SANDIA REPORT

SAND2008-xxx
Unlimited Release
Printed ??? 2008

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization & Uncertainty Estimation Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2008-xxx
Unlimited Release
Printed ??? 2008

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratorigg\lbuquerque NM 87185 USA,

Abstract

Coding guidelines help to improve the quality of code andlifate collaborative
development. This document covers C++ code, code forngatiimd Doxygen documentation
guildelines that have been established for the Trilinosr@ipackage and related C++ codes.
Many of these guidelines are followed in other Trilinos pagks as well. While the guidelines
outlined in this document are related to Thyra C++ code, rabtte guidelines are more
general that Thyra and even Trilinos.

*Sandia is a multiprogram laboratory operated by Sandia@atjon, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94R085

3

Contents

R 0 Yo [T o S 7
2 Alpha-numeric item designationsottt mrem e i 9
3 __Naming conventions (NC) ... 10
4 Naming and organization of source files (NOSF) oo i 14
5 COdING QUITEINES . . . oo e et e e e e e e e e 15
5.1 General coding guidelines (GdG) .. 15
5.0.1 ErorNandlingovon oo e 15

5.1.2 Memory managemént ... 15

5.1.3 Object Control.o e 17

5.1.4 Obiject Introspectibn ... 17

5.1.5 Miscellaneous coding guidelilhes 18

5.2 Specification of formal arguments for C++ functions (BFA 22
5.2.1 Variations in passing single changeable objects 27

6 FOrmMAatting of SOUICE COUEottt et e e e e 28
6.1 General principles for formatting of source code (FSCR). 28
6.2 Specific source code formatting principles (ﬁSC) . 29
7 Doxygen documentation QUIdEIINES .« .. vvvvuuu ittt 38
7.1 General principles for function and class level documaigonm (DOXP) 38
7.2 Specific Doxygen documentation principles (DOX) .. .o oo oo oo 39
REIOIENCES - oo ero ot "

Appendix

A Summary of gUIdEliNESt 43
B Summary of “C++ Coding Standards” (CPPCS) with amendments. 49
C Miscellaneous amendments to “C++ Coding StaNdards” - oo 53
C.1 Amendments to items related to compiler/linker incorm 53
C.2 Amendments for 'using’ declarations and directives.......ot 53
D Arguments for adopting a consistent code formatting style.. .o 59
D.1 Statements on coding style from varied persons andganizations 59
D.1.1 Open source software (the GNU project)cuuu.vovoo.... 59

D.1.2 Agile Methods (Extreme Programming)...........couevvven...... 60

D.1.3 Code ComPlete ...ttt e e e e e 61

D.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Stamfd. 62

D.2 The keyboard analogy for coding styles 63
D.3 CONCIUSIONSo oeeeee e e e e e e e e e e 63
E Guidelines for reformatting of source code. ... 65

1 Introduction

This document deals with C++ coding guidelines that aredasenarily on the book “C++
Coding Standards” by Sutter and Alexandrescu [9] (outlimetippendix B). The guidelines in this
document are specifically designed to address the develdpmhebject-oriented numerical C++
libraries and to utilize the tools in the Trilinos packaigechos . While the main purpose of of this
document is to define guidelines for Thyra software (for botarfaces and adapters), it is also
general enough to be applied to many other projects thaif$tance, might interact with Thyra.

The goal of this document is not to restate what is in [9] batead to fill in some gaps
intentionally left by the authors and to provide amendmémspecific items in the book and tailor
them for numerical libraries. The zeroth item (first itentazbased) “Don’t sweat the small stuff”
intentionally avoids specific recommendations on issuek as the conventions for naming
identifiers and the formatting of code since these are arlyitiVhile issues related to coding style
are much less important that other issues, there are argsifieer@dopting a more consistent code
formatting style and some of these arguments are outlindgpendix D. Therefore, one of the
purposes of this document is to suggest reasonable and atiguidelines for naming conventions
and code formatting that provide for enough code uniforrtiacilitate collaborative code
development, code reviews, and maintenance.

More important than code formatting, a consistent set ofingroonventions for C++ classes,
functions, variables, and other entities also helps to avpicollaborative software development
and quality. Also, since clients of the software must intergith these names, it is even more
important that a set of naming conventions be used as cenlisas makes sense.

Lastly, more important general C++ coding guidelines areeped that append and amend those
described in [9]. While formatting and naming recommeratatido not affect the meaning of C++
code, other coding guidelines do and therefore they wikikecmore attention and should be
considered more seriously.

The rest of the main document is organized as follows. Analpiimeric convention for naming
the various guidelines described in this document is desdrin Section 2. Then, general naming
conventions are presented in Section 3 and they help pravidatext for later code examples.
This is followed in Section |4 with guidelines for naming arrdanizing source files. Next,
important general C++ coding guidelines are described ai@e5 that affect software quality in
critical ways. Unlike naming conventions and code formaitithese guidelines are difficult to
adopt after a significant amount of code has been writtedoWilg this, reasonable and minimal
formatting guidelines are covered in Section 6. Finallydglines for Doxygen documentation are
provided in Sectioh 7.

Several appendices are included that deal with a numbepifstoThe guidelines presented in this
document are summarized in Appendix A. Similarly, the 10itlglines from [9] are listed in
Appendix B along with specifying which items are amendechwalidated by the guidelines in the
current document. Appendix C discusses the items from E]dahe amended or invalidated here.
Most importantly, a clarification of the use eding declarations is given that is both stronger in
some ways and weaker in other ways than what is describedrm3® in [9]. Appendix D gives
arguments for adopting a consisting code formatting styke single development team or single
project (which is more consistent with current Agile deyslent methods). Lastly, Appendix E

7

gives guidelines for when one developer can legitimateigrneat a source file written by another
developer when a more consistent code formatting styletiagr@ed upon.

2 Alpha-numeric item designations

Specific items in this document are to be refereed to usingenai@d acronyms starting with and
the version number (e.g. 1.0). For example, the first namimgention guideline can be refereed
to asTCDG 1.0 NC 1 In this way, these short precise alpha-numeric desigmatich adCDG
1.0 NC 3can be used in code reviews as short-hand references tdicgedielines. The version
number of the coding standard is important in order to allbanges in future coding guidelines
and allow the numbers to change from version to version &3yl in TCDG 1.0 might become
NC 3in TCDG X.Y).

In addition, this document is based on [9] and those guidslinill be refereed to using an
enumerated acronym such@BRPCS Item 15(i.e. “Use const proactively”).

3 Naming conventions (NC)

C++ classes, functions, variables, data members etc.dbeuhamed and used in a fairly
consistent manner. The following guidelines are consistéih common practice as exemplified

in [7].

e NC 1: Capitalize C++ class and struct names 8snmeCl ass: Names for C++ classes and
structs should generally be capitalized and separate vebialgdd be concatenated and
capitalized (i.e. “Cammel Cases”). For example:

class SomeClass {...};

e NC 2: Capitalize C++ namespace nameslgNanmeSpace: C++ namespaces should
follow the same naming convention as C++ classes and nacegpaes should not contain
too many acronyms and should not be too short or too commarexample:

namespace MyNameSpace {

} /I namespace MyNameSpace

e NC 3: C++ enum type names should begin wiEtas EMy Enumand enum values should use
all caps and scope context 8_ENUMVALUE: Enumeration type names should follow the
same convention as for class and struct names but they saigol@hegin with the capital
letter 'E’ to signify that this type is an enum. Enumerati@iues should be all upper-case
with underscores between words and should use a common fae$igoping within the
enum type. Also, enum values should use the default valugresent defined by the
compiler in general as this aids their use as indexes intwlzased arrays. For example:

enum ESolveStatus {
SOLVE_STATUS_CONVERGED,
SOLVE_STATUS_UNCONVERGED,
SOLVE_STATUS_UNKNOWN

b

Justification Using a capital 'E’ forenums allows the definition of other types with the same
basic name that contain other data. For exanfelveStatus in anenum enumerating the
different types of solve status aSdlveStatus is a C++ struct that contains an

ESolveStatus member along with some other data. The use of the scoping grefi
SOLVESTATUS above) is also recommended in [6, Section 11.4].

e NC 4: C++ object instance identifier names should begin with a Ioease letter as
obj ect Name: Formal function arguments and other object identifieraukhdn general,
start with a lower-case letter and then use capitalizatoriollowing words with no
underscores between words in general. For example:

ClassTypel obj;
ClassType2 objectForMyThing;
ClassType3 objectForYourThing;

10

Exception:ldentifiers that have mathematical symbols in them suct) dsandalpha
should use lower case names separated by underscéresexample:

Vector curr_x;
Matrix curr_J;
Scalar curr_alpha;

Justification: The Java conventioabjectldentifierName using capitalization with no
underscores produces shorter readable identifiers foidbnghmes but does not work well
for identifiers with math symbols. With math symbols, it isgantant to maintain the case of
the symbol ag andX may mean something totally different mathematically and it
confusing and/or ambiguous to write eitloarrx orcurrX . In these cases, it is far better to
use underscores and writerr _x as shown above. While in it is considered bad practice to
differentiate variable names by case alone (see “Don’eddffitiate variable names solely by
capitalization” in [6, Section 11.7]), this is very commanmath and mathematical software
should support this.

e NC 5: C++ class/struct data member names should begin with a levase letter and end
with an underscore asonmeDat aMenber = Names for data members within a class should
use the same naming convention as for other object idemiieres but should end with an
underscore. For example:

class SomeClass {
public:

private:
int someDataMember _;

3

Justification: Using an underscore after a data variable name helps to deérszope of the
variable and differentate that name from a local varaibla mrember function that may
otherwise result and result in “shadowing” which causesgitity problems on some
compilers.

Exception Simple C++ structs that do not need to maintain an invasattt public data
members and no member functions (other than constructioos)ic not contain underscores.
For example:

struct SolveStatus {
ESolveStatus solveStatus;
double achievedTol;
std::string message;

b

Exception:ldentifiers that have mathematical symbols in them such &sandalpha
should use lower case names separated by underscéresexample:

Vector curr_x_;
Matrix curr_J_;
Scalar curr_alpha_;

11

Justification: SeeNC 4 above.

e NC 6: C++ function names should begin with a lower-case letter as
someFuncti on(. ..): Names for functions should use the same naming convengion a
for object identifier. For example:

class SomeClass {
public:
void someMemberFunction(...);

3

void someOtherFunction(...);

Exception:ldentifiers that have mathematical symbols in them suoct) dsandalpha
should use lower case names separated by underscéresexample:

class SomeClass {

public:
const Vector& get x() const;
const Matrix& get J() const;
Scalar get alpha() const;

b

Justification: SeeNC 4 above.

e NC 7: Name C++ pure abstract base clas€®isobBase, default implementation bases
Bl obDef aul t Base, and default concrete implementation classes
Def aul t TypeABI ob: In general, the top-level C++ base class for some abatracti
should use the post-fidase appended to the class name (&/ectorBase) and the base
class should contain (almost) no implementations andiogrtao object data (see Item 36
in [9]). If a default implementation of some of the aspectshef base class are desired (to
make it easier to define concrete subclasses), then thejddmput in a derived node
subclass with the post-fidefaultBase (e.g.VectorDefaultBase). Any default concrete
implementation of an abstraction should generally use tbfixDefault appended to the
beginning of the name along with any other important prefiees.DefaultSpmdVector).
For example:

/I Pure virtual base class
class VectorBase
. ... Il Other base classes
{
public:
virtual void applyOp(...) const = 0;

b

/I Node base class with some default implementations
class VectorDefaultBase
. virtual public VectorBase

{
public:

12

void applyOp(...) const; // default implementation

3

/I' A general default implementation for SPMD vectors
class DefaultSpmdVector
: virtual public VectorDefaultBase // use some default impl ementations

{
public:
void applyOp(...) const; // Specialized overrides

private:
3

e NC 8: Prefer to name const and non-const access functiomggea#art () and
get Nonconst Part (), respectivelyIn general, functions that return objects that are
contained within a wrapper object should have the prefixconst added to the function
that returns the non-const reference (or pointer) to théagoed object. For example,

class SomeClass {

public:
RCP<Part> getNonconstPart();
RCP<const Part> getPart() const;

Justification The choice to name the access functigetblonconstPart() andgetPart()

as opposed tgetPart() andgetConstPart() is somewhat arbitrary. However, using
nonconst should be preferred in order to make it more explicit that a-oconst object
reference is being requested. Also, a constant view of agpart object is always cheaper
that returning a non-constant view of the part (see the di&on of the “generalized view”
idiom) and therefore to be safe and error on the side of effagiethe non-constant access
function should be harder to call than the constant accessidun.

13

4 Naming and organization of source files (NOSF)

Since most C++ code is organized around classes, the fidwsteushould also primarily be
organized around classes and the nonmember functionstheddt with these classes. The
primary goal of these file naming guidelines is to create fmas that are globally unique and
will therefore facilitateinclude s without need for directory paths in thiaclude statement.
The basic idea is that a source file should be named based drt\vhs, not where itis. The
following guidelines help to define how to organize code saarce files and how to name those
source files. The directory structure of source files is bdytbe scope of this document.

e NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h (C
header), and . ¢ (C source) These file names avoid common problems with portability to
various Unix and Windows platforms and enable better togipert (like language-specific
formatting in Emacs).

e NOSF 2 Only one major C++ class with supporting code per header amaree file with
name(sNaneSpaceA.l nner Nanespace_SoneC ass. [hpp, cpp] : As a general
rule of thumb, assign the source code for any major C++ cladsapporting code to a
single set of header and source files. The file name shouldrbpased out of the
namespace names enclosing the classes and other code #@otigevelass name itself. For
instance, for the clag$éameSpaceA::InnerNamespace::SomeClass , the header and source
files would be nametlameSpaceA InnerNamespace _SomeClass.[hpp,cpp] . This
convention assures that the file names will be globally umido addition, having a single
set of files for each class helps to keep a single encapaulativ of code together which
makes searching the encapsulation unit easier.

e NOSF 3 Use internal include guards in all header fileall header files, without
exception, should use include guards [9, Item 24]. For exantipe file
NameSpaceA_InnerNamespace _SomeClass.hpp —would have the basic structure:

II' @HEADER
..
/I @HEADER

#ifndef NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP
#define NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

#include "SomeFile.hpp"

#endif // NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

Above, the comment NAMESPACEA INNERNAMESPACISOMECLASS$HPPafter the final
#endif helps to show the preprocessor structure in the file and guieh cases where
other#ifdef or#if structures are used.

This is a very minor amendment to Item 24/in [9].

14

5 Coding guidelines

Coding guidelines, unlike formatting guidelines, greatiffuence the meaning of C++ programs
and therefore require a high priority level. The book “C++0@g Standards” [9] that this
document is primarily based on provides many good and irapbdoding guidelines that should
be followed and by default all of the items in this book areuassd in this document. Here, we
provide additional coding guidelines and, in some casespdritems in [9]. Where this document
is silent, [9] is to be considered the authoritative souoregfiidance. Some miscellaneous
amendments to the items in [9] are given in Appendix C.

5.1 General coding guidelines (GCG)

Below several different general coding guidelines areutised. These guidelines affect software
quality in a major way and are not just a matter of persondkpeace or style.

5.1.1 Error handling

e GCG 1: UseTEST_FOR EXCEPTI O\(. . .), TEUCHOS ASSERT(. . .) and related
macros for reporting all errors, even developer programgn@rrors For developer errors,
prefer to throw exceptions derived frostu::logic _error instead of using the
assert(...) macro as recommended in [9, Item 68]. A “logic error” wouldtheated
differently from a real runtime error and would thereforensowith different assumptions
about the state of the object after the exception was thréwparticular, a “real error” (i.e.
not just an internal developer error) should always protidebasic guarantee to leave the
object in a valid state [9, Item 71], while code that throwsagit error” can not make any
such guarantees in general. Therefore, objects that thxogpéons derived from
std::logic _error should generally be viewed as unusable and should be deleted
immediately. To enable debugging, a breakpoint can alweysddred on function
TestForException _break() 2 which will be called just before an exception is thrown
through these macros. In the future, more sophisticatddrieslike automatically attaching
a debugger or printing the call stack may be added for sonterags Therefore throwing an
exception derived froratd::logic ~ _error using these macros should be preferred to using
theassert(...) macro as it gives us more control over what happens when cinesé
types of programming errors occurs. Also, these exceptiacros make it much easier to
generate good error messages that you would get from a siumelef theassert(...)
macro.

5.1.2 Memory management

e GCG 2: Avoid the use of raw C++ pointers in all but the lowest-levetle The tools
mentioned below which include all of the standard C++ comaclasses (when using a
checked STL implementation)euchos::Ptr , Teuchos::RCP , Teuchos::Array
Teuchos::ArrayRCP , andTeuchos::ArrayView allow most code to be written without any

1in gdb, a breakpoint would be set sTestForException _break() .

15

explicit raw C++ pointers. In debug mode, these classewdtio full runtime checking that
result in exceptions being thrown and excellent error ngessé.e. instead of segfaults).
When a check C++ standard library is used (e.g. wi@4XLIB_DEBUGs defined with g++),
then all of the standard C++ library classes are checked ks we

GCG 3: Preferto usest d: : stri nginstead ofthar * or const char *: While
std::string is not debug checked in a typical implementation, indexing ether
unchecked operations witltd::string objects is much less common in numerical code
and therefore is less likely to result in memory-usage srirgide of numerical code.
However, when a checked C++ library implementation is usegl (vhen GXXLIB_DEBUGS
defined with g++), thestd::string is very safe.

GCG 4: UseTeuchos: : Pt r as function arguments in the place of raw C++ pointers to
single objects where no persisting association exisse Tables|1 and 2): The class
Teuchos::Ptr simply takes the place of a raw pointer to a single objectbatways

default initialized to NULL. In debug mode, it throws excigpis when trying to dereference
a null pointer. Using this class helps to eliminates the feedhecking for NULL to avoid
undefined behavior when one dereferences a NULL pointer.

GCG 5: UseTeuchos: : RCPfor memory management of single dynamically allocated
objects and for handling persisting [1] associatior{see Tables|1 and 2): Replace all
references to the clagsost::shared _ptr in all items in [9] withTeuchos::RCP .

GCG 6: UseTeuchos: : ArrayVi ewas function arguments in the place of pointers into
raw arrays or other container classes where no persistirgpamtion exists and the array
does not need to be resizgdee Tables!1 and 2): This class allows all of the useful
capabilities of astd::vector which do not include adding or removing entries. In debug
mode, all of the access functions (including iterators)fallg checked. In optimized mode,
unchecked raw pointers are used and the only overhead is argizment (which is usually
passed with raw pointers anyway).

GCG 7: PreferTeuchos: : Arraytostd: : vect or as a contiguous general purpose
data container (see Tables|1 and 2): The primary reason tolesghos::Array instead of
std::vector is thatTeuchos::Array is part of the system memory management types and
results in stronger runtime checking. Whileuchos::Array gets all of its real functionality
from std::vector , prefer to usd@euchos::Array as we provide more capabilities and
portable debug checking. For instari@eichos::Array::operator(] is range checked in
debug mode regardless whether there is an underling ch&Keimplementation or not

(see [9, Item 83]). In debug mode, the iterator is also ruatimecked. In addition,
Teuchos::Array — will automatically convert into affeuchos::ArrayView object safely

when used in function calls and in debug mode, will catch taggeferences.

GCG 8: UseTeuchos: : Ar r ay RCP for memory management of dynamically allocated
objects stored in contiguous arrays of data and for pensgsaissociations involving
contiguous arrays(see Tables 1 and 2): Note tHaguchos::ArrayRCP does notake the
place of a contiguous container class suchieashos::Array . A Teuchos::ArrayRCP

object can not change the size of the array, it can only peofadreference-counted sharing
of an array of data of fixed size and provide subviews of cowtig parts of the managed
array. All access to data (both througiguchos::ArrayRCP::operatot]] and iterators) is
runtime checked in a debug build.

16

e GCG 9: When raw C++ pointers must be exposed (i.e., due to intantaerith
non-compliant code), minimize the amount of code expostr taw pointer When raw
C++ pointers must be exposed to communicate with other dateuses raw C++ pointers,
encapsulate the raw C++ pointer as fast as possible and tiegive up a raw pointer at the
last possible moment. For example,

SomeForeignClass* get_raw_foreign_obj_ptr();
do_some_foreign_stuff(SomeForeignClass* foreign_obj_ ptr);

void foo() {
Il Get the raw pointer into a proper encapsulated class objec t right away!
Ptr<SomeForeignClass> foreignObj(get_raw_foreign_obj _ptr());

Il Lots of code ...

Il Only expose the raw pointer directly in the foreign functi on call!
do_some_foreign_stuff(&*foreignObj);

5.1.3 Object Control

e GCG 10: Accept user options at runtime througiTaeuchos: : Par anet er Li st object
by deriving from théTeuchos: : Par anmet er Li st Accept or interface The
Teuchos::ParameterList class provides many useful features that make it easy t@acce
user options in a flexible and fully validated way (see Tesath@cumentation for more
details). TheTeuchos::ParameterListAcceptor interface defines a consistent flexible
protocol for setting and managing a parameter list.

e GCG 11 Fully validate all parameters and sublists in accepted
Teuchos: : Par anet er Li st objects usingval i dat ePamat er s(. ..) and other
means All user parameters and sublists passed in through a
Teuchos::ParameterListAcceptor should be fully validated. The mail tool for this is the
member functiorvalidateParameters(...) . Using this function and other other
approaches, when a user mispells a parameter or sublistthesarrong type for a
parameter, or provides an invalid parameter value, theygetlan exception thrown with a
helpful error message. Also, objects are only responsdledlidating their own parameters
and sublists, and not those of other objects that they hdilisssi for.

5.1.4 Object Introspection

e GCG 12 Always send output to somsé d: : ost r eamobject; Never send output directly
tostd:: cout orstd:: cerr: Sending output directly tetd::cout or std::cerr
destroys the flexibility of numerical software and does ratgrm well in SPMD programs.
Instead, produce output using one of the following appreach

e Prefer to print output through deuchos: : FancyOSt r eamobject instead of through a
barest d: : ost r eamobject to more easily produce formatted outpit
Teuchos::FancyOStream class object can wrap asyd::ostream object and helps to

17

produce structured indented output and to create morelsladatput in an SPMD program
(even when every processor produces output).

e Derive fromTeuchos: : Descri babl e and implement the functiorescri pti on()
anddescri be() to allow clients to print the current state of an obje@he
Teuchos::Describable interface is the appropriate way to allow clients to prirg turrent
state of an object in a flexible way. The verbosity of the otiipeontrolled by an input
enum parameter.

e Derive fromTeuchos: : Ver bosebj ect and printto*t hi s- >get OSt r ean() to
give information about what an object is doin@lients can set the output stream and the
verbosity level through a parameter list (see Thachos::ParameterListAcceptor
interface described above) or can set them directly in ctiche output stream is set, then
Teuchos::VerboseObjectBase::getDefaultOStream() will be used.

e As a last resort, always prefer printing to
* Teuchos: : Ver bosehj ect Base: : get Def aul t OSt r ean{) instead of
std::cout orstd:: cerr: The stream provided by
*Teuchos::VerboseObjectBase::getDefaultOStream() is setup by default to do clean
printing in an SPMD program and can also be setup through a
Teuchos::CommandLineProcessor object to control how output is produced and
formatted.

5.1.5 Miscellaneous coding guidelines

e GCG 13 Prefer to explicitly define template arguments in a templatetion call to avoid
protability problems and enable implicit covnersions giuhargumentslf it is not too
convenient, then preferring to explicitly define the tenglarguments in a template function
call can massively improve the portability of templated Gotle. For example, in Thyra,
every non-member function is templated on $telar type such as:

template<class Scalar>
sum(const VectorBase<Scalar> &x);

When portability is a concern or when implicit conversionghe input arguments are
needed, then prefer to call such functions by specifyingehgplate argument(s) as:

Scalar mySum = sum<Scalar>(myVec);

e GCG 14: Use the template functioheuchos: : as<Tt o>(T_f rom) for all conversion
of data types that may result in loss of precision or in an mect conversion The
templated C++ functioffeuchos::as<T _to>(T _from) and the class specializations that it
calls will contain runtime tests, in debug mode, for the ltssof a conversion to ensure
correctness. This includes the conversion of strings iotalvers (i.e. replacingtof() and
atoi()) as well as conversions that can result in loss of precisioneaning (such as
double toint ,long int toint ,int tochar ,unsigned int toint , etc.). The optimized
implementations of these conversion functions are tylyieaichecked for speed. A version

18

this function which always does runtime checking is alsalakibe called
Teuchos::asSafe<T ~ _to>(T _from) in order to validate user data.

Justification Unchecked conversions are the result of many differergsyqf errors and a
fully safe program needs to be able to check all such potbntiasafe conversions at
runtime. The implicit conversion rules allowed in C whichevé carried over to C++ can
result in very unsafe code.

e GCG 15 Use namespace enclosure for the definition of member funsctiba C++ class
The member functions of a class should be defined in the saaee as their declarations
and should generally be defined within a namespace encldsorexample, given the
declaration of

/I SomeNamespace_SomeClass.hpp
namespace SomeNamespace {
class SomeClass {

public:
void someFunc();

b

} /I namespace SomeNamespace

the safest and one of the tersest ways to define the membéiofusrin the source file is

/I SomeNamespace_SomeClass.cpp
namespace SomeNamespace {

void SomeClass::someFunc()

{
-

} /I namespace SomeNamespace

Justification Using the namespace enclosure insteadusfry namespace

SomeNamesapce directive insures that you can never accidentally proviusteer definition
for some other class member function in another namespagdiciEnamespace
qualification is not needed since if one misspells any pati®prototype, then the compiler
will issue an error message.

e GCG 16: Use explicit namespace qualification for the definition bhahmember C++
functions For example, for the nonmember function prototype

19

/I SomeNamespace_someFunc.hpp
namespace SomeNamespace {
void someFunc(const int data);

} /I namespace SomeNamespace

the safest way to define the nonmember function is

/I SomeNamespace_someFunc.cpp

void Thyra::someFunc(const int data)

{
-

Justification Using explicit namespace qualification avoids problemspafling and other
mistakes that can accidentally result in the definition ofw function [8, Section 8.2]. Such
a mistake is caught at link time but it can be very hard to figuurethe root cause of the
problem when this happens.

GCG 17: For general functions, prefer to list function argumentghie order of input,
input/output, output, and finally optional arguments wigfallt values For example:

void someFunc(
const T1 &argl, Il Input
const Ptr<T2> &arg2, /I Input/Output
const Ptr<T3> &arg3, /I Output
const int argd = 0 /I Optional input argument with defualt val ue

);

This ordering of arguments is only a general suggestion #eaetht ordering of arguments
may be chosen based on other criteria. See Section 5.2 facamten of the use of thetr
class.

GCG 18 For non-member object functions, list the object as the firgiment passed in a
const reference or non-const referen€®r example:

void someModifyingFunc(
SomeClass &obj,
const int argl,

);
void someNonModifyingFunc(

20

const SomeClass &obj,
const int argl,

)

Note that in the case abmeModifyingFunc(...) , the output argument is listed first
instead of after the input argument(s) which breaks tygioalention of having input/output
arguments (which all objects that are modified are) come efpeit arguments. However,
this is more consistent with established convention suéh Bgthon and other languages
where theself argument is always the first explicit (or implicit) argumeNDte that this is
also a situation where a non-const reference argument niakesost sense.

GCG 19 Preferenuns tobool s as formal function arguments when conversion mistakes
are likely: While the built-in typebool is very convenient to use as a formal function
argument, it also allows for conversions from every builtyipe and every pointer type.
While using an enumeration type and its values is more verhbis also self documenting
and is safer. For example, what does the third argument nnethie following example?

apply(A, 2.0, true, X, y);
When thebool argument is changed to an enum, the function call becomes:
apply(A, 2.0, USE_TRANSPOSE, X, y);

the meaning is much more clear. Therefore, when self doctatien and compile-time
safety are important, prefer to define and ers@ms overbool s as formal function arguments
(see [6, Section 12.6]).

GCG 20: Avoid overloading virtual functiongOverloaded virtual functions cause sever
portability problems with many compilers and result in sthwaithg warnings that are
elevated to errors in may systems.

GCG 21 Avoid overloading functions on different smart pointerayge.g.RCP, Pt r ,
etc.} Overloading functions on different smart pointer typesshsasRCPor Pir can create
ambiguous function calls that will not happen when using @+ pointers or references.

Justification Consider the following overloaded functions:

void foo9(const RCP<A> &a);
void foo9(const RCP<const A> &a);

Now, suppose clagsis derived from class. The code fragment:

RCP<C> c(new C);
RCP<A> a = ¢;
foo9(a); /I Okay!

succeeds in calling the fir&to9(...) function because it is an exact match. However, the
code fragment:

21

RCP<C> c(new C);
foo9(c); /I Error!

fails to compile because the call is ambiguous. When usiwgd#+ pointers, the call would
not be ambiguous and would also call the non-céougy...) function because the C++
compiler knows that a conversion from derived to base type e preferred over an
additional conversion from non-const to const. This is or@mle where smart pointers are
put at a disadvantage over raw C++ pointers. Therefore rreeegload C++ functions on
different RCP argument types. Instead, name multiple fanstsuch as:

void nonconstFoo9(const RCP<A> &a);
void foo9(const RCP<const A> &a);

With non-overloaded functions, the following code fragmemmpiles just fine:

RCP<C> c(new C);
nonconstFoo9(c); /I Okay!
foo9(c); II' Okay!

e GCG 22 Include only standard C++ headersc X>, not standard C headersX. h>, and
avoid allusi ng namespace st d directives Only include the C++cX> versions of the
standard GX.h> headers. For example, includemath> , <cstdlib> , and<cassert>
instead okmath.h> , <stdlib.h> , and<assert.h> . Avoid all uses ofusing namespace
std directives and instead prefer explicit namespace qudiificasuch astd::sqrt or
using declarations such asing std::sqrt only within function definitions. See [8,
Section 16.1.2] for a complete list of the standard C++ wvaisiof the standard C headers.

Justification See Appendix C for a clarification of Item 59 in [9] dealingthvthe issue of
using declarations and directives.

e GCG 23 Break up templated code into four fil8enmeCl ass_decl . hpp,
Sonmed ass def . hpp, SoneCl ass. hpp,andSoneCl ass. cpp to support explicit
instantiation, minimize recompilation, and avoid prob&m mutually dependent (i.e.
circular) code Breaking up templated C++ into the four files
SomeClass| _decl, _def].[hpp,cpp] (as described below) allows for a portable and
bullet-proof solution to handing templated C++ code whiltbves for a) controlled explicit
or implicit template instantiation, b) minimization of i@opilations, and c) handling of any
and all types of cicular dependancies in declarations afiditiens (the say that are allowed
with non-templated C++ code)..

5.2 Specification of formal arguments for C++ functions (SFA

Here we describe a convention for the specification of theé&barguments for C++ functions that
that maximizes compile-time and run-time checking, yieldar optimal performance, and is
highly self documenting. A key component to this specifimaiis that no raw C++ pointers are
used. Raw pointers are the cause of almost all memory usab&eprs in C++. Raw C++
references, on the other hand, are safe to use as long ageereterence they are being used to

22

.get () AVOID THIS!
<Derived> to <Base> i-_--_l E--_-____________-_--_-----_-______-:
<T> to <const T> i _| RCP<T> F---- -operator* i
. . T& |
1 P |
i -pEr () 0¥ -7 |
1 e CaPiad 1
_____ 1 O@ B Pide :
<Derived> to <Base> , ; ; PPt i
' L ptr(p) '
<T> to <const T> 1 _| Ptr<T> Mmoo] T* <__:
.get () AVOID THIS!
Legend

<<implicit conversion>>

<<explicit conversion>>

>

>

Figure 1. Conversions between Teuchos basic pointer types to single

objects.

Value Objects, Non-Persisting Associations

Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (required s or const Ss or const S &s
single, non-changeable object (optionalyonst Ptr<const S> &s
single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional)

const Ptr<S> &s

array of non-changeable objects

const ArrayView<const S> &s

array of changeable objects

const ArrayView<S> &s

Value Objects, Persisting Associations

| Argument Purpose

| Formal Argument Declaration |

single, non-changeable object

const RCP<const S> &s

single, changeable object

const RCP<S> &s

array of non-changeable objegtsonst ArrayRCP<const S> &s

array of changeable objects

const ArrayRCP<<S> &s

Table 1. C++ declarations for passing small concrete objects (i w

value semantics) to and from
actual built-in or user-defined

functions whéris a place holder for an
data type. By default, ajlects of type

Ptr , RCR ArrayRCP , andArrayView are assumed to be non-null unless

explicitly stated in the docum

entation for the function.dimer words,

documentation must be added to state that an argument @naptihe
default is that the argument is required.

23

RCP<Array<T> >

RCP<std::vector<T> >

\

arcp(..) \\
1
X v | <T> to

ArrayRCP<T> [+ "

’ ~

1 S o
’ v ~getRathr() \\

’ k\'r ~
’ 1 * SO
4 @’\32@3 “~-'9etR e

>

Workspace<T>

ArrayView<T> [~

<T> to

A A <const T>

Tuple<T,N>

std::vector<T>

Legend

<<implicit view conversion>>

Figure 2. Conversions between Teuchos and standard array types.

24

Reference Objects, Non-Persisting Associations

| Argument Purpose

Formal Argument Declaration

single, non-changeable object (required) const A &a

single, non-changeable object (optional) const Ptr<const A> &a

single, changeable object (required) const Ptr<A> &a or A &a

single, changeable object (optional) const Ptr<A> &a

array of non-changeable objects (const ptr) | const ArrayView<const Ptr<const A> > &a

array of non-changeable objects (nonconst

pudnst ArrayView<Ptr<const A> > &a

array of changeable objects (const ptr)

const ArrayView<const Ptr<A> > &a

array of changeable objects (nonconst ptr)

const ArrayView<Ptr<A> > &a

Reference Objects, Persisting Associations

| Argument Purpose

Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objects (const ptr)

const ArrayView<const RCP<const A> > &a

array of non-changeable objects (nonconst

Dirdnst ArrayView<RCP<const A> > &a

array of changeable objects (const ptr)

const ArrayView<const RCP<A> > &a

array of changeable objects (nonconst ptr)

const ArrayView<RCP<A> > &a

Table 2. C++ declarations for passing abstract objects (i.e. witbrre
ence or pointer semantics) or large concrete objects lfiag are expen-
sive to copy) to and from functions whekés a place holder for an actual
C++ base class. By default, all objects of tygie , RCR, ArrayRCP , and
ArrayView are assumed to be non-null unless explicitly stated in the
documentation for the function. This includes andRCPobjects em-
bedded in an array. In other words, documentation must bedaddstate
that an argument is optional; the default is that the argumserquired.

25

point to is valid and no persisting association exists. Athese classes perform runtime checks of
correct memory usage when debug checking is enabled at aonfighe (i.e., using
--enable-teuchos-debug with configure). However, in optimized builds these classes perform
no debug checking at all and yield the same performance\athigsing raw C++ pointers. The
classefRCPandArrayRCP always implement reference counting in optimized and dedulilgs

and therefore impart necessary extra overhead that neesrayeay (unless you don’t use them).
The other classe®tr andArrayView do not use any reference counting in an optimized build and
therefore impart little extra overhead.

Tables 1 and 2 give conventions for passing single objectsaenays of objects for value-type and
reference-type objects, respectively. In this specificatine classe$euchos::Ptr

Teuchos::RCP , Teuchos::ArrayRCP |, andTeuchos::ArrayView are used as a means to pass
objects of another type (shown &sndA in Tables 1 and 2). This specification addresses the four
different properties that must be considered when passirapgect to a function:

Does the object use value semantics or reference semantics?

Is the object changeable or non-changeable (i.e. const)?

Is this establishing a persisting or non-persisting as$ioci?

Is the object optional or required?

The first three of these properties are directly expresséukiC++ code in all cases shown in
Tables 1 and 2. The specification for whether an argumentjecbis required or optional must be
documented in the function’s interface specification (he Doxygen documentatioraram

field). Here we state that, by default, an argument will beiaes to be required unless otherwise
stated. The only exception for this implicit assumptionrfon-null objects igonst Ptr<const

T>& for single, non-changeable, non-persisting, objects /liese always mean that the argument
is optional. If such an argument is required, it is specifigsdoast T& .

An array of value objects is passed as contiguous storageghranArrayView<S> or
ArrayView<const S> object. An array of reference objects, however, can not seqahin
contiguous storage for the objects themselves and insteatibe passed as contiguous storage of
(smart) pointers to the objects usiAgayView<const Ptr<const A> > for non-persisting
associations oirrayView<const RCP<const A> > for persisting associations. Thenst can

be removed from the eith&tr /RCPor A depending on what is allowed to change or not change
during the function call.

Note that in the case &&CPandArrayRCP objects, that these can be treated as output objects in
their own right. For example, passing RGP<T>object into a function to be set to pointto a
differentA object would be specified in the function prototypecasst Pir<RCP<T> >& or
RCP<T>&depending on preference. Note that it never makes sen®& far ArrayView to be set

in this way since such a function call would almost always $taldishing a persisting association
with the embedded objects and therefore would require (doapto the standards established
here) using aRCPor ArrayRCP object.

26

5.2.1 \Variations in passing single changeable objects

The only area of contention in this specification is how todl@mmrguments for required single
changeable objects. The specification described heresdéiaher passing them through a smart
pointer asonst Pr<T>& or as a raw non-const object referencd&slin Iltem 25 in [9], the
authors recommend passing a raw non-const object refeféfoe changeable required objects,
which seems very reasonable. However, other notable aufBo8ection Section 5.5] and [6,
Section 13.2] recommend passing a pointer instead, asvid@®a visual clue that the object is
being modified in the function call. Of course, our specifradoes not allow raw pointers so we
pass &onst Pir<T>& object instead. To consider the issues, for example, frakihg at the
following function call which (if any) argument(s) is beimgodified?

someFunction(a, b, ¢, d);

To tell for sure, one would have to look at the function prgpet

void someFunction(const A& a, const B& b, const C& c, D& d);

to see that it is thd argument is being modified in the function call.

Now consider the convention that all changeable argumengabsed in through a pointer as
const Ptr<T>& , giving the new prototype:

void someFunction(const A& a, const B& b, const C& c,
const Ptr<D>& d);

Now the function call looks like:

someFunction(a, b, ¢, outArg(d));

whereoutArg(...) is a templated non-member function that returi®srel> object given a raw
referencel& Now the client function call itself is self documenting.sél given that this
specification states that &ir<T> arguments are required to be non-null by default, this $igsci
that passing an argument@mst Ptr<T>& has all of the same meaning by default that passing
T&does. Of course now we have given up a compile-time checkionanull argument foff&

with a debug-only runtime check thednst Ptr<T>& is non-null.

27

6 Formatting of source code

At the minimum, source code should be formatted consistavithin a single file or a set of
tightly coupled files/[9, Item 0]. Ideally, source code shibbé formatted consistently enough
across a code project so as not to cause undue difficulty nedtmaaintenance and in performing
code reviews [6]. Some consistency in formatting helps arfddilitate multiple ownership and
shared development of a collection of software, such as frefe Programming (XP) [2] (see
Appendix D for an outline of the arguments for adopting a ¢siest code formatting style). By
“formatting” we generally refer to the use of white-spacehia line-to-line formatting of the
program or in the ordering of lines of code such that the mmpaf the program to the compiler is
unchangéEIThe handling of indentation styles can largely be autor{éﬁdﬂch allows individual
developers to work with any style they would like like for filthat they create but also makes it
easy for developers to edit files created by other develapeikeep to their styles as well.
Appendix E gives some guidelines for how individuals shaddduct themselves where more
than one coding formatting style is in use within a project.

Our main goal in this section is to try to provide reasonabtmmendations for those formatting
issues that are largely a matter of style and personal greterbut at the same time affect the
overall readability of the code and promote pair prograngna@nd joint ownership of the code [2].
The formatting and indentation guidelines presented heréaggely consistent with the
recommendations in [6, Chapter 31] and try to reduce the atrafifright drift” that can occur
with some common formatting and indentation styles.

The indentation guidelines outlined below can be largetpmatically supported by Emacs and
are used by the custom style “thyra” defined in the Emacs pcfie cc—thyra—stylesJ@J Other
custom styles can also be added to this file and used as wellofthese styles can be listed in
each source file and therefore anyone using Emacs can aigaliyaise a particular indentation
style without having to fight the editor to manually reforrneatie to abide by a foreign style.

6.1 General principles for formatting of source code (FSCP)

Some general principles of good formatting, based on thmudgson in [6, Section 31.1], are:

e FSCP 1 Formatting should accurately and consistently show théchkigstructure of the
code It is somewhat subjective what formatting styles “showltigical structure” of code
but McConnell makes some good arguments for some stylesotivers. However, it is up
the group of programmers to decide as a group what style itehusv the logical structure”.

e FSCP 2 Formatting should improve the readability of the code forstrgeople There are
specific studies cited in [6, Chapter 31] that provide goddeswe to prefer some styles
over others.

2While technically changing the name of a class, functionariable changes the meaning of a program, if name
changes are done in such a way as to avoid name collisiomsntreing conventions also do not affect the meaning of
the program and are therefore very much related to otherdtbimg issues such as the treatment of “white-space”.

SEmacs supports multiple file-specific formatting styles@s+ and tools like Artistic Style [4] can format source
files from the command line. A flavor of the editor may also support indentation styles.

4SeeTrilinos/packages/thyra/emacs/README for a description of the “thyra” Emacs style

28

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for
those modifications performed by automated toGlsanging one line of code should not
require changes to other lines of code to maintain the fdmgpstyle.

e FSCP 4 Formatting style should follow the most common idiom unteesof the above
principles are violatedWhen there is no good technical argument for one formattplg
choice over another, then the style choice that is the mastrean should be usédThis is
not advocated per-say in [6, Chapter 31] but it is a good idegeneral to follow popular
idioms when there are several equally good choices andftineréne decision is arbitrary.
However, not selecting a single style choice can creaticgaticomplexity in the code from
irregularity in formatting.

6.2 Specific source code formatting principles (FSC)

Below, specific recommendations are spelled out that trptdorm to common practices but also
try to avoid excessive “right drift”:

e FSC I The formatting style in any single file or group of closelatetl files should be the
same Consistent formatting includes the placement of bra¢esnptmber spaces to indent
etc. Justification This is recommended in [9, Item O].

e FSC 2 Try to keep all text within the first 80 character columi®eping most of the source
code within the first 80 character columns helps to make the cwore readable and helps to
facilitate side-by-side two-column editing and compansof source code. Most of the style
and indentation guidelines described below help to avoitkdbat extends beyond the 80th
column too rapidlyJustification “Studies show that up to ten-word text widths are optimal
for eye tracking” [9, Item 0O]. Also, some developers ard stilck with 80 column wide
terminals.

e FSC 3 Indent with spaces and not tabEhe amount of spaces to use per indentation level is
up to the individual developer but an indentation of oty spacess recommended (and is
set in the ‘Emacs ‘thyra” indentation style). A study shovitleat an indentation offset of
two-to-four spaces was optimal for code reading compreber§, Section 31.2]. Whatever
indentation amount is used, it should be consistent in at le@ch source and header file [9,
Item 0] (which can be enforced using a custom Emacs indentatyle). Emacs by default
will put in a tab when the tab-width is equal to the number ofeintation spaces. Emacs can
be told to always use spaces instead of tabs by setting:

(setq indent-tabs-mode nil)

in the indentation style (as is done in the “thyra” style) wéwer, it is easy to support
different preferences for the amount of spaces to indenshgla user-defined indentation
style for Emacs (sorryi users).

Justification “Some teams legitimately choose to ban tabs ... when misaigen indenting
into out-denting and non-denting.” [9, Item 0].

5The measure of the commonality of a particular style cho#ele determined according to a local software devel-
opment community or the larger developer community.

29

e FSC 4 Use two vertical spaces to separate class declarationgtium definitions,
namespace enclosure bounds, and other such major entraeéle

Justification Using two black spaces is preferable to long lines with sfities like ’-’ or
'=" or other separators and they clearly separate the estithd are easier to maintain (see
[6, Section 31.8]).

e FSC 5 Do not indent source code inside of namespace enclosusgsaith use commented
end braceslIndenting for namespace enclosures results in unnegessalin some cases
excessive, indentation. Instead, for example, use:

namespace MyNameSpace {

namespace MylnnerNamespace {

class SomeClass {.};

void someFunc(...) {...}

} /I namespace MylnnerNamespace

} /I namespace MyNameSpace

Above, note that two vertical blank lines are used betweeh e&the major entities (see
above item).

Justification While indentation within namespaces is helpful in sma#iraple code
fragments, it provides little help in showing namespacacstire in more realistic code. The
use of commented end braces is generally sufficient to shavespace structure and will
not result in excessively indented code. In addition, by each file will only contain

code from one (or more nested) namespace and therefordimgléar namespaces provides
no useful information. Not indenting for namespace enclesis also consistent with the
“ansi”, the “kr”, and the “linux” styles as defined by ArtistStyle [4].

e FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming
beforepr ot ect ed members coming befopr i vat e members and indented as shown in
Figure[3

Justification This ordering of sections and data members is quite com@BioBection 31.8].
Above, we show private member functions after private dagenivers since private data
members are more prominent and more common in the classrimeptations than are
private member functions. Also, private types (where tgiedre most common) must be
listed before they are used in the declaration of the prigata members. Note that public
types used in public member functions must be listed abavat(east forward declared)
before the public member functions that use them.

e FSC 7 List short function prototypes on one line and longer prgpets on multiple lines,
indenting arguments one uniBelow, guidelines for formatting short function protoggp

30

class SomeClass {
Il Friends
friend void foo();
friend class SomeOtherClass;
public:
Il Public types
typedef int integral_type;
/I Public member functions
void funcl();
protected:
Il Protected member functions
void func2();
private:
Il Private types
typedef std::vector<int> int_array t;
Il Private data members

int datal ;
int_array_t arrayl ;

/I Private member functions

void func3();

Figure 3. Suggested layout of C++ class declaration complete with
ordering of sections, indentation, and line spacing.

31

and long prototypes are given. These guidelines seek taipeofinction prototypes that are
fairly tight (i.e. not too much white-space explosion), ewbust to modifications, and keep
code inside of the 80th character column. This indentatigie €an (and should) also be
applied to function definitions and function calls.

— List short function prototypes on one line if possitfi®r example,

ReturnType someFunction(int arg = 0);

or

ReturnType someFunction(int arg=0);

or some other style for white-space within ’(...)" but theeapg ’(' should come
directly after the function name in all cases.

— For longer prototypes, indent arguments on continuatioesi one unitFunction
prototypes that can not approximately fit on a single linéhafirst 80 character
columns should have the function arguments listed staoimthe second line with one
unit of indentation (e.g. two spaces) from the function metlype and function name
line. For example, several different valid formats for agenfunction prototype are:

ReturnType someFunction(
int argl,
bool arg2,
double* arg3[],
const std:string &argd = ™

);
or
ReturnType someFunction(
int argl, bool arg2, double* arg3[],
const std:string &argd = ™
);
or
ReturnType someFunction(
int argl, bool arg2, double* arg3[],
const std:string &argd = ");

or

ReturnType someFunction(int argl, bool arg2,
double* arg3[], const std:string &argd = "™);

32

As shown above, the function arguments can be listed separat different lines, or
in groups on sets of lines. The arguments can begin on the l§zeres the type +
function name line or can start on the next line. The endingmihesis ')’ can appear
on the same line as the last line of arguments or can appe® aiothe last line. Other
formats are possible also and can be appropriate in diffsiemtions.

Justification See [6, Section 31.1].

— Return types can be listed on same line as the function natesutie line is too long
A function prototype’s return type should appear on the skmeeas the function name
unless it is excessively long and would result in the retype t+ function name line to
extend past the 80th character column. When the return typection name is too
long, then it can be listed on separate lines with no indentexample, as:

Teuchos::RCP<ReturnType>
someVeryLongAndVerylmportantFunction(
int argl, bool arg2, double* arg3([]

const std::string &argd =™
);

However, listing the function return type on a separate diven in cases of shorter
prototypes is also okay.

e FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of
those entitiesFor example, one should order the definitions of a set of negrumctions the
same as the ordering of the declarations in the class definitilaintaining the ordering of
definitions and declarations makes the code more readathlmare maintainable. For
example, if the function definitions are ordered the sambéeasli¢clarations, it can be easy to
see if a function definition is missing (i.e. which could be tause of the link error that you
are seeing).

e FSC 9 Use “modified K&R” or “ANSI” style for the placement of bracesd indentation
of control structuresTwo basic styles of brace placement and indentation inrobnt
structures are recommend here. The first general style isdifioation of the K&R style[4]
where the brace comes immediately after the control statearethe same line shown as:

/I Modified K&R Style (recommended)
if(someCondition) {

}

else {
}
Note that the pure K&R style (for example, as defined by AdiStyle [4]) shown as:

/I Pure K&R Style (*NOT* recommended)
if(someCondition) {

} else {
=

33

is not recommended. Even through pure K&R style meets McElgsistrict pictorial
definition of “emulation of pure block style” (i.e. the egalent to pure block format such as
in Visual Basic) which he says is good, he actually recomra¢hd above modified K&R
style (as do we since we feel it is more readable).

The second general style that is recommended is the “AN$IE[d] where the opening
brace begins flush on the next line from the control statersienvn as:

/I ANSI Style (recommended)
if(someCondition)

Both the modified K&R and the ANSI styles help to avoid righiftdiThe modified K&R
style creates tighter code vertically and seems to be pesfdry many communities and
authors but variations of the ANSI style are also very comniuote that the ANSI style
seems to have a distinct advantage in cases where the cstatierinent is continued over
multiple lines. For example, the modified K&R style with linentinuations looks like:

/I Modified K&R Style with line continuations (*NOT* recomm ended)
if(someLongCondition &&

anotherVeryLongCondition &&

theLongestConditionThatWillFitOnOneLine) {

Il Statements

and it is hard to argue that this shows the logical structfimde. One could argue that the
ANSI style which looks like:

/I ANSI Style with line continuations (recommended)
if(someLongCondition &&
anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine)

{

/I Statements

better shows the logical structure of the code in clearlyassng the control structure logic
from the inner block of code.

Note that while the modified K&R style meets McConnell's sieg of “showing the logical
structure of code” where he refers to it as “emulating puoel! format that he cites the
ANSI styles as violating this principle [6, Section 31.1Jowkver, it is somewhat subjective

34

what styles “show the logical structure” and McConnell hefhseems to contradict himself
at times (see the formatting of if/else statements below).

When choosing between one of these to styles, try to be ¢ensist least within a single
file. However, for control statements that extend over algitige, prefer the “ANSI” style.

Below, the application of the modified K&R style and the ANS8llas are shown in the
context of several different types of C++ loop and controlcures.

— Formatting if/else if/else statement#/hen applied to if statements, the two
recommended styles are:

/I Modified K&R Style (recommended)
if(someCondition) {

}

else if(someOtherCondition) {

}

else {

}

and:

/I ANSI Style (recommended)
if(someCondition)

{

else if(someOtherCondition)

— Formatting switch/case statemenihe two recommended formats for switch/case
statements are:

/I Modified K&R Style (recommended)
switch(someEnumValue) {
case ENUM_VALUEL:

break;
case ENUM_VALUEZ2:
break;
default:
TEST _FOR_EXCEPT("Should never get there!");

35

and

/I ANSI Style (recommended)
switch(someEnumValue)

{
case ENUM_VALUEL:

break;
case ENUM_VALUEZ2:

break;
default:
TEST_FOR_EXCEPT("Should never get there!");

As shown above, every switch structure should hagefault case that throws an
exception (see “use the default clause to detect error®,iB8é¢ction 15.1]).

Also, if needed, the case blocks can be wrapped in braces as:

/I Modified K&R Style (recommended)
switch(someEnumValue) {
case ENUM_VALUEZL: {

break;
}
case ENUM_VALUE2: {

break;
}
default: {
TEST_FOR_EXCEPT("Should never get there!");
}
}

and

/I ANSI Style (recommended)
switch(someEnumValue)

{
case ENUM_VALUEL:

{

break;
}
case ENUM_VALUEZ2:

{

break;
}

default:

{
TEST_FOR_EXCEPT("Should never get there!");

}

36

— Formatting for and while loopsThe two recommended styles for formatting for loops
are:

/I Modified K&R Style (recommended)
for (inti =0;i < size; ++i) {

}

and:

/I ANSI Style (recommended)
for (inti=0;i< size; ++)

{
-

Note that line continuations are often needed for a for lampgrol structure,
especially if long type names or variable names are usedheletcases, the ANSI
style is recommended as:

/I ANSI Style (recommended)

for (
std::vector<SomeVeryLongClassName>::const_iterator i tr = longVarName.begin();
itr 1= someLongVariableName.end();
+Htr)

{
&

Similarly, while loops should be formatted as:

/I Modified K&R Style (recommended)
while (someCondition) {

}

or:

/I ANSI Style (recommended)
while (someCondition)

{
-

37

7 Doxygen documentation guidelines

Here a set of reasonable guidelines is stated for writingyiger (and plain old) documentation for
classes, functions, etc. that makes the specification blgads not too verbose or hard to maintain.
Other types of higher-level documentation are also neeslexh as design documents and tutorials,
but guidelines for these higher-level types of documewnradire not covered here.

7.1 General principles for function and class level documeation (DOXP)

e DOXP 1: Level of documentation should vary depending on the prams@mand/or the role
of the software entity or collectionmportant interfaces or widely disseminated concrete
classes or functions require an appropriate level of peedicumentation. Concrete
implementations that are less widely disseminated carnigdgss (or none in some cases)
Doxygen documentation if the implementation code itseffufficiently easy to understand.
However, major parts of an implementation should have st ka@me plain old (i.e.
non-Doxygen) documentation to describe the basics of velging on.

e DOXP 2: Important abstract interfaces must be fully specified irhejent of any single
concrete implementationn the case of important abstract interfaces, the full jgation of
behavior for the compliant objects (i.e. invariants, pregitions, post-conditions) must be
clearly stated [9, Item 69]. In some cases, this must be dompletely within the Doxygen
documentation for the interface. In other cases, a standatdesting function or class can
be used to help specify the behavior of the interface. In famnpiled and verified unit
testing code may be superior to standard Doxygen docun@mtgince it can not be ignored
or become invalid. On the other hand, it may be difficult faders to wade through unit
testing code to find the specification of behavior and theegboth Doxygen documentation
and unit testing code should be used to provide the fullastfite Also, Doxygen
documentation can automatically include bits and piece®ofpiled and tested code using
the\dontinclude ~ Doxygen commands.

e DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or higher-level documentatidhis item is an amendment to the above
item as a special case for “user” interfaces. A "user” coddbmeone that simply writes
client code to the interface or one that provides implentamta of the interface or both.
User’s should not be expected to study unit testing code todigut the preconditions
and/or post-conditions for a function call.

e DOXP 4: Wrong documentation is (almost) worse than no documemtatill:
Documentation must be maintained as code is changed areddreeexcessive or
unnecessary documentation degrades the quality of codeeWn, documentation with
small errors is generally better than no documentationl.at al

e DOXP 5: The same documentation should not be repeated in more theaplace if
possible We should strive for a single source for documentation foeiatity and not repeat
the same documentation over and over again. This is criticalsure that the
documentation can be successfully maintained.

e DOXP 6: The documentation should maintain itself as much as pesaildl be testable as
much as possibleAny significant fragments of code that are shown in the

38

Doxygen-generated HTML documentation should come frompitea and tested code.
This can be accomplished by using ttdentinclude Doxygen command to read in code
fragments automatically. In this way, the compiler and egt suite can be used to help
verify the code fragments in our Doxygen documentation.

7.2 Specific Doxygen documentation principles (DOX)

Now that some of the general goals for our Doxygen documentatve been presented, more
detailed guidelines are given below:

e DOX 1: Write Doxygen documentation directly in header files withudnented entities
Writing Doxygen documentation comments directly attactuetthe classes, functions and
other entities helps make the documentation as tightlyttie¢te code as possible (see “Keep
comments close to the code they describe” in [6, Section| 8 Bis has the unfortunate
side-effect of requiring complete recompilations whemele@zumentation is modified but
the overall benefit is usually worth the disadvantages. atethe Doxygen documentation
can be stripped out of Doxygen-generated hyper-linkedaesof the code, leaving clean
C++ code without the clutter of detailed documentation. réfare, developers should
browse Doxygen-generated source code instead of the scadeedirectly when looking at
the code and performing code reviews.

e DOX 2: Use a centralized set of definitions for common arguments\phsesible Use clear
and consistent naming of arguments in multiple functionighjw the same class and across
as many classes and functions as makes sense) and providesdioed definition of these
arguments if possible to avoid repeating detailed defimstim each individual function’s
documentation. This helps to avoid duplicate documentdtiat is likely not to be
maintained correctly. In the case of classes, this meansgdimg some common definitions
in the main “detailed” documentation section for the cldsghe case of nonmember
functions, this might involve a common Doxygen group or medue. using the defgroup
command) for the set of functions. In the case of collectmimsonmember functions, it may
be difficult to expect readers to find the common definitions links to the common
documentation are possible using a variety of approaches.

e DOX 3: Provide typical preconditions/post-conditions alonghwttie documentation for
common arguments when possidf®r common arguments that are shared among many
functions, define the most common preconditions for themdardral place and avoid
listing them on a function-by-function basis unless thegrae for an individual function.
For a C++ class, place descriptions for these common argignirethe main class
documentation under‘section named “Common Function Arguments and
Pre/Post-Conditions”. Only include preconditions forgh@rguments in specific function
documentation sections if it is different from the most coomnpreconditions.

e DOX 4: Add a\br i ef description for every entity that should be seen by the:UBee
\brief field is used to provide the short one-line documentatiangthat is included in the
function summary section of classes, groups, namespacesSwan if no text documentation
is needed/wanted, add an empty

[** \brief . */
void someFunction();

39

comment so that Doxygen will include the class, functionpthier entity in the HTML
documentation. Note that this is important when the Doxyg@nfiguration option
EXTRACTALL is set toNQ

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments in a
function; do not define partialpar amfield lists All arguments should be listed iyparam
fields with at least the [in], [out], or [in/out] specificatis and these should have at least a
very short description. Or, if the function arguments aeachnd trivial (and/or have
already been defined in the common documentation sectleer),rto\param fields should
be included at all. If any of the arguments in a function’s wloentation are listed ikparam
fields then all arguments should be listed\param fields.

DOX 6: Only add a\r et ur ns field if necessaryDon’t add a\returns description of the
return value if it is already clearly specified in tkierief description of the function.
However, if the nature of the return value is at all compléentinclude areturns field to
describe it. When referring to the return argument, reférasreturnVal . By consistently
using the identifiereturnval for the return value, user’s will immediately know what this
is referring to.

DOX 7: Prefer specifying post-conditions for output argumenttheir \par amfield;
otherwise specify their post-conditions in the 'Post-atiads’ list: The post-conditions for
output arguments can be listed directly in tfparam field for the argument if they only
involve just that argument in a fairly simple way. Otherwigé¢he post-conditions are more
complex or involve multiple arguments in order to specifigrt they can be listed in the
Post-conditions list. It may be difficult to objectively detine the best place to list the
post-conditions for an output argument.

DOX 8: Order the documentation fields in function documentatiohlas ef , \par am
Preconditions, Post-conditions, th&net ur ns; omitting those that do not applyA
consistent ordering of sections of documentation withiarecfion makes it easier for
readers to find what they are looking for.

DOX 9: If possible, try to us@&r el at es to associate nonmember functions with a single
class If a nonmember function is most closely related to a sintdes; use th&relates

field to cause the documentation for the function to be listéd the classes documentation.
This makes it easier for readers to find out everything they ttan do with a class object (or
set of class objects) just by looking at a single HTML page asthgle summary list of
functions (which includes member and nonmember relatectifums).

DOX 10: Provide detailed documentation for only the initial deelon of a virtual
function Only provide detailed documentation of the initial deatén of a virtual function
in the class where it is first defined ddual . In general, documentation should not be
included for the overrides of virtual functions in derivddsses. Doxygen automatically
puts in a link to the original virtual function in the basesdaso readers are just one click
away for seeing the detailed documentation. Always add grtyem

[** \brief . */
void someFunction();

comment for every class and every function that should Hadecl in the HTML
documentation but where no text documentation is wante@eded.

40

e DOX 11: Aggregate the overrides of virtual functions into groups@ding their base
class For example, the overrides of the virtual functions for the
Teuchos::ParameterListAcceptor interface would look like:

class SomeClass : public Teuchos::ParameterListAcceptor {
public:

/* \name Overriden from Teuchos::ParameterListAccpetor */

le{

** \brief . */
void setParameterList(
Teuchos::RCP<Teuchos::ParameterList> const& paramList);
¥ \brief . */
Teuchos::RCP<Teuchos::ParameterList> getParameterLis t();
¥ \brief . */
Teuchos::RCP<Teuchos::ParameterList> unsetParameterL ist();
** \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getParamet erList() const;
¥ \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getValidPa rameters() const;

i@}

e DOX 12: Example source code used in Doxygen-generated and othras fofr
documentation should be extracted automatically from ¢beeis compiled and tested
nightly: Any significant fragment of example code that is shown in {aywno HTML
documentation or a latex document needs to come from cothaild tested code that can be
updated automatically. These C++ code fragments can betiselg inserted automatically
into Doxygen documentation using tkeontinclude ~ Doxygen command.

e DOX 13: Sample output should be generated automatically from dechpind tested code
Sample output included in Doxygen documentation shoulddpeigated automatically by
the test harness code and should be written to files that eltedied in the source directory.
The sample output in these files can then be inserted into dkxgden HTML
documentation automatically using theerbinclude Doxygen command. Similar
approaches can also be used for latex documentation.

41

[1]

[2]

[3]

[4]

5]

[6]
[7]
[8]

[9]

References

R. A. Bartlett. Teuchos::RefCountPtr : An introductitmthe Trilinos smart reference-counted
pointer class for (almost) automatic dynamic memory mamesge: in C++. Technical report
SANDO04-3268, Sandia National Laboratories, Albuquerdimy Mexico 87185 and
Livermore, California 94550, 2004.

Kent Beck. Extreme Programming Explained: Embrace Changddison-Wesley
Professional, 2000.

Kent Beck and Cynthia Andre€xtreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

T. Davidson and J. Pattee. Artistic style 1.2p://astyle.sourceforge.net

Lockheed Martin. Joint strike fighter air vehicle c++ dagl standards for the system
development and demonstration program. Technical reRIHZ00001 Rev C, Lockheed
Martin Corporation, 2005.

S. McConnell.Code Complete: Second EditioMicrosoft Press, 2004.
S. Meyers.Effective C++: Third Edition Addison Wesley, 2005.

B. Stroustrup.The C++ Programming Language, special editiohddison-Wesley, New
York, 1997.

H. Sutter and A. AlexandresciC++ Coding Standards: 101 Rules, Guidelines and Best
Practices Addison Wesley, 2005.

42

A Summary of guidelines

e NC (Naming conventions)

— NC 1: Capitalize C++ class and struct names 8eneCl ass.
— NC 2 Capitalize C++ namespace namesldgNanmeSpace.

— NC 3 C++ enum type names should begin wiitas EMy Enumand enum values
should use all caps and scope contexiYSENUM VAL UE.

— NC 4 C++ object instance identifier names should begin with a Ioeese letter as
obj ect Narre.

— NC 5. C++ class/struct data member names should begin with a levase letter and
end with an underscore aoneDat aMenber _.

— NC 6: C++ function names should begin with a lower-case letter as
soneFunction(...).

— NC 7: Name C++ pure abstract base clasdBisobBase, default implementation
basesBl obDef aul t Base, and default concrete implementation classes
Def aul t TypeABI ob.

— NC 8 Prefer to name const and non-const access functiomgea®art () and
get Nonconst Part (), respectively

e NOSF (Naming and organization of source files)

— NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h
(C header), and . c (C source)

— NOSF 2 Only one major C++ class with supporting code per header amarse file
with name(sNameSpaceAl nner Nanmespace_SoneC ass. [hpp, cpp] .

— NOSF 3 Use internal include guards in all header files
e GCG (General coding guidelines)

— Error handling

% GCG 1: UseTEST_FOR EXCEPTI ON(. . .), TEUCHOS_ASSERT(. . .) and
related macros for reporting all errors, even developergramming errors

— Memory management

x GCG 2: Avoid the use of raw C++ pointers in all but the lowest-levetie
x GCG 3: Preferto usest d: : st ri nginstead ofthar * or const char *

x GCG 4: UseTeuchos: : Pt r as function arguments in the place of raw C++
pointers to single objects where no persisting associatiiats

x GCG 5: UseTeuchos: : RCPfor memory management of single dynamically
allocated objects and for handling persisting [1] assomat

x GCG 6: UseTeuchos: : ArrayVi ewas function arguments in the place of
pointers into raw arrays or other container classes whergacsisting
association exists and the array does not need to be resized

43

*

*

*

GCG 7: PreferTeuchos: : Arraytost d.: vect or as a contiguous general
purpose data container

GCG 8: UseTeuchos: : Arr ay RCP for memory management of dynamically
allocated objects stored in contiguous arrays of data amg&rsisting
associations involving contiguous arrays

GCG 9: When raw C++ pointers must be exposed (i.e., due to intartawiith
non-compliant code), minimize the amount of code expostx taw pointer

— Object Control

*

*

GCG 10: Accept user options at runtime through a

Teuchos: : Par anet er Li st object by deriving from the

Teuchos: : Par anet er Li st Accept or interface

GCG 11 Fully validate all parameters and sublists in accepted
Teuchos: : Par anet er Li st objects usingyal i dat ePamaters(...)
and other means

— Object Introspection

*

GCG 12 Always send output to sormse d: : ost r eamobject; Never send
output directly tost d: : cout orstd: :cerr.

Prefer to print output through deuchos: : FancyOSt r eamobject instead of
through a barest d: : ost r eamobject to more easily produce formatted output
Derive fromTeuchos: : Descri babl e and implement the functions
description() anddescri be() to allow clients to print the current state
of an object

Derive fromTeuchos: : Ver boseQbj ect and print to

*t hi s- >get OSt r ean() to give information about what an object is doing
As a last resort, always prefer printing to

*Teuchos: : Ver bose(hj ect Base: : get Def aul t OSt r eam() instead of
std::cout orstd::cerr.

— Miscellaneous coding guidelines

*

GCG 13 Prefer to explicitly define template arguments in a templatetion call
to avoid protability problems and enable implicit covnerss of input arguments

GCG 14 Use the template functioheuchos: : as<T_t o>(T fr on) for all
conversion of data types that may result in loss of precisioim an incorrect
conversion

GCG 15 Use namespace enclosure for the definition of member fursctiba
C++ class

GCG 16: Use explicit namespace qualification for the definition bhahmember
C++ functions

GCG 17: For general functions, prefer to list function argumentghie order of
input, input/output, output, and finally optional argumemiith default values

GCG 18 For non-member object functions, list the object as the dirgtment
passed in a const reference or non-const reference

GCG 19 Preferenuns tobool s as formal function arguments when conversion
mistakes are likely

GCG 20: Avoid overloading virtual functions

44

x GCG 21 Avoid overloading functions on different smart pointerayge.g. RCP,
Ptr,etc.)

x GCG 22 Include only standard C++ headersc X>, not standard C headers
<X. h>,and avoid allusi ng nanmespace st d directives

x GCG 23 Break up templated code into four fil8enmeC ass_decl . hpp,
Sonmed ass_def . hpp, SoneCl ass. hpp,andSoneCl ass. cpp to support
explicit instantiation, minimize recompilation, and agi@roblems in mutually
dependent (i.e. circular) code

e Specification of formal arguments for C++ functions

45

Value Objects, Non-Persisting Associations

Argument Purpose

Formal Argument Declaration \

single, non-changeable object (requiredy s or const S s or const S &s
single, non-changeable object (optionalyonst Ptr<const S> &s
single, changeable object (required) | const Pir<S> &s or S &s

single, changeable object (optional)

const Ptr<S> &s

array of non-changeable objects

const ArrayView<const S> &s

array of changeable objects

const ArrayView<S> &s

Value Objects, Persisting Associations

Argument Purpose

| Formal Argument Declaration |

single, non-changeable object

const RCP<const S> &s

single, changeable object

const RCP<S> &s

array of non-changeable objeqgtsonst ArrayRCP<const S> &s

array of changeable objects

const ArrayRCP<<S> &s

Reference Objects, Non-Persisting Associations

Argument Purpose

| Formal Argument Declaration

single, non-changeable object (required) const A &a

single, non-changeable object (optional) const Ptr<const A> &a

single, changeable object (required) const Ptr<A> &a or A &a

single, changeable object (optional) const Ptr<A> &a

array of non-changeable objects (const ptr) | const ArrayView<const Ptr<const A> > &a

array of non-changeable objects (nonconst

pEdnst ArrayView<Ptr<const A> > &a

array of changeable objects (const ptr)

const ArrayView<const Ptr<A> > &a

array of changeable objects (nonconst ptr)

const

ArrayView<Ptr<A> > &a

Reference Objects, Persisting Associations

Argument Purpose

Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objects (const ptr)

const ArrayView<const RCP<const A> > &a

array of non-changeable objects (nonconst

birdnst ArrayView<RCP<const A> > &a

array of changeable objects (const ptr)

const ArrayView<const RCP<A> > &a

array of changeable objects (nonconst ptr)

const ArrayView<RCP<A> > &a

46

e FSCP(General principles for formatting of source code)

FSCP 1 Formatting should accurately and consistently show théckdgstructure of
the code

FSCP 2 Formatting should improve the readability of the code forstrfeople

FSCP 3 Formatted code should retain its formatting well when medifiespecially
for those modifications performed by automated tools

FSCP 4 Formatting style should follow the most common idiom untegsof the
above principles are violated

e FSC(Specific source code formatting principles)

FSC 1 The formatting style in any single file or group of closehated files should be
the same

FSC 2 Try to keep all text within the first 80 character columns
FSC 3 Indent with spaces and not tabs

FSC 4 Use two vertical spaces to separate class declarationgtimm definitions,
namespace enclosure bounds, and other such major entraeéle

FSC 5 Do not indent source code inside of namespace enclosustsaih use
commented end braces

FSC 6 C++ class declarations should generally be laid out withbl i ¢ members
coming beforgr ot ect ed members coming befop i vat e members and indented
as shown in Figure 3

FSC 7 List short function prototypes on one line and longer prgpets on multiple
lines, indenting arguments one unit

x List short function prototypes on one line if possible

« For longer prototypes, indent arguments on continuatioesi one unit

x Return types can be listed on same line as the function natasautie line is too

long.

FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations
of those entities

FSC 9 Use “madified K&R” or “ANSI” style for the placement of bracesd
indentation of control structures

e DOXP (Goals for function and class level documentation)

DOXP 1: Level of documentation should vary depending on the pramsmand/or the
role of the software entity or collection

DOXP 2 Important abstract interfaces must be fully specified iratel@ent of any
single concrete implementation

DOXP 3. Behavior of "user level” interfaces must be completely sfed by the
Doxygen documentation and/or higher-level documentation

DOXP 4: Wrong documentation is (almost) worse than no documenmtatiall.

47

DOXP 5: The same documentation should not be repeated in more treplace if
possible

DOXP 6: The documentation should maintain itself as much as pesaitd be
testable as much as possible

e DOX (General Doxygen documentation principles)

DOX 1: Write Doxygen documentation directly in header files witbudoented
entities

DOX 2: Use a centralized set of definitions for common arguments whesible

DOX 3: Provide typical preconditions/post-conditions alonghtite documentation
for common arguments when possible

DOX 4: Add a\br i ef description for every entity that should be seen by the.user

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments in a
function; do not define partia{par amfield lists

DOX 6: Only add a\r et ur ns field if necessary

DOX 7: Prefer specifying post-conditions for output argumenttheir \par amfield,;
otherwise specify their post-conditions in the 'Post-atods’ list.

DOX 8: Order the documentation fields in function documentatioftas ef ,

\par am Preconditions, Post-conditions, thenet ur ns; omitting those that do not
apply.

DOX 9: If possible, try to us&r el at es to associate nonmember functions with a
single class

DOX 10: Provide detailed documentation for only the initial de@#on of a virtual
function

DOX 11 Aggregate the overrides of virtual functions into groups@&ding their base
class

DOX 121 Example source code used in Doxygen-generated and otlras fof
documentation should be extracted automatically from d¢hdeis compiled and tested
nightly.

DOX 13: Sample output should be generated automatically from dechjpind tested
code

48

B Summary of “C++ Coding Standards” (CPPCS) with amendments

Below, the 101 items in “C++ Coding Standards” by Sutter atekAndrescu [9] are listed along
with items that are amended or invalidated in the Thyra apdindelines. General amendments
that apply to all items are:

e Replacerl:shared _ptr with Teuchos::RCP

e Replacestd::vector with Teuchos::Array

e Replaceassert(someTest) with TEUCHOSASSERT(someTest)

Organizational and Policy Issues:

ltem O :

Don'’t sweat the small stuff. (Or: Know what not to standaed)

[Amended, see Section|6 and Appendix D]

ltem1 :
Item 2 :
Item 3 :
Item 4 :

Design Style:

ltem 5
Item 6
Item 7
Item 8
Item 9
Item 10
ltem 11
ltem 12
Item 13

Coding Style :

ltem 14
ltem 15
Item 16
Item 17
Item 18
Item 19
Item 20

Compile cleanly at high warning levels
Use an automated build system.

Use a version control system.

Invest in code reviews

: Give one entity one cohesive responsibility.

: Correctness, simplicity, and clarity come first.
: Know when and how to code for scalability.

: Don't optimize prematurely.

: Don't pessimize prematurely.

: Minimize global and shared data.

: Hide information.

: Know when and how to code for concurrency.

: Ensure resources are owned by objects. Use explicit RAllsamart pointers.

: Prefer compile- and link-time errors to run-time errors.
: Use const proactively.

: Avoid macros.

: Avoid magic numbers.

: Declare variables as locally as possible.

: Always initialize variables.

: Avoid long functions. Avoid deep nesting.

49

Item 21
Item 22
Item 23
Item 24

. Avoid initialization dependencies across compilationtsin

: Minimize definitional dependencies. Avoid cyclic depencies.

: Make header files self-sufficient.

: Always write internal #include guards. Never write extdrfiinclude guards

Functions and Operators :

Item 25 : Take parameters appropriately by value, (smart) poioteigference.
[Amendedby Section 5.2]

Item 26 : Preserve natural semantics for overloaded operators.

Item 27 : Prefer the canonical forms of arithmetic and assignmeataiprs.

Item 28 : Prefer the canonical form of ++ and —. Prefer calling thdipferms.

Item 29 : Consider overloading to avoid implicit type conversions.

Item 30 : Avoid overloading '&&’, ’||’, or ', (comma).

Item 31 : Don't write code that depends on the order of evaluatiorun€fion arguments.

Class Design and Inheritance:

Item 32
Item 33
Item 34
Item 35
Item 36
Item 37
Item 38
Item 39
Item 40
ltem 41
Item 42
Item 43
Item 44
Item 45
Item 46

: Be clear what kind of class you're writing.

: Prefer minimal classes to monolithic classes.

: Prefer composition to inheritance.

: Avoid inheriting from classes that were not designed to &selrlasses.

: Prefer providing abstract interfaces.

: Public inheritance is substitutability. Inherit, not tuse, but to be reused.

: Practice safe overriding.

: Consider making virtual functions nonpublic, and publiadtions nonvirtual.
: Avoid providing implicit conversions.

: Make data members private, except in behaviorless agg®e(@-style structs).
: Don't give away your internals.

: Pimpl judiciously.

: Prefer writing nonmember nonfriend functions.

: Always provide new and delete together.

. If you provide any class-specific new, provide all of thenslard forms (plain,

in-place, and nothrow).

Construction, Destruction, and Copying :

Item 47
Item 48
Item 49
Item 50

: Define and initialize member variables in the same order.

: Prefer initialization to assignment in constructors.

: Avoid calling virtual functions in constructors and destiors.

: Make base class destructors public and virtual, or preteahd nonvirtual.

50

Iltem 51 : Destructors, deallocation, and swap never fail.

Item 52 : Copy and destroy consistently.

Item 53 : Explicitly enable or disable copying.

Item 54 : Avoid slicing. Consider Clone instead of copying in basessks.

Item 55 : Prefer the canonical form of assignment.

Item 56 : Whenever it makes sense, provide a no-fail swap (and peavicbrrectly).

Namespaces and Modules

Item 57 : Keep a type and its nonmember function interface in the szameespace.

Item 58 : Keep types and functions in separate namespaces unlgssréhgpecifically
intended to work together.

Item 59 : Don'’t write namespace usings in a header file or before ariutie.
[Amended, see Appendix C]

Item 60 : Avoid allocating and deallocating memory in different nubek.
[Invalidated, see Appendix C]

Item 61 : Don't define entities with linkage in a header file.

Item 62 : Don't allow exceptions to propagate across module boueslar
[Invalidated, see Appendix C]

Item 63 : Use sulfficiently portable types in a module’s interface.
[Invalidated, see Appendix C]

Templates and Genericity :

Item 64 : Blend static and dynamic polymorphism judiciously.
Item 65 : Customize intentionally and explicitly.

Item 66 : Don't specialize function templates.

Item 67 : Don't write unintentionally nongeneric code.

Error Handling and Exceptions :

Item 68 : Assert liberally to document internal assumptions andriants
Item 69 : Establish a rational error handling policy, and followtitictly.
Item 70 : Distinguish between errors and non-errors.

Item 71 : Design and write error-safe code.

Item 72 : Prefer to use exceptions to report errors.

Item 73 : Throw by value, catch by reference.

Item 74 : Report, handle, and translate errors appropriately.

Item 75 : Avoid exception specifications.

STL: Containers :

Item 76 : Use vector by default. Otherwise, choose an appropriattaoeer.

51

Item 77
Item 78
Item 79
Item 80
ltem 81
Item 82

. Use vector and string instead of arrays.

: Use vector (andtring::.c _str) to exchange data with non-C++ APIs.

: Store only values and smart pointers in containers.

: Preferpush _back to other ways of expanding a sequence.

: Prefer range operations to single-element operations.

: Use the accepted idioms to really shrink capacity andyeaise elements.

STL: Algorithms :

Iltem 83

: Use a checked STL implementation.

[Amended With GCC, configure Trilinos with-enable-gcc-checkedstl]

Item 84
Item 85
Item 86
Item 87
Item 88
Item 89

Type Safety :

Item 90
ltem 91
Item 92
Item 93
Item 94
Item 95
Item 96
Item 97
Item 98
Item 99

: Prefer algorithm calls to handwritten loops.

. Use the right STL search algorithm.

: Use the right STL sort algorithm.

: Make predicates pure functions.

: Prefer function objects over functions as algorithm anegarer arguments.
: Write function objects correctly.

: Avoid type switching; prefer polymorphism.

: Rely on types, not on representations.

: Avoid usingreinterpret ~ _cast .

: Avoid usingstatic _cast on pointers.

: Avoid casting away const.

: Don’t use C-style casts.

: Don’t memcpy or memcmp non-PODs.

: Don’t use unions to reinterpret representation.

: Don’t use varargs (ellipsis).

: Don't use invalid objects. Don't use unsafe functions.

Item 100 : Don't treat arrays polymorphically.

52

C Miscellaneous amendments to “C++ Coding Standards”

In this appendix, we provide amendments mentioned in ApgeBido some of the items in [9]
that we feel are inappropriate for our domain.

C.1 Amendments to items related to compiler/linker incompdébilities

There are three items in [9] that relate to portability pesb$ associated with mixing and matching
code in different binary libraries compiled with differe@t-+ compilers or with different compiler
options. In this context, the authors use the term “moduwethean a single library or a set of
libraries containing binary object code that defines theduoie’.

In general, one can not assume that object code compileddgrtwore different C++ compilers
will work together since the name-mangling needed for tyake linkage is not even specified by
the ISO C++ standard. A more typical problem is when the saongpder is used, but different
compiler and/or linker options are used. For example, samgpders allow you to turn support for
exception handling on and off and if an exception is throwrbg module it will not be handled
correctly by another module that has exception handlingaeupurned off. A similar problem can
happen when mixing static and shared libraries, in Linuesample, where RTTI is handled
differently and can result in dynamic casting failures isesmwhere it would otherwise succeed.

In our model of software deployment, we distribute souragecand a build process that users can
manipulate in order to set the exact compiler and linkeramgtito match what is used by other
libraries and the application code that uses the libraBesause we develop class libraries, it is
simply not realistic to isolate this type of code into libes with small “Facade”type interfaces.

The specific items that we consider inappropriate are:

¢ Item 60: Avoid allocating and deallocating memory in difier modules
e Item 62: Don't allow exceptions to propagate across modwlerularies

e Item 63: Use sufficiently portable types in a module’s irztesf

All three of these items are related to the problem of mixiadeccreated by different compiler
and/or linker options. However, they may also be relatedit@tlanguage programming. For
example, in order to ensure that your module is the most bbeisgou might create a C-compatible
interface that allows clients coding in C (and even Fortraim7some cases) to call and be called
by your module. If mixed language programming is the issuen &a speciagxtern “'C"

interface should be created for the module which will autiicadly satisfy Items 60, 62, and 63.

C.2 Amendments for 'using’ declarations and directives

In [9, Item 59], the authors say to never put 'using’ declarat into header files or before
#include s and that 'using namespace SomeNamespace’ directivesideetty safe for code in
source files after alfinclude s. However, we will argue that:

53

e employingusing declarations to inject names of C++ classes or enums frormamespace
into another is fairly safe (this is more lax than what is sgigd in [9, Item 59])

e employing ausing namespace ... directive in any context is harmful and should be
avoided (this is more strict than what is suggested in [9n I59]).

However, we agree that employinging declarations for nonmember functions is dangerous and
is to be avoided because of problems related to overloadidgvinen overload are declared.

Are all using declarations employed in header files dang&dn [9, Item 59], the authors clearly
show that employing 'using’ declarations for nonmembercfions is dangerous because of
overloading. But what about employing 'using’ declaratidar C++ classes?

To investigate the issues involved, consider the followtmgC++ program (in the file
NamespaceClassUsinglssues.cpp):

Ik
Il Header-like declarations
Il

#include <iostream>
namespace NamespaceA {

template<class T>
class A {
public:
explicit A(const T& a) : a (@) {}
void print(std::ostream &os) const
{ os << "na="<<a_<<"\n"; }
private:
T a_;
Y

} Il namespace NamespaceA

/I Add a using declaration to inject 'A’ into another namespa ce
namespace NamespaceB {

using NamespaceA:A;
} II namespace NamespaceB

Il Now use the A class without the namespace qualification
namespace NamespaceB {

A<double> foo(std::ostream &os, const A<int> &aa);
Il NOTE: Above, we do not need namespace qualification for 'A

} Il namespace NamespaceB

54

Il
II' Implementations

1l
Il Create another A class in the global namespace. With care, we should not
Il have any problems with this and our code should not be affec ted by the

Il presence of this class.
template<class T>
class A {
public:
explicit A(const T& a) : a (a)
{ std::cerr << "\nOh no, called ::A:A(..)\n"; exit(1); }
void print(std::ostream &o0s) { 0s << "\na="<<a_<<"\n"; }

private:
T a;
Y
Il See what happens when you define another class A in Namespa ceB which
Il conflicts with the using declaration! This should not be a llowed and

Il should be caught by the compiler!
#ifdef SHOW_DUPLICATE_CLASS_A
namespace NamespaceB {

template<class T>
class A {
public:
explicit A(const T& a) : a (a)
{ std::cerr << "\nOh no, called :AzA(.)\n"; exit(1); }
void print(std::ostream &os) { os << "\na="<<a_<<"\n"; }
private:
T a,;
13

} /I namespace NamespaceB

#endif // SHOW_DUPLICATE_CLASS_A

Il Define function in NamespaceB without namespace qualifi cation for class A
NamespaceB::A<double>
NamespaceB::foo(std::ostream &os, const A<int> &aa)
{
A<double> ab(2.0);
aa.print(std::cout);
ab.print(std::cout);

return ab;
}
Il NOTE: Above, we need explicit namespace qualification fo r the return type
Il 'NamespaceB::A<double>' since we use namespace qualifi cation to define
/I nonmember functions (see Thyra coding guidelines). With out this namespace
/I qualification, the global class ":A” would be assumed an d you would get a
I compilation error. However, within the function, which i s in the scope of

55

Il NamespaceB, we don't need namespace qualifications!

1

Il User's code. This code does not typically live in a namespa ce (or is in
Il another unrelated namespace). Here, some explicit names pace qualification
Il and using declarations will be required to avoid ambiguit ies.
1l
int main()
{
#if defined(SHOW_MISSING_USING_DECL)
Il Here, no using declaration is provided. This will result i n the global
Il class ":A’ being used below which will result in a compile r error when
II' the NamespaceB::foo(...) function is called. This is a fe ature!
#elif defined(SHOW_ERRONEOUS_USING_DIRECTIVE)
/I Here we try to just inject all of the names from NamespaceA i nto the
Il local scope. However, this will result in the names 'Names paceA:A’ and
/I :A" being equally visible which will result in a compile r error when

Il the first unqualified 'A’ object is created below!
using namespace NamespaceA;

#else
II' Inject the class name 'A’ into the local scope and will over ride any
Il (sloppy) names polluting the global namespace. This will cause the global

II'"=:A" class to be sort of hidden (which is good!).
using NamespaceA:A;

#endif
A<int> aa(5);
A<double> ab = NamespaceB::foo(std::cout,aa);
ab.print(std::cout);

return 0;

The above program defines a templated cheissnamespac8lamespaceA and then does asing
NamespaceA::A to inject this class name intéamespaceB.

When the program is compiled and run, one gets:
$ g++ -ansi -pedantic -Wall -0 NamespaceClassUsinglssues. exe
NamespaceClassUsinglssues.cpp
$./NamespaceClassUsinglssues.exe
a=5
a=2

a=2

56

This program has a few different ifdefs to show differenteyf errors that a compiler will detect.

1. What happens if you try to define another class A in namespaseaebpaceB ?

In the case of nonmember functions, overloads of a functitiibé strange and non-intuitive
behavior when one employs 'using’ declarations. Howevegthappens with classes?

In the above program, when ones defines the ma8d@ADUPLICATE CLASS A when
compiling, one will get:

$ g++ -ansi -pedantic -Wall -DSHOW_DUPLICATE_CLASS A \

-0 NamespaceClassUsinglssues.exe NamespaceClassUsing| ssues.cpp
NamespaceClassUsinglssues.cpp:63: error: declaration o f ‘class

NamespaceA::A<T>' in ‘NamespaceB’ which does not enclose ° NamespaceA’
NamespaceClassUsinglssues.cpp:63: confused by earlier e rrors, bailing out

Above, the error message generated by g++ is not very goaat ledist the compiler will
not allow this code to compile. This is in stark contrast teaihappens when you have
overloaded member functions which [9, Item 59] complainsuab

Takehome MessageEmployingusing SomeNamespace::SomeClass declarations to
inject names from one namespace into another seems to bashtwes not suffer from the
gotchas associated witising declarations for (overloaded) nonmember functions.

2. What happens when the user’s code does not have an appmpisatg declaration?

While theusing NamespaceA::A declaration ifNamespaceB allows the code in
NamespaceB to avoid having to explicitly qualifiNamespaceA::A all the time, this does not
automatically mean that user code that does not liiéamespaceB will not have to do
something to get at the namdeThe user can either do explicit qualificatiamespace::A

or can put ausing NamespaceA::A declaration at the top of their namespace or in each
function that they have (as is done in thein() function above).

In the above program, if you define the maSOWMISSING_USING_DECL, theusing
Namespace::A declaration will be missing imain() and this will result in the compiler
finding the global:A class which will cause a compiler error when
NamespaceB::foo(...) gets called. Here is what one gets when compiling:

$ g++ -ansi -pedantic -Wall -DSHOW_MISSING_USING_DECL \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:121: error: invalid init ialization of
reference of type 'const NamespaceA:A<int>& from expres sion of type ’
A<int>’

NamespaceClassUsinglssues.cpp:80: error: in passing arg ument 2 of *
NamespaceA::A<double> NamespaceB::foo(std::ostreamg&, const

NamespaceA::A<int>&)’

While the above error message generated by g++ here is ibaaljreat, at least the
compiler catches the mistake.

57

Takehome MessageAlways dousing SomeNamespace::SomeClass to inject the names
from other namespaces that you want to use to protect yd@irsel others who pollute the
global namespace.

. What happens when the user code employsiang nanespace NanmespaceA
directive when there are conflicting global names?

Since there is a global class , the user can not simply employusing namespace
NamespaceA directive or the compiler will complain that it does not knauaich class to use.

In the above program, when one defines the m&eilOWERRONEOUSSING_DIRECTIVE
when compiling one gets:

$ g++ -ansi -pedantic -Wall -DSHOW_ERRONEOUS USING DIREC TIVE \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:120: error: use of ‘A" is a mbiguous

NamespaceClassUsinglssues.cpp:45: error; first declare das
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A’ here

NamespaceClassUsinglssues.cpp:120: error; parse error b efore '>" token

NamespaceClassUsinglssues.cpp:121: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error: first declare das '
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A’ here

NamespaceClassUsinglssues.cpp:121: error; parse error b efore *>" token

NamespaceClassUsinglssues.cpp:122: error: ‘ab’ undecla red (first use
this function)

NamespaceClassUsinglssues.cpp:122: error: (Each undecl ared identifier

is reported only once for each function it appears in.)

Note that this type of example goes against the advise i) 59] where they say that it is
safe to employsing namespace SomeNamespace directives in*.cpp source files. This
example shows that this does not protect you from othergthlatte the global namespace.
Note that code that is written this way might compile one day aot the next as it is fragile
and can be broken by other people that pollute the global spate.

Takehome MessageNever employsing namespace AnyNamespace as you cannot
guarantee the integrity of your code since people outsig@af namespace can cause your
code to not compile.

58

D Arguments for adopting a consistent code formatting style

While there are reasonable ways to handle different codedtiing styles within a project (e.g.
custom file styles in emacs), there are arguments for piefearmore consistent code formatting
style that is used throughout a project by all developerkémptroject. It is typically more difficult
to modify code than to read code that uses an unfamiliar gostiyle and therefore consistent
coding styles is more important in cases where multiple ld@ess modify the same code.

One of the more lenient opinions on coding style in the liteneacomes from [9, Item O] where the
authors state:

“Do use consistent formatting within each source file or eyach project, because it's
jarring to jump around among several styles in the same giEcede. But don't try to
enforce consistent formatting across multiple projectaanoss a compaﬁy

Much stronger arguments for working toward a consistenedodmatting style within a project
are made by other individuals and organizations who repteseide range of views of software
development. These organizations and persons vary fromspe&ce projects (e.g. GNU) to
newer Agile methods (e.g. Extreme Programming) to largevswé companies (e.g. Microsoft).
As different as these various people and organizations thewnature of software (e.g. GNU vs.
Microsoft) and how it should be developed (e.g. GNU vs. Bred®>rogramming), they all agree
that some consistency in coding style is a good idea.

A few points are worth making before looking at opinions omfatting style expressed by these
different individuals and organizations. In each of theerefces cited, the individual or
organization gives a justification for the opinions expessand it is up to the reader to weigh these
arguments on their own. Also, just because an opinion isesged by an “expert” does not in and
of itself automatically give that opinion a lot of credenttwever, when a wide number of
different and diverse “experts” espouse the same opiniam such a point of view should be
considered more seriously.

D.1 Statements on coding style from varied persons and/or ganizations

Here we overview some options on consistent code formastiylg from a varienty of sources.

D.1.1 Open source software (the GNU project)

On one end of the spectrum is open source software that ornthic&rof as the freest form of
software. A GNU package is usually not even developed by asioh set of developers but yet the
official GNU Coding Standalfdstates:

5The implicit assumption in this latter qualification is thievelopers don’t interact heavily with multiple projects
and multiple projects don’t interact much with each othed #merefore there is typically little advantage to having a
company-wide code formatting standard. However, if theesdevelopers work together on multiple projects and go
back and forth between projects frequently, it is uncleaatthe opinion of the authors would be in this case.
"http:/www.gnu.org/prep/standards/standards.html

59

“The rest of this section gives our recommendations forrglspects of C formatting
style ... We don’t think of these recommendations as remeres ... But whatever
style you use, please use it consistently, since a mixtuséytés within one program
tends to look ugly. If you are contributing changes to antagsprogram, please
follow the style of that program”.

While the above passage does not mandate a consistent abgimgvithin a GNU package
(because it can't, its free software), it does recommenddangestyl€ and it asks that each project
please use a consistent coding style thorough a GNU project.

D.1.2 Agile Methods (Extreme Programming)

While the Extreme Programming and GNU movements are milag apterms of how it expects
coders to work together to create code, they both agree $iveg a consistent coding style within a
project is important.

In his popular 1999 book “Extreme Programming Explained; k&nt Beck explicitly listed
“Coding Standards” as one of XP’s twelve recommended mestiln this book, Beck states

“You couldn't possibility ask the team to code to a commomdtad. Programmers
are deeply individualistic, and would quit rather than it curly braces somewhere
else. Unless:

e The whole of XP makes them more likely to be members of a wonisam.

The perhaps they could be willing to bend their style a litBesides, without coding
standards the additional friction slows pair programming eefactoring
significantly”.

In this first book, Beck also comments on coding standardsdrcontext of “collective ownership”
of code by stating:

“You couldn’t possibly have everybody potentially chargyemything anywhere.
Folks would be breaking stuff left and right, and the costntégration would go up
dramatically. Unless:

e You integrate after a short enough tie, so that chances dlictsrgo down.

e You adhere to coding standards, so you don't get into thedéce&urly Brace
Wars.

Then perhaps you could have anyone change code anywheresgdtem when they
see the chance to improve it".

8The official GNU formatting style is one of the built-in stglen Emacs called the “gnu” style

60

As a result, many XP projects have insisted on requiringyer@mber of the team to code in the
same way. So much to the point that one should not be abld tshelwrote a piece of code just

in how it is formatted. As of this writing, almost every soearaf information on XP on the Internet
takes a very strong opinion on the adoption of a consistatingastyle by an XP group. The
specific details of the coding style are not important, whatiportant is that everyone on the team
helps to formulate and agrees to use the same coding style.

In his updated 2005 book “Extreme Programming Explainedo8eé Edition” [3], Kent Beck has
restructured XP and now the “Coding Standards” practice® inger specifically listed as a
practice. Does this mean that consistent code formattingtitonger important in XP? The simple
answer is no. In her article “The New X®ivhich outlines the second edition of Beck’s book and
compares it to the first edition, Michele Marchesi states:

“You must note that in the new XP we cannot find original pieegiofcoding
standardsthat is considered obvious, ... ”

And to put to rest any doubt how Beck himself feels about &test coding styles he states in the
second edition:

“For example, people get passionate about coding styleléiere are undoubtedly
better styles and worse styles, the most important styleissthat the team chooses
to work towards a common style. Idiosyncratic coding styed the values revealed
by them, individual freedom at all costs, don't help the tesaroceed”.

Therefore, it is clear that the flagship of the Agile programgmrmovement, XP, clearly advocates
that a team of developers should work towards a consistet® fmymatting style.

D.1.3 Code Complete

In [6], Steve McConnell makes a strong argument that grohpsld adopt a consistent coding
standard, including reasonable guidelines for the folin@tf source code.

There are several places in this book where McConnell &iseb® importance of using a
consistent formatting style in a group project:

e “The bottom line is that the details of a specific method aidring a program are much
less important than the fact that the program is structucedistently” [6, Section 31.1].
This quote is almost an exact paraphrase of the statementsimée GNU coding standard
document and by Beck in the Extreme Programming books mesttiabove.

e “The importance to comprehension and memory of structusimgjs environment in a
familiarly way has lead some researchers to hypothesizéayaut might harm an expert’s
ability to read a program if the layout is different from trheme the expert uses (Shell
1981, Soloway and Ehrlich 1984)” [6, Section 31.1]. This liepthat working with an
unfamiliar style might handicap expert coders more tharrmeg and intermediate coders.

9 hitp:/lwww.agilexp.org/downloads/TheNewXP.pdf

61

“Structuring code is important for its own sake. The speafiovention you follow is less
important than the fact that you follow the same conventionsestently” [6, Chapter 31].

“Many aspects of layout are religious issues. Try to sepavhjective preferences from
subjective one. Use explicit criteria to help ground yowcdssions about style preferences.”
[6, Chapter 31].

“Using conventions to spare you brain the challenge of ofen@imering arbitrary differences
between different sections of code.” [6, Section 34.1].

“The point of having coding conventions is to mainly reduoenplexity. When you
standardized decisions about formatting, loops, varinblaes, modeling notations, and so
on, you release mental resources that you need to focus anahalienging aspects of the
programming problem. One reason coding conventions arersooversial is that choices
among the options have some limited aesthetic base but seat&dly arbitrary. People have
the most heated arguments over their smallest differer@asventions are most useful
when they spare you the trouble of making and defendingrargitiecisions. They are less
valuable when they impose restrictions in more meaningkas” [6, Section 34.1].

“The motivation behind many programming practices is taigeda programs’ complexity,
and reducing complexity is arguably the most important kelyding an effective
programmer.”|[6, Chapter 34].

“When abused, a programming convention can be a care thatsevthan the disease. Used
thoughtfully, a convention adds valuable structure to theetbpment environment and helps
with managing complexity and communication.” [6, Chapt4}. 3

“In general, mandating a strict set of technical standami® fthe management position isn't
a good idea.” [6, Section 28.1].

“If someone on a project is going to define standards, havemeoted architect define the
standards rather than a manager ... If the architect isdedaas the projects’ thought leader,
the project team will generally follow standards set by fietson.” [6, Section 28.1].

“If your group resists adopting strict standards, consalfaw alternatives: flexible
guidelines, a collection of suggestions rather than giride] or a set of examples that
embody the best practices.” [6, Section 28.1].

“Even if your shop hasn'’t created explicit coding standaregiews provide a subtle way of
moving toward a group coding standard—decisions are matteehyroup during reviews,
and over time group derives its own standards.” [6, Sect®&t]2

One could summarize that McConnell advocates that havirmsistent coding style as being an
advantage in many ways but cautions that the standardsdsheueveloped by the programmers
in the group and not dictated by nontechnical managers.

D.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard

TheJoint Strike Fighter Air Vehicle C++ Coding Standardsecument [5] from Lockheed Martin
defines C++ coding standards for high consequence applhicati.e. the multi-billion dollar JSF

62

program). While this standard is not the most strict stashdait there, it does mandate many
different aspects of code formatting such as the placemmehiralentation of braceq}’ (AV
Rules 59, 60, and 61) and the formatting of function protes/fAV Rule 58). The point is that
standards for high consequence (i.e. low tolerances fectgfmay legitimately or otherwise
require greater uniformity in source code. While some offtimmatting mandates of this
document are different than those suggested in [6, Chapietts JSF standard in general is
advocated by such individuals as Bjarne Stroustfland is therefore not without some merit.

D.2 The keyboard analogy for coding styles

The issues involved in going back and forth between diffesefamiliar coding styles are similar
to the issues in going back and forth between different caergeyboard layouts. While some
people may naturally prefer one type of keyboard to another. 6uch as preferring an ergonomic
keyboard to avoid problems with repetitive stress injudepeople with larger hands having
trouble with smaller keyboaﬂﬂ%, a person is most proficient when using a single type of kagdo
for a long period of time. While a person can generally getlusausing a few different types of
keyboards that are used frequently (such as the ergonorylio&el for a desktop computer and a
smaller laptop keyboard), having to work occasionally oy \different keyboard really slows
down a good typer and increases typing mistakes. For examplerson who uses PC-style
keyboards with the Control key on the lower left, are congdlehandicapped when using a Sun
keyboard where the Control key is where the Caps Lock key & BE keyboard.

When given enough time, almost anyone can become accustoraeg reasonable keyboard
layout and can be productive (as long a unusual physicaticants are not involved). As long as
the person uses the keyboard consistently, the prodyctivit be about the same as with a more
favored keyboard layout. Therefore, except for certainsptat constraints, a person can learn how
to use most keyboard layouts given enough time, but switchatk and forth occasionally
between different keyboards really damages productivityiacreases mistakes.

The same is true for having to read and modify code that u$eseatit coding styles. Just about
anyone can become accustomed to just about any reasondiig style if given enough time
working with a particular style. However, switching baclddorth frequently between different
coding styles really does damages productivity and ineaeding mistakes for some people, just
as switching back and forth between different keyboardsealtly damage productivity and
increase typing mistakes.

D.3 Conclusions

The antagonism between pushing a common formatting stygle@bowing for individual freedom
is similar to a system-wide optimization problem that im&s a number of subsystems. In our
case, the subsystems are individual coders and the whaénsysthe team as a whole. Optimizing

L0http://www.research.att.com/bs/C++.html

Computer mice layouts show even greater variability thaybards and going between different types can hurt
prductivity even greater. For example, a standard mouskl emt be more different than a trackball-type of mouse
and going from a standard mouse to a trackball only occalbjocan severely degrade productivity if the individual is
unfamiliar with the trackball.

63

each subsystem separately would mean that each developkt ewen and code a district part of
the overall system. While this approach maximizes indialdieveloper productivity, it does not
maximize overall productivity in that it discurrages anddegrs collective code ownership that has
been demonstrated to be highly effective in the right sgstife.g. Extreme Programming). On the
other hand, an overly ridged code formatting standard Wdinafor collective code ownership but
it will also damage the individual productivity of every mbar of the team. Therefore, the
“optimial” solution to the code formatting problem is to leathe group adopt enough of a uniform
style to forster collective code ownership and speed codews, but not to needlessly damage
individual coding productivitiy. The balance between thesnficiting goals must be handled with
care and only group communication along with experienceexp@rimentation will yeild a
near-optimal solution to the code formatting standard$lera for a particular team of developers.

While the above varied sources have different levels ofiopgion the importance on consistent
code formatting, they all agree that it is the developersgeves that should come up with the
guidelines, and not non-technical managers. They alseathgo agree that a coding standard that
is too ridged will do more harm than good (i.e. by damagingpiteeluctivity and moral of

individual programmers).

The majority opinion of these experts, therefore, seeme tinét a team of software developers
should get together and collectively decide on a sufficiehbsguidelines for code formatting and
each member should try to follow the spirit of the agreed ugtgle as much as is reasonable while
being allowed to bend or break the guidelines when apprigpria

64

E Guidelines for reformatting of source code

When a sufficiently common coding style is not being used bglelelopers in a project and no
recommendations for a common coding style exists, then gpridelines are needed for the
situations where code written by one individual is modifigdabother individual that uses a
different coding style. These guidelines address how deees should conduct themselves when
modifying source files written largely by someone else.

1. First and foremost, each developer should respect odwetaper’'s formatting styles when
modifying code that other developers have written. If a tger has a preferred Emacs
style, then that style should be listed explicitly at the ¢dgach source file that is modified.
This will help other developers that use Emacs to stay ctamgisvith the file's style.

2. When only small changes are needed, a developer should lapithe formatting style
already in use in the file. This helps to respect other deeetoand helps to avoid needless
changes for the version control system to have to track. iAgeien user-defined
file-specific Emacs styles are specified, then it is easy totaiaia file's style when editing
files through Emacs.

3. Reformatting a file written by someone else and checkiimgig only justified if significant
changes are made. Also, if a developer needs to understandmicated piece of code in
order to make even perhaps a small change in the end, thetetvelbper may also be
justified in reformatting the file. When a reformatting is épthe new Emacs formatting
style should be added to the top of the source file in order keritaasier for the original
owner of the file and other developers to maintain the neve sty

4. Multiple re-formats of the same file should not be checkeovier and over again as this will
result in massive increases the the amount of informatianttie version control system
needs to keep track of and makes diffs more difficult to penfor

The above guidelines ensure that individuals are given maixireedom to format code to their
liking but also helps to foster the shared ownership andldpugent of code. In addition, the use
of user-defined file-specific formats makes it easy for dgpat®to accommodate formatting styles
different from their own.

65

@ Sandia National Laboratories

	Introduction
	Alpha-numeric item designations
	Naming conventions (NC)
	Naming and organization of source files (NOSF)
	Coding guidelines
	General coding guidelines (GCG)
	Error handling
	Memory management
	Object Control
	Object Introspection
	Miscellaneous coding guidelines

	Specification of formal arguments for C++ functions (SFA)
	Variations in passing single changeable objects

	Formatting of source code
	General principles for formatting of source code (FSCP)
	Specific source code formatting principles (FSC)

	Doxygen documentation guidelines
	General principles for function and class level documentation (DOXP)
	Specific Doxygen documentation principles (DOX)

	References
	Summary of guidelines
	Summary of ``C++ Coding Standards'' (CPPCS) with amendments
	Miscellaneous amendments to ``C++ Coding Standards''
	Amendments to items related to compiler/linker incompatibilities
	Amendments for 'using' declarations and directives

	Arguments for adopting a consistent code formatting style
	Statements on coding style from varied persons and/or organizations
	Open source software (the GNU project)
	Agile Methods (Extreme Programming)
	Code Complete
	Lockheed Martin Joint Strike Fighter C++ Coding Standard

	The keyboard analogy for coding styles
	Conclusions

	Guidelines for reformatting of source code

