahg involves the detection and reporting of
access to invalid objects and arrays made through dangifiegences. A dangling reference is a catch-all
term that refers to any pointer or reference that points to-bonger valid object or array. For example, the
following code fragment shows invalid access to a dangliegitor to an array that has changed shape:

Listing 87 : Example of a dangling iterator
Array<int> a(n);
Array<int>:iterator itr = a.begin();

a.resize(0);
*itr = 1; // Invalid access of dangling iterator (throws)!

In debug-mode, the above example would result in an exagepting thrown with an error message like
shown below:
Listing 88 : Example of a dangling reference error message

Teuchos_RCPNode.hpp:515:

Throw number = 3

Throw test that evaluated to true: true

Error, an attempt has been made to dereference the underlyin g object

from a weak smart pointer object where the underling object h as already

been deleted since the strong count has already gone to zero.

Context information:

RCP type: Teuchos::ArrayRCP<int>

RCP address: 0x7fbfffec98

RCPNode type: Teuchos::RCPNodeTmpl<int,

Teuchos::EmbeddedObjDealloc<int,

Teuchos::RCP<__gnu_debug_def::vector<int, std::alloc ator<int> > >,
Teuchos::DeallocArrayDelete<int> > >

RCPNode address: Oxab65a0

insertionNumber: 5

RCP ptr address: Oxab4c50

Concrete ptr address: Oxab4c50

NOTE: To debug issues, open a debugger, and set a break point i n the function where the

98



the RCPNode object is first created to determine the context where the object first
gets created. ...

The erorr message shown in Listing 88 contains all the inédion needed to open a debugger, run the
program again to create new pointer addresses, set up biatkpnd break conditions, and debug the
problem. Breakpoints can be set when R@PNodeobject is first created and inserted and also when the
exception is thown (see Section 5.11.7). The NOTE at thebotf the error message in Listing/88 is
really the same as shown in Listing/86 and is only cut off teesspace.

A few other examples of dangling references are shown inrigst89+90.

Listing 89 : Example of a dangling\r r ay Vi ew

ArrayView<int> av;

{
Array<int> a(n);
av = a

}

av[0] = 1; // Invalid access to dangling ArrayView (throws)

Listing 90 : Example of a danglingpt r

Ptr<A> a_ptr;

{
RCP<A> a rcp = createA();

a_ptr = a_rcp.ptr();
}

a_ptr->someFunction(); // Invalid access to dangling Ptr ( throws)

In general Ptr , ArrayView and iterators (returned from tibegin() member functions) all can be
involved in dangling references. Therefore, anytinRira, ArrayView , or iterator object is created from
some other Teuchos memory management object, one can éxakict a debug build that dangling
references will checked for and if detected will result iceptions being thrown with very detailed error
messages like shown in Listihg 88.

Note that the ability to detect a danglidgayView of anArray object as shown in Listing 89 is due to the
fact that the debug-mode internal implementatiodmdy is designed to support this. Compare this to
ArrayView views ofstd:vector  , as shown in Listing 91 where dangling references cannottexted.

Listing 91 : Dangling Ar r ayVi ewofst d: : vect or (cannot detect dangling references)

ArrayView<int> av;

{
std::vector<int> v(n);
av = v;
av[0] = 1; // Invalid access to dangling ArrayView (does *not * throw)

99



The code in Listing 91 has undefined behavior and will mostjilsegfault if one is lucky. If unlucky, the
program may actually appear to run correctly on the mainldpwmeent and testing platforms and it will not
be until moved to a production platform that the ill-effeotshis erroneous code will be seen. This is one
example of why it is so important to ugeray instead of rawstd::vector objects. Strong debug-mode
runtime checking oArrayView views are not possible when usisig::vector

Another type of more sophisticated debug-mode danglingreete detection involves non-owniRgP
objects to existing reference-counted objects. Consioée tike shown in Listing 92.

Listing 92 : Example of a dangling non-ownirigCP object detected through node tracing

RCP<A> a_rcp = createA();
A &a_ref = *a_rcp;

RCP<A> a_rcp2 = rcpFromRef(a_ref); /I Same as rcp(a_ref.ge tRawPtr(), false)
arcp = null;  // The 'A" object gets deleted (a_rcp2 is a dangl ing pointer)
a_rcp2->someFunction(); // Invalid reference to deleted ' A’ object (throws)

In a debug-mode build with node tracing turned on, the daggtion-owningRCPreferencea_rcp2 in
Listing[92 will be caught by the system. This works becausesthtemenicpFromRef(a _ref) results in

a call toRCPNodeTracer::getExistingRCPNode(...) to look-up the existindRCPNodeobject that

points to the samA object. In this case, the existiRCPNodeobject is found and it is used to create a
weakRCPobject (see Section 5.9.2) that can then detect if the @igaference-counted object has been
deIetedEAgain, this more sophisticated type of debug-mmadéme checking requires that node tracing be
enabled?.

Debug-mode runtime detection and reporting of danglingresfces is built on the foundation of weRkP
andArrayRCP objects. Basically, all non-persisting views use a wie@Ror ArrayRCP object (see

Section 5.9.2) internally to allow the parent object to barzied or be deleted and to detect this if a client
tries to access the now invalid object through the dangligrence.

5.11.4 Detection of multiple owningRCP objects

There are other types of invalid usage that can be detectedaarght in debug-mode with node tracing
enabled. Consider, for example, what happens when one @ ofithe commandments in Appendix B are
broken and more than one owniR§PNodeobject is created pointing to the same underly@iogcrete T
object as shown in Figure 11 generated by the sloppy coderstmolisting| 93.

Listing 93 : Invalid creation of dual ownindRCPNodel npl objects (shown in Figure 11)

C *c_raw_ptr = new C;
RCP<C> c_ptr(c_raw_ptr);

12In order to handle multiple inheritance and virtual basesss and still get the correct base object address, Bqusorsu
must also be configured which is needed to bsest::is  _polymorphic  to allow the use oflynamic _cast<void*>(...) to
determine the true base address of a polymorphic objecer®ise, without this, the system will not be able to detemrifrtwo
abstract interfaces really point to the same object ancetbier the look-up of th&®CPNodeobject may fail to detect when two
addresses are pointing to the same object.

100



:RCP<A> :RCP<A>

:RCPNodelmpl<C, DeallocDelete<C> > :RCPNodelmpl<A, DeallocDelete<A> >
strongCount =2 strongCount =1
weakCount =0 weakCount =0
hasOwnership=true hasOwnership=true
:C

Figure 11. Example of duplicate owningCPNodelmpl objects

RCP<A> a ptrl = c_ptr;

A *a_raw_ptr = c_raw_ptr;
RCP<A> a_ptr2(a_raw_ptr);

The problem is that the twRCPNodelmpl objects generated by Listing |93 (shown in Figure 11) do not
know about each other and the first one who has its strongerefercount go to zero will result in the
underlyingC object being deleted. In this case, the other remaiRi@BNodelmpl object, and all of the
resultingRCPobjects pointing to it will be left with a non-null pointer tonow deleted object. If the
client tries to access the underlying object through ondefe now invalid references, it will yield
undefined behavior and will likely result in a segfault (ifeois lucky). Also, a second call tielete  will
also occur even if invalid access is not performed.

Not to fear, in a debug-mode build with node tracing enalleeRCPNodeTracing object automatically
detects the creation of the second owrR@PNodelmpl<A> object and will thrown an exception with an
error message that looks something like Listing 94.

Listing 94 : Example of an error message from a the attempt to create alwalngRCPNodel npl
objects

Trilinos/packages/teuchos/src/Teuchos_ RCPNode.cpp:2 40:

Throw number = 1

Throw test that evaluated to true: rcp_node_already exist s && rcp_node->has_ownership()
RCPNodeTracer::addNewRCPNode(rcp_node): Error, the cli ent is trying to create a new
RCPNode object to an existing managed object in another RCPN ode:

New RCPNode {address=0x9ch3e0, base obj_map_key void p tr=0x9cac40,

base_obj_type name=A, map_key void_ptr=0x9cac40, has_ ownership=1, insertionNumber=6}
Existing RCPNode {address=0x9ch2b0, base_obj map_key v oid_ptr=0x9cac40,
base_obj_type name=C, map_key void_ptr=0x9cac40, has_ ownership=1, insertionNumber=5}

101



Number current nodes = 6

This may indicate that the user might be trying to create a wea k RCP to an existing
object but forgot make it non-ownning. Perhaps they meant to use rcpFromRef(...)
or an equivalent function?

NOTE: To debug issues, open a debugger, and set a break point i n the function where the
the RCPNode object is first created to determine the context where the object first
gets created. ...

A debugger can be opened, a break-point can be set in thedufiestForException  _break(...) , and
the program can be run again and break at the time the exnagtibrown to see the context under which
the second illegaRCPNodeis created (see Section 5.11.7). A breakpoint can also he get function
addNewRCPNode(...) to see when the oth&CPNodeobject was created (see Section 5.11.7).

If one is willing to pay for a little extra overhead BCPNodetracing (see Section 5.12.1 for some timing
results of the overhead), then node tracing will detect theneous creation of multiple ownirRCPNode
objects and respond in a graceful way. Note that creatingipleihon-owningRCPNodeobjects is okay
and is allowed both when node tracing is enabled and whemdtisnabled (however, see
Commandment 5 in Appendix B for restrictions on the creatibowning and non-ownin@CPobjects).

5.11.5 Performance of debug-mode checking versus memoryetking tools

One of the common criticisms of debug-mode runtime checldrigat it incurs an unacceptably large
runtime overhead. However, this overhead is only incurcedi€ébug-mode builds and does not affect
non-debug optimized builds. To speed up debug-mode rurditaeking, one can compile with optimized
compiler options (e.g03) which significantly speeds up the code. Also, one has toidenthe relative
cost of built-in debug-mode runtime checking versus rugr@inrmemory checking tool like Valgrind or
Purify.

To investigate the cost of debug-mode runtime checkingJthi@os package TpeﬂE& is used since it

relies the Teuchos memory management classes at a veryMelaled therefore would be expected to
show the largest runtime overhead for debug-mode checKaigle 16 shows the runtime of the Tpetra
serial test suite (12 test programs) for several differeiltdkand runtime configurations. In all of these
builds, optimized compiler options (-O3) were used. Allloése timing tests were performed on an a
3.2GHz AMD machine with 8 cores running Linux 2.6.9-78.8Bllsmp using GCC 3.4.6. Valgrind tests
were run using version 3.2.1. All of the test executablesewen in serial on the unloaded Linux machine.

The results in Table 16 give the total runtimes as well asdhaive runtimes for debug-mode checking
and Valgrind. The second column ‘Runtime’ gives the raw Ciptin seconds (as reported by CTest) for
all 12 test executables in the Tpetra test suite. The thighwo ‘Multiplier’ gives the ratio of the runtime
relative to the base-line optimized build case. The foudlmn ‘Valgrind Multi’ gives the fractional
increase in the runtime of the test suite run with Valgrinidtree to running the same executables without
Valgrind.

The results in Table 16 show that while the cost incurred tpyudemode runtime checking can be

Bhttp:/ftrilinos.sandia.gov/packages/tpetra/

102



Configuration

| Runtime (sec) Multiplier | Valgrind Mult |

1) Optimized build (base-line) 0.16 1.0 -
2) Debug-mode runtime checking 0.49 3.1 -
3) Debug-mode runtime checking + node tracing 1.08 6.8 -
4) Valgrind optimized build 56.21 351.3 351.3
5) Valgrind debug-mode runtime checking 214.01 1337.6 431.5
6) Valgrind debug-mode runtime checking + node tracjng 378.54 2365.9 347.9

Table 16. Overhead of runtime checking for serial Tpetra test suite.

significant (a factor of 3.1 for basic debug-mode runtimeckhre) it is still quite reasonable. When node
tracing is enabled, the cost more than doubles to a facto8dirées the basic optimized build. While the
cost of full debug-mode runtime checking with node tracimg factor of 6.8 over the basic optimized
build, the cost of running with Valgrind is a factor of over@0rhe increased cost of running Valgrind is a
factor of 431.5 for the basic debug-mode executables. Afaft300 can make running a tool like
Valgrind prohibitive for even moderate sized problems wiailfactor of 6.8 may be quite reasonable. For
example, a test problem that takes 20 minutes to run in aatdroptimized build may take 2 hours 15
minutes to run with full debug-mode runtime checking witldadracing enabled but that same program
may take 100 hours (i.e. more than 4 days) to run with Valgriido, as has been mentioned several times
before, in some respects the level of runtime checking demlby Teuchos in a debug-mode build is more
effective that what one gets with just Valgmd In order to perform the most detailed runtime checking
possible, one can run with Valgrind with debug-mode runtahecking with node tracing enabled.
However, the overhead of this maximal checking is staggeatrmore than 23,000 times the cost of the
basic optimized build! With this level of overhead, only yamall test problems can be run.

What these timing results suggest is that the cost of delndemuntime checking for programs using the
Teuchos memory management classes will be less than a &ddBrmore than the basic optimized build

in the worst case while the overhead of running a tool likegkiad can be as much as a factor of 400 or
more. This means that enabling debug-mode runtime chedakireggular development and automated
testing is quite reasonable. Note that the Tpetra packaggtinghis example is likely an extreme case in
the usage of the Teuchos memory management classes. Qibsrfysoftware that don’t use the Teuchos
memory management classes for such low-level computatidhsee much less of a slow-down.

However, note that theses tests were only performed on ookingausing one compiler so results on other
platforms using different compilers may vary significantly

5.11.6 Limitations of debug-mode runtime checking

Once memory is dynamically allocated and owned by one of ¢ueflos memory management class
objects, the debug-mode runtime checking will catch evergginable type of programming error as long
as a raw C++ pointer or raw C++ reference is not exposed. thalldioms and rules outlined in this paper
are followed, then the only issue the developer will havedadrass that is not 100% obvious are circular
references. However, if programmers never made any mist#tkere would be no need for debug-mode

14However, Valgrind does perform a number of other types otkbéncluding usage of uninitialized memory that are very
useful and cannot be duplicated by the Teuchos memory maragelasses.

103



runtime testing in the first place. While the level of debugela runtime testing implemented in the
Teuchos memory management classes is unmatched, codenkatts from raw pointers (and raw
references) to Teuchos memory management objects anderisa i¢ vulnerable to programming errors
that the debug-mode runtime checking cannot catch.

The first category of programming errors that cannot be tidéavolve some types of conversions of raw
pointers (and raw references) to Teuchos memory managerhgmats. However, before discussing
situations where the debug-mode runtime checking will bttt errors, first note that if an object is
dynamically allocated and is immediately given over to argjrowningRCPobject (or arArrayRCP object

in the case of arrays) then many different types of bad ceises from raw pointers (and raw references)
to memory management types will be caught. That is because & object’s address is associated with a
strong owning RCP, it gets added to the debug-nf@eNodetracing system discussed in Section 5.9.1.
Given this tracking, future conversions from a raw pointeraov reference to a Teuchos memory
management class object that result in multiple owmGg or dangling references frokir s and
non-owningRCRs will all be detected and cleanly reported (see Sectionre34dnd 5.11.4). One way to
guarantee this is to require that a classes’ objects be dgafiynallocated through its non-member
constructors (Section 5.8.1) which returned the new objecapped in strong owninQCPs. In this way,

the object is immediately tracked under the debug-mode tradang system.

However, not every class can or should employ the non-medretructor idiom to force the creation of
strong owningRCPobjects. In particular, value-type classes (Section 4th sisstd::vector and
Teuchos::Array ~ must be allowed to be generally constructed on the stackobiatly but one still needs
to be able to dynamically allocate them in many differeniatibns. The downside to allowing value-type
class objects to be dynamically allocated and managedR(@His that it allows client code to try to create
an owningRCPto a stack (or otherwise non-dynamically) allocated objduth the debug-mode runtime
checking will not be able to detect as shown, for example jstirhg[95.

Listing 95 : Example where debug-mode checking cannot detect an evsrgelete issue

std::vector<int> vec(n);
const RCP<std::vector<int> > vec_rcp(&vec); // Gives owne rship to delete!

/I When vec_rcp is destroyed it will call delete on the addres s &vec
Il resulting in undefined behavior (e.g.\ segfault)!

In this case, the owinBCP<std::vector<int> > object will try to calldelete on the addres&vec at the
end of the block which will result in undefined behavior (esggfault). The lack of debug-mode checking
shown in Listing 95 is unfortunate but it is very hard to déiéan address is for a dynamically allocated
object where it is okay to catlelete 15, Note that the code in this example violates Commandment 4 in
AppendixX B that states that ownifRCP(andArrayRCP ) objects should only be created by passing in the
address directly returned fronew (or new[] for ArrayRCP ) unless a customized deallocation policy object
is attached which defines a more specialized dellocatidicypd he good news though is that memory
checking tools like Valgrind and Purify usually do a good @itnletecting and reporting erroneous calls to

15perhaps in the future a portable library function can betemiand used that will be able to detect the difference betvaee
stack address and a heap address so an exception can be tigtowrhen the bad owninBCPis first created.

104



delete (i.e.free(...) ) that try to free stack-owned memory. But again if the idiconglined in
Section 5.8 and the commandments defined in Appendix B doevied], this problem should never occur.

The other category of programming errors that the debugennontime checking cannot detect and report
involves exposing and then misusing raw C++ pointers arete@ates. As soon as client code exposes a
raw C++ pointer and starts copying it around, all bets arekddiwever, even if client code never exposes a
C++ pointer, one can still get into trouble. One unforturegee involves the use of raw C++ references. If
raw C++ references are only used as formal arguments to Gictifuns, one will almost never have a
problem. However, incorrectly returning &CPobject by reference instead of by value, as is described in
Section 5.8.5, can result in invalid C++ references. Alsone uses references like in Listing 96, then one
can of course have dangling raw C++ references that the dswtdbug-mode runtime checking can never
catch.

Listing 96 : Example of where holding on to a raw C++ references disallelsug-mode runtime
checking

RCP<A> a_ptr = newA();
A &a = *a_ptr,

a->someFunc();
II' This above object may not be valid anymore and may result in
Il undefined behavior (a segfault)!

The code in Listing 96 violates the use of raw C++ referencdy for non-persisting associations. The
statemenf &a = *a_ptr results in the creation of a persisting relationship in thaktends past the
statement where it was created.

In summary, as soon as an object reference is exposed theoagh C++ pointer or a raw C++ reference,
in general the Teuchos debug-mode runtime checking camgeialetect errors. Therefore, never expose
a raw C++ pointer (except for the situations described iri&e&.2) and only expose and use raw C++
references for strictly non-persisting associationsoAdgeat care must be taken in first constructing
Teuchos memory management class objects such they havertBetenemory management properties.

5.11.7 Exception handling and debugging

The debug-mode runtime checking performed by the Teuchosanemanagement classes throw
exceptions when violations are detected. As has been shwaunghout this document, these exceptions
have associated messages that are fairly detailed witlfidddormation about the nature and context of
the problem.

All exceptions thrown by the Teuchos memory managemensetand the rest of Trilinos for that
matter) all use a system of macros in the Tibeichos _TestForException.hpp . All of these macros call
the functionTestForException  _break(...) just before an exception is thrown. Therefore, if the ersor i
repeatable (and most errors are), then one can open a deljagpesDB) and set a break-point in that
function, run the program, and then examine the state ofribigram just as the exception is being thorwn.
Several exceptions can be thrown before the exception tieaheeds to debug. To make it easier to break
on the exception that one cares about, every exception gebsa &hrown number associated with it

105



embedded in the error message of the exception object. @neeta conditional break-point in
TestForException  _break(...) to only stop wherhrowNumber has the right value. For example, if one
needs to stop omhrow number = 10 , then in GDB one can set:

(gdb) b 'TestForException_break [TAB] [ENTER]
(gdb) cond 1 throwNumber==10
(gdb) run

When the program stops at this break-point, one can theniegahe call stack to troubleshoot the
problem.

Many exception messages contain other types of informatianwould have one set breakpoints in other
functions. For example, a dangling reference exceptiost{as/n in Section 5.11.3) would contain
addresses of objects that one would use to set conditioaakpoints. To examine the context under which
anRCPNodeis first created, one would set a break-point in the function
Teuchos::RCPNodeTracer::addNewRCPNode(...) and set a condition to only break when
insertionNumber is the number printed in the exception message. For exafapléne exception

message shown in Listing 88, one would set the break-poiGDB as:

(gdb) b 'Teuchos::RCPNodeTracer::addNewRCPNode [TAB] [E NTER]
(gdb) cond 1 insertionNumber==5
(gdb) run

When the debugger breaks, one would then be able to exan@ralirstack to see the context under which
this RCPNodeobject is first created.

NOTE: Setting breakpoints based ingertionNumber is generally better than trying to set breakpoints
based on the object addresses because the same addresisreasagemultiple times as objects are created
and destroyed. On thiesertionNumber  uniquely identifies a particul&CPNodeobject. In builds where
there is no node tracing enabléasertionNumber  will be equal to -1 and will not aid in debugging.

NOTE: Before entering a conditional break-point involviaig address, one must first run the program
again in the debugger which will typically produce an ex@aptnessage with different addresses because
the debugger moves things around in memory. One will needddhese new pointer addresses when
setting conditional breakpoints.

The Teuchos reference-counting classes are all fully exgepafe in that they provide either the basic
guarantee (retain some valid object state and no leaked nyemin@n an exception is thrown), the strong
guarantee (retain original state when an exception is thyoar the no-throw guarantee (see [31, Item 71]).
However, if exceptions are thrown from destructors whematsjare being destroyed, then the
reference-counting classes are only fully exception satedebug-mode build. This does not really break
exception safety since destructors should not be throwingpions in most valid C++ programs (see [31,
Item 51]). The Teuchos memory management classes prowdetdation for allowing the wide-spread
and consistent use of C++ exception handling in all clienkecio such a way as memory will not be leaked
when exceptions are thrown. However, achieving a truly pttore safe program means more than just not
leaking memory; it means that all code provides at least dtieedundamental exception guarantees
(again, see [31, Item 71]).

106



Note that throwing exceptions differs from what many otHass libraries do which is typically to call
assert(...) when a runtime failure is discovered. For example, the oba@&KTL for g++ will call assert
when a usage violation is discovered. There are pros andfaotitgowing exceptions versus halting the
program but if code can be made exception safe, then one gae #rat throwing exceptions is better
because it allows the program to recover in case of a capdstréailure of a submodule while calling
assert(...) does not. Also, writing unit tests for code that throws exiogs is much easier and more
efficient than trying to write unit tests for code that halte program. This issue of testability is a huge
advantage of exception handling over callasgert(...) or exit(...) when an error occurs.

5.12 Optimized performance

While debug-mode runtime checking is of great importan€egoal importance is speed in a optimized
non-debug build. It is critical in high performance codet tiie wise use of the Teuchos memory
management classes lead to optimized performance thaaiity identical to the performance of raw
pointers. Otherwise, if there is always a performance galp uwsing the Teuchos memory management
classes, then there will always be an excuse to go back tg tsmpointers will all of the disastrous
consequences discussed in Sedtion 1 and Section 2.

In this section, the optimized performance of the Teuchosarg management classes is analyzed. In an
optimized build, all of the runtime checking is disabled there is still some non-trivial overhead
associated with the reference-counting machinery. If agedo fine a granularity, reference-counting
overhead can become a significant space/time performanbé&epr on real-world problems.

The optimized performance of several different types ofatiens are examined in the next few sections.
All of these performance timing tests were run on three difie compilers shown in Table 17 that
represent two mainstream platforms. The GCC 4.1.2 andIi@@I10.1 results where run on the same
Linux machine and therefore one can directly compare thien@phg capability of these two compilers on
this platform. Note that the processor used for the Micro¥afta platform is also Intel and has the same
clock speed as for the Linux platform. Therefore, one canarakly direct comparisons of runtimes
between the three different compilers. Timings on othermiters may give different results, especially for
compilers that have a bad history at optimizing C++ code @@, Sun, AlX etc.). All of these
performance timing tests are driven by a performance g&tamework in Teuchos and there are nightly
performance tests that strictly enforce relative perforoeatiming targets.

This section is broken up into subsections as follows. Ringt optimized performance of the
reference-counting machinery is looked at in Sedtion 3.1Reference-counting overhead will never go to
zero with respect to raw pointers but it is constant-timerlogad and therefore its impact can be minimized
by not applying it at too low a level. The optimized perforroarof the Teuchos array classes is given in
Section 5.12.2. The timing results show that the basic letamperator (i.eafij] ) and iterator (i.e.

a.begin() ) access methods all yield raw pointer performance. Finali@ection 5.12.3, performance
tuning strategies are discussed primarily addressingstueiof performance optimizations related to
semi-persisting associations.

107



GCC 4.1.2: GNU GCC 4.1.2 (compiler option®3 -DBOOST_SP_DISABLE_THREAD$running under Linux
2.6.18-128.1.6.el5 on 2 Quad Intel Xeon CPUs at 2.93GHz afl U1 Cache and 16 GB RAM.

ICC 10.1: Intel ICC C++ 10.1 (compiler optionsO3 -DBOOST_SP_DISABLE_THREAD$ running under
Linux 2.6.18-128.1.6.el5 on 2 Quad Intel Xeon CPUs at 2.93@Hd 4MB L1 Cache and 16 GB
RAM.

MSVC++ 2008: Microsoft Visual C++ 2008 (compiler options /D _SECURESCL=0
/DBOOST SP_DISABLE_THREADS /0% running under Windows Vista Enterprise on an Intel Core 2
Duo CPU T9800 at 2.93GHz and 2.00 MB RAM.

Table 17. Performance testing platforms.

5.12.1 Reference counting overhead

While the reference-counting machinery used byRB@andArrayRCP classes significantly improves
software development productivity and quality in many ezgp, it also has a certain amount of space and
time overhead that needs to be considered in design degiditare, the cost of the various operations
associated with thBCPclass are compared to raw pointers and tobdust::shared  _ptr class. Timings

are performed for creating and destroying R@&PNodeobject and reference-counted object, for
manipulating the reference count, and for accessing therlymag reference-counted object. These are the
core operations of theCPclass that are most likely to affect performance.

All of the operations being timed are very low-level and #fere it is difficult to get meaningful unbiased
timing results. To get accurate timings, one must perforenojireration in loop and average the times. With
naive code, some compilers (e.g. Microsoft Visual C++) yidit optimize away the entire loop. Therefore,
the operation must be performed in the context of a loop overrey where the result of the loop gets
used in some way to accumulate a final result. Examples oé tiypes of timing loops will be given below.
Because of the loop and iterator overhead and this extrarfraipcomputation, the timings listed for each
operation are higher that what they would be otherwise. &ftheg, the overhead reported is lower that
what it really is but by how much one cannot be sure. Also, wienorming loops, issues of loop
initialization and cache issues come into play. In ordenvtmdithese issues, a single loop size from all the
results of 1024 was selected to display in the figures anddablthis section. The raw timing results for
other loops sizes are given in Appendix D.1.

Note that the atomic thread-safe reference-counting machinboost::shared  _ptr was turned off in
order to get better timing comparisons. Preliminary timétigdies showed that the assembler-optimized
atomic lock-free reference-counting machinary on Linu@@Gimparted about a 4x overhead. To avoid this
performance overhead, the assember code for atomic retepgrunt manipulation was disabled by
compiling with-DBOOSTSP_DISABLE_THREADSIssues of thead safety are briefly discussed in

Section 5.14.

The first type of overhead to consider is the memory overhé#teaeference-counting machinery shown
in Figure 4. Table 18 shows the sizes of some important abgesgociated witRCPand

boost::shared  _ptr (on a 64 bit platform where pointers are 8 bytes). The sizeslaown for allocating
std::vector<double> objects but the memory used by the reference counting maghanly depends

108



Type sizeof(Type)

bool 1
double* 8
double 8
std::vector<double> 24
boost::shared  _ptr<std::vector<double> > 16
boost::detail::sp _counted _impl _p<std::vector<double> > 32
RCP<std::vector<double> > 24
RCPNodelmpl<std::vector<double>, ... > 48

Table 18. Sizes of RCP and boost::sharptt objects for 64 bit GCC
4.1.2.

on pointers so the memory usage overhead is the same no ntetetye of object is used. From looking
at Table 18, one can see that the static sizgdofector<double> is 24 bytes for this compiler.
Consider allocating astd::vector<double> object with only one element. This would dynamically
allocate onalouble object in an array giving a total of 32 bytes. Now considerrdference-counting
machinery overhead. For every allocastdi:vector<double> object, there is a reference-counting
node object of typ&@CPNodelmpl<std::vector<double>, ... > which is 48 bytes. In addition there
is also arRCP<std::vector<double> > object of size 24 bytes. That gives a total of 24+48=72 bytes o
reference-counting overhead to manage an object that onuenes 32 bytes. That is memory overhead
of 225%! However, when thgid::vector<double> is allocated to hold 100 elements, the memory
consumed by thetd::vector<double> object is 24+8*(100) = 824 bytes. Now the 72 bytes of
reference-counting overhead is only 8.7%. By the time one tpel 000 elements, the overhead drops to
0.8%. The point is that the reference-counting machinepairs a storage overhead that is non-trivial for
small objects. Therefor&CPshould not be used to manage large numbers small objecEwisé,
ArrayRCP should not be used to manage large numbers of small arraylsef@ame reason.

Table 18 also shows the sizes of comparable objects asseidh theboost::shared  _ptr class. The
boostsp _counted _impl _p node object only consumes 32 bytes on this machine as appoHesl48 bytes
for the RCPNodelmpl object. The increased overhead of R@PNodelmpl object is due to the pointer for
the extra data map, an extra ownership Boolean, and stofdlje deallocator object. Also, the
boost::shared  _ptr object itself only consumes 16 bytes while the equivaR€Robject uses 24 bytes.
This increase in storage is due to having to stosgeagth enum to dynamically handi@TRONGand
WEAKreferences. This is the storage cost of increase flexilufithe RCPclass over the

boost::shared  _ptr class.

Now consider the runtime overhead associated with dynalisicadion and deallocation. Figure 12 shows
the timings for dynamically allocating and deletistg::vector<double> objects for different numbers
of vector elements on the three compilers shown in Table itjuré& 12.a shows the timings for allocating
std::vector<double> objects with only one element. This shows that there is sam&me overhead
needed to dynamically allocate new node objectfoR The extra overhead is due to an extra calidwa

in order to allocate the node object. Note that the extralmaet forRCPis quite small with respect to
boost::shared  _ptr for all three compilers (because both classes do very githilags). However, this is
constant time overhead so as largtr:vector<double> objects are allocated (with associated

109



initialization of the vector elements in an inner loop) tké&tive overhead goes to zero, as shown in
Figure 12.b. Therefore, the runtime overhead of the reter@ounting machinery for allocating and
deallocating large objects is very small.

Now consider timings for dereferencing usiRGP::operator*() , member access through the arrow
operatorRCP::operator->() , and assignment throudtCP::operator=(...) (which changes the
reference counts) shown in Figure 13. These timings arevtrage CPU time (in seconds) per inner loop
iteration (see Listing 97 for an example). These timing iteshow that dereferencing and member access
for RCPyield raw pointer performance on all the compilers becahesd member functions are trivially
inlined to expose the raw pointer.

The assignment operator, however, imposes significanheaerbecause of the need to increment and
deincrement the reference counts. The timing code fragthahexercise®CP::operator=(...) is
shown in Listing 97. (Note thatd::vector is used instead dfrray in Listing/97 in order to avoid
timing overhead that might result from a bad implementatibArray::operator[](...) that would
affect the timing results.)

Listing 97 : Performance timing loops fdRCP: : operator=(...)

{
RCP<char> p(new char('n));

std::vector<RCP<char> > p_vec(arraySize);
TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter numActualLoops, arraySize)

{
for (int i=0; i < arraySize; ++i) {
p_vecfi] = p;
Il NOTE: This assignment operation tests the copy construct or and
Il the swap function. This calls both bind() and unbind()
/I underneath.
}
}

}
TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, rcpTime);

Timing results for the code in Listing 97 foumActualLoops=338498  andarraySize=1024  are shown in
Figure 13 along with similar timings for raw pointers apabst::shared  _ptr . The full timing results for
other sizes are show in in Appendix D.1.

Several interesting points to note about these timing tesé described below.

First, the timing results for the simple raw-pointer loopswn in Figure 13 suggest that these two
machines have nearly identical processor speeds. Theydfi@er CPU times on the Y-axis scale for each of
these compiler/machine bar charts is made the same to allombfolute comparisons. This allows for
direct comparisons of the optimizing capabilities of thésee compilers with respect to dealing with
general C++ code (and not just C-like raw pointer loops)sHEuiggests that GCC 4.1.2 is better than the
rest and that MSVC++ 2008 is quite bad at optimizing genR€HdC++ code.

Second, note that the cost of manipulating the referencetée®RCP:.operator=(...) is an order of
magnitude higher than the dereference and arrow operatichwave raw-pointer performance. The real
overhead of manipulating the reference counts may not lactumthis high due to the simple nature of the

110



CPU Time (sec)

CPU time relative to raw new/delete

4.50E-07
4.00E-07
3.50E-07
3.00E-07
2.50E-07
2.00E-07
1.50E-07
1.00E-07
5.00E-08
0.00E+00

2.00E+00
1.80E+00
1.60E+00
1.40E+00
1.20E+00
1.00E+00
8.00E-01
6.00E-01
4.00E-01
2.00E-01
0.00E+00

B Raw

mSP

m RCP

GCC4.1.2 ICC10.1 MSVC++ 2008

a) Time to dynamically alloc and dealloc std::vector<double>(1)

=== GCC4.1.2
= |CC 10.1

4 e MSVC++ 2008

== == Zero overhead

1 10 100 1000 10000 100000

objectSize

b) Time to dynamically alloc and dealloc std::vector<double>(objectSize) using RCP

Figure 12. Timings for allocating and deallocating objects using RCP

111



CPU Time (sec) CPU Time (sec)

CPU Time (sec)

1.40E-08
1.20E-08
1.00E-08
8.00E-09
6.00E-09
4.00E-09
2.00E-09
0.00E+00

1.40E-08
1.20E-08
1.00E-08
8.00E-09
6.00E-09
4.00E-09
2.00E-09
0.00E+00

1.40E-08
1.20E-08
1.00E-08
8.00E-09
6.00E-09
4.00E-09
2.00E-09
0.00E+00

M Raw

mSP

m RCP

Deref ArrowOp Assign
a)GCC4.1.2

M Raw

mSP

m RCP

Deref ArrowOp Assign
b)ICC10.1

M Raw

mSP

m RCP

Deref ArrowOp Assign
c) MSVC++ 2008

Figure 13. Timings of basic RCP operations on for three compilers

112



raw pointer code run in a loop getting better optimizatiohe Teference-count manipulation code involves
if statements that may disable certain loop optimizations.

Third, note thaRCP::operator=(...) is about 30% slower on GCC 4.1.2 than boost::shared  _ptr

due to the extra overhead of dynamically handling strongveeak reference counts. The overhead©P
overboost::ishared  _ptr goes up to 50% on on ICC 10.1 and then falls off a cliff goingwB@0% for
MSVC++ 2008. Clearly the MSVC++ compiler is not inlining tREPfunctions as well in this case.
However, there may be compiler options that would cause t8% @+ compiler to be more aggressive in
inlining but none could be found after a moderate level ofegxpentation.

Fourth, note that for GCC 4.1.2, the cost of manipulatingréierence count (&59-09 sec ) is two

orders of magnitude less than the cost to allocate and deédi@rstd::vector<double> object with

only one element (ait.39-07 sec ) and is three orders of magnitude less for 16384 elemen§s3¢a06

sec) as shown in Appendix D.1. Therefore, just the memory atiocaoverhead can dominate these other
costs in some cases. Also, if a large object is being usedaxjtensive operations, then the
reference-counting overhead will be insignificant comgdeceusing the object. Again, this argues that
classes likdRCPshould only be used to manage larger objects that have mpemsixe operations
associated with them. The same argument can be madarta®CP should only be used for managing
larger arrays of data where the cost of loops over the datawetm the reference-counting costs.

Lastly, note that th&®CP::operator=(...) implementation both deincrements and increments the
reference count while the copy constructor only has to mer& the reference count. Therefore, we might
expect that the copy constructor would be about twice asafatite assignment operator. The performance
of the copy constructor is not measured in a loop becausé&d#rgwrite a loop that tests it without other
overhead. However, the fastest approach is to avoid the afojne RCPobjects at all by passing in constant
references to thRCPobjects as formal function arguments which is advocateceirti®n 5.8.4.

5.12.2 Array access and iterator overhead

Another important type of performance (perhaps more ingobrthan the performance BCPfor handling
single objects) is the performance of the Teuchos arragetadn an optimized non-debug build these
classes must yield the same performance as using raw [goortére performance of the application will
definitely be affected.

Performance timing experiments for the bracket opergierator[](size _type) and iterators (returned
from thebegin() andend() functions) were performed using simple timing loops. Ualike
performance tests f@CPdescribed in the previous section, timing array operati@tarally lends
themselves to performance timings. The performance tiroaag fragments for thérray class are shown
in Listing[98 and 99. The timing loop code for raw pointers #melArrayRCP andArrayView classes are
nearly identical.

Listing 98 : Performance timing loops foir r ay: : operat or[] (si zet ype)

Teuchos::Array<double> a(arraySize);
TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputtey numActualLoops, arraySize)

{
for (Ordinal i=0; i < arraySize; ++i)
afi] = 0.0;

113



}
TEUCHOS_END _PERF _OUTPUT_TIMER(outputter, arrayTime);

Listing 99 : Performance timing loops fo#r r ay iterators

Teuchos::Array<double> a(arraySize);
TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputtey numActualLoops, arraySize)

{
Teuchos::Array<double>::iterator a_itr = a.begin(), a_e nd = a.end();
for (; a_itr < a_end; ++a_itr)
*a_itr = 0.0;
}

TEUCHOS_END _PERF _OUTPUT_TIMER(outputter, arrayTime);

Figure 14 shows the CPU timings foperator[](size _type) and iterators for the performance tests
with sizesnumActualLoops=230574  andarraySize=1600 . These timing results are fairly interesting and
there are a few important details to note.

First, the performance of the raw pointer iterator loops lbtheee platforms is almost identical. The CPU
time per inner loop iteration for the raw iterator form of tlbep for all three compilers on the two different
Linux and Windows machines is abdibe-10 seconds. This suggests that the CPUs on these two
machines are nearly identical for low level operations.sTtherefore suggests that only the compilers that
result in different performance for the other operationsc&ise these processors appear to be giving the
same raw performance, the Y-axis scales on all the timingharts are made the same in Figure 14 to
allow for direct comparison between each of the platforms.

Second, the ICC 4.1.2 compiler does not optimize the Ghdtector:iterator typ@ as well as it
optimizes raw pointer iterator syntax. The GNU GCC 4.1.2 piten itself does not even quite fully
optimize its owrstd::vector::iterator type!

Third, the ICC 4.12 compiler is not optimizing the array irihg) form of the inner loops shown in
Listing/98 as well as the other two compilers even for the dsaw pointers. The performance is even
worse for the abstract data typsd::vector  , Array , ArrayRCP , andArrayView .

Forth, for some reason the MSVC++ 2008 compiler is not ogiimgi the loop using
ArrayRCP::operator[](size _type) as well as for the other array types. Several different ctanpi
options and variations on thierayRCP and performance timing code where experimented with withou
any impact (except to make every operation slower). Howekrerperformance timing loop using iterator
for ArrayRCP yield raw-pointer performance (not surprising given thiaayRCP::iterator is just a raw
pointer in a non-debug build).

The take-away points from these timing results are thatoalifglers do not fully optimize the array
indexing form of the loops and only raw pointers used astibesawill yield the optimal performance. The
Teuchos array classes perform at least as wesidasector and actually out-perforratd::vector in
some cases. This is only because the Teuchos array clagsesw€++ pointers for iterators in an
optimized non-debug build while the GNU implementatsbah:vector uses a library-defined class.

16The data-type for the optimized iterator fstd::vector::iterator on GNU is not a raw pointer. Instead it is a library-
defined data type with all inline functions that should indtyebe optimized as well as the raw pointer but not always.

114



CPU Time (sec) CPU Time (sec)

CPU Time (sec)

1.40E-09

1.20E-09

1.00E-09

8.00E-10

6.00E-10

4.00E-10
2.00E-10 -

0.00E+00 -

i = o= m =

Raw Ptr std::vector Array ArrayRCP ArrayView
a) GCC4.1.2

1.40E-09

1.20E-09

1.00E-09

8.00E-10

6.00E-10 -
4.00E-10 -
2.00E-10 -

0.00E+00 -~

Raw Ptr std::vector Array ArrayRCP ArrayView
b)ICC10.1

1.40E-09

1.20E-09

1.00E-09

8.00E-10

6.00E-10

4.00E-10

2.00E-10 -
0.00E+00 -

Raw Ptr std::vector Array ArrayRCP ArrayView
c) MSVC++ 2008

Figure 14. Timings for basic Array, ArrayRCP, and ArrayView opera-
tions

115

m operator(](i)

W ++itr, *itr

m operator(](i)

W ++itr, *itr

m operator(](i)

W ++itr, *itr



5.12.3 Performance tuning strategies, semi-persisting ssciations

The timing results shown in the prior two sections lead toradéferent conclusions related to
performance issues in the use of the Teuchos memory manage/pes:

e The reference-counting machinery of fRéPclass imparts at least 72 bytes of overhead for every
reference-counted object (the overheadioayRCP is slightly higher) and therefoieCPshould not
be used to manage massive numbers of small objects, justEfmemory usage standpoint.
Likewise,ArrayRCP should not be used to manage large collections of small agimge the
memory overhead could be significant.

e The extra runtime overhead of reference-counting machidees not significantly increase dynamic
memory allocation and deallocation runtime costs for matddy large objects.

e The runtime reference-counting overheadk@GPwith respect tdoost::shared  _ptr can vary from
as little as 30% on a good optimizing compiler (e.g. GCC 4.thas much as 300% or more on a
poor optimizing compiler (e.g. MSVC++ 2008). Thereforepdirtable performance of is critical,
make sure and use the reference-counting types at as higbl @feyranularity as one can such that
it does not damage the quality of the software (i.e. safatyjlllity, usability, maintainability).

e The most portable way to achieve high performance in arragyatfons is to use iterators on
ArrayRCP andArrayView objects. The timing results on ICC 10.1 show that some cargilill
not even given optimize performance &d::vector:iterator I Also, all compilers do not
automatically fully optimize the array bracket form of amegrbased loop so an iterator loop is the
only foolproof way to get the best optimized performancessmplatforms.

The performance tests described above show that the memdnmuatime overhead of the
reference-counting machinery can be high when used withi siieap objects. Therefore, if the
reference-counted typ&CPandArrayRCP are used at too low a level of granularity, the overall
performance of the program may suffer and may use significamdre memory than it would with raw
pointers. In such low-level code, strictly adhering to thi@ins described in Sections 5.8.4 and 5.8.5 with
respect to persisting relationships can significantly degmerformance. Therefore, in low-level
performance-critical code, the strict idioms related tosjgéing associations need to be relaxed or the
design must be changed to raise the level of granularity evtier reference-counted types are used.

However, just because one cannot R&PandArrayRCP in every situration and still achieve high
performance does not mean that the code should hard-codesdraraw pointers. Insteadr can be

used instead dRCPandArrayView can be used instead AfrayRCP when the full semantics of persisting
relationships are not needed and instead only semi-pgagsigiationships are needed (see Section 4.2). By
using the type®tr andArrayView instead of raw pointers for all semi-persisting assoaitione still

gets all of the strong debug-mode runtime checking thatssrifeed in Section 5.11 (e.g. dangling
reference checking, null checking, range checking, ett.Yhese types remove all overhead over raw
pointers in a non-debug optimized build.

As an example, consider the design of a sparse matrix classttires its data as compressed sparse rows
and allows access to the sparse rows. The client of the spasix class would obtain handles to the
sparse row data, make modifications to it, and then releaskaihdles. Performing all of these operations
in a single statement (as is strictly required for a nonipting relationship as defined in Section 4.2) is

116



impractical. Therefore, the handles for the internal spapsv data represent a persisting relationship and
the strict interpretation of the idioms defined in Sectior&4%and 5.8./5 would require the usefofayRCP
yielding the sparse matrix class interface shown in Lisfifg.

Listing 100 : Sparse matrix class interface adhering to strict intetpt®n of idioms for persisting
relationships

class SparseMatrix {
public:

int getNumRows() const;
void getSparseRow( int rowld, const Ptr<ArrayRCP<double> > &values,
const Ptr<ArrayRCP<const int> > &collds);

TheSparseMatrix  class shown in Listing 100 would be used as shown in Listiry 10

Listing 101 : Client code usingfr r ay RCP form of theSpar seMat r i x class

void zeroOutSparseMatrix(const Ptr<SparseMatrix> &M)

{

const int numRows = M->getNumRows();
for (int row_i = 0; row_i < numRows; ++row_i) {
ArrayRCP<double> values;
M->getSparseRow(row_i, outArg(values), null);
typedef ArrayRCP<double>::iterator itr t;
for (itr_t itr = values.begin(); itr != values.end(); ++itr )
*itr = 0.0;

While the interface and the user code shown in Listing 10étktrsatisfies that safe and bullet-proof

idioms on persisting associations described in Sectiod/5t8e reference counting overhead (in memory
size and speed) of this code can be quite high if the rows ayesparse. Looking at code such as shown in
Listing/101 and similar use cases, it never seems reasotiegila client would gralrrayRCP objects to
internal rows and expect to have the row data persist evée ifriatrix changed structure or was deleted.
Instead, one just needs to set up the infrastructure for-persisting associations to be able to detect those
types of invalid usage in a debug-mode build but yield higtigmenance in an optimized build. Therefore,

it seems reasonable to replaireayRCP in SparseMatrix:.getSparseRow(...) in Listing[100 with
ArrayView vyielding the newSparseMatrix  interface shown in Listing 102.

Listing 102 : Sparse matrix class interface using a semi-persistingeiasion for row views for the sake
of performance

class SparseMatrix {

public:

117



int getNumRows() const;
void getSparseRow( int rowld, const Ptr<ArrayView<double > > &values,
const Ptr<ArrayView<const int> > &collds);

The updated client code zeroing out the rows of the matrixlevthen look like Listing 103.

Listing 103 : Client code usingdr r ay Vi ewform of theSpar seMat ri x class with semi-persisting row
views

void zeroOutSparseMatrix(const Ptr<SparseMatrix> &M)
{
const int numRows = M->getNumRows();
for (int row_i = 0; row_i < numRows; ++row i) {
ArrayView<double> values;
M->getSparseRow(row_i, outArg(values), null);
typedef ArrayView<double>::iterator itr_t;
for (itr_t itr = values.begin(); itr != values.end(); ++itr )
fitr = 0.0;

Now the client code in Listing 103 will have no reference-ating overhead in a non-debug optimized
build but in a debug-mode build, all invalid usage will beet#ed. For example, consider invalid code such
as shown Listing 104 where the client code tries to hold op&rse row data after the matrix is deleted.

Listing 104 : Example of invalid usage @par seMat r i x leading to a dangling reference exception in
a debug-mode build

Il Create and initialize the matrix
RCP<SparseMatrix> M = createSparseMatrix(...); // Non-me mber constructor

Il Grab a sparse row to the matrix

ArrayView<double> values_row_0;

ArrayView<const int> collds_row_0;

M->getSpaseRow(0, outArg(values_row_0), outArg(collds _row_0));

Il Delete the matrix (leaving dangling values row_0 and col Ids_row_0)
M = null;

Il Try to access the row

ArrayView<double>::iterator
itr = values.begin(), /I' Throws exception in debug-mode bui d!
itr_end = values.end();

for (; itr = itr_end; ++itr)
*itr = 0.0;

118



As shown in Listing 104, usingrrayView allows programming errors to be detected in a debug-mode
build. If raw pointers would have been used, this danglifgresmce may not be detected right away. On
some platforms for some problem sizes, the program usingpoamters may seem to run just fine and
Valgrind may not complain (especially if sophisticated nogynrmanagement is used inside the
SparseMatrix  class). The error may not present itself until months or yé&ster where it may do untold
harm.

Note that there may be some extreme cases where the ovelfreradxdra size data memberAmrayView

is too high. In these cases, one can instead use an iterptostich adrray::iterator or

ArrayRCP::iterator (depending on type of the underlying container class). lataud-mode build, the
iterator objects will be fully checkedrrayRCP objects while in a non-debug optimized build, the iterators
will be raw pointers (ostd::vector::iterator in the case oArray::iterator ). This yields raw
pointer performance in a non-debug optimized build with pace or time overhead (because all the
objects actually are raw pointers in this case).

The point of this section is to acknowledge that there wilskieations in low-level code where the strict
adherence to using reference-counted typ@RandArrayRCP for persisting associations may not yield
acceptable performance and therefore one must insteadiprimv semi-persisting views. However, as
demonstrated above, the solution to the performance proisl@ot to fall back to using raw pointers but
instead to fall back on the non-reference-counted tAresandArrayView (or Array[RCP]::iterator ).
By using the type®tr andArrayView (or Array[RCP]::iterator ), one maintains all the desirable
debug-mode runtime checking without any of the referermeiting overhead in a non-debug optimized
build. We can have our cake and eat it too!

5.13 Related idioms and design patterns

There are a number of important idioms related to the usaggedofeuchos memory management classes
and most specifically thRCPclass. The power and flexibility of the reference-countirachinery built in

to theRCPclass opens the door the a whole host of interesting idiorfesy @f which are described in the
following subsections.

5.13.1 The inverted object ownership idiom

A rare situation that can occur is when one has an object thattains arRCPto another object but one
wants to expose the second object and have it remember thebfiest; in other words, one wants to invert
the object ownership. To demonstrate, consider the tweesis Listing 105.

Listing 105 : Two classes where one maintains an RCP to the other
class A { ... };
RCP<A> createA(...);
class B {
public:

static RCP<B> create(const RCP<A> &a) {return rcp(new B(a) )}
RCP<A> getA() { return a_; }

119



void unsetA() { a_ = null; }

private:

RCP<A> a_;

B(const RCP<A> &a) a_(a) {}
3

RCP<B> createB(const RCP<A> &a) {return B::create(a);}

The classA in Listing/105 may involve some complex initialization onitay only be an abstract interface
with multiple subclasses. In either case, it may make senpeovide a factory function (or a set of such
functions) that creates and initialize8 abject for different complex initializations @f objects such as the
example shown in Listing 106.

Listing 106 : A factory function that creates B object wrapping a compleX object

RCP<B> createBFactory(...)
{

/I Complex initialization of A
RCP<A> a;

/I Wrapped B
return createB(a);

Up to now, this is pretty standard code. The client woulddgjty hold anRCP<B>object and would
manage the lifetime of th& object implicitly wrapped in th® object.

However, now consider a rare use case where a client may @iyt deal directly with thé object but
still maintain theB object for later use. There are a few approaches that ond tgutb implement this
inversion of RCP ownership but there is a way to enable tlasith100% bullet-proof without having to
change the existing or B classes or any other code at all. The way to do this is to use the
rcpWithinvertedObjOwnership(...) function (defined in Listing 108) as shown in Listing 107.

Listing 107 : A factory function that returns aA object embedded withBobject (inverting the
ownership relationship)

RCP<A> createAFactory(...)

{
RCP<B> b = createBFactory(...);

return rcpWithinvertedObjOwnership(b->getA(), b);
}

Listing 108 : Standard helper function implementing the “inverted abjewnership” idiom

template<class T, class ParentT>
RCP<T> rcpWithinvertedObjOwnership(const RCP<T> &child , const RCP<ParentT> &parent)

typedef std::pairkRCP<T>, RCP<ParentT> > Pair t;

return rcpWithEmbeddedObj(child.getRawPtr(), Pair_t(c hild, parent), false);
}

120



Without going into a lot of detail, what the code in Listing@7land 108 accomplishes is that it defines a
newRCP<A>object with a newRCPNodeobject that uses the other existiR§P<A>andRCP<B>objects to
define ownership and ensure that the underlyirmgndB objects do not go away until the Ia8€P<A>object
copied from the object returned by the functioeateAFactory(...) has gone away. The reason that
false is passed into theepWithEmbeddedObyj(...) call is because it is the embedded objdtTF<A>
andRCP<B>that define the deallocation and not the embedded deallo@altich callsdelete ). The
reason that botRCP<A>andRCP<B>are passed as an embedded object (stored stdapair object) is
that one needs to make sure thebject does not get deleted in case some client callB:thesetA()
function.

Given this data-structure, another piece of code can theaaxhe underlyindiRCP<B>object is shown in
Listing[109 which uses the standard Teuchos funageimvertedObjOwnershipParent(...) defined
in Listing(110.

Listing 109 : A function that extracts the B object from the A object

RCP<B> extractBFromA(const RCP<A> &a)
{

}

return getinvertedObjOwnershipParent<B>(a);

Listing 110 : Standard helper grabbing the inverted parent

template<class ParentT, class T>
RCP<ParentT> getlnvertedObjOwnershipParent(const RCP< T> &invertedChild)

typedef std::pairkRCP<T>, RCP<ParentT> > Pair t;
Pair_t pair = getEmbeddedObj<T, Pair_t>(invertedChild);
return pair.second;

}

That is all there is to it. This is not the sort of thing that avents to expose to general clients but it can be
very handy to have this type of flexibility when implementitng guts of library code. The above example
shows the flexibility of these memory management classesvaatisome of the possibilities are if one
understands the underlying reference-counting machméttle.

5.13.2 The separate construction and just-in-time initiakation idioms

The “separate construction and initialization” and “justime initialization” idioms described here are not
specific to the use of the Teuchos memory management classtre) do provide the basic foundation for
the next idiom described, the “object self-reference” mlidlo set up the context for the discussion,
consider a typical class design shown in Listing/111.

Listing 111 : Example of a typical C++ class that uses constructors fdiiritialization

class SomeClass : public SomeBaseClass {
int memberl_;

121



double member2_;

RCP<A> a_;
RCP<B> b _;
RCP<C> c_;
void finallnitialization() { ...} // Can't call virtual fun ctions on SomeBaseClass
public:
SomeClass(): memberl (1), member2_(5.0) {}
SomeClass(const RCP<A> &a) : memberl (1), member2 (5.0), a (a)
{ finallnitialization(); }
SomeClass(const RCP<B> &b) : memberl (1), member2_(5.0), b_(b)
{ finallnitialization(); }
SomeClass(const RCP<A> &a, const RCP<B> &b, const int someV alue)

: memberl (1), member2_(5.0), a_(a), b_(b)
{ c_ = createC(rcp(this, false), a, b, someValue);
finalInitialization(); }
RCP<A> get A() { return a_; }
RCP<B> get B() { return b_; }
RCP<C> get C() { return c_; }
void doSomeOperation(...) {...}

So what is wrong with the design 8bmeClass in Listing/1117? First, there is the duplication of default
values formemberl_, member2_ in all of the constructors. This makes it labor intensive amdr-prone to
change the values later. Yes, one could create static caasthsome type to be reused in all the
constructor initialization lists but one still has to list af these arguments in every construdfor

The second problem with the claSsmeClass that it cannot call any virtual functions in the base class
SomeBaseClass to help initialize its state in the constructors [31, Iten}).49

The third problem with the design 8bmeClass shown in Listing 111 is that thé object that is created in
the third constructor that takésandB objects is not properly setting up a persisting relationgidtween
the C object and thé&omeClass object. When thi€ object is exposed through tiget _C() member
function, this creates a dangerous situation wheré&tneeClass object may be deleted leaving a client
with a danglingRCP<C>object with no way for the reference-counting machinerycdbsd in Section 5.9
do detect the the problem. This issue will be discussed nmatteei context of the “object self-reference”
idiom in Section 5.13.3.

Lastly, the clas§omeClass is inflexible in that it requires the client creating tBemeClass object to know
the concrete types @fand orB (which could be abstract interfaces in this example) righemwthe
SomeClass object is first created. This creates a three-way couplingden a) the client, with b) defining
the time when th&omeClass object is first created, and ¢) needing fully construdeahdB objects right
whenSomeClass is first created. In complex programs, it is very hard and wenstraining to have to
fully initialize a web interconnected objects before comsting downstream objects.

Without further ado, the use of the “separate constructi@hiaitialization” and “just-in-time
initialization” idioms applied td&SomeClass shown in Listing 111 gives the new refactored class in
Listing[112.

1"The new C++0x standard will address the problem of duplicatestructor initialization lists by allowing construcsato call
each other but we will not see such a feature in wide spreadnifienany years after the C++0x standard is finalized.

122



Listing 112 : Example of the use of the “separate construction and ili#&ion” and “just-in-time
initialization” idioms

class SomeClass : public SomeBaseClase {
public:
SomeClass(): isIntialized_(false), memberl (1), member 2 (5.0) §
void set A(const RCP<A> &a) { a_ = a; isintialized_=false; }
void set B(const RCP<B> &b) { b_ = b; isintialized =false; }
RCP<A> get A() { return a_; }
RCP<B> get B() { return b_; }
RCP<C> get C() { justinTimelnitialize(); return c_; }
void uninitialize() { a_ = null, b_ = null; ¢_ = null; isintial ized =false; }
void doSomeOperation(...)

{

justinTimelnitialize();

}...

private:
bool isIntialized_;
int memberl_;
double member2_;
RCP<A> a_;
RCP<B> b_;
RCP<C> c_;
void justinTimelnitialize()
{
if (isIntialized ) return;
/I Can now call virtual functions on SomeBaseClass (someBas eFunc())!
if (nonnull(a_) && nonnull(b_))
c_ = createC(rcp(this, false), a, b, this->getSomeValue() );

isIntialized_ = true;
Y

Il Non-member constructors
RCP<SomeClass> someClass()

{ return rcp(new someClass()); }
RCP<SomeClass> someClass(const RCP<A> &a)

{ RCP<someClass> sc(new someClass()); sc->set A(a); retu m sc; }
RCP<SomeClass> someClass(const RCP<B> &b)

{ RCP<someClass> sc(new someClass()); sc->set B(b); retu m sc; }
RCP<SomeClass> someClass(const RCP<A> &a, const RCP<B> &b )

{ RCP<someClass> sc(new someClass()); sc->set A(a); sc-> set B(b); return sc; }

SIDE NOTE: Before describing the specific advantages ofefectored class in Listing 112, first note that
the issue of the creation of tlxobject and dangling referencesafreturned fronget _C() have not been
addressed in this design. That issue will be addressed metfobject self-reference” idiom described in
Section 5.13.3.

Some of the specific advantages of the usage of the “sepanas&uction and initialization” idiom as
applied to the design @omeClass shown in Listing 112 are described below.

123



a) The default values fanemberl_ andmember2_ are defined in only one constructor initialization list.
This massively simplifies the maintenance of large complasses with lots of data members and more
than one constructor.

b) The private initialization functiojustinTimelnitialize() can now call a virtual function on the
base clasSomeBaseClass::getSomeValue() to get the value o$omeValue instead of requiring the
client to pass it into the constructor.

¢) The objects andb can be constructed and injected into SuneClass object in different parts of the
code by different clients. This breaks a fundamental depecywhich couples these objects and the
clients together and can massively simplify the structdireomplex programs.

d) The “separate construction and initialization” idionturally leads to the “just-in-time initialization”
idiom where thgustinTimelnitialize() function is not called until the functions

doSomeOperation(...) orget _C() are called by a client. This allows the objeatand/orb to be passed
into the functionsset _A(...) andset _B(...) in a partially-initialized state. These objects do not nied
be fully initialized until thedoSomeOperation(...) orget _C() functions are called. This can massively
simplify and robustify the design of complex programs byasafing code that creates the links between
objects from the code that fully initializes the objectsisTévoids the constraints of needing to use a
factory object to create fully initialized “aggregate” ebjs described in [14].

e) An object of typeSomeClass is not any harder for a client to create because the non-merobstructor
functions allow the object to be constructed in a single fiamccall (see Section 5.8.1) for all the use cases
given in the original class constructor design.

The only real disadvantage of the “separate constructidnratialization” idiom is some small decrease in
performance in using assignment instead of member iziéiatin lists [26, Item 4]. However, this type of
low-level performance is almost never an issue in highegtlelasses lik&someClass shown in

Listing/112. Most classes in a complex program are highastielasses where low-level performance
considerations like this are not an issue so the the “sepadatstruction and initialization” idiom is
applicable in more cases than not.

The main disadvantage of the “just-in-time initializatiadiom is the need to have a call the function
justinTimelnitialize() in every operation that requires the object to be fully alited. This is minor
programming inconvenience and a minor performance ovdrhEae more significant disadvantage is that
more unit testing is needed to test the behavior of the usetiins for when the object is not ready to be
fully initialized. However, good class design makes thidyeasy.

5.13.3 The object self-reference idiom

There are occasions where an object needs to proviRERt itself with the full protection of the
debug-mode checking with node-tracing enabled. Howewegtri object to hold a strorigCPto itself
would set up a circular reference and the object would nesateteted. The issue of self references was
mentioned in the previous section in the context of the “smpaconstruction and initialization” idiom.

The most straightforward example of where the “object sfiérence” idiom is needed is when a factory
object creates a product that must in turn store a strongrmyRGPto the factory that created it. This is the
exact use case that exists in the Thyra packag¥dcprBase andVectorSpaceBase objects [3]. In this

124



case\VectorSpaceBase acts as the factory andectorBase acts as the product. Also, evergctorBase
object has a functiospace() that returns aiRCPto theVectorSpaceBase object that created it to be used
to create otheYectorBase objects.

A simplified version of the implementation of tiectorSpaceBase standard subclass
DefaultSpmdVectorSpace  using the “object self-reference” idiom is shown in Listib@3.

Listing 113 : Example of the “object self-reference” idiom where a fagtanust give a strong owning
RCP self reference to its products.

class DefaultSpmdVectorSpace : public VectorSpaceBase {
RCP<DefaultSpmdVectorSpace> weakSelfPtr_;
Ordinal localDim_;
DefaultSpmdVectorSpace() : localDim_(0) {}
public:
static RCP<DefaultSpmdVectorSpace> create()

{
RCP<DefaultSpmdVectorSpace> vs(new DefaultSpmdVectorS pace);

vs.weakSelfPtr_ = vs.create_weak();
return vs;

}

void initialize(const Ordinal localDim)
{ localDim_ = localDim; }
RCP<VectorBase> createMember()
{ return defaultSpmdVector(weakSelfPtr_.create_strong 0}

3

/I Nonmeber constructor
RCP<DefaultSpmdVectorSpace> defaultSpmdVectorSpace(c onst Ordinal localDim)

RCP<DefaultSpmdVectorSpace> vs = DefaultSpmdVectorSpac e:.create();
vs->initialize(localDim);
return vs;

}

The way the “object self-reference” idiom works is that distunctioncreate()  allocates a
default-initializedDefaultSpmdVectorSpace ~ object and stores it in a strong owniRgPobject. It then
creates a weaRCPobject that it sets as the self reference on the newly crézrdItSpmdVectorSpace

object. The default constructor is made private so the omly for a client to create an
DefaultSpmdVectorSpace  object is to use use the statieate() function (or call it indirectly through

the non-member constructor functidefaultSpmdVectorSpace() ). Because this self reference is a weak
tracingRCP it can detect dangling references or can be used to cre&igng RCPwhen needed while at

the same time not creating a circular reference that woldltren a memory leak.

The memory functiortreateMember()  shown in Listing 113 creates a strong ownR@Pto itself which
is given to the newly createdefaultSpmdVector  object in the statement
defaultSpmdVector(weakSelfPtr _.create _strong()) . This allows the resulting product
DefaultSpmdVector ~ object to outlive the client'®CPreferences to the factory object
DefaultSpmdVectorSpace . A simple example of this is shown in Listing 114.

125



Listing 114 : Example of client code that creates a factory, uses it tater& product and lets the factory
go away where the factory is remembered in the product

RCP<VectorBase> createMyVector(const Ordinal localDim)

{
RCP<DefaultSpmdVectorSpace> vs = defaultSpmdVectorSpac e();
return vs->createMember();
/I NOTE: The DefaultSpmVectorSpace object is embedded in th e returned
II' DefaultSpmdVector object and will not be deleted
}

Code like shown in Listing 114 may seem contrived but theke ligeen several use cases for Thyra over
the years that required code just like this to work or it waudde resulted in a much more complex design
of the client’s code to work around this issue.

There are also other less obvious examples where the “cdgfeteference” idiom is useful. For one such
case, consider Listing 115 which shows a simplified versifah® class shown in Listing 111 that has to
pass a self reference to an object it creates and holds atitern

Listing 115 : Example of an class witRCP to self problems (similar to the class in Section 5.13.2)

class SomeClass : public SomeBaseClass {
RCP<C> c_;
void finallnitialization() { ...}
public:
SomeClass() {}
{ ¢_ = createC(rcp(this, false)); finallnitialization(); }
RCP<C> get C() { return c_; }

3

The problem with the code in Listing 115 is that it gives upR&iP<C>object to its internaC object that is
constructed internally but a proper node tracing relatignbas not been established betweenGlobject
and theSomeClass object. (Even ifSomeClass does not intentionally give up iRCP<C>object, it is still

very easy to do it by accident so this scenario still appli€s.see the problem with this, consider the client
code in Listing 116.

Listing 116 : Client code that results in undefined behavior (e.g. sdtfau

RCP<SomeClass> sc(new SomeClass);

RCP<C> ¢ = sc->get C();

sc = null; // The SomeClass object is destroyed which invalid ates 'c'l
c->someFunc(); // Calls on the now deleted SomeClass object pointed to inside!

The problem with the code in Listing 116 is that when SoeneClass objectsc is destroyed, there is no
way for the reference-counting machinery in to catch thegtiag reference. This code yields undefined
behavior and will segfault if one is lucky but like any memaigage error, if one is unlucky the code will

126



appear to work correctly but will be a ticking time-bomb tiaall go off eventually. The reason for this
behavior is that the statement = createC(rcp(this, false)) in the constructoBomeClass()

creates a non-owinBCPNodeobject beforehe owningRCPNodeobject is created by the client code
RCP<SomeClass> sc(new SomeClass) . This violates Commandment 5 in Section B. The node-tracing
reference-counting machinery would have to be more comgteikxmuch more expensive to catch dangling
reference errors where the strong ownR{EPNodeobject was not the fir®®CPNodeobject created.

The solution to this problem is to use a variation of the “ocbgelf-reference” idiom. The updated design
that accomplishes this is shown in Listing 117.

Listing 117 : Example of the “object self-reference” idiom for detecfidangling references to internally
held objects

class SomeClass : public SomeBaseClass {

RCP<SomeClass> weakSelfPtr_;

RCP<C> c_;

SomeClass() {}

void justinTimelnitialize() { c¢c_ = createC(weakSelfPtr ) .
public:

static RCP<SomeClass> create()

{

RCP<SomeClass> sc(new SomeClass);
sc.weakSelfPtr_ = sc.create_weak();
return sc;

}
RCP<C> get_C() { justinTimelnitialize(); return c_; }

b

/I Nonmeber constructor
RCP<SomeClass> someClass() { return SomeClass::create() ;)

The advantage of the design in Listing 117 is that now clieakeclike shown in Listing 118 below will
result in a dangling reference exception in a node-tracetgud-mode build.

Listing 118 : Client code that results a clean dangling-reference ekicep

RCP<SomeClass> sc = someClass();

RCP<C> ¢ = sc->get C();

sc = null; // The SomeClass object is destroyed which invalid ates 'c'l
c->someFunc(); // Now the dangling reference is detected an d throws!

Note that the implementation 8bmeClass in Listing/117 means that the nature of the relationship
between th& object returned fronsomeClass::.get _C() , the parenSomeClass object, and the client
code represents a semi-persisting association as defirgsttion 4.2. In this case, the usage ofthe
object is only valid while the paref®omeClass object still exists. However, if the client mistakenly it
use a danglin@ object after its parertomeClass object is destroyed, then a clean runtime
dangling-reference exception is thrown as described iti@e6.11.3.

127



Alternatively, if one wants th€omeClass::.get _C() function to create a true persisting association where
the C object can outlive all of the client references to the paBenteClass object, then the implementation
of SomeClass::get _C() can be modified to what is shown in Listing 119.

Listing 119 : Implementation of the “object self-reference” idiom ugia true persisting association

RCP<C> SomeClass::get C()
{

justinTimelnitialize();
return rcplnvertedObjOwnership(c, weakSelfPtr_.create _strong());

}

Creating a stron®CPis required in this case as well as the inversion of the olgectership (which is an
instance of the “inverted object ownership” idiom which &sdribed in Section 5.13.1).

Given the implementation in Listing 119, client code likesim in Listing 118 will allow theC object to be
used after the clientRCP<SomeClass> object is madawull  without thrown a dangling reference
exception. Choosing between a semi-persisting or a piegiassociation is a design decision for the
creator ofSomeClass .

5.13.4 The generalized view design pattern

One of the most useful and powerful idioms / design-pattesteted to the use of the Teuchos memory
management classes is the “generalized view” design dﬁtdn this context, a “view” is some object

that is created off of a parent object and provides some typeagss to some part of the parent. Views can
be const or non-const and can be persisting or semi-pesi&ee Section 4.2 for the definition of
persisting and semi-persisting associations). Views tsnlee direct views or “generalized views” (i.e.
potentially detached non-direct views).

A direct view is one which directly points into the the intaludlata structures of the parent so that a change
of the view instantaneously changes the parent and chaogles parent instantaneously changes the
view(s). An example of a direct view is an iterator into anteamer such as is returned from
std::vector::begin() or std::list::begin() . Other examples of direct views includeayView

views ofArray andArrayRCP objects. Direct views can be non-const or const as is demadedtwith
iterators andhrrayView s. Direct views are a pleasure to work with but they also fomelatally constrain
the implementation of the parent objects that they are diogithe views into. In the case of contiguous
array containers likstd::vector andArrayRCP , constraining the implementation to store a pointer to a
contiguous array of data internally is not a problem, thainismportant and proper design constraint for
these classes. However, for more general classes, thecdgsgtraints imposed by direct views are
unacceptable and break the abstraction in many cases. &opéx, if an abstract matrix object provides
direct views of the rows of a matrix then the matrix must neagly be stored in a row-major
data-structure, precluding other possibilities. Onceeatlirow-based view is supported by such a matrix
class, it becomes impossible to change the internal repiegsan of the matrix to anything other than a
row-oriented implementation and still maintain high penfance and a reasonable implementation.

18Here the term ‘design pattern’ and not ‘idiom’ is used to diescthe “generalized view” design pattern. The reason it
more general term ‘design pattern’ is being used is that thjerity of the pattern is really language independent ard#ghaviors
are more general then what one will find in a typical langusgeeific idiom. It is only th&RCPdetails that would classify this as a
C++ idiom. However, this is an important example of the usB@®so it is worthy to be discussed in this document.

128



Contiguous column
—

sub-view

Parent
MultiVector

Non-contiguous column
sub-view

Figure 15. Depiction of contiguous and non-contiguous multi-vector
column views.

Basic overview of the “generalized view” design pattern

Because direct views can overly constrain the implememtdteedom of the parent, in order to allow for
the fullest freedom to pick the internal implementationshef parent and the view separately, we must
instead consider using potentially detached non-diremvsidefined here as “generalized views”. A
“generalized view” is a view of a parent object that is notrguséeed to be a direct view such that changes
to the view may not be instantaneously propagated to thepanel vice versa. One example of a case
where a “generalized view” is needed is when creating a viemon-contiguous columns of a dense
matrix where, for the sake of efficiency, one must create @teary contiguous copy as a new dense
matrix. This type of generalized view is used in the impletagan of Thyra MultiVector non-contiguous
column views|[3] which is depicted in Figure|15. In the ThyraltiVector implementation, when the

client requests a view of a set of non-contiguous columresirtiplementation will create a temporary
contiguous copy which results in improved performance ofiyrtgpes of operatio@. The Thyra

example of non-contiguous column views is a good examplausezit is a simple case to describe yet has
all the features needed to demonstrate the workings of thergkized view design pattern.

Before describing the Thyra MultiVector example in moreadlefirst, a generic description of the
“generalized view” design pattern is presented. The mastige description of the “generalized view”
design pattern is shown in Figure 16 (UML class diagram) agdré 17 (UML state diagram). Figure 16
shows two generic classesParent and aView . In this case, only one type of the view is shown but in
reality there can be several different types of views intingle parent object (as there are in the Thyra
MultiVector case). A view is created using either theateNonconstView(...) or the

createView(...) functions. In either case, the returned view is wrapped iR@Pobject. There are two
purposes for wrapping the view in & CPobject. First, a newiew object may need to be dynamically
allocated to satisfy the view request (and therefore nB€&o take care to control the lifetime of the
dynamically allocated view object). Second, the actiordeéeto re-sync the parent up with the view can
be set as an embedded object on the retuR&R{see Section 5.9.4). In fact, tifarent object is not
guaranteed to be updated after changes to a non-const \@éawaate until the view is destroyed/released.
To demonstrate, consider the client code in Listing/120.

19Using contiguous columns of a Fortran-style column-magors matrix is required in order to take advantage of higfoper
mance Basic Linear Algebra Subroutines (BLAS) softward.[11

129



<<Creales>>
Parent 0 Fe--mmmmemmmem-omome-omo-oo-- 1

createNonconstView(...) : RCP<View>

createView(...) {const} : RCP<const View>
makeChange(...)

queryState(...): SomeThing {const}

provides some view of |

Figure 16. Parent and child classes for “generalized view” design pat-
tern.

\ /Parent

Parent Ctotes |

Y

Allow query : Yes

Allow change : No

Allow const view: Yes
\Allow non-const view : No

Allow query : Yes
Allow change : Yes
Allow const view: Yes
Allow non-const view :Yes/

A

Parent

Allow query : No

Allow change : No

Allow const view: No
Allow non-const view : No

Figure 17. State behavior for parent object in “generalized view” de-
sign pattern.

130



Listing 120 : Example use of a generalized view

void changeParent(const Ptr<Parent> &parent)

{

Il Create a non-const view
const RCP<View> view = parent->createNonconstView(...);

Il Change the parent through the view
view->makeChange(...);
view->makeChange(...);

Il Destroy the view which resycs the view with the parent
view = null;

Il Now the parent has been updated for changes through the vie w!

The code in Listing 120 demonstrates that the parent is ardyanteed to be updated after the non-const
generalized view has been destroyed. The state of the panemtiefined while a non-const view is active.
One of three possibilities exist for the state of the pardmitera non-const view is active. First, if the view
just happens to be a direct view, then changes to the viewatantaneously reflected in the parent.
Second, if the view is a completely separate chunk of datmgds to the view do not affect the state of the
parent at all until the view is destroyed and the data in teevs copied into the parent’s internal data
structures in the appropriate way. The third option is soh@w in between the first two; part of the view’s
data may directly point back into the parent’s internal dditactures and the rest of the view's data may be
separate from the parent. In this case, the state of thetpalsgatt may actually violate its internal
invariants and the parent object would not even be usabliewie non-const view is active.

In order to allow complete freedom in how a generalized viewriplemented and to allow the
implementation to change at will, a relatively strict usagetocol must be defined as shown in the parent’s
state diagram in Figure 17. With respect to generalized sjigheParent has one of three states; ‘no
views’, ‘has const views(s)’, and ‘has non-const view'. Tedault state of the parent is ‘no views'. In this
state, either a const or a non-const view can be created kailyged of query and modifying functioins can
then be called. When a const view is created, the parentsahiestate ‘has const view(s)'. In this state, the
parent object is still allowed to be queried and other cetesits can be created. However, while there are
active const views, a non-const view cannot be created. 8dson that non-const views cannot be allowed
while const views are active is that creating a non-const @ed then changing it while const views are
active would put the const views into an undefined state.elictinst and non-const views happened to be
implemented as direct views, then changes to the non-cawstwould not only change the parent but it
would also change the direct const views. However, if thevgiare implemented as detached copies of
data, then changes to the non-const view would not be expeztee propagated to the existing const
views®, Since this type of ambiguity would destroy the abstractitbe generalized view design pattern

20Actually, one could implement an OBSERVER [23] type of impkntation where changes to the views would automatically
be written back and forth to keep the parent and the views fiic ®yit this would lead to complex and fragile implementation
and could significantly degrade performance if frequentlsa@nges to data resulted in lots of syncs. Therefore,ltovaor a
simple implementation and the highest performance, thergéined view design pattern discourages this type of moneptex
less efficient OBSERVER-type of implementation.

131



simply states that creating non-const views on the pareréwbnst views are active is just not allowed.
Likewise, any operations on the parent that might changsttte in a way that would affect the views
must also be disallowed. In summary, when const views aneeatihe non-const interface of the parent
must be locked down. When the last const view is destroyedpdnent goes back to the ‘no views’ state.

When a non-const view is created the parent goes into thentragonst view’ state. In this state, no other
non-const or const views can be created and the entire codstamn-const interface of the parent must be
locked down. In essence, when a hon-const view is activggahent object has to be completely left along.
The reason for this should be obvious. When a non-const d@eepresented as a separate copy of data,
then the state of the parent is undefined until the non-cdest ig¢ destroyed and the data is written back.
In this case, a query of the parent would not show the changele im the active non-const view. Again,
this type of ambiguity would destroy the abstraction andedfore the parent object must be totally locked
down while a non-const view is active. Likewise, only one foomst view can be allowed at any one time
due to similar arguments. When the non-const view is desttogny changes in the data are written back
to the parent’s internal data structures and the parentlggesto the state ‘no views'.

In order to allow for the highest performance, the simplegilementations of the parent and the view
classes in all cases, and to help catch errors in client ¢cbdesfore by default the generalized view design
pattern states that views should be semi-persisting; shété views are only valid while the clien®RCPto
the parent is still active and the view is not expected todingast the lifetime of the parent. Therefore,
any access to generalized views that remain after the rasigiRCP<Parent> object is released should
result in dangling reference exceptions in a debug-mode bsishown in Listing 121.

Listing 121 : Example of a dangling reference generalized view

Il Create and initialize parent
RCP<Parent> parent = createParent(...);

Il Create a view
RCP<View> view = parent->createNonconstView(...);

Il Destroy the parent (invalidating the existing view)
parent = null;

II' Try to access the now dangling view
view->makeChange(...); // Throws dangling reference exce ption!

Even if a generalized view can be made persisting (whichiit iee MultiVector example given later), the
implementation should still prefer to implement non-corstvs as semi-persisting views. The main
purpose of a non-const view is to change the parent objeétise parent is released before the non-const
view is written to and written back, then that is most likelgragramming error in the client’s code. For
example, the code in Listing 121 is most likely an error ingsean logic because if the parent has been
deleted then there is no use in modifying the view. By impletimg generalized views and semi-persisting
views the objects help to better catch these types of emarkant code.

However, if it makes sense in the particular setting, an é@mantation of the generalized view design
pattern can choose to implement the views as full persistiegs that will persist even after all the
external parent references are removed (thereby avoidingliig-reference exceptions). Note that if the

132



parent class implements the “object self-reference” idi@scribed in Sectian 5.13.3 then a str&t@Pto
the parent object can always be attached tdx®Rof the view, thereby providing for persisting generalized
views no mater what internal data structures are used.

Another aspect of the generalized view design pattern tdttimimportant to distinguish between
non-const views and const views. In the case of const vidwsseparate copy of the data must be created
to support the const view, the data does not have to be whtek to the parent when the const view is
destroyed. This makes const views fundamentally more effichan non-const views (which must write
back their data when they are destroyed). Because conss aiepotentially more efficient, the unadorned

namecreateView(...) is given to create const views while the longer name
createNonconstView(...) is used to create non-const views. The idea is that a developwore likely
to call the shortecreateView(...) function creating a more efficient and safe const view. If ast@iew

is all the client code requires, then all is good. Howevehédf client code really needs to change the parent
object through the view, then the code will not compile areldeveloper will need to change the client
code to create a non-const view througéateNonconstView(...)

Because the parent object gets locked down (or is in an urdksitate when debug usage checking is not
enabled) when generalized views are active, it is impottaattclient code only create views at the last
possible moment and then release them at the earliest [gesiiment. The best way to do this, when
possible, is to create and release the view in the same statavhere the view will be used as
demonstrated in Listing 122.

Listing 122 : Example of minimizing the lifetime of a generalized view

void changeParentThroughView(const Ptr<Parent> &parent )

changeTheView(*parent-createNonconstView());
queryTheView(*parent->createView());

The client code in Listing 122 works just fine because the taany RCP<[const] View> objects
managed by the compiler are guaranteed to exist until thetatement they are created in ends. This is
one case where using &CPto manage the memory is very convenient.

The last issue to discuss related to the generalized vielgrdpattern is that, depending on the nature of
the parent and the view classes, it may be reasonable to laypatent object partitioned into different
logical pieces and then apply the behaviors shown in Figdr® ®ach of these logical pieces separately.
For example, one can treat each row or each column in a mdtjécioas a separate logical piece such that
one can allow separate views of each of the rows or columrepirtlent of each other. This is the case
with the Thyra MultiVector example (mentioned earlier aadbé described in more detail below).
However, any bulk query operations on the parent objea (hlking an induced matrix norm) must be
locked out while non-const views are active. Likewise, anik inodifying operation (like assigning all the
matrix entries to zero) must be locked out when any views etieea

133



Example implementation of generalized views for MultiVecbr non-contiguous column views

Now that a basic overview of the generalized view desigrepathas been given, the Thyra MultiVector
non-contiguous column view example mentioned earlier amdatied in Figure 15 is described in more
detail. This is a good example to highlight the features efghneralized view design pattern and the usage
of theRCPclass to manage detached view semantics. A simplified cidardtion for the Thyra

MultiVector subclass showing the relevant class membegivén in Listing 123.

Listing 123 : Class declaration for Thyra MultiVector implementatiohnoulti-vector views as
“generalized views”

template<class Scalar>

class DefaultSpmdMultiVector : virtual public SpmdMultiVv ectorBase<Scalar> {
public:
DefaultSpmdMultiVector(
const RCP<const SpmdVectorSpaceBase<Scalar> > &spmdRang eSpace,
const RCP<const ScalarProdVectorSpaceBase<Scalar> > &do mainSpace,

const ArrayRCP<Scalar> &localValues,
const Ordinal leadingDim = -1

);

protected:

RCP<const MultiVectorBase<Scalar> >
nonContigSubViewlmpl(const ArrayView<const int> &cols) const;

RCP<MultiVectorBase<Scalar> >
nonconstNonContigSubViewImpl(const ArrayView<const in t> &cols);

private:

RCP<const SpmdVectorSpaceBase<Scalar> > spmdRangeSpace
RCP<const ScalarProdVectorSpaceBase<Scalar> > domainSp ace_;
ArrayRCP<Scalar> localValues_;

Ordinal leadingDim_;

ArrayRCP<Scalar> createContiguousCopy(const ArrayView <const int> &cols) const;
13
/I Non-member constructor

template<class Scalar>
RCP<DefaultSpmdMultiVector<Scalar> >

134



defaultSpmdMultiVector(
const RCP<const SpmdVectorSpaceBase<Scalar> > &spmdRang eSpace,
const RCP<const ScalarProdVectorSpaceBase<Scalar> > &do mainSpace,
const ArrayRCP<Scalar> &localValues,
const Ordinal leadingDim = -1

)

return Teuchos::rep(
new DefaultSpmdMultiVector<Scalar>(
spmdRangeSpace, domainSpace, localValues, leadingDim ) )

The internal private data-structure for a multi-vectorésywsimple as shown in Listing 123. A standard
column-major Fortran-style dense matrix format is usedreviadl of the data in the local processes is
stored in a single contiguousrayRCP<Scalar> object. The number of rows in the local process is given
by spmdRangeSpace _->localSubDim() andleadingDim _ is the stride between columns.

The generalized views returned by the functionsContigSubViewlmpl(...) and
nonconstNonContigSubViewlmpl(...) are of the typeMultiVectorBase  which is the upper-most base
class forDefaultSpmdMultiVector . (The concrete types of the views are actually
DefaultSpmdMultiVector .) Therefore, this is an instance where the class types gialent and view are
actually the same (an interesting example of CLOSURE OF OXTEBNS principle [14, Chapter 10])!

The implementations of the functionsnContigSubViewlmpl(...) and
nonconstNonContigSubViewlmpl(...) are given in Listing 124.

Listing 124 : Implementation oDef aul t SpndMul ti Vect or functions
nonCont i gSubVi ewl npl (. ..) andnonconst NonCont i gSubVi ew npl (...)

template<class Scalar>
RCP<const MultiVectorBase<Scalar> >
DefaultSpmdMultiVector<Scalar>::nonContigSubViewImp I(
const ArrayView<const int> &cols ) const
{
THYRA_DEBUG_ASSERT_MV_COLS("nonContigSubViewlmpl(co 1s)", cols);
const int numCols = cols.size();

const ArrayRCP<Scalar> localValuesView = createContiguo usCopy(cols);
return defaultSpmdMultiVector<Scalar>(
spmdRangeSpace_,
createSmallScalarProdVectorSpaceBase<Scalar>(*spmdR angeSpace_, numcCaols),

localValuesView );

template<class Scalar>

RCP<MultiVectorBase<Scalar> >

DefaultSpmdMultiVector<Scalar>::nonconstNonContigSu bViewImpl(
const ArrayView<const int> &cols )

{
THYRA_DEBUG_ASSERT_MV_COLS("nonContigSubViewlmpl(co 1s)", cols);
const int numCols = cols.size();

135



const ArrayRCP<Scalar> localValuesView = createContiguo usCopy(cols);

const Ordinal localSubDim = spmdRangeSpace_->localSubDi m();
RCP<CopyBackSpmdMultiVectorEntries<Scalar> > copyBack View =
copyBackSpmdMultiVectorEntries<Scalar>(cols, localva luesView.getConst(),

localSubDim, localValues_.create_weak(), leadingDim_)
return Teuchos::rcpWithEmbeddedObjPreDestroy(
new DefaultSpmdMultiVector<Scalar>(
spmdRangeSpace _,
createSmallScalarProdVectorSpaceBase<Scalar>(*spmdR angeSpace_, numCaols),
localValuesView),
copyBackView );

The implementation of the sub-view functions in Listing Ji&4airly simple. First, the private helper
function createContiguousCopy(...) creates arrrayRCP<Scalar> object for a contiguous copy of
the non-contiguous columns being requested. This conigaopy of data is then given over to create a
new DefaultSpmdMultiVector object which represents the view. The implementation ofdinetion
createContiguousCopy(...) is simple enough and is given in Listing 125.

Listing 125 : Implementation oDef aul t SpndMul t i Vect or function
creat eCont i guousCopy(...)

template<class Scalar>
ArrayRCP<Scalar>
DefaultSpmdMultiVector<Scalar>::createContiguousCop y(
const ArrayView<const int> &cols ) const
{
typedef typename ArrayRCP<Scalar>::const_iterator cons titr_t;
typedef typename ArrayRCP<Scalar>::iterator itr_t;
const int numCols = cols.size();
const Ordinal localSubDim = spmdRangeSpace_->localSubDi m();
ArrayRCP<Scalar> localValuesView = Teuchos::arcp<Scala r>(numCols*localSubDim);
Il Copy to contiguous storage column by column
const const itr t Iv = localValues_.begin();
const itr_t Ivv = localValuesView.begin();
for (int k = 0; k < numCols; ++k) {
const int col_k = cols[k];
const const itr t v k = Iv + leadingDim_*col_k;
const itr t Iw_k = Iw + localSubDim*k;
std::copy(lv_k, Iv_k+localSubDim, Iw_K);
}

return localValuesView;

Note how iterators are used to perform the raw data copy itinigid 25. This results in very well checked
code in a debug-mode build (see Section 5.11) but very higlonpeance code in a non-debug optimized
build (see Section 5.12).

Note that the key difference between the implementatiom@fanctionsnonContigSubViewlmpl(...)
andnonconstNonContigSubViewlmpl(...) in Listing[124 is that

136



nonconstNonContigSubViewlmpl(...) creates aRCPto an object of type

CopyBackSpmdMultiVectorEntries and attaches it to the created

RCP<DefaultSpmdMultiVector<Scalar> > object as an embedded object (see Section|5.9.4). The
destructor forCopyBackSpmdMultiVectorEntries performs the copy-back of the non-const view after
the lastRCPto the view is destroyed. The implementation of the class

CopyBackSpmdMultiVectorEntries is given in Listing 126.

Listing 126 : Implementation of the clasSopyBack SpndMul ti Vect or Entri es

template<class Scalar>
class CopyBackSpmdMultiVectorEntries {
public:
CopyBackSpmdMultiVectorEntries(
const ArrayView<const int> &cols,

const ArrayRCP<const Scalar> &localValuesView, const Ord inal localSubDim,
const ArrayRCP<Scalar> &localValues, const Ordinal leadi ngDim

)

. cols_(cols), localValuesView_(localValuesView), loca ISubDim_(localSubDim),

localValues_(localValues), leadingDim_(leadingDim)

{
"CopyBackSpmdMultiVectorEntries()

typedef typename ArrayRCP<const Scalar>:.const_iterato r const_itr t;
typedef typename ArrayRCP<Scalar>::iterator itr_t;
Il Copy from contiguous storage column by column
if (localValues_.strong_count()) {
const int numCols = cols_.size();
const const itr t v = localValuesView_.begin();
const itr t Iv = localValues_.begin();
for (int k = 0; k < numCols; ++k) {
const int col_k = cols_[K];
const const_itr t v _k = Ivw + localSubDim_*k;
const itr t Iv. k = Iv + leadingDim_*col_k;
std::copy( Iw_k, Iw_k + localSubDim_, Iv_k );
}
}
}

private:
Array<int> cols_;
ArrayRCP<const Scalar> localValuesView_;
Ordinal localSubDim_;
ArrayRCP<Scalar> localValues_;
Ordinal leadingDim_;

II' Non-member constructor
template<class Scalar>
RCP<CopyBackSpmdMultiVectorEntries<Scalar> >
copyBackSpmdMultiVectorEntries(
const ArrayView<const int> &cols,
const ArrayRCP<const Scalar> &localValuesView, const Ord inal localSubDim,

137



const ArrayRCP<Scalar> &localValues, const Ordinal leadi ngDim

)
{

return Teuchos::rcp(
new CopyBackSpmdMultiVectorEntries<Scalar>(

cols, localValuesView, localSubDim, localValues, leadin gDim));
}
The implementation ofopyBackSpmdMultiVectorEntries in Listing/126 is straightforward. When the

destructor is called, it copies the data in the non-const Waack to the native storage of the parent
DefaultSpmdMultiVector object.

The only twist in the implementation abnconstNonContigSubViewlmpl(...) and
CopyBackSpmdMultiVectorEntries is that a wealArrayRCP is used for the parentlscalValues _ data
in the CopyBackSpmdMultiVectorEntries object. It is created in the function
nonconstNonContigSubViewlmpl(...) with localValues  _.create _weak() . If the parent goes away
before the view, then the weak pointetalvValues _ in the destructor for
CopyBackSpmdMultiVectorEntries will have a strong count of 0, thereby resulting in the skiygpof the

copy-back of data. This this a performance optimizatiogssitnere is no point in copying back the data if
the parent object is gone. This design allows both const aneconst multi-vector views to be persisting
(past the lifetime of the parent) and still have the highestggmance.

There are several things that are interesting about thismpbea First, by using the embedded object feature
of RCP, the code is able to implement the copy-back-to-parenttiomality without having to write a new
MultiVector ~ subclass just for the view. THheefaultSpmdMultiVector objects that are returned as views
have no idea they are being used as views into dk&ultSpmdMultiVector objects. Without the
embedded object feature described in Section 5.9.4, aeiffBlultiVector ~ subclass would have to be
created with a destructor that would copy back the data. r&kdbe constraints imposed by the generalized
view design pattern shown in Figure 17 ensure that no prableitharise due to the fact that the views are
stored in detached copies of the data. If changes to the tdae&nltSpmdMultiVector were allowed

while a non-consbefaultSpmdMultiVector view was active, then all of the changes in the parent would
be overwritten when thBefaultSpmdMultiVector view was destroyed. Third, this example
demonstrates why const views are fundamentally more effiti@n non-const views. In the case of a const
view, the temporary contiguous copy of data is just releasetidoes not need to be copied back to the
parent. This saves the work imposed by the destructor o@dmBackSpmdMultiVectorEntries object.

Summary of the generalized view design pattern

In summary, the main properties and features of the gemethliiew design pattern are:

e Generalized views allow for complete abstraction, endagisn, and the highest performance in all
cases. This is simply not possible to achieve with direavsie

e Non-const generalized views are only guaranteed to uptdatstate of the parent after the view
object has been released.

e A single parent object can provide more than one type of gdimed view and views can be applied
separately to different logically distinct parts of thegrarobject (e.g. views to the rows or columns

138



of an abstract matrix object can be created and handledatelyar

e Itis important to differentiate between non-const viewd aanst views. While detached non-const
views must be copied back to parent when the view is rele@sedt views do not (therefore
improving the performance of const views).

e It is critical thatRCPobjects be used to wrap the created view objects in ordetaw #he views to
be dynamically allocated and to allow for specialized cbpgk behavior when non-const views are
destroyed.

e The flexibility and performance gains allowed by the geneedl view design pattern come at the
expense of more restricted usage patterns of the parent@mdijects.

— Only one non-const view can be active for any logically disfpart of the parent object at any
one time and the parent object (or at least any functiondiiy relates to the viewed part) must
be locked down while a non-const view is active.

— Multiple const views can be active for any logically distqpart of the parent object at any one
time but the non-const interface of the parent object (adtlaay non-const functionality that
relates to that viewed part) must be locked down while angteiews are active.

5.14 Comparison with other class libraries and the standardC++ library

Comparisons between the Teuchos memory management ciesbether classes in Boost and the
standard C++ library have been made throughout this docurrkene, these comparisons are summarized
and extended. Comparisons with Boost classes are for netsi@.

The Teuchos clas’CPis almost identical in most respects to thuwest::shared  _ptr class and therefore
also thestd::trl::shared _ptr in C++03 ancstd::shared  _ptr class in C++0x. The first version of the
classRCPwas developed back in 1998 under the namesMngPack::ref _count _ptr as part of the
development of the rSQP++ package [32] (now called MOOCHD Rk that time, there was no general
purpose high-quality reference-counted smart pointeyscdailable and many compilers at the time (e.g.
MSVC++ 6.0) could not even support template member funstiseeded for implicit smart-pointer
conversions. After 1998, the firkbost::shared  _ptr class appeared (which did not allow a customized
deallocation policy and was therefore not very flexible) eOthe years, the two classes independently
evolved in very similar ways. The current versiorbobst::shared  _ptr is a high-quality flexible
reference-counted smart pointer class. Because it novwosispgustom template deallocator policy objects
(which are called “deleters” ihoost::shared  _ptr ) it allows for great flexibility in how it is used.

The key advantages of tiRCPclass over the currembost::ishared  _ptr class are greater functionality,
greater flexibility, and better debug-mode runtime chegkifhe few of the specific key advantages of the
RCPclass that cannot be replicated with tiwest::shared  _ptr class without changing its design include:

e TheRCPclass has built-in support for debug-mode runtime traciingference-counting nodes
(Section 5.9.1) which is used to implement a whole host niatthecking including the detection
and reporting of a) circular references (Section 5.11.8)rmultiple owning reference-counted
objects (Section 5.11.4).

e TheRCPclass allows the association and retrieval of extra daselad¢id to an already-created
reference-counting node object (Section 5.9.5).

139



e TheRCPclass allows a client to calélease()  to remove deletion ownership from an
already-create@CPobject (the rare need for this is described in Section 5.9.5)

e TheRCPclass has built-in support for both strong and weak referamunted pointer handles right
in the same class (see Section 5.9.2). Adust::shared  _ptr class uses a separate
boost:weak _ptr class to represent weak references which is less flexibleRTRapproach
allows the debug-mode runtime detection and reporting nglilag non-owning references while
boost::shared  _ptr class cannot when using a null deleter (Section 5.11.3).

The key advantages of the currdmbst::shared  _ptr class over the currefCPclass are that it has
lower storage and runtime overhead (Section 5/12.1), dmakinative support for sharing
reference-counting nodes across different threads in &-thtéaded program. THRCPclass does not yet
have support for thread-safe sharing across multiple disrbat some reasonable solution will be
implemented (perhaps borrowing form thaost::shared  _ptr implementation) when it is needed. The
RCPclass has been developed in the context of computatioreieeiand engineering applications where
up till now parallelism has been handled using distributesimory MPI implementations where no
multi-threading is used. Given that even the best non-taghoost::shared  _ptr implementation imparts
a significant overhead in manipulating the reference caufdadtor of 4x overhead for GCC in a recent
timing test), it is not clear if the right solution to the mittlireading problem is to make &ICPobjects
thread safe in an entire program. Multi-threading is comiangomputational science codes with the
multi-core revolution [20] so this issue may need to be asklrd soon in thBCPandArrayRCP classes.
Until then,boost::shared  _ptr can be used in cases where sharing across threads is required

Because both the TeuchBEPandboost::shared  _ptr classes support customized deallocation policy
objects, one can embed BGPobject in aboost::shared  _ptr object and vice versa. This is already
supported in Teuchos using the overloaded non-member &enpélper function$euchos::rcp(const
boost::shared  _ptr<T> &p) andTeuchos::shared _pointer(const RCP<T> &rcp) (see Table 8).
This allows the developer to mix and matk@Pandboost::shared  _ptr objects in the same code and
still have correct memory management. However, sRicBhas better debug-mode runtime checking and
is more flexible it should be preferred ltoost::shared  _ptr in most high-level code. Alternatively,
becausdoost::shared  _ptr has lower overhead and has native support for sharing aitnessds it also
has valid uses. Additionally, of course, one may need to@drack and forth betweeRCPand
boost::shared  _ptr objects to glue together different pieces of separatelgld@ed code that use
different smart pointer classes. The classst::iscoped  _ptr is identical tostd::auto  _ptr but does not
allow copying or assignment and is therefore safer to usedirertimited scopes.

Another smart pointer class for single objectstisiauto  _ptr . This class does not support sharing and
has only the minimal functionality needed to support thedeese Allocation Is Initialization (RAII) idiom
[31, Item 13]. Given that reference-counting overheadwsdompared to raw allocations and
deallocations (see Section 5.12.1) there is little reas@vér usestd::auto  _ptr instead ofRCP(or
boost::shared  _ptr for that matter) except for perhaps the handling of RAIl foradl objects.

The Teuchos clasirray is of course equivalent tgid::vector by design and uses atu::vector

internally. The main advantages of usifigay instead of directly usingtd::vector are a)Array has
better debug-mode runtime checking and produces betmrmgssages, b) conversion to the other
Teuchos array typesrayView andArrayRCP includes full runtime debug-mode detection and reporting
of dangling references (which is not possible with vtifi:vector ), and c¢) is more consistent with the
usage of the other Teuchos array types. A major differentedemArray andstd::vector is thatArray
uses an unsigned integer for ¢ige _type (see Appendix C for the justification).

140



The Teuchos clas&rayRCP really has no equivalent class in Boost or the C++0x stanlilanaties. There
is a Boost class calleobost::shared  _array which uses théoost::shared  _ptr reference-counting
machinery and has an overloadsxrator(](size _type) function but his class does not support
iterators (which are critical for safety and performanaa) does not support persisting sub-views (see

Section 5.5.5).

The Teuchos compile-time sized array cl&sgle is more or less equivalent to the cld®®st::array

Both contain an iterator interface and other STL compliancfions. The key advantage Tfple is that
conversions to the other Teuchos array typesyView andArrayRCP support full runtime debug-mode
detection and reporting of dangling references.

Finally, the Teuchos class@& andArrayView have no equivalent in Boost or C++0x. As described
throughout this paper, these classes are key to creatingc@de-that is maximally self documenting (by
distinguishing between persisting and non-persistingaagons), maximally safe in terms of debug-mode
runtime checking, and while at the same time allowing forttgest performance in non-debug optimized
builds. One cannot plug the remaining holes in safety anfbpeance without th@tr andArrayView
classes.

What makes the Teuchos memory management classes unigge attrother class libraries is that they
form a complete coordinated system of types to encapsulagaC++ pointers in high-level code while

at the same time providing 100% secure debug-mode checkhig.is only possible because these classes
are developed as a system of types and the level of debug-rantieme checking that exists is only
possible because these types have access to each othats jniglementation (in some appropriate way).
In general, one cannot mix and match Boost, standard C++Tamchos classes together at the top level
and get safe C++ programs with the full extent of debug-moadéime checking that the integrated set of
Teuchos classes provide. Many examples of this have been thivough this document. One example is
that if one creates afwrayView object from astd::vector object it cannot detect a dangling reference
(see Section 5.11.3). However, there are some specialasss evhere Boost and standard C++ types can
be used safely with the Teuchos memory management classes@e of these cases have already been
discussed above (e BCPandboost::shared  _ptr objects can be embedded in each other and deep copies
of array objects are always safe).

5.15 Advice on refactoring existing software

The easiest way to incorporate the full use of the Teuchosanemanagement classes is to develop new
code and use them from the very beginning. In this mode ofldpr@ent, the debug-mode runtime
checking makes development fast and productive with onerrsaeing a segfault or other memory usage
error that comes from undefined behavior. However, the nygiedl situation is that a large existing
code-base must continue to be developed, current code musbified, and new code must integrated
with existing code. For existing code bases, the code widbrte be refactored to use the Teuchos memory
management classes, replacing the use of raw pointers arzhlia tonew anddelete  along the way.

While code refactored to use the Teuchos memory managetasses will be of higher quality and more
productive to work with during further development, therd mecessarily be a transition period where the
code will be refactored to replace current uses of raw C+titpes and less-than-safe (or inflexible)
memory management approaches. It is not recommended thatrklon new capabilities stop and the
existing code base be refactored all at once to switch oviretcomplete use of the Teuchos memory

141



management classes. Instead, the code should be refattiarsel the Teuchos memory management
classes in small iterative cycles as needed. The highesttprtode to refactor are the heavily used major
module and class interfaces. It is these major interfacesevimistakes and memory usage problems are
most likely to be made. However, rather than break backwandpatibility it is wise to provide the safe
versions of the interface functions but leave the existingafie raw-pointer versions when possible and
have them call the new safe versions (by converting betwa&rpointers to the memory management
types as needed). This avoids duplication which simplifiethér maintenance and also provides for
smooth upgrades of client code to incrementally switch énen raw pointers to the Teuchos memory
management classes. The help facilitate the transitiotiesftccode, the deprecated raw pointer interface
functions and other code can be marked as deprecated on sompders which generates warning
messages while compiling (e.g. GCC'sattribute  __(( __deprecated _.)) ).

While the most critical code to refactor to use the Teuchosorg management types are major module
and class interfaces, the next most important softwarefaota is any software that needs to be changed
or extended. Other code is lower priority to refactor, eslcexisting well-encapsulated code that uses
raw C++ pointers internally that does not need to be changedd new features any time soon. It is not
until such code needs to be changed that it should be reéattoruse the safer memory management types
(which will make adding new features much easier and safer).

While the final state of code refactored to use the Teuchosanemanagement types is excellent (as
described throughout this document), great care must lreisgd in refactoring the software. In general,
before any piece of software is refactored to use the Teutlewmsory management types, it should first be
covered with high-quality unit tests (see [15] for a greaitment on how to add unit tests to existing code
bases to facilitate adding new features). The general psatet should be followed to refactor existing
software to use the Teuchos memory management types isdlieéollowing major steps (consistent with
the advice in [15]):

1. Break dependencies to allow unit tests to be written
2. Add unit tests to cover behavior of the code to be refadtore

3. Refactor the targeted code incrementally to use the Tsuctemory management classes (all the
while running the unit tests constantly including usinggvaid and/or Purify to ensure defects are
not being created) by:

(a) Replacing raw pointers internally with Teuchos memoganagement types until all raw
pointers are gone

(b) Writing new versions of the interface functions in terofishe safer Teuchos memory
management types

(c) Keeping the existing raw-pointer interface functionsiat are called by the unit tests but have
them call the new functions that take the safer memory managetypes

(d) Marking the deprecated functions as so to facilitatagtefring of client code (e.g. using GCC'’s
_attribute __(( __deprecated _.)) )

4. After a unit of code is totally refactored to use the newcrms memory management types, the unit

test code should be refactored to call the safe interfacetifums that don’t pass raw pointers, thereby
removing all raw C++ pointers from the unit test code itself.

142



5. Selectively refactor client code that can convenierdly the new safe interface functions of the
refactored code. (Caution, only do this if there are at Isaste decent system-level regression tests
in place.) As more and more code is refactored to use the safghds memory management types,
the easier and safer this type of refactoring will become.

6. Write new unit tests (using test-driven development) aohdl the desired new features in the selected
code safely and easily

While the incremental refactoring process described abmaebe slow and may only refactor small parts
of the code in each batch, over time, more and more of the casi Will be refactored to remove raw C++
pointers and the code will become more and more safe, easierk with, and be better self
documenting. Whatever happens, one should never attemgfiaittor a large volume of code in one batch
to use the Teuchos memory management types, even if thegeadeunit tests in place. Refactorings
shouldneverbe attempted in large batches, no matter what [15].

The above process was followed with great success to refdedrilinos package Thyra [3] over a period
of more than a year. This process can be followed for a code ey safely and productively if the above
incremental unit-testing refactoring process is followed

143



6 Miscellaneous topics

When thinking about memory management in C++ it is helpfubi® a step back and consider a few
different higher-level issues. In the following sectiome issue of essential and accidental complexity is
discussed and what role the Teuchos memory managemerdgslalay in addressing accidental
complexity and helping to make implicit concepts explidihen, the philosophy of memory management
is discussed and some analogies are used to help put thipgssipective and provide a solid foundation
for the approach used in the Teuchos memory managemen¢glassompared to approaches that start
with safer language but arrive at a similar balance betwagstys speed, and flexibility.

6.1 Essential and accidental complexity, making implicit oncepts explicit

While the idioms described in this document (largely owttinn Section 5/8) may appear complex at first
sight, one has to consider that it is not really the idioms #ine complex but the essential attributes of
object relationships that are complex. Frederick Brookarseto this agssential complexitgs opposed to
accidental complexity8]. Accidental complexitin programming refers to complexity resulting from
complicating details of the programming language or emvitent which are not directly related to solving
the problem at hand. Accidental complexity has largely lreemoved as higher level languages have been
developed [8, Chapter 16]. However, raw pointers in C and @d-manual resource management (when
that is not the main focus of the program) are definitely adimyg category of accidental comple@y
Alternatively, essential complexitgxists because of the nature of the problem at hand that gogmmmning
language will ever be able to fully remove. (However, canalgect-oriented and other design approaches
to partition and abstract essential complexity such thatavewrite and maintain large-scale programs.)

What the Teuchos Memory Management classes do is that theyeemuch of the accidental complexity
of using raw pointers and manual resource management aleddthey more directly address the
essential complexity of writing programs in making impaottaoncepts explicit that are implicit in most
languages (including raw C++). Dealing with the nature tdtienships between objects is essential
complexity and for every relationship between two claséasgxample in a UML class diagram [16]) one
must answer the essential questions:

e What is the multiplicity of the relationship(?.e. is there just one object or is there more than one
object at the other end of the association?). In UML clasgrdias, a singular multiplicity
relationship is represented using and multiplicity greater than one is represented ugirtg (see
Figure 4 for examples).

e Is the object optional or requiredfh a UML class diagram, an optional object is representeadgusi
0.1 while arequired object is representedlasee Figure 4 for examples).

e Is the object changeable or non-changeable2ML class diagrams, a non-changeable object is
given the attributgreadOnly }. In UML, by default, all objects at the end of an associatioa a
assumed changeable.

e Is the association persisting or non-persisting?a UML class diagram, non-persisting associations
are referred to as “dependency associations” and are egpieeswith a dotted line (and can also be

21 http://discuss.joelonsoftware.com/default.asp?joel. 3.278613.51

144



given the keyword« parameter >>). Persisting associations are referred to as “relatigsstand
are represented as solid lines (see Figure 4 for examples).

Note that while UML is an expressive language that allowstorexplicitly represent the above essential
information, most programming languages cannot (at lezisthe raw language). Consider that in Java and
Python that it is impossible to distinguish between pargisaind non-persisting associations because every
user-defined object is always managed through an indirtarierece handed by the garbage-collected
language. This causes big problems when it comes time to tmderstand a complex program written in
these languages. For example, consider the agony that MiEkathers goes through in many refactorings
described in [15] in trying to determine the nature of olgext to whether they are actually embedded in
each other (i.e. persisting) or are just passed to each @thenon-persisting). Python has no
user-definable concept ofnst but the Python language itself understands the neetbist by having
built-in immutable data-types like strings and tuples.

One of the goals of the idioms defined in this paper is to chémgabove essential complexities from
implicit concepts to explicit concepts directly stated ade (see “Making Implicit Concepts Explicit” in
[14, Chapter 9]). The essential attributes of object refathips (i.e. multiplicity, persistent vs.
non-persistent, changeable vs. non-changeable) arenpresery program no mater what high-level
programming language is used [8, 24, 15]. The issue is that ex@cutable languages (not withstanding
executable XML [16, Chapter 1]) lack the expressivenessakenthese concepts explicit. The Teuchos
memory management classes and the associated idiomsbeelsicrithis paper provide a means to make
many of these essential concepts explicit in C++ in a wayithabt possible in any other widely used
programming language.

While the Teuchos memory management classes go a long wagnioving some of the accidental
complexity of programing in C++ due to manual memory manag@irsome of the types of remaining
accidental complexity (among many others not mentionedyite:

e Value semantics versus reference semanfibg distinction between value semantics versus
reference semantics is a C++ concept that does not direttlierto solving a problem or
representing a model in code and is therefore accidentaplexity. In Java and Python, all
user-defined types use reference semantics but in C++ pnogees can take advantage of
value-types which gives more efficient code and more coimrGH+ than what is possible in these
other languages. However, this extra control could be ifledsas accidental complexity (which we
tolerate for the sake of added control and improved perfooap

e Pointer syntax for memory management tyBes, andRCP: In order to access the underlying
object through the smart pointer types andRCF, one has to use pointer syntax usfoggc(*a)
anda->someMember() . The C++ language makes it impossible to define abstractyla¢s that
allow direct access to the underlying object (i.e. usimg(a) anda.someMember() ) like raw C++
references allow. Pointer syntax is not essential to thereadf problem solving (as proven by all the
languages that don’t have pointers including Java and Ryiuad therefore pointer syntax must be
categorized as accidental complexity. Note, however,thieatypesArrayView andArrayRCP were
not listed in this category because one can use these aasgesl using just the
operator[](size _type) function and one does not need to use pointer syntax. InAaay\View
does not even support any pointer-like functions and thetpelike functions orArrayRCP are only
really there to allow it to be used as a general-purpose eukitkrator in a debug-mode build. While
pointer syntax is not an essential concept they do actuatlyecin handy to define iterators into

145



containers and present a much more compact iterator ingetifeat what one will find in other
languages. In other words, pointers syntax can be consideitge a nice enhancement when
considering iterators. In most other contexts, howevenmust consider pointer syntax to contribute
to accidental complexity.

6.2 Philosophy of memory management: Safety, speed, fleXiby and 100% guarantees

When looking at different strategies for memory managerite@t++ and in other languages, it helps to
think a little on the philosophical level which can actudilgip put the issues involved in perspective.

When looking at the different memory management approaichgiemented in various programming
languages, the core issues come down to trade-offs in safiefgorrectness versus speed and flexibility.
For example, a language like C sacrifices safety and cogsstior speed and flexibility. Because C is so
“close” to the hardware, one can implement very specialimechory management approaches tailored to
very specific types of domains. However, the price one paythis raw speed and flexibility in C is the
fact that there is very little compiler-supported checkiihgt would otherwise be needed to assert correct
memory usage.

Now take Python on the other extreme. If one writes code anBpithon, one will almost never experience
and memory leak or segfault of any kind due to code that oreetyrwrites. Here is a language which is
nearly 100% safe (assuming the language implementatic®O%lcorrect) but offers less flexibility in how
memory is managed and results in very slow native code asa@dpo C in many cases (e.g. for
computationally intensive loops).

So how important is a 100% guarantee that memory will alwayad®ed correctly like is provided in a
language like Python? How important is a 100% guaranteeyiragga? Well, if one can get a 100%
guarantee without having to pay a significant price for iftbae would be a fool not to accept it. For
example, if one has a choice between two vendors sellingatime product for the same price but one
vendor will give a 100% money-back guarantee, with all thibging equal, it would probably be foolish
not to go with the vendor with the 100% guarantee.

However, in most areas, greater safety (not to mention a 1fl@antee) comes with greater costs. Instead
of demanding a 100% guarantee, we typically accept somedéestra risk as long as we have taken

basic precautions to protect ourselves. To demonstratglét’s consider another analogy which | like to
refer to as th@ransportation AnalogyWhen considering modes of transportation, we accept thatre/

not 100% safe when driving our cars on the road but we do it agyWwhe reason that we get into our cars
every day is that we take reasonable precautions like psiroipa car with a good safely design, wearing
seat-belts, obeying the traffic laws, driving a reasonadéed, and practicing defensive driving. What is
going to be argued here is that the approach to memory mamagéhat is being advocated in this paper is
the equivalent of driving a car, wearing one’s seat belt,takthg other reasonable safety precautions but
does not provide a 100% guarantee.

Now let’s talk about the safety versus speed/efficientlyexes in the Transportation Analogy and in the
area of memory management. At one extreme, writing all eglk} code in C++ (or C) using raw pointers
for everything is like riding a high-performance motor@adn a crowded interstate going 150 mph,
without wearing a helmet or any other safety gear, while g@invheelie. At this extreme, one wrong move
means certain death.

146



At the other extreme, writing all code in a language like Bytis like driving around in a reinforced tank
that does a maximum of 10 mph where one sits inside wearingraciag helmet with the Hans device,
full racing safety gear, and having a massive air bag systeend¢ase one’s entire body in foam three feet
thick in case of a collision. On this side of extreme safelg,aould hit a Mac truck head on and be just
fine. The only way to really kill one’s self would be to drivef efshear cliff.

If we all required a near 100% safely guarantee, we wouldeatlfiving around in reinforced tanks like the
one described above but we don’t. We don't because we areiliogwo pay the price of the near 100%
guarantee provided by the tank. We can't afford it finangiatid it would take forever to get back and
forth to work. Instead, we are content with our less than 18@% cars because they are affordable and
fast and yet do not pose unreasonable risks.

Now, we can incrementally go from either extreme to a morari@d state in both the Transportation
Analogy and with memory management in C++ and Python.

From the extreme of safety with less speed and flexibilityasented by the reinforced tank (and Python)
one can incrementally move toward the middle ground of the@ae can start by removing the racing
helmet and Hans device, followed by decreasing the weighiramreasing the speed of the tank, and so on.
Continuing on this trend of sacrificing safety in favor of ger speed and agility leads us to our typical car.
Likewise, moving from an extreme of safety to a more reaskenbalance between safety and
speed/flexibility in Python involves taking pieces of corgiionally intensive Python code, rewriting them
in C/C++, and then calling them from Python. This is an apgid&at many Python enthusiasts are
advocating [22] but make no mistake that in going down théirthat one is sacrificing safety in Python in
the name of speed and flexibility. One is giving up Pythonarrig®0% guarantee when one does this and
will therefore have to deal with difficult and dangerous meyrarrors cropping up in the code.

From the extreme of speed and flexibility with little regaod $afety represented by the motorcycle (and
C/C++ raw pointers) one can also incrementally move towaeccar. One can start by putting on a helmet,
followed by slowing down some, and so on. Continuing on ttéad of adding safety will eventually see
one morphing the motorcycle into the typical car. Likewismyving from an extreme of less safety toward
a more reasonable balance between speed/flexibility aetysafC++ involves adding more and more
utility classes to hide more and more uses of raw C++ poimtelnggh-level C++ code. This is the trend
that the C++ community has been following for more than tised@cade. We see it first in the

introduction ofstd::auto  _ptr andstd::vector . This was then followed by the development of
boost::shared  _ptr (and thereforestd::shared  _ptr in C++0x). What is being suggested in this paper is
the logical conclusion of this journey which is the devel@minof a complete set of utility classes in order
to remove all raw C++ pointers from high-level C++ code; ¢c@mplete the transition from the motorcycle
(C/C++ raw pointers) to the car (Teuchos C++ memory manageniasses).

With the approach being advocated in this paper, using tbhehis memory management classes in
debug-mode is like driving around in the tank where one isquted from almost any danger. However,
using the Teuchos memory management classes in non-debogzepl builds is like driving around with
the fast high-performance motorcycle. Try turning a tarik Bamotorcycle and then back again that easily!

147



7 Conclusions

Using the Teuchos reference-counted memory managemeseslallows one to remove unnecessary
constraints in the use of objects by removing arbitrarytifiie ordering constraints which are a type of
unnecessary coupling [24]. The code one writes with thesssek will be more likely to be correct on first
writing, will be less likely to contain silent (but deadly)amory usage errors, and will be much more
robust to later refactoring and maintenance.

The level of debug-mode runtime checking provided by theclies memory management classes is
stronger in many respects than what is provided by memorgkag tools like Valgrind and Purify while
being much less expensive. However, tools like Valgrind Radfy perform a number of types of checks
(like usage of uninitialized memory) that makes these teety valuable and therefore complement the
Teuchos memory management debug-mode runtime checking.

The Teuchos memory management classes and idioms largkigsadhe technical issues in resolving the
fragile built-in C++ memory management model (with the gatmm of circular references which has no
easy solution but can be managed as discussed). All thaineimsdo teach these classes and idioms and
expand their usage in C++ codes. The long-term viability ##@s a usable and productive language
depends on it. Otherwise, if C++ is no safer than C, then igthater complexity of C++ worth what one
gets as extra features? Given that C is smaller and easieauto than C++ and since most programmers
don’t know object-orientation (or templates or X, Y, and Atigres of C++) all that well anyway, then what
really are most programmers getting extra out of C++ thatldvoutweigh the extra complexity of C++
over C? C++ zealots will argue this point but the reality @tt@++ popularity has peaked and is becoming
less popular while the popularity of C has remained fairgbt over the last dec Idioms like are
advocated in this paper can help to avert this trend but itreguire wide community buy-in and a change
in the way C++ is taught in order to have the greatest impact.

To make these programs more secure, compiler vendors r atatlysis tools (e.g. hocwdEﬁ) could
implement a preprocessor-like language similar to Op@\tﬂ?&t would allow the programmer to declare
(in comments) that certain blocks of code should be “poifre=” or allow smaller blocks to be “pointers
allowed”. This would significantly improve the robustne$€ade that uses the memory management
classes described here.

225ee the Tiobe index of programming language popularibjtigt/iwww.tiobe.com
23http://www.klocwork.com
24nttp://openmp.org

148



References

[1] A. Avram and F. MarinescuDomain-Driven Design QuicklyinfoQ, 2006.

[2] R. A. Bartlett. Teuchos::RCP : An introduction to thelifros smart reference-counted pointer class
for (almost) automatic dynamic memory management in C+€hiieal report SAND04-3268,
Sandia National Laboratories, Albuquerque, New Mexico8%7and Livermore, California 94550,
2004.

[3] R. A. Bartlett. Thyra linear operators and vectors: W@w of interfaces and support software for
the development and interoperability of abstract numealggorithms. Technical report
SAND2007-5984, Sandia National Laboratories, Albuquerdiew Mexico 87185 and Livermore,
California 94550, 2007.

[4] R. A. Bartlett. Mathematical and high-level overviewMfOOCHO: The Multifunctional
Object-Oriented arCHitecture for Optimization. Techhiegport SAND09-3969, Sandia National
Laboratories, Albuquerque, New Mexico 87185 and Liverm@aifornia 94550, 2009.

[5] R. A. Bartlett. Thyra coding and documentation guidesir{tcdg) version 1.0. Technical report
SAND2010-2051, Albuquerque, New Mexico 87185 and Liverep&@alifornia 94550, 2010.

[6] R. A. Bartlett, B. G. van Bloeman Waanders, and M. A. Hezouector reduction/transformation
operators for linear algebra interfaces to efficiently dgyeomplex abstract numerical algorithms
independently of data mapping, 2003. Submitted@M TOMS

[7] BOOST. The BOOST library. http://www.boost.org.

[8] F. Brooks.The Mythical Man-Month (second editiodddison Wesley, 1995.

[9] J. Coplien.Advanced C++ Addison Wesley, 1992.
[10] Micosoft Corporation. COM: Component object modekphfwww.microsoft.com/com.
[11] J. Demmel Applied Numerical Linear AlgebraSIAM, 1997.
[12] S. DewhurstC++ Gotchas Addison Wesley, 2003.

[13] Glenn Downing, Paul F. Dubois, and Teresa Cottom. Diadaisg in scientific simulations.
Computing in Science and Engineerjg87-96, 2004.

[14] E. Evans.Domain-Driven DesignAddison Wesley, 2004.
[15] M. FeathersWorking Effectively with Legacy CodAddison Wesley, 2005.
[16] M. Fowler. UML Distilled (third edition) Addison Wesley, 2004.

[17] E. Gamma et alDesign Patterns: Elements fo Reusable Object-Orientetiv&m Addison-Wesley,
1995.

[18] A. Griewank.Evaluating Derivatives: Principles and Techniques of Aitdponic Differentiation
SIAM, 2000.

[19] Object Management Group. CORBA: Common object reqliexker architecture.
http://www.corba.org.

149



[20] M. Heroux. Design issues for numerical libraries onlaole multicore architecturesournal of
Physics: Conference Serie)08.

[21] P. Kambadurl, D. Gregorl, A. Lumsdaine, and A. DharurRecent Advances in Parallel Virtual
Machine and Message Passing Interfackapter Modernizing the C++ Interface to MPI, pages
266-274. Springer, 2006.

[22] H. Langtengen and X. Cai. On the efficency of python fghhperformance computing: A case study
involving stencil updates for partial differential equats. In H. Bock, E. Kostina, X. Hoang, and
R. Rannacher, editordjodeling, Simulation and Optimization of Complex Procesg&soceedings of
the Third International Conference on High Performancesgtific Computingpages 337-358.
Springer-Varlag Berlin Heidelberg, 2008.

[23] R. Martin. Agile Software Development (Principles, Patterns, andcHcas) Prentice Hall, 2003.
[24] S. McConnell.Code Complete: Second Editiolicrosoft Press, 2004.

[25] Scott MeyersMore Effective C++ Addison Wesley, 1996.

[26] Scott MeyersEffective C++ (Third Edition) Addison Wesley, 2005.

[27] E. Phipps, R. Bartlett, and D. Gay. Automatic diffeiaiibn of C++ codes for large-scale scientific
computing.Third International Workshop on Automatic Differentiatjd-ebruary 2006.

[28] B. Stroustrup.The Design and Evolution of C++Addison-Wesley, New York, 1994,
[29] B. Stroustrup.The C++ Programming Language, special editiohddison-Wesley, New York, 2000.

[30] B. Stroustrup. Evolving a language in and for the reatld:oC++ 1991-2006 HOPL IlI:
Proceedings of the third ACM SIGPLAN conference on Histbpgragramming languagepages
4-1 to 4-59, 2007.

[31] H. Sutter and A. AlexandrescC++ Coding Standards: 101 Rules, Guidelines and Best Pcasti
Addison Wesley, 2005.

[32] Bart van Bloemen Waanders, Roscoe Bartlett, Kevin L.étagl Boggs, and Andrew Salinger. Large
scale non-linear programming for PDE constrained optitiona Technical report SAND2002-3198,
Sandia National Laboratories, Albuquergque, New Mexico8%7and Livermore, California 94550,
2002.

[33] M. VanDerVanter, D.E. Post, and M.E. Zosel. HPC needsoadtrategy. Technical report
LA-UR-05-1592, Las Alamos Laboratories, 2005.

150



A Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting
Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes
| Array class | Specific use case \
Array<T> Contiguous dynamically sizable, expandable, and coriibtecirrays
Tuple<T,N> | Contiguous statically sized (with si2g arrays

Equivalencies for const protection for raw pointers and Tewhos smart pointers types

| Description | Raw pointer | Smart pointer |
Basic declaration (non-const obj)| typedef A* ptr _A RCP<A>
Basic declaration (const obj) typedef const A* ptr _const _A | RCP<const A>
non-const pointer, non-const objecptr _A RCP<A>
const pointer, non-const object | const ptr _A const RCP<A>
non-const pointer, const object | ptr _const _A RCP<const A>
const pointer, const object const ptr _const _A const RCP<const A>

Summary of operations supported by the basic Teuchos smartqginter types
Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Raw pointer-like functionality
Implicit conv derived to base
Implicit conv hon-const to const
Dereferenceperator*()
Member accesgperator->()
operator{](i) X
operatorst+, -- , +=(i) , -=(i)
Other functionality
Reference counting machinery X
Iterators: begin(), end() X X
ArrayView subviews X X

X | X | X | X
XX | XX

X | X[ X[ X]|X

x

Basic implicit and explicit supported conversions for Teutios smart pointer types

| Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Implicit conv derived to base X X
Implicit conv non-const to const X X X X
const _cast X X X X
static _cast X X
dynamic _cast X X
reinterpret  _cast X X

151



Class Data Members for Value-Type Objects

Data member purpose

| Data member declaration |

non-shared, single, const object

const S s _;

non-shared, single, non-const object

S s

non-shared array of non-const objects

Array<S> as _;

shared array of non-const objects

RCP<Array<S> > as _;

non-shared statically sized array of non-const objecisple<S,N> as _;

shared statically sized array of non-const objects

RCP<Tuple<§,N> > as _;

shared fixed-sized array of const objects

ArrayRCP<const S> as

shared fixed-sized array of non-const objects

ArrayRCP<S> as

Class Data Members for Reference-Type Objects

Data member purpose \

Data member declaration

non-shared or shared, single, const object

RCP<const A> a _;

non-shared or shared, single, non-const ob

eREP<A> a;

non-shared array of const objects

Array<RCP<const A> > aa

non-shared array of non-const objects

Array<RCP<A> > aa _;

shared fixed-sized array of const objects

ArrayRCP<RCP<const A> > aa

“..." (const ptr)

ArrayRCP<const RCP<const A> > aa

shared fixed-sized array of non-const objec

tArrayRCP<RCP<const A> > aa _;

“...” (const ptr)

ArrayRCP<const RCP<const A> > aa

152




Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

donst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Ptr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu€bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objedtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vaft) Objects as Func Args

| Argument Purpose

| Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Ptr<RCP<A> > &a

array of non-changeable objegtsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

153



Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \ Formal Argument Declaration

single, non-changeable object (required s or const S s or const S &s

single, non-changeable object (optionalyonst Ptr<const S> &s

single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuags

(Use cases not covered by reference semantics used fortypks)
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objedtsonst ArrayRCP<const S> &as
array of changeable objects | const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as lrg Args
(Use cases not covered by reference semantics used fortypks)
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objeatsonst Ptr<ArrayRCP<const S> > &as
array of changeable objects | const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objegias Func Args
(Use cases not covered by reference semantics used fortypks

Argument Purpose Formal Argument Declaration

array of non-changeable objeqgtsonst Ptr<ArrayView<const S> > &as

array of changeable objects | const Ptr<ArrayView<S> > &as

154




Returning Non-Persisting Associations to Reference (or ae) Objects

Purpose \ Return Type Declaration

Single cloned object RCP<A>

Single non-changeable object (requiredjonst A&

Single non-changeable object (optionalpPtr<const A>

Single changeable object (required) | A&

Single changeable object (optional) | Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)bjects

| Purpose | Return Type Declaration |
Single non-changeable object | RCP<const A>
Single changeable object RCP<A>

Array of non-changeable objectsArrayView<const RCP<const A> >

Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Return Type Declaration |
Single non-changeable object | Ptr<const A>
Single changeable object Ptr<A>

Array of non-changeable objectsArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Non-Persisting Associations to Value Objects

Single copied object (return by value) | S

Single non-changeable object (requiredjonst S&

Single non-changeable object (optionalPtr<const S>

Single changeable object (required) | S&

Purpose | Return Type Declaration

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks

Purpose \ Return Type Declaration

Array of non-changeable objectsArrayRCP<const S>

Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks

Purpose \ Return Type Declaration

Array of non-changeable objectsArrayView<const S>

Array of changeable objects ArrayView<S>

155



Conversions of data-types for single objects

.getRawPtr () AVOID THIS!

<Derived> to <Base> |

|
. ! operator* () I
<T> to <const T> 1 _| RCP<T> | _-Operator™() N T& :
| O -7 |
: ptr() ot -7 :
et? -~

re-- | .o@ /// |
<Derived> to <Base> i v 3 //// :
<T> to <const T> ' _ | Ptr<T> T* la—|

[

.getRawPtr () AVOID THIS!

Legend

<<implicit conversion>>
______________________ 5

<<explicit conversion>>

Conversions of data-types for contiguous arrays

RCP<std::vector<T> >

N
N_arcp(.)  r--=---4
Y v | <T> to
_______ > | <const T>
RCP<Array<T> > -~ ArrayRCP<T> |-
- T ~
L/ y ‘- 9€tRawPtr ()\

o)
~ \D@be
~ St
~

gl
(
N
~

) *
ety ¥~ —_ _getp
- ~~wpt ~
L
—~—<_ ~
- ~a

7 ArrayView<T> [

A

<T> to
<const T>

-

D’\rray<T>

I
1
1
I
- 1
1
1
I
1

Tuple<T,N>

nvector<T>

Legend

<<implicit view conversion>>

<<implicit copy conversion>>

<<explicit copy conversion>>

156



Most Common Basic Conversions for Single Object Types

| Type To | Type From | Properties | C++ code

RCP<A> A* Ex, Ow rep(a -p) 1]

RCP<A> A* Ex, NOw rcp(a _p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)

RCP<A> A& Ex, NOw rcpFromUndefRef(a)

RCP<A> Ptr<A> Ex, NOw, DR | rcpFromPtr(a)

RCP<A> boost::shared  _ptr<A> | Ex, Ow, DR | rcp(a _sp)

RCP<const A> RCP<A> Im, Ow, DR | RCP<const A>(a _rcp)

RCP<Base> RCP<Derived> Im, Ow, DR | RCP<Base>(derived _rcp)

RCP<const Base> RCP<Derived> Im, Ow, DR | RCP<const Base>(derived  _rcp)

boost::shared  _ptr<A> | RCP<A> Ex, Ow, DR | shared _pointer(a _rcp)

A* RCP<A> Ex, NOw a_rcp.getRawPtr() 3

A& RCP<A> Ex, NOw *a_rcp 4

Ptr<A> A* Ex, NOw ptr(@ -p) 2

Ptr<A> A& Ex, NOw outArg(a) B

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp.ptr()

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp()

Ptr<A> RCP<A> EXx, NOw, DR | ptrFromRCP(a _rcp)

Ptr<const A> Ptr<A> Im, NOw, DR | Ptr<const A>(a _ptr)

Ptr<Base> Ptr<Derived> Im, NOw, DR | Ptr<Base>(derived  _ptr)

Ptr<const Base> Ptr<Derived> Im, NOw, DR | Ptr<const Base>(derived _ptr)

A* Ptr<A> Ex, NOw a_ptr.getRawPtr() 3

A& Ptr<A> Ex, NOw *a _ptr) 4

A* A& Ex, NOw gal3

A& A* Ex, NOw *a _p‘3
Types/identifiersA* a_p; A& @, Ptr<A> a _ptr ; RCP<A> arcp ; boost::shared  _ptr<A> a _sp;

Properties: Im = Implicit conversion, Ex = Explicit convins, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection (NOTE: All conuwessare shallow conversions, i.e. copies pointers not
objects.)

1. Constructing an ownin@®CPfrom a raw C++ pointer is strictly necessary but must be doitk great care
according to the commandments in Appendix B.

2. Constructing a non-owningCPor Ptr directly from a raw C++ pointer should never be needed iryfodm-
pliant code. However, when inter-operating with non-caamil code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation ghoever be necessary in compliant code but
may be necessary when inter-operating with external case$ection 5.2).

4. Exposing a raw C++ reference will be common in compliant cadteshould only be used for non-persisting
associations.

5. See other helper constructors for pas$ingdescribed in Sectidn 5.4.1.

157



Most Common Basic Conversions for Contiguous Array Types

| Type To | Type From | Properties | C++ code (or impl function)
ArrayRCP<S> St Sh, Ex, Ow arcp(s -p,0,n) 1
ArrayRCP<S> St Sh, Ex, NOw arcp(s -p,0,nfalse) 2
ArrayRCP<S> Array<S> Sh, Ex, NOw, DR| arcpFromArray(s _a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR| arcpFromArrayView(s _av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s  _av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR | arcp(s _a_rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR | arcp(cs _a_rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR | ArrayRCP::operator()()
St ArrayRCP<S> Sh, Ex, NOw s_arcp.getRawPtr() 3
S& ArrayRCP<S> Sh, Ex, NOw s_arcp[i] 4
ArrayView<S> St Sh, Ex, NOw arrayView(s _p,n) 1
ArrayView<S> Array<S> Sh, Im, NOw, DR| Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR| Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s  _v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR| ArrayRCP::operator()()

ArrayView<const S>

const Array<S>

Sh, Im, NOw, DR

Array::operator ArrayView()

ArrayView<const S>

const Tuple<S>

Sh, Im, NOw, DR

Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs  _v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR| ArrayRCP::operator ArrayView()
St ArrayView<S> Ex, NOw s_av.getRawPtr() 3
S& ArrayView<S> Ex, NOw s_av[i] 4

Array<S> St Dp, Ex Array<S>(s _p,s _p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s  _v)
Array<S> ArrayView<S> Dp, Im Array<S>(s _av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s  _t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s _arcp());
std::vector<S> Array<S> Dp, Ex s_a.toVector();

St Array<S> Ex, NOw s_a.getRawPtr() 3
S& Array<S> Ex, NOw s_ali] 4

Types/identifiersS* s _p;
std:vector<S> s v;

ArrayView<S> s _av; ArrayRCP<S> s _arcp ; Array<S> s _a;
RCP<Array<S> > s _a_rcp; RCP<const Array<S> > ¢s _a_rcp ;

Tuple<SN> s _t;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling egfees not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references notssue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointen mnaningArrayRCP object directly. Instead, use
the non-member constructancp<S>(n)

2. Constructing a non-owningrrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operatinghwiton-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed

3. Exposing a raw C++ pointer should never be necessary in ganmmode but may be necessary when inter-
operating with external code (see Sectfion 5.2).

4. Exposing a raw C++ reference will be common in compliant cdogieshould only be used for non-persisting
associations.

158



B Commandments for the use of the Teuchos memory managemenasses

Here are stated commandments (i.e. very strongly recomedeguidelines) that if followed, along with
the idioms defined in Section 5.8, then client code will berlyeE00% safe through debug-mode runtime
checking and will almost never result in undefined behaweay.(segfaults) or a memory leak (except for
circular references as described in Section 5/11.2). Widee will be situations where it is justified to
violate almost any of these commandments, they should Ik ine®9% of a well written code base.

Commandment 1 Thou shall not expose raw pointers in any high-level C++ code

Exception:Only expose raw pointers when interfacing with non-comyili@ode or momentarily in order to
construct a Teuchos memory management class object. Howleese cases should be encapsulated as
low-level code.

Commandment 2 Thou shall only use raw C++ references for non-persistingaasations (see
Sections 4.2 and 5.4.3).

Commandment 3 Thou shall usdrkCP for handling single objects for all persisting associasofsee

Section 4.2).

Commandment 4 Thou shall put a pointer for an object allocated with operat@winto a strong
owningRCP whenever possible by directly callimgwright in the constructor for thé&kRCP object itself or
construct fronrcp(...).

Commandment 5 When wrapping an object inside of &P, thou shall create a strong ownirigCP
object first before any non-ownirRCP objects (see Sections 5.11.4 and 5.13.3).

Justification: In order for the reference-counting machinery to detecgtiag non-owning references in a
debug-mode build, the firRCPobject created must have ownership to delete. The systenotdatect
dangling references from non-owniRgPNodeobjects created before an owniRGPNodeobject is
created.

Commandment 6 Thou shall usét r for handling single objects for all semi-persisting assticins (see

Section 4.2).

Justification: When performance constraints do not allow for the refera@mesting overhead &CR then
Ptr can be used instead to form a semi-persisting associatibictfyghould be accompanied with the
appropriate documentation about the performance opttraiga One should never have to retreat back to
using a raw pointer in these cases. At least With, invalid usage will be checked for in a debug build so
one does not loose any debug-mode runtime checking wheg Bisininstead oRCPif one really does not
need reference-counting machinery.

159



Commandment 7 Thou shall usé\r r ay RCP for handling all contiguous arrays of objects for all
persisting associations where the array does not need tadyementally resized while sharing the array

(see Sections 4.2 and 5.8.2).

Commandment 8 Thou shall useér r ay Vi ewfor handling contiguous arrays of objects for all
semi-persisting associations (see Sections 4.2 and 5.12.3

Justification: When performance constraints do not allow for the referameating overhead of

ArrayRCP , thenArrayView can be used instead to form a semi-persisting associatibiclivehould be
accompanied with the appropriate documentation aboutdHernmance optimization). One should never
have to retreat back to using a raw pointer in these casegast WithArrayView , invalid usage will be
checked for in a debug build so one does not loose any debdg-numtime checking when using
ArrayView instead ofArrayRCP if one really does not need reference-counting machinery.

Commandment 9 Thou shall not call rannewor del et e in any high-level C++ code to dynamically
allocate and destroy single objects. Instead, create mgmsing a user-defined non-member constructor
function (see Section 5.8.1).

Exception Calling rawnew in okay when an appropriate non-member constructor is ngs$n general,
value-type classes (e.gid::.vector ) will not have non-member constructor functions that netur
RCRwrapped objects.

Commandment 10 Thou shall not call raw operatonew [] ordel et e [] inany high-level C++
code to dynamically allocate and destroy contiguous arfydata. Instead, use functions such as
Teuchos: : Array<T>(n) andTeuchos: : ar cp<T>( n) to dynamically allocate arrays.

Commandment 11 Thou shall not directly create and use compile-time fixeedsarays withT[ N] .
Instead, create compile-time fixed-sized arrays u3iagchos: : Tupl e<T, N>and convert to
Teuchos: : ArrayVi ew<T>for more general usage.

Commandment 12 Thou shall us@euchos: : Arr ay as a general purpose contiguous container
instead ofst d: : vect or in order maximize debug-mode runtime checking (see Sed@i&n3
and 5.11.3).

Commandment 13 Thou shall only convert or cast between different memoryagament objects (of the
same or different types) using the provided implicit andieigonversion functions (see Section|5.7).
Thou shall never expose a raw C++ pointer to perform a coneers

Exception Some very advanced and rare use cases might have one expaosiw C++ pointer (see
Section 5.13.1 for the only example described in this paper)

Commandment 14 Thou shall only pass in the typ@sr , RCP, Ar r ay Vi ew, andAr r ay RCP by
constant reference (e.gonst RCP<T> &a) and never by non-const reference (e.g. neveRGB<T>
&a).

160



Exception The only time one should ever pass in a non-const referenced of these types (e RCP<T>
&a) is when the function will modify what data the object poitds However, if this is the case, it is
typically better and more clear to pass in the object thrauBt object (e.gconst Ptr<RCP<T> > &a )
using theoutArg(...) function (see Section 5.8.4).

Commandment 15 Thou shall only reutrn objects of tyg r , RCP, Ar r ay Vi ew, andAr r ay RCP from
a function by value and not a constant reference (see SésiB).

Exception Returning one of these types by non-const reference makess svhen using the local static
variable initialization trick described in [26, Item 4]. iWever, returning one of these types by const
reference would almost never be justified.

161



C Argument for using a signed integer forsi ze_t ype in the Teuchos
array classes

The Teuchos array memory management claadsayg , ArrayRCP , andArrayView all use a signed integer
for size _type (ptrdiff _t by default). This breaks from the C++ standard library cotiem of the
standard containers liksd::vector that all use an unsigned integer &e _type (which issize _t in
most implementations). The primary disadvantage for uaimgnsigned integral type is that subtractions
that would normally produce a negative number instead k@t eto a huge positive number, making it
more difficult to debug problems. For example, consider impke program shown in Listing 127:

Listing 127 : Example program showing the problem with unsigned intetyizes

#include <iostream>
#include <string>

typedef unsigned long int size_type ;

void print_val(const std::string &valName, const size ty pe val)
{ std::cout << valName << " = " << val << "\n"}}
int main()
{
const size type a =5, b =7
const size type ¢ = b - g
const size type d = a - b;

print_ val("a", a);
print_val("b", b);
print_val("b - a", c)
print_val("a - b", d)
return 0;

When the above program is compiled with GCC 3.4.6 on a 64 biix.imachine and run it produces the
output:

Inon
T v

2
18446744073709551614

D T T QD
'

In the above program, the subtractionaof b is a programming error but that error results in the number
18446744073709551614 when using an unsigned type. Getting a number 18&16744073709551614 in
program output or in the debugger does not exactly give & biebas to what the problem might be. Was
uninitialized memory used to produce this result? Is thereesother memory usage problem that would
cause the program to produce a ridiculous result such & ithis problems like this that greatly contribute
to the accidental complexity that is inherent in C/C++ peoging (see Section 6.1).

However, whenunsigned long int is replaced witdong int in Listing[127 and the code is rebuilt and
run one gets:

162



» T oo
' o
SN
o
LN

Now, getting output like2 when a positive number is expected is much easier to debugcfidnce of
getting-2 as the result of a memory usage error is very unlikely. Thisldr/@anmediately be flagged as a
subtraction error in the program and quickly tracked dowah faxed. Therefore, from a program
correctness and debugging perspective, signed integras tgre far superior to unsigned types.

So if programs with unsigned integers are harder to debugwhegs go wrong, then what are the
advantages of using an unsigned type? Well, some might #ngtiesing an unsigned type for integral
objects that that can only be non-negative in valid progrhaeigs to make the code self documenting. This
is partially true but one can achieve the same result by wsiggedef to make the usage expectation clear

(e.g.size _type ).

So what then is left as the real advantage for using an urgsigiegral type? The only real advantage of an
unsigned integral type (e.gnsigned int ) over a signed integral type (eigt ) is that unsigned integral
type objects can represent twice the positive range as thieadent signed integral type objects. For
smaller integral types likehar and andshort int , having twice the range can be quite useful. However,
on 32 bit and 64 bit modern computers, usinguasigned [long] int instead of dlong] int as the

size for a container is quite worthless. On a 64 bit Linux nireehvith GCC 3.4.6, the sizes of several
integral types pertinent to this discussion are shown itingsl128.

Listing 128 : Sizes and ranges of some common integral types of GCC on & Bithilx machine

sizeof(int) = 4

std::numeric_limits<int>::min()= -2147483648
std::numeric_limits<int>:max()= 2147483647
std::log10(std::numeric_limits<int>::max())= 9.33193

sizeof(unsigned int) = 4

std::numeric_limits<unsigned int>::min()= 0

std::numeric_limits<unsigned int>::max()= 4294967295
std::log10(std::numeric_limits<unsigned int>::max()) = 9.63296

sizeof(long int) = 8
std::numeric_limits<long int>::min()= -92233720368547 75808

std::numeric_limits<long int>::max()= 922337203685477 5807
std::log10(std::numeric_limits<long int>::max())= 18. 9649
sizeof(unsigned long int) = 8

std::numeric_limits<unsigned long int>::min()= 0

std::numeric_limits<unsigned long int>:max()= 1844674 4073709551615

std::log10(std::numeric_limits<unsigned long int>::ma

sizeof(size t) = 8

std::numeric_limits<size_t>::min()= 0
std::numeric_limits<size_t>::max()= 1844674407370955
std::log10(std::numeric_limits<size_t>::max())= 19.2

163

X()= 19.2659

1615
659



sizeof(ptrdiff t) = 8

std::numeric_limits<ptrdiff_t>::min()= -922337203685 4775808
std::numeric_limits<ptrdiff_t>::max()= 9223372036854 775807
std::log10(std::numeric_limits<ptrdiff_t>::max())= 1 8.9649

On a 32 bit machinesize _t is a 4 bitunsigned int  andptrdiff ~ _t is a4 bitint . The standard C library
typedefsize _t is guaranteed to be the largest possible object size retdrom sizeof(...) and is also
used for functions likenalloc(...) . The standard C library typedpfrdiff  _t is supposed to be
guaranteed to hold the difference between the subtracfianyotwo pointers in the largest allocatable
array. Right here lies the first problem with this approackrasvn in the simple program in Listing 129.

Listing 129 : Simple program showing the fundamental incompatibilitgioze_t andptrdi ff _t.

#include <iostream>
#include <string>
#include <limits>

template<typename T>
void print_val(const std::string &valName, const T val)

{ std::cout << valName << " = " << val << "\n"}
int main()
{
const size t maxSize = std::numeric_limits<size_ t>::max 0;

const size t size = static_cast<size t>(0.75 * maxSize);
char *a = new charsize];

ptrdiff t a_diff = (atsize) - a;

print_val("maxSize", maxSize);

print_val("size", size);

print_val("atsize - a", a_diff);

delete a;

return O;

The program in Listing 129 allocateshar array 75% the size of the maximum allowedde _t. In
this programsize is 50% larger than the largest value that can be represegtdeelsigned type

ptrdiff  _t (which is the type ast in this case). When this program is compiled with GCC 3.4.82rbit
mode (i.e. withm32) and run it produces the following output:

maxSize = 4294967295
size = 3221225471
atsize - a = -1073741825

The value ofptr2 - ptrl = -1073741825 whereptrl = a andptr2 = atsize s totally wrong. What
this output suggests is thgit2 = at+size  is 1073741825 elements in front optrl = a whichis
completely wrong when in actualiptr2 = atsize issize = 3221225471 elements afteptrl = a .
What this 32 bit output confirms is that it false to claim thiadiff _t can store the difference between

164



any two pointers in a single array of data. Perhaps that wasoin the machines when C was first
developed the early 1970's but it is not true today where nmashwith 4+ GB of memory are common.

Now consider practical usage of types ldtd::vector on modern machines. First, consider what it
would mean to allocate the largesd::vector of evenchar s. Achar is 1 byte so on a 32 bit machine,
anstd::vector<char> of max size would havé294967295 bytes = 4.3 GB of memory. That would
exhaust all of the memory of a 4 GB machine and more. Beindditio only half the range aize _t
(which is the positive range representablepbygiff  _t ) would give arstd::vector<char> that takes up
2.3 GB of memory. No real 32 bit program is ever going to ateaasinglestd::vector of char s that
takes up more than half of the addressable memory of theeentichine! It is hard to imagine what useful
task such a program would perform.

When one moves up to aid::vector<int> for a 32 bit (4 bytent the maximum size of array that one
can create 14294967295 * 4 | 1le+9 =17.2 GB. Being limited to thensigned int  typeptrdiff  _t
would limit one to arstd::vector<int> of size 8.6 GB which is already twice the addressable memory

of a 32 bit system.

Therefore, even on a 32 bit machine, limiting the maximure sitstd::vector objects to have only
std::numeric  _limits<ptrdiff >mmax() = 2.3x 10° elements is really not any kind of limit at alll.
For any reasonable program on any reasonable 32 bit macdhwneamnot even store that much memory.

On a 64 bit machine this of course becomes silly. By limitihg maximum number of elements in an
std::vector<char> (not to mention arrays with larger data types) to be

std::numeric  _limits<ptrdiff _t)>zmax()  on 64 bit machine would mean that one would take up
18446744073709551615 / 2 =9.2e+9 GB of memory to allocate a single array! We will likely nevar i
human history ever see a machine with 20° GB of memory in a single address space.

In summary, limiting the maximum number of elements irstanvector (and therefore Teuchos
Array ) to be half ofsize _t using thelong signed int typeptrdiff ~ _t for size _type is not any kind of
limit at all in any realistic 32 bit program and especiallyt acc4 bit program.

Therefore, the Teuchos array memory management classesedlly defaulptrdiff ~ _t assize _type
because of the inherent debugging and other advantagemgfaisigned integral type instead of an
unsigned type and with no real advantages at all for usizeg _t overptrdiff — _t.

165



D Raw performance data

D.1 Raw RCP performance data

Listing 130 : RawRCP timing data on GCC 4.1.2

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects o
using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.001 = 5

obj size  num loops raw shared_ptr
1 3465735 7.407462e-08 1.215497e-07
4 2011797 7.450006e-08 1.239370e-07
16 885379 8.031363e-08 1.284388e-07
64 326124 1.130889e-07 1.589150e-07
256 108380 2.369718e-07 2.786677e-07

1024 33849 5.029395e-07 5.578008e-07
4096 10153 1.552546e-06 1.608293e-06
16384 2961 5.759541e-06 5.821344e-06
65536 846 2.503073e-05 2.513239e-05

1. RCP_dereferenceOverhead_UnitTest ...
Messuring the overhead of dereferencing RCP, shared_ptr an

array dim num loops raw shared_ptr
64 3261240 7.765547e-10 1.037752e-09
256 1083803 7.295887e-10 8.572714e-10
1024 338498 7.117812e-10 8.238572e-10
4096 101538 7.187575e-10 1.155846e-09
16384 29614 8.350258e-10 1.155404e-09
65536 8461 8.362559-10 1.155293e-09

2. RCP_memberAccessOverhead_UnitTest ...
Messuring the overhead of dereferencing RCP, shared_ptr an

array dim num loops raw shared_ptr

64 3261240 7.794917e-10 1.037733e-09
256 1083803 7.295743e-10 8.639896e-10
1024 338498 7.115158e-10 8.325987e-10
4096 101538 7.252928e-10 1.156058e-09
16384 29614 8.369755e-10 1.154404e-09
65536 8461 8.364092e-10 1.154440e-09

3. RCP_referenceCountManipulationOverhead_UnitTest ..

Messuring the overhead of incrementing and deincrementing
comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr
64 65224 1.554978e-09 4.145809e-09
256 21676 7.138151e-10 4.221439e-09
1024 6769 6.919181e-10 4.224365e-09
4096 2030 6.863599-10 4.226880e-09
16384 592 6.854083e-10 4.224623e-09
65536 169 6.848397e-10 4.228219e-09

f different sizes

d a raw pointer.

RCP

e+06

RCP shared_ptr/raw  RCP/ra
1.398462e-07 1.64090 9e+00
1.413890e-07 1.66358 2e+00
1.467530e-07 1.59921 5e+00
1.792815e-07 1.40522 2e+00
2.359753e-07 1.1759 53e+00
5.812875e-07 1.1090 81e+00
1.630947e-06 1.0359 07e+00
5.840932e-06 1.0107 31e+00
2.515721e-05 1.00406 1e+00

6.958626e-10
7.611003e-10
7.125746e-10
1.192136e-09
1.190919e-09
1.199785e-09

RCP

6.954218e-10
7.611075e-10
7.242242e-10
1.192244e-09
1.190985e-09

w

1.887910e+00
1.897838e+00
1.827249e+00
1.585315e+00
9.957949¢-01

1.155780e+00
1.050498e+00
1.014132e+00
1.005053e+00

RCP/raw RCP/shared_p tr
8.9608 96e-01 6.705479e-01
1.043 191e+00 8.878173e-01
1.001 115e+00 8.649249¢e-01
1.658 607e+00 1.031397e+00
1.426 207e+00 1.030739e+00
1.4347 11e+00 1.038512e+00
d a raw pointer.
RCP/raw RCP/shared_p tr
8.9214 79e-01 6.701355e-01
1.043 221e+00 8.809221e-01
1.017 861e+00 8.698358e-01
1.643 811e+00 1.031302e+00
1.422 963e+00 1.031688e+00
1.4341 39e+00 1.039056e+00

1.199527e-09

the reference count

RCP

RCP/shared_p tr

6.009579e-09
5.832524e-09
5.589158e-09
6.094856e-09
6.234040e-09
6.216828e-09

166

RCP/raw

3.864736 e+00
8.17091 6e+00
8.07777 3e+00
8.87997 2e+00
9.09536 7e+00
9.07778 5e+00

1.449555e+00
1.381644e+00
1.323076e+00
1.441928e+00
1.475644e+00
1.470318e+00



Listing 131 : RawRCP timing data on Intel ICC 10.1

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects o
using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.001 = 5

shared_ptr

obj size  num loops raw
1 3465735 1.157942e-07
4 2011797 1.194609e-07
16 885379 1.200751e-07
64 326124 1.390085e-07
256 108380 3.299409e-07
1024 33849 6.118349e-07
4096 10153 1.724909e-06
16384 2961 6.138467e-06
65536 846 2.482151e-05

1. RCP_dereferenceOverhead_UnitTest ...

1.941906e-07
1.984465e-07
2.013262e-07
2.170309e-07
4.036446e-07
7.350291e-07
1.833645e-06
6.252955e-06
2.497754e-05

Messuring the overhead of dereferencing RCP, shared_ptr an

shared_ptr

array dim num loops raw
64 3261240 6.909757e-10
256 1083803 7.113406e-10
1024 338498 6.914017e-10
4096 101538 6.864300e-10
16384 29614 7.319499%¢-10
65536 8461 7.317167e-10

2. RCP_memberAccessOverhead_UnitTest ...

3.551453e-09
3.384829e-09
2.841675e-09
3.701316e-09
3.367334e-09
2.931704e-09

Messuring the overhead of dereferencing RCP, shared_ptr an

shared_ptr

array dim num loops
64 3261240 6.899839%-10
256 1083803 7.112650e-10
1024 338498 6.911940e-10
4096 101538 6.863435e-10
16384 29614 7.326919e-10
65536 8461 7.315725e-10

6.952541e-10
7.159684e-10
6.924634e-10
7.000054e-10
8.507246e-10
8.489935e-10

3. RCP_referenceCountManipulationOverhead_UnitTest ..

Messuring the overhead of incrementing and deincrementing
comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops shared_ptr
64 65224 1.032260e-09 5.619576e-09
256 21676 7.246278e-10 5.881181e-09
1024 6769 7.678041e-10 6.050677e-09
4096 2030 7.621277e-10 5.988180e-09
16384 592 8.004678e-10 6.102691e-09
65536 169 7.999578e-10 6.108933e-09

f different sizes

d a raw pointer.

e+06

RCP shared_ptr/raw  RCP/ra
2.041379e-07 1.67703 2e+00
2.031149e-07 1.66118 4e+00
2.105720e-07 1.67666 9e+00
2.277876e-07 1.56127 9e+00
4.223381e-07 1.2233 84e+00
7.567432e-07 1.2013 52e+00
1.851472e-06 1.0630 39e+00
6.269504e-06 1.0186 51e+00
2.505437e-05 1.00628 6e+00

w

1.762938e+00
1.700263e+00
1.753668e+00
1.638660e+00
1.280041e+00
1.236842e+00
1.073374e+00
1.021347e+00
1.009381e+00

RCP RCP/raw RCP/shared_p tr
1.027399e-09 1.4868 81e+00 2.892897e-01
7.973226e-10 1.120 873e+00 2.355577e-01
7.658747e-10 1.107 713e+00 2.695152e-01
9.940787e-10 1.448 187e+00 2.685744e-01
9.934011e-10 1.357 198e+00 2.950112e-01
9.912099¢-10 1.3546 36e+00 3.381003e-01

d a raw pointer.

RCP RCP/raw RCP/shared_p tr
8.252660e-10 1.1960 66e+00 1.186999e+00
7.949727e-10 1.117 688e+00 1.110346e+00
7.741691e-10 1.120 046e+00 1.117993e+00
9.928501e-10 1.446 579e+00 1.418346e+00
9.953219e-10 1.358 445e+00 1.169970e+00
9.923713e-10 1.3564 91e+00 1.168880e+00

the reference count

RCP RCP/raw RCP/shared_p tr
8.805472e-09 8.530285 e+00 1.566928e+00
8.692109e-09 1.19952 Te+01 1.477953e+00
8.797574e-09 1.14581 0e+01 1.453982e+00
8.991230e-09 1.17975 4e+01 1.501496e+00
8.966497e-09 1.12015 7e+01 1.469269e+00
8.973161e-09 112170 4e+01 1.468859e+00

167



Listing 132 : RawRCP timing data on MSVC++ 2009

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects o
using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.001 =

shared_ptr

obj size  num loops raw
1 3465735  2.628591e-007
4 2011797  2.390897e-007
16 885379  2.484812e-007
64 326124  2.882339e-007
256 108380  4.336593e-007
1024 33849  9.749180e-007
4096 10153  3.250271e-006
16384 2961  1.182033e-005
65536 846  4.609929e-005

1. RCP_dereferenceOverhead_UnitTest ...

3.641363e-007
3.718069e-007
3.885342e-007
4.262182e-007
5.628345e-007
1.093090e-006
3.250271e-006
1.350895e-005
4.609929e-005

Messuring the overhead of dereferencing RCP, shared_ptr an

shared_ptr

array dim num loops raw
64 3261240  1.034882e-009
256 1083803  1.052428e-009
1024 338498  1.035711e-009
4096 101538  1.021881e-009
16384 29614  1.088221e-009
65536 8461  1.082056e-009

2. RCP_memberAccessOverhead_UnitTest ...

1.034882e-009
1.052428e-009
1.038596e-009
1.043521e-009
1.141807e-009
1.141569e-009

Messuring the overhead of dereferencing RCP, shared_ptr an

array dim num loops raw
64 3261240  1.039674e-009
256 1083803  1.045220e-009
1024 338498  1.032826e-009
4096 101538 1.029094e-009
16384 29614  1.077915e-009
65536 8461  1.080252e-009

shared_ptr

1.044465e-009
1.048824e-009
1.038596e-009
1.053139e-009
1.135624e-009
1.137962e-009

3. RCP_referenceCountManipulationOverhead_UnitTest ..

Messuring the overhead of incrementing and deincrementing
comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw S
64 65224  7.186772e-010
256 21676  3.604217e-010
1024 6769  1.442698e-010
4096 2030  2.405326e-010
16384 592  3.092998e-010
65536 169  2.708661e-010

hared_ptr

5.270299e-009
4.144849e-009
4.183825e-009
4.089055e-009
4.227097e-009
4.153280e-009

f different sizes

5e+006

RCP

shared_ptr/raw  RCP/ra

4.117453e-007
4.130635e-007
4.303242e-007
4.660804e-007
5.997416e-007
1.122633e-006
3.348764e-006
1.215805e-005
4.609929e-005

1.38
1.55
1.56
1.47
12
11
1.0
11
1.00

d a raw pointer.

5291e+000
5094e+000
3636e+000
8723e+000
97872e+000
21212e+000
00000e+000
42857e+000
0000e+000

w

1.566411e+000
1.727651e+000
1.731818e+000
1.617021e+000
1.382979e+000
1.151515e+000
1.030303e+000
1.028571e+000
1.000000e+000

RCP/shared_p tr

RCP RCP/raw
6.995039%-010 6.7 59259¢-001
7.136329e-010 6. 780822e-001
6.952820e-010 6. 713092e-001
1.012263e-009 9. 905882e-001
1.020207e-009 9. 375000e-001
1.011722e-009 9.3 50000e-001

d a raw pointer.

6.759259e-001
6.780822e-001
6.694444e-001
9.700461e-001
8.935018e-001
8.862559¢e-001

RCP/shared_p tr

RCP RCP/raw
1.015718e-009 9.7 69585e-001
7.136329e-010 6. 827586e-001
6.923970e-010 6. 703911e-001
1.009859e-009 9. 813084e-001
1.007841e-009 9. 349904e-001
1.018936e-009 9.4 32387e-001

the reference count

RCP

9.724771e-001
6.804124e-001
6.666667e-001
9.589041e-001
8.874773e-001
8.954041e-001

RCP/shared_p tr

1.413398e-008
1.261476e-008
1.269575e-008
1.274823e-008
1.278439e-008
1.291128e-008

168

RCP/raw
1.966 667e+001
3.50 0000e+001
8.80 0000e+001
5.30 0000e+001
4.13 3333e+001
4.76 6667e+001

2.681818e+000
3.043478e+000
3.034483e+000
3.117647e+000
3.024390e+000
3.108696e+000



D.2 Raw Array performance data

Listing 133 : Raw Array timing data on GCC 4.1.2

0. Array_braketOperatorOverhead_UnitTest ...
Measuring the overhead of the Array braket operator relativ
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr vector

100 2307560 4.244007e-10 4.244137e-10
400 749245 3.631856e-10 3.629053e-10
1600 230574 3.475457e-10 3.475999¢-10
6400 68470 5.450882e-10 5.452091e-10

1. Array_iteratorOverhead_UnitTest ...
Measuring the overhead of the Array iterators relative to ra
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr vector

100 2307560 4.620638e-10 4.725251e-10
400 749245 3.722247e-10 3.979673e-10
1600 230574 3.498009e-10 3.796775e-10
6400 68470 5.465578e-10 5.450813e-10

2. ArrayRCP_braketOperatorOverhead_UnitTest ...
Measuring the overhead of the ArrayRCP braket operator rela
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr ArrayRCP

100 2307560 4.620552e-10 4.449722e-10
400 749245 3.722748e-10 3.680972e-10
1600 230574 3.498687e-10 3.486869¢e-10
6400 68470 5.456381e-10 6.259333e-10

3. ArrayRCP_iteratorOverhead_UnitTest ...
Measuring the overhead of the ArrayRCP iterators relative t
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr ArrayRCP

100 2307560 4.414750e-10 4.451065e-10
400 749245 3.670995e-10 3.679571e-10
1600 230574 3.485405e-10 3.488902e-10
6400 68470 5.448531e-10 5.452068e-10

4. ArrayRCP_selflteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor re

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr ArrayRCP

100 2307560 4.587616e-10 8.386087e-10
400 749245 3.713705e-10 7.234583e-10
1600 230574 3.497250e-10 6.945384e-10

e to raw pointers.

5e+07
Array vector/raw Array/ra
4.244440e-10 1.000 031e+00
3.629787e-10 9.9922 83e-01
3.476270e-10 1.000 156e+00
5.367154e-10 1.0002 22e+00

w pointers.

5e+07
Array vector/raw Array/ra
4.757363e-10 1.022 640e+00
3.989416e-10 1.0691 59e+00
3.797046e-10 1.085 410e+00
5.454967e-10 9.9729 86e-01

tive to raw pointers.
5e+07

ArrayRCP/raw
9.630283e-01
9.887783e-01
9.966221e-01
1.147158e+00

0 raw pointers.
5e+07

ArrayRCP/raw
1.008226e+00
1.002336e+00
1.001003e+00
1.000649e+00

5e+07

ArrayRCP/raw

1.827984e+00
1.948077e+00
1.985956e+00

169

lative to raw pointers.

w

1.000102e+00
9.994304e-01

1.000234e+00
9.846397e-01

w

1.029590e+00
1.071776e+00
1.085488e+00
9.980585e-01



6400 68470 5.297461e-10 6.887003e-10 1.300057e+00

5. ArrayView_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayView braket operator rel ative to raw pointers.
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07
array dim num loops raw ptr ArrayView ArrayView/raw

100 2307560 4.621072e-10 4.244570e-10 9.185250e-01
400 749245 3.722814e-10 3.627618e-10 9.744291e-01
1600 230574 3.499283e-10 3.474156e-10 9.928192e-01
6400 68470 5.455994e-10 5.369824e-10 9.842065e-01

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07
array dim num loops raw ptr ArrayView ArrayView/raw

100 2307560 4.588396e-10 4.552254e-10 9.921232e-01
400 749245 3.716074e-10 3.705230e-10 9.970818e-01
1600 230574 3.495732e-10 3.493184e-10 9.992711e-01
6400 68470 5.299196e-10 5.453255e-10 1.029072e+00

170



Listing 134 : Raw Array timing data on ICC 10.1

0. Array_braketOperatorOverhead_UnitTest ...
Measuring the overhead of the Array braket operator relativ

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr vector
100 2307560 9.041672e-10 1.092201e-09
400 749245 8.995689¢-10 1.207742e-09
1600 230574 8.816611e-10 1.154434e-09
6400 68470 9.466212e-10 1.240822e-09

1. Array_iteratorOverhead_UnitTest ...
Measuring the overhead of the Array iterators relative to ra

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr vector
100 2307560 6.093189¢-10 6.334830e-10
400 749245 6.862308e-10 6.941621e-10
1600 230574 6.543805e-10 6.653910e-10
6400 68470 7.261278e-10 7.312829¢-10

2. ArrayRCP_braketOperatorOverhead_UnitTest ...
Measuring the overhead of the ArrayRCP braket operator rela

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr ArrayRCP
100 2307560 7.565177e-10 1.091967e-09
400 749245 7.061542e-10 1.116170e-09
1600 230574 6.943432e-10 1.171088e-09
6400 68470 6.937756e-10 1.305848e-09

3. ArrayRCP_iteratorOverhead_UnitTest ...
Measuring the overhead of the ArrayRCP iterators relative t

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr ArrayRCP
100 2307560 3.658930e-10 3.765406e-10
400 749245 3.789682e-10 3.671329¢-10
1600 230574 3.575045e-10 3.575994e-10
6400 68470 5.485934e-10 5.484793e-10

4. ArrayRCP_selflteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor re

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 =

array dim num loops raw ptr ArrayRCP
100 2307560 3.729480e-10 1.878863e-09
400 749245 3.919746e-10 1.754433e-09
1600 230574 3.606841e-10 1.922398e-09
6400 68470 5.474158e-10 2.262937e-09

5. ArrayView_braketOperatorOverhead_UnitTest ...

e to raw pointers.

5e+07
Array vector/raw Array/ra w
1.092210e-09 1.207 964e+00 1.207973e+00
1.121359e-09 1.3425 79e+00 1.246551e+00
1.172907e-09 1.309 385e+00 1.330338e+00
1.252366€-09 1.3107 90e+00 1.322986e+00
W pointers.
5e+07
Array vector/raw Array/ra w
5.921796e-10 1.039 657e+00 9.718714e-01
6.795441e-10 1.0115 58e+00 9.902559¢-01
6.629027e-10 1.016 826e+00 1.013023e+00
7.259452¢-10 1.0070 99e+00 9.997486e-01

tive to raw pointers.
5e+07

ArrayRCP/raw
1.443413e+00
1.580633e+00
1.686613e+00
1.882234e+00

0 raw pointers.
5e+07

ArrayRCP/raw
1.029100e+00
9.687698e-01
1.000265e+00
9.997920e-01

lative to raw pointers.
5e+07

ArrayRCP/raw
5.037869e+00
4.475884e+00
5.329866e+00
4.133853e+00

171



Measuring the overhead of the ArrayView braket operator rel ative to raw pointers.
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw

100 2307560 7.635771e-10 1.092032e-09 1.430153e+00
400 749245 7.155570e-10 1.121049e-09 1.566680e+00
1600 230574 7.017405e-10 1.160129e-09 1.653217e+00
6400 68470 7.770807e-10 1.261093e-09 1.622860e+00

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.
Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07
array dim num loops raw ptr ArrayView ArrayView/raw

100 2307560 3.629461e-10 3.765493e-10 1.037480e+00
400 749245 3.772431e-10 3.936763e-10 1.043561e+00
1600 230574 3.589737e-10 3.622779-10 1.009205e+00
6400 68470 5.477992e-10 5.479590e-10 1.000292e+00

172



Listing 135 : Raw Array timing data on MSVC++ 2008

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relativ

Number of loops = relCpuSpeed/relTestCost =

5e+003/0.0001

array dim num loops raw ptr vector

100 2307560  7.757111e-010
400 749245  3.803829e-010
1600 230574  3.523814e-010
6400 68470  5.203009e-010

1. Array_iteratorOverhead_UnitTest ...

6.110350e-010
3.837196e-010
3.605133e-010
5.157368e-010

Measuring the overhead of the Array iterators relative to ra

Number of loops = relCpuSpeed/relTestCost =

5e+003/0.0001

array dim num loops raw ptr vector

100 2307560  5.416977e-010
400 749245 3.903930e-010
1600 230574  3.550921e-010
6400 68470  5.294289e-010

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

5.373641e-010
3.837196e-010
3.794877e-010
5.203009e-010

Measuring the overhead of the ArrayRCP braket operator rela

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001

array dim num loops raw ptr Ar

100 2307560  5.330306e-010
400 749245  4.938305e-010
1600 230574  3.605133e-010
6400 68470  5.317110e-010

3. ArrayRCP_iteratorOverhead_UnitTest ...

rayRCP

8.753835e-010
8.642033e-010
8.375836e-010
8.169636e-010

Measuring the overhead of the ArrayRCP iterators relative t

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001

array dim num loops raw ptr ArrayRCP

100 2307560  5.460313e-010
400 749245  4.170865e-010
1600 230574  3.578027e-010
6400 68470  5.203009e-010

4. ArrayRCP_selflteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor re

5.460313e-010
4.037398e-010
3.578027e-010
5.339930e-010

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001

array dim num loops raw ptr ArrayRCP

100 2307560  5.460313e-010
400 749245  4.904938e-010
1600 230574  3.578027e-010
6400 68470  5.362750e-010

5. ArrayView_braketOperatorOverhead_UnitTest ...

2.452807e-009
2.375725e-009
2.355534e-009
2.471429e-009

e to raw pointers.

= 5e+007
Array vector/raw Array/ra
5.243634e-010 7. 877095e-001
4.037398e-010 1.0 08772e+000
3.550921e-010 1. 023077e+000
5.225829%-010 9.9 12281e-001
W pointers.
= 5e+007
Array vector/raw Arraylra
5.546985e-010 9. 920000e-001
3.903930e-010 9.8 29060e-001
3.659346e-010 1. 068702e+000
5.22582%¢-010 9.8 27586e-001

tive to raw pointers.
= 5e+007

ArrayRCP/raw
1.642276e+000
1.750000e+000
2.323308e+000
1.536481e+000

0 raw pointers.
= 5e+007

ArrayRCP/raw
1.000000e+000
9.680000e-001
1.000000e+000
1.026316e+000

lative to raw pointers.
= 5e+007

ArrayRCP/raw
4.492063e+000
4.843537e+000
6.583333e+000
4.608511e+000

173

w

6.759777e-001
1.061404e+000
1.007692e+000

1.004386e+000

w

1.024000e+000
1.000000e+000
1.030534e+000
9.870690e-001



Measuring the overhead of the ArrayView braket operator rel

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001

ArrayView

array dim num loops raw ptr
100 2307560  5.330306e-010
400 749245  3.803829e-010
1600 230574  3.550921e-010
6400 68470  5.111728e-010

6. ArrayView_iteratorOverhead_UnitTest ...

5.286970e-010
4.004031e-010
3.605133e-010
5.180188e-010

Measuring the overhead of the ArrayView iterators relative

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001

array dim num loops raw ptr
100 2307560  5.373641e-010
400 749245  3.970664e-010
1600 230574  3.550921e-010
6400 68470  5.294289¢-010

ArrayView

5.460313e-010
3.970664e-010
3.523814e-010
5.408391e-010

ative to raw pointers.
= 5e+007

ArrayView/raw
9.918699e-001
1.052632e+000
1.015267e+000
1.013393e+000

to raw pointers.
= 5e+007

ArrayView/raw
1.016129e+000
1.000000e+000
9.923664e-001
1.021552e+000

174



DISTRIBUTION:

1 An Address
99 99" street NW
City, State

3 Some Address
and street
City, State

12 Another Address

On a street
City, State
U.S.A.

MS 1319 Rolf Riesen, 1423

MS 1110 Another One, 01400

M9999 Someone, 01234

MS 0899 Technical Library, 9536 (electronic)

el

175



176



v1.32



@ Sandia National Laboratories



	Preface
	Introduction
	Fundamental problems with raw C++ pointers
	Problems using raw C++ pointers for handling single objects
	Problems using raw C++ pointers for handling arrays of objects
	Problems with the incompatibility of new/delete and try/throw/catch

	Problems with common approaches for addressing memory management in C++
	Problems with using std::vector for handling all arrays
	Problems with relying on standard memory checking utilities

	Important prerequisites
	Value types versus reference types
	Non-persisting versus persisting and semi-persisting associations

	Teuchos classes for safer memory management and usage
	Overview of basic approach employed by Teuchos memory management classes
	The proper role of raw C++ pointers
	Common aspects of all Teuchos memory management classes
	Memory management classes replacing raw pointers for single objects
	Teuchos::Ptr<T>
	Teuchos::RCP<T>
	Raw C++ references

	Memory management classes replacing raw pointers for arrays of objects
	Teuchos::ArrayView<T>
	Teuchos::ArrayRCP<T>
	Teuchos::Array<T>
	Teuchos::Tuple<T,N>
	Array views

	Const versus non-const pointers and objects
	Conversions
	Implicit and explicit raw-pointer-like conversions
	Conversions between different memory management types
	Implicit type conversion problems and shortcomings

	Core idioms for the use of the Teuchos memory management classes
	The non-member constructor function idiom
	General idioms for handling arrays of objects
	Idioms for class object data members and local variables
	Idioms for the specification of formal arguments for C++ functions
	Idioms for returning objects from C++ functions

	Reference-counting machinery in-depth
	Basic reference counting machinery
	Circular references and weak pointers
	Customized deallocators
	Embedded objects
	Extra data

	Roles and responsibilities for persisting associations: factories and clients
	Debug-mode runtime checking
	Detection of null dereferences and range checking
	Detection of circular references
	Detection of dangling references
	Detection of multiple owning RCP objects
	Performance of debug-mode checking versus memory checking tools
	Limitations of debug-mode runtime checking
	Exception handling and debugging

	Optimized performance
	Reference counting overhead
	Array access and iterator overhead
	Performance tuning strategies, semi-persisting associations

	Related idioms and design patterns
	The inverted object ownership idiom
	The separate construction and just-in-time initialization idioms
	The object self-reference idiom
	The generalized view design pattern

	Comparison with other class libraries and the standard C++ library
	Advice on refactoring existing software

	Miscellaneous topics
	Essential and accidental complexity, making implicit concepts explicit
	Philosophy of memory management: Safety, speed, flexibility and 100% guarantees

	Conclusions
	References
	Summary of Teuchos memory management classes and idioms
	Commandments for the use of the Teuchos memory management classes
	Argument for using a signed integer for size_type in the Teuchos array classes
	Raw performance data
	Raw RCP performance data
	Raw Array performance data


