SANDIA REPORT

SAND2010-2051
Unlimited Release
Printed May 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization & Uncertainty Estimation Department

Prepared by
Sandia National Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2010-2051
Unlimited Release
Printed May 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratorig#\lbuquerque NM 87185 USA,

Abstract

Coding and documentation guidelines help to improve thditgua code and facilitate
collaborative development. This document covers C++ agpdinde formatting, and Doxygen
documentation guidelines that have been establishedddFrilinos package Thyra. Many of these
guidelines are followed in other Trilinos packages as v&fhile some of the guidelines outlined in this
document are more specifically targeted to Thyra, most ofjthéelines are more general than Thyra or
even Trilinos.

*Sandia is a multiprogram laboratory operated by Sandia @atjpn, a Lockheed-Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.

Contents

A 1 o [T) 1
2 Alpha-numeric item desSignationS ottt e et 3
3 __Naming conventions (NC) ... 4
4 Naming and organization of source filesS (NOSF) vuuuar i i 8
5 COAING QUITBINESot e e e e e e e 9
5.1 General coding guidelines (GdG) ... 9
Error handling 9
MemOory Management e 9
ObJeCt CONtrOl . ..o 12
Object Introspectidn ... 12
Miscellaneous coding guideliﬁes .. 13
5.2 Specification of data members and passing and returibjegts from functions 19
6 Formatting of source COUE ettt e e e e e 25
6.1 General formatting source code principles (F$CP) 25
6.2 Specific guidelines for formatting source code (IfFSC) 26
7 Doxygen documentation QUIAENINES 35
7.1 General principles for function and class level docusa@m (DOXP) 35
7.2 Specific Doxygen documentation principles (DOX) ot e 36
RETEIEMCES . . et ettt e e 40
Appendix
A Summary Of QUIJEIINESottt ettt e e e e e e e e 41
B Summary of Teuchos memory management classesandidioms.......................... 46
C__Summary of “C++ Coding Standards” (CPPCS) with amendments 54
D Miscellaneous amendments to “C++ Coding SEANIAIS” oo e e e oo 58
D.1 Amendments to items related to compiler/linker incotigities 58
D.2 Amendments for 'using’ declarations and directives.......o .. 59
[E__Arguments for adopting a consistent code formatting style. ..o 64
\E.l Statements on coding style from varied persons andfanaations 64
E.1.1 Open source software (the GNU project) oo ... 64
E.1.2 Agile Methods (Extreme Programming)oveeeeeneneneanennn.. 65
E.1.3 Code Complete e e 66
E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Stod. 67
E.2 The keyboard analogy for coding styles 68
.3 CONCIUSIONS . . .ttt ettt e e e e e e e 68
F Guidelines for reformatting of SOUrCEe COOEt e 70

1 Introduction

This document deals with C++ coding guidelines startingnftbe foundation of the guidelines in the book
“C++ Coding Standards” by Sutter and Alexandrescu [10] {t# items are outlined in Appendix C) and
the Teuchos-based memory management approach descridédTihe guidelines in this document are
specifically designed to address the development of objetted numerical C++ libraries and to utilize
the tools in the Trilinos package Teuchos. While the maimppse of this document is to define guidelines
for Thyra software (for both interfaces and support soféyait is also general enough to be applied to
many other projects that, for instance, might interact Witlyra.

The book “C++ Coding Standards” [10] covers many topics &matmore general than C++ and can be
considered to be general design topics. As a result, the [i@lprovides a fairly comprehensive
foundation for creating well designed, high-quality C+fteare. The goal of this document is not to
restate what is in [10] but instead to fill in some gaps intawlly left by the authors and to provide
amendments to specific items in [10] and tailor them for nucaktibraries. The zeroth item (first item,
zero based) “Don't sweat the small stuff” intentionally algspecific recommendations on issues such as
the conventions for naming identifiers and the formattingaafe since these are arbitrary. While issues
related to coding style are less important than other issberse are arguments for adopting a more
consistent code formatting style and some of these argunaeatoutlined in Appendix E. Therefore, one
of the purposes of this document is to suggest reasonablmemthal guidelines for naming conventions
and code formatting that provide for enough code uniforratfacilitate collaborative code development,
code reviews, and maintenance in Agile software developm@cesses [3].

More important than code formatting, a consistent set ofingroonventions for C++ classes, functions,
variables, and other entities also helps to improve cotiine software development and quality. Also,
since clients of the software must interact with these naihisseven more important that a set of naming
conventions be used as consistently as possible in the oltenfaces.

Finally, more important general C++ coding guidelines areeted that append and amend those described
in [10]. While formatting and naming recommendations doaftect the meaning of C++ code, other
coding guidelines do and therefore they will receive moteraion and should be considered more
seriously. Unlike naming conventions and code formattihgse guidelines are difficult to change after a
significant amount of code has been written.

The rest of the main document is organized as follows. Anaipiimeric convention for naming the
various guidelines described in this document is given ictiBe 2. Then, general naming conventions are
presented in Section 3 and they help provide a context fer taide examples. This is followed in
Section 4 with guidelines for naming and organizing soures fiNext, important general C++ coding
guidelines are described in Sectidn 5 that affect softwasdity in critical ways. Following this,
reasonable and minimal formatting guidelines are covere&®eiction 6. Finally, guidelines for Doxygen
documentation are provided in Sectian 7.

Several appendices are included that deal with a numbepmstoThe guidelines presented in this
document are summarized in Appendix A. The 101 guideline® fr10] are listed in Appendix C along
with specifying which items are amended or invalidated teydhidelines in the current document. A
summary of the idioms and conventions surrounding the usigeofeuchos memory management classes
are presented in AppendixX B. Appendix D contains discussidritems from [10] that are amended or
invalidated in the Thyra coding guidelines. Most imporbard clarification ofusing declarations is given

that is both more rigid in some ways and less rigid in othersathgn what is described in [10, Item 59].
AppendixX E gives arguments for adopting a consistent codedtiing style in a single development team
or single project (which is required with current Agile demment methods). Lastly, Appendix F gives
guidelines for when one developer can legitimately refdransource file written by another developer
when a more consistent code formatting style is not agreed.up

2 Alpha-numeric item designations

Specific items in this document are to be refereed to usingenated acronyms starting with and the
version number (e.g. 1.0). For example, the first naming @otiwn guideline can be refereed toT@BSDG

1.0 NC 1 In this way, these short precise alpha-numeric desigmatich ad CDG 1.0 NC 3can be used

in code reviews as short-hand references to specific gneteliThe version number of the coding standard
is important in order to allow changes in future coding gliisks and allow the numbers to change from
version to version (e.dNC 1in TCDG 1.0 might becomeNC 3in TCDG X.Y).

In addition, this document is based on [10] and those guidslivill be refereed to using an enumerated
acronym such a€PPCS Item 15(i.e. “Use const proactively”).

3 Naming conventions (NC)

C++ classes, functions, variables, data members etc.gbeuhamed and used in a fairly consistent
manner. The following guidelines are consistent with comm@actice as exemplified in [8] for example
and are also largely consistent with the Java naming stahdar

e NC 1: Capitalize C++ class and struct names 8eneCl ass: Names for C++ classes and structs
should generally be capitalized and separate words sheutdficatenated and capitalized (i.e.
“Camel Case”). For example:

class SomeClass {...};

e NC 2: Capitalize C++ namespace names&snmeNaneSpace: C++ namespaces should follow the
same naming convention as C++ classes and namespace namlelsrglt contain too many
acronyms and should not be too short or too common. For exampl

namespace MyNameSpace {

} /I namespace MyNameSpace

e NC 3: C++ enum type names should begin wittas ESome Enumand enum values should use all
caps and scope context 3OVE_ENUM VAL UE: Enumeration type names should follow the same
convention as for class and struct names but they shouldatsia with the capital letter 'E’ to
signify that this type is an enum. Enumeration values shbaldll upper-case with underscores
between words and should use a common prefix for scopingmititiei enum type. Also, enum
values should use the default value assignment defined lmpthpiler in general as this aids their
use as indexes into zero-based arrays. For example:

enum ESolveStatus {
SOLVE_STATUS_CONVERGED,
SOLVE_STATUS_UNCONVERGED,
SOLVE_STATUS_UNKNOWN

b

Justification Using a capital 'E’ forenums allows the definition of other types with the same basic
name that contain other data. For exampkglveStatus in anenum enumerating the different
types of solve status ar8blveStatus is a C++ struct that contains &$olveStatus member
along with some other data. The use of the scoping prefixSDEVESTATUS above) is also
recommended in [7, Section 11.4].

e NC 4: C++ object instance identifier names should begin with a Icease letter asoneObj ect :
Formal function arguments and other object identifiers Ehan general, start with a lower-case
letter and then use capitalization for following words wilth underscores between words in general.
For example:

Lhttp://java.sun.com/docs/codeconv/html/CodeConvTOC. doc.html

ClassTypel obj;
ClassType2 objectForMyThing;
ClassType3 objectForYourThing;

Exception:ldentifiers that have mathematical symbols in them such &sandalpha should use
lower case names separated by underscoresr example:

Vector curr_x;
Matrix curr_J;
Scalar curr_alpha;

Justification: The Java conventioobjectldentifierName using capitalization with no underscores
produces shorter readable identifiers for English nameddmg not work well for identifiers with
math symbols. With math symbols, it is important to maintaie case of the symbol asandX may
mean something totally different mathematically and itdafasing and/or ambiguous to write either
currx orcurrX . Inthese cases, it is far better to use underscores andommitex as shown above.
While in it is considered bad practice to differentiate abhte names by case alone (see “Don't
differentiate variable names solely by capitalization]@nSection 11.7]), this is very common in
math and mathematical software should support this.

e NC 5. C++ class data member names should begin with a lower-caser land end with an
underscore asonebDat aMenber : Names for data members within a class should use the same
naming convention as for other object identifier names boitilshend with an underscore. For
example:

class SomeClass {
public:

private:
int someDataMember_;

3

Justification: Using an underscore after a data variable name helps to deérszope of the variable
and differentiate that name from a local variable or a merfibgstion that may otherwise result in
“shadowing” which causes portability problems on some derpespecially when warnings are
elevated to errors.

Exception Public data members in simple C++ structs (i.e. where nariaats need to be
maintained) should not contain underscores. For example:

struct SolveStatus {
ESolveStatus solveStatus;
double achievedTol
std::string message;

Exception:ldentifiers that have mathematical symbols in them such dsandalpha should use
lower case names separated by underscoresr example:

5

Vector curr_x_;
Matrix curr_J_;
Scalar curr_alpha_;

Justification: SeeNC 4 above.

e NC 6: C++ function names should begin with a lower-case lettesasreFuncti on(...):
Names for functions should use the same naming conventitor abject identifier. For example:

class SomeClass {
public:
void someMemberFunction(...);

3

void someOtherFunction(...);

Exception:ldentifiers that have mathematical symbols in them such &sandalpha should use
lower case names separated by underscoreésr example:

class SomeClass {

public:
const Vector& get x() const;
const Matrix& get J() const;
Scalar get alpha() const;

b

Justification: SeeNC 4 above.

e NC 7: Name C++ pure abstract base clas€®isobBase, default implementation base classes
Bl obDef aul t Base, and default concrete implementation clasBe$ aul t TypeABI ob: In
general, the top-level C++ base class for some abstradtiond use the post-fiRase prepended to
the class name (e.gectorBase) and the base class should contain (almost) no implemensaéind
certainly no object data (see Item 36/in [10]). If a defaulpiementation of some of the aspects of
the base class are desired (to make it easier to define cerstietlasses), then they should be put in
a derived node subclass with the postBiefaultBase (e.g.VectorDefaultBase). Any default
concrete implementation of an abstraction should geryeuak the prefiDefault prepended to the
beginning of the name along with any other important pref{eeg.DefaultSpmdVector). For
example:

/I Pure virtual base class
class VectorBase
. ... Il Other base classes
{
public:
virtual void applyOp(...) const = 0;

b

/I Node base class with some default implementations
class VectorDefaultBase
: virtual public VectorBase

{
public:
void applyOp(...) const; // default implementation

3

/I A general default implementation for SPMD vectors
class DefaultSpmdVector
. virtual public VectorDefaultBase // use some default impl ementations

{
public:
void applyOp(...) const; // Specialized overrides

private:
b

e NC 8: Prefer to name const and non-const access functiomggea#art () and
get Nonconst Part (), respectivelyIn general, functions that return objects that are coethin
within a wrapper object should have the preéfionconst added to the function that returns the
non-const reference (or pointer) to the contained objemtekample,

class SomeClass {

public:
RCP<Part> getNonconstPart();
RCP<const Part> getPart() const;

Justification The choice to name the access functigetdlonconstPart() andgetPart) as
opposed tagetPart() andgetConstPart() is somewhat arbitrary. However, usingnconst

should be preferred in order to make it more explicit that a-oonst object reference is being
requested. Also, a constant view of a part of an object isyawheaper that returning a
non-constant view of the part (see the discussion of theeigdized view” design pattern in [1]) and
therefore to be safe and error on the side of efficiency, timeaomstant access function should be
harder to call than the constant access function.

4 Naming and organization of source files (NOSF)

Since most C++ code is organized around classes, the filgwteushould also primarily be organized
around classes and the nonmember functions that interéictivese classes. The primary goal of these file
naming guidelines is to create file names that are globailyugnand will therefore facilitatéinclude s
without need for directory paths in thclude statement. The basic idea is that a source file should be
named based on what it has, not where it is. The followingelinds help to define how to organize code
into source files and how to name those source files. The digestructure of source files is beyond the
scope of this document.

e NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h (C header),
and=* . ¢ (C source) These file names avoid common problems with portabilityaiwous Unix and
Windows platforms and enable better tools support (likglege-specific formatting in Emacs).

e NOSF 2 Include only one major C++ class with supporting code perderaand source file with
name(sNaneSpaceA.l nner Namespace_SoneC ass. [hpp, cpp] : As a general rule of
thumb, assign the source code for any major C++ class anasimpcode to a single set of header
and source files. The file name should be composed out of thespame names enclosing the
classes and other code along with the class name itselfnBtarice, for the class
NameSpaceA::InnerNamespace::SomeClass , the header and source files would be named
NameSpaceA_InnerNamespace _SomeClass.[hpp,cpp] . This convention assures that the file names
will be globally unique. In addition, having a single set dédifor each class helps to keep a single
encapsulation unit of code together which makes searchmgricapsulation unit easier.

e NOSF 3 Use internal include guards in all header filesll header files, without exception, should
use include guards [10, Item 24]. For example, the file
NameSpaceA_InnerNamespace _SomeClass.hpp would have the basic structure:

II' @HEADER
..
/I @HEADER

#ifndef NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP
#define NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

#include "SomeFile.hpp"

#endif // NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

Above, the comment NAMESPACEA INNERNAMESPACISOMECLASSIPPafter the finaktendif
helps to show the preprocessor structure in the file and guieh cases where otheifdef — or #if
structures are used.

This is a very minor amendment to Item 24/in [10].

5 Coding guidelines

Coding guidelines, unlike formatting guidelines, greatifjuence the meaning of C++ programs and
therefore require a high priority level. The book “C++ Caglftandards” [10] that this document is
primarily based on provides many good and important codindadines that should be followed and by
default all of the items in [10] are assumed in this documklet.e, we provide additional coding guidelines
and, in some cases, amend items in [10]. Where this documeitent, [10] is to be considered the
authoritative source for guidance. Some miscellaneousidments to the items in [10] are given in
Appendix G and D.

5.1 General coding guidelines (GCG)

Below several different general coding guidelines areudised. These guidelines affect software quality in
a major way and are not just a matter of personal preferensgyler.

Error handling

e GCG 1. UseTEST_FOREXCEPTI ON(. . .), TEUCHOS_ASSERT(. . .) and related macros for
reporting all errors, even developer programming errof®r developer errors, prefer to throw
exceptions derived frorstd::logic ~ _error instead of using thessert(...) macro as
recommended in [10, Item 68]. A “logic error” would be treditdifferently from a real run-time
error and would therefore come with different assumptidsmsuathe state of the object after the
exception was thrown. In particular, a “real error” (i.et pgst an internal developer error) should
always provide the basic guarantee to leave the object ifichstate [10, Item 71], while code that
throws a “logic error” cannot make any such guarantees iemgenTherefore, objects that throw
exceptions derived frorsid::logic ~ _error should generally be viewed as unusable and should be
deleted immediately. To debug exceptions, a break-poimbegplaced on function
TestForException _break() 2 which will be called just before an exception is thrown thgbuhese
macros. In the future, more sophisticated features likeraatically attaching a debugger or printing
the call stack may be added for some systems. Thereforeitig@m exception derived from
std:logic _error using these macros should be preferred to usinggbert(...) macro as it
gives us more control over what happens when one of these ofg@ogramming errors occurs.
Also, these exception macros make it much easier to gengetter error messages than what you
would get from a simple use of tlassert(...) macro.

Memory management

e GCG 2: Avoid the use of raw C++ pointers in all but the very speciadiwiturations The Teuchos
memory management approach described in [1] mentionesvhehich include all of the standard
C++ container classes (when using a checked STL implememyateuchos::Ptr
Teuchos::RCP , Teuchos::Array , Teuchos::ArrayRCP , andTeuchos::ArrayView allow all code
to be written without any explicit raw C++ pointers. In debmgde, these classes provide full
run-time checking that result in exceptions being throwa excellent error messages (i.e. instead of

2In gdb, a break-point would be set AsTestForException _break() .

segfaults). When a check C++ standard library is used (hgnuwGXXLIB_DEBUGSs defined with
g++), then all of the standard C++ library classes are cteeakewell.

GCG 3: Usest d: : stri nginstead ofchar * or const char *: While std::string is not
debug checked in a typical implementation, indexing anérmtimchecked operations with
std::string objects is much less common in numerical code and thereddess likely to result in
memory-usage errors inside of numerical code. Howevernwehehecked C++ library
implementation is used (e.g. whe®XXLIB_DEBUGSs defined with g++), thentd::string is very
safe.

GCG 4. UseTeuchos: : Pt r as function arguments and return types in the place of raw C++
pointers to single objects for non-persisting and semsisting associationg(see Tables|3 and 4):
The classTeuchos::Ptr simply takes the place of a raw pointer to a single objectbatways
default initialized to NULL. In debug mode, it throws exciepis when trying to dereference a null
pointer. Using this class helps to eliminate the need focking for NULL to avoid undefined
behavior when one dereferences a NULL pointer.

GCG 5: UseTeuchos: : RCPfor memory management of single dynamically allocatedatbjend
for handling persisting associationsee Tables|3 and 4): Replace all references to the class
boost::shared _ptr in all items in [10] withTeuchos::RCP .

GCG 6: Use non-member constructors for all reference-type classéorce dynamic allocation
returning strong owningeuchos: : RCP objects Using non-member constructors gives greater
flexibility in how a class object is initialized, simplifieké maintenance of the class, and makes the
debug-mode node tracing checking bullet-proof [1].

Non-member constructors take the form:

class SomeClass {
public:
Il No public constructors!

3 “

/I Non-member constructor
RCP<SomeClass> someClass(...);

GCG 7: Specify “generalized view” semantics for all views of abstrobjects Using “generalized
view” semantics leads to the greatest implementation fneednd the best performance in all cases;
abet with more strict usage patterns (see the “generaliesd design pattern in [1]).

If SomeBaseClass provides a view if itself a®art objects, then applying the generalized view
design pattern results in the interface functions:

class SomeBaseClass {

public:
virtual RCP<Part> getNonconstPart() = 0;
virtual RCP<const Part> getPart() const = 0;

10

The “generalized view” design pattern along with a concesi@mple from Thyra is described in
great detail in[1].

Note that views of concrete classes do not have to use “dereetaiew” semantics and can instead
use “direct view” semantics where appropriate. See all #tail$ about the “non-member
constructor” idiom in/[1].

GCG 8: UseTeuchos: : ArrayVi ewas function arguments and return types in the place of
pointers into raw arrays or other container classes for mmrsisting and semi-persisting
associations and where the array does not need to be resjged Tabless|3 and 4): This class allows
all of the useful capabilities of std::vector which do not include adding or removing entries. In
debug mode, all of the access functions (including itegatare fully checked. In optimized mode,
unchecked raw pointers are used and the only overhead ie argigment (which is usually passed
with raw pointers anyway).

GCG 9: UseTeuchos: : Array in place ofst d: : vect or as a contiguous general purpose data
container (see Tables|3 and 4): The primary reason toTesehos::Array instead of

std::vector is thatTeuchos::Array is part of the Teuchos system of memory management types
and results in stronger run-time checking. WHiteichos::Array ~ gets all of its real functionality

from std::vector , prefer to usd@euchos::Array as it provides more capabilities and portable
debug checking. For instandeuchos::Array::operator(] is range checked in debug mode
regardless whether there is an underling checked STL ingiéation or not (see [10, Item 83]). In
debug mode, the iterator is also run-time checked. In amdifieuchos::Array will automatically
convert into arTeuchos::ArrayView object safely when used in function calls and in debug mode,
will catch dangling references [1].

GCG 10: UseTeuchos: : ArrayRCP for memory management of dynamically allocated objects
stored in contiguous arrays of data and for persisting agggans involving contiguous arraygsee
Tables 3 and 4): Note thaeuchos::ArrayRCP does notake the place of a contiguous container
class such aSeuchos::Array . A Teuchos::ArrayRCP object cannot change the size of the array, it
can only provide for reference-counted sharing of an arfalata of fixed size and provide

sub-views of contiguous parts of the managed array. Allsstedata (both through
Teuchos::ArrayRCP::operator]] and iterators) is run-time checked in a debug build.

GCG 11 Always returnPt r , RCP, Ar r ay Vi ew, andAr r ay RCP smart pointer objects by value,
never by referencgsee Tables 5 and 6): Returning smart pointer objects hyevalcritical for
properly setting up the machinery for persisting and seensigting associations and to fully enabled
debug-mode checking [1].

GCG 12 Only return a raw C++ reference from a function for non-pestang associaitons and use
the reference and discard it in the same same stateniee¢ Tables 3 and 4): Raw C++ references
cannot be used to detect dangling references in a debug-buildeand therefore should only be
used for non-persisting associations [1].

GCG 13 Return onlyPt r andAr r ay Vi ewobjects by value to establish semi-persisting
associations; never use a raw C++ reference for a semi-jgérgj association(see Tables|3, 45,
and 6): Objects of typ€tr andArrayView are light-weight and efficient in a non-debug mode build
but are fully checked in a debug-mode build and therefore feaafe efficient code [1].

GCG 14: When raw C++ pointers must be exposed (i.e., due to intemtawiith non-compliant
code), minimize the amount of code exposed to the raw poMteen raw C++ pointers must be

11

exposed to communicate with other code that uses raw C++tgusjrencapsulate the raw C++
pointer as fast as possible and then only give up a raw pabtie last possible moment. For
example,

SomeForeignClass* get_raw_foreign_obj_ptr();
do_some_foreign_stuff(SomeForeignClass* foreign_obj_ ptr);

void foo()

{

Il Get the raw pointer into a proper encapsulated class objec t right away!
Ptr<SomeForeignClass> foreignObj(get_raw_foreign_obj _ptr());

Il Lots of code ...

Il Only expose the raw pointer directly in the foreign functi on call
do_some_foreign_stuff(&*foreignObj);

Object Control

e GCG 15: Accept user options at runtime througheuchos: : Par anet er Li st object by
deriving from theTeuchos: : Par anet er Li st Accept or interface The
Teuchos::ParameterList class provides many useful features that make it easy tpbauaser
options in a flexible and fully validated way (see Teuchosudoentation for more details). The
Teuchos::ParameterListAcceptor interface defines a consistent flexible protocol for setéind
managing a parameter list.

e GCG 16: Fully validate all parameters and sublists in accepleelichos: : Par anet er Li st
objects usingyal i dat ePamat er s(. . .) and other meansAll user parameters and sub-lists

passed in through Beuchos::ParameterListAcceptor should be fully validated. The main tool
for this is the member functiovalidateParameters(...) . Using this function and other other
approaches, when a user misspells a parameter or subskstthe wrong type for a parameter, or
provides an invalid parameter value, they will get an exoepthrown with a helpful error message.
Also, objects are only responsible for validating their quamameters and sub-lists, and not those of
other objects that they hold sub-lists for.

Object Introspection

e GCG 17: Always send output to some genesald: : ost r eamobject; Never send output directly
tostd:: cout orstd::cerr;Neverprintoutputwittprint(...) orprintf(...):
Sending output directly tetd::cout orstd::cerr destroys the flexibility of numerical software
and does not perform well in SPMD programs. Instead, produggut using one of the following
approaches.

Prefer to print output through &euchos: : FancyOSt r eamobject instead of through a bare
st d: : ost r eamobject to more easily produce indented formatted output
Teuchos::FancyOStream class object can wrap asyd::ostream object and helps to produce
structured indented output and to create more readabletntan SPMD program (even when
every processor produces output).

12

e Derive fromTeuchos: : Descri babl e and implement the functiomescri pti on() and
descri be() to allow clients to print the current state of an obje@he Teuchos::Describable
interface is the appropriate way to allow clients to prirg turrent state of an object in a flexible
way. The verbosity of the output is controlled by an inputrarparameter.

e Derive fromTeuchos: : Ver boseQbj ect and print to*t hi s- >get OSt r ean() to give
information about what an object is doin@lients can set the output stream and the verbosity level

through a parameter list (see theuchos::ParameterListAcceptor interface described above) or
can set them directly in code. If no output stream is set, then
Teuchos::VerboseObjectBase::getDefaultOStream() will be used.

e As a last resort, always prefer printing to
* Teuchos: : Ver bose(bj ect Base: : get Def aul t OSt r ean() instead ofst d: : cout or
st d: : cerr: The stream provided b§feuchos::VerboseObjectBase::getDefaultOStream()
is set up by default to do clean printing in an SPMD program ardalso be set up through a
Teuchos::CommandLineProcessor object to control how output is produced and formatted.

Miscellaneous coding guidelines

e GCG 18 Prefer to explicitly specify template arguments in a tertgofanction call to avoid
protability problems and enable implicit covnersions gfuhargumentsilf it is not too inconvenient,
then preferring to explicitly define the template argumemis template function call can massively
improve the portability of templated C++ code. For exami€hyra, every non-member function
is templated on th8calar type such as:

template<class Scalar>
sum(const VectorBase<Scalar> &x);

When portability is a concern or when implicit conversiongtie input arguments are needed, then
prefer to call such functions by specifying the templataiargnt(s) as:

Scalar mySum = sum<Scalar>(myVec);

e GCG 19 Use the template functioheuchos: : as<T_t o>(T_f r onm) for all conversion of value
data types that may result in loss of precision or in an inectrconversionThe templated C++
function Teuchos::as<T _to>(T _from) and the class specializations that it calls will contain
run-time tests, in debug mode, for the results of a conversi@nsure correctness. This includes the
conversion of strings into numbers (i.e. replacatgf() andatoi()) as well as conversions that
can result in loss of precision or meaning (suchl@able toint ,long int toint ,int tochar,
unsigned int toint , etc.). The optimized implementations of these converiiactions are
typically unchecked for speed. A version this function vihadways does run-time checking is also
available called’euchos::asSafe<T _to>(T _from) in order to validate user data.

Justification Unchecked conversions are the result of many differergsyaf errors and a fully safe
program needs to be able to check all such potentially urtgafeersions at run-time. The implicit
conversion rules allowed in C which where carried over to Can result in very unsafe code.

e GCG 20: Use namespace enclosure for the definition of C++ class menibae member functions
of a class should be defined in the same order as their decteatnd should generally be defined
within a namespace enclosure. For example, given the d¢iciarof

13

/I SomeNamespace_SomeClass.hpp
namespace SomeNamespace {
class SomeClass {

public:
void someFunc();

b

} /I namespace SomeNamespace

the safest and tersest ways to define the member functiohe Bource file is

/I SomeNamespace_SomeClass.cpp
namespace SomeNamespace {

void SomeClass::someFunc()

{
-

} /I namespace SomeNamespace

Justification Using the namespace enclosure insteadwsfry namespace SomeNamesapce
directive insures that you can never accidentally provitalzer definition for some other class
member function in another namespace. Explicit namespaaigigation is not needed since if one
misspells any part of the prototype, then the compiler \88Lie an error message.

e GCG 21 Use explicit namespace qualification for the definition bhahmember C++ functions
For example, for the nonmember function prototype

/I SomeNamespace_someFunc.hpp
namespace SomeNamespace {
void someFunc(const int data);

} /I namespace SomeNamespace

the safest way to define the nonmember function is

/I SomeNamespace_someFunc.cpp

14

void Thyra::someFunc(const int data)

{
-

Justification Using explicit namespace qualification avoids problemspafiling and other mistakes
that can accidentally result in the definition of a new fumetj9, Section 8.2]. Such a mistake is
caught at link time but it can be very hard to figure out the mantse of the problem when this
happens.

GCG 22 For general functions, prefer to list function argumentgtie order of input, input/output,
output, and finally optional arguments with default vatueesr example:

void someFunc(
const T1 &argl, II' Input
const Ptr<T2> &arg2, /I Input/Output
const Ptr<T3> &arg3, /' Output
const int argd = 0 /I Optional input argument with defualt val ue

);

This ordering of arguments is only a general suggestion &$eaat ordering of arguments may be
chosen based on other criteria. See Section 5.2 for a désorgf the use of th@tr class.

GCG 23 For non-member object functions, list the object as the éirgument passed in as a const
reference or non-const referendeor example:

void someModifyingFunc(
SomeClass &obj,
const int argl,

)

void someNonModifyingFunc(
const SomeClass &obj,
const int argl,

);
Note that in the case abmeModifyingFunc(...) , the output argument is listed first instead of
after the input argument(s) which breaks typical conventibhaving input/output arguments (which
all objects that are modified are) come after input argumeithdsvever, this is more consistent with
established convention such as in Python and other langwelgere theself argument is always the

first explicit (or implicit) argument. Note that this is alassituation where a non-const reference
argument makes the most sense.

GCG 24: Preferenuns tobool s as formal function arguments when conversion mistakes are
likely: While the built-in typebool is very convenient to use as a formal function argumentst al
allows for conversions from every built-in type and everynper type. While using an enumeration
type and its values is more verbose, it is also self documegrand is safer. For example, what does
the third argument mean in the following example?

15

apply(A, 2.0, true, x, y);

When thebool argument is changed to an enum, the function call becomes:

apply(A, 2.0, USE_TRANSPOSE, x, y);

and the meaning is much more clear. Therefore, when selfdetation and compile-time safety
are important, prefer to define and wsems overbool s as formal function arguments (see [7,
Section 12.6]).

GCG 25: Avoid overloading virtual functiongOverloaded virtual functions cause sever portability
problems with many compilers and result in shadowing waysithat are elevated to errors in may
systems [8, Item 33].

GCG 26: Avoid overloading functions on different smart pointerayge.g.RCP, Pt r , etc.)
Overloading functions on different smart pointer typeghsasRCPor Ptr can create ambiguous
function calls that will not happen when using raw C++ paisiter references [1]. Therefore, keep
the names of the functions different such as shown below.

void nonconstFoo(const RCP<A> &a);
void foo(const RCP<const A> &a);

GCG 27: Include only standard C++ headersc X>, not standard C headersX. h>, and avoid all
usi ng nanespace st d directives Only include the C++cX> versions of the standard C
<X.h> headers. For example, includemath> , <cstdlib> , and<cassert> instead okmath.h> ,
<stdlib.h> , and<assert.h> . Avoid all uses ofusing namespace std directives and instead
prefer explicit namespace qualification suclstassqrt or using declarations such asing
std::sqrt only within function definitions. See [9, Section 16.1.2] focomplete list of the
standard C++ versions of the standard C headers.

Justification See Appendix D for a clarification of Item 59 in [10] dealingtlwthe issue ofising
declarations and directives.

GCG 28 Break up templated code into four fil8enmeCl ass_decl . hpp,

Somred ass_def. hpp, Somed ass. hpp,andSoneCl ass. cpp to support both implicit and
explicit instantiation, minimize recompilation, and ad@roblems in mutually dependent (i.e.
circular) declarations Breaking up templated C++ code into the four files

SomeClass|[_decl, _def].[hpp,cpp] (as described below) allows for a portable and bullet-proof
solution to handing templated C++ code which allows for ajtaaled explicit or implicit template
instantiation, b) minimization of first-time compilation) minimization of recompilations, and d)
handling of any and all types of circular dependency in datiiens and definitions (same as are
allowed with non-templated C++ code).

As an example, consider three clasaeB, andC whereA andB refer to each other and whe@dhas
no chance of being involved in a circular reference invajirandB. The four files

AJ _decl, _def].[npp,cpp] for classA as well as the fil&_decl.hpp are shown below (the other
files for classB are similar):

16

II' Ahpp

#include "A_decl.hpp"

#ifndef HAVE_THYRA_EXPLICIT_INSTANTIATION
include "A_def.hpp"

#endif

/I A_decl.hpp

#ifndef A_DECL_HPP
#define A_DECL_HPP

#include "B_decl.hpp" // Only include decl in case of circul
#include "C.hpp" /I No chance of cicular ref

namespace Thyra {

template<class Scalar>
class A {
pubic:
void doSomething(const B<T> &b) const;

private:
RCP<C<T> > c_;
3

} /I namespace Thyra

#endif // A_DECL_HPP

/I B_decl.hpp

#ifndef B_DECL_HPP
#define B_DECL_HPP

namespace Thyra {
template<class Scalar> class A; // Forward only due to circu

template<class Scalar>

class B {
pubic:

void doSomething(const A<T> &a) const;
I3

} /I namespace Thyra

#endif // B_DECL_HPP

17

ar ref

lar refl

II' A_def.hpp

#ifndef A_DEF_HPP
#define A_DEF_HPP

#include "B.hpp" // Must include for implicit instant to wor
namespace Thyra {

template<class Scalar>
void A::doSomething(const B<T>& b)

b.doSomething(*this);
}

} /I namespace Thyra

#endif // A_DEF_HPP

I A.cpp
#include "A_decl.hpp" /I Helps test header sufficiency
#ifdef HAVE_THYRA_EXPLICIT_INSTANTIATION

#include "A_def.hpp"
#include "Teuchos_ExplicitinstantiationHelpers.hpp"

k!

namespace Thyra {TEUCHOS_CLASS_TEMPLATE_INSTANT_SCALR_TYPES(A)}

#endif // HAVE_THYRA_EXPLICIT_INSTANTIATION

General client code alwayscludes theéA.hpp form of the file without regard for whether implicit or
explicit instantiation is enabled or not (i.e. whetl#&VETHYRAEXPLICIT _INSTANTIATION is

defined or not defined).

The 100% bullet-proof rules for breaking up template cokie this are:

— All header-like declarations that would go into an ordinaon-template.hpp header file go
into SomeClass _decl.hpp including class declarations and inline function defimigo

— All implementation code that would go into an ordinary nemplate*.cpp source file go into
SomeClass _def.hpp including class member definitions and non-member funaifinitions.

— Always includeSomeOtherClasss _decl.hpp in theSomeClass _decl.hpp file if there is any
chance that a circular dependency may exist between theypes$omeOtherClasss and
SomeClass . Otherwise, if there is no chance of a circular dependenee ttine header
SomeOtherClasss.hpp should be included (instead of the possikdecl.hpp form). If the
two classes are in different libraries then there is no chari@ circular type dependency

(because well designed software does not allow this [6]).
— If SomeClass _decl.hpp includesSomeOtherClass _decl.hpp

, thenSomeClass _def.hpp

must includeSomeOtherClass.hpp . This is needed in order for implicit instantiation to work

correctly.

18

— The header fil&omeClass.hpp is designed to be included by general clients and either
includes onlySomeClass _decl.hpp or also includesomeClass _def.hpp depending on if
implicit or explicit instantiation is being used. When egjilinstantiation is being used the file
SomeClass _def.hpp is hidden from general clients and changes in it do not requir
recompilation of client code. The filkomeClass.hpp can (and should) be automatically
configured by the CMake build system (see examples in thg/@slakeLists.txt).

— All required instantiations must be provided in the SlemeClass.cpp . For standard scalar
types (e.gdouble , float , std::complex<double> , std::complex<float> , etc.) the
standard macrdEUCHOSCLASS TEMPLATEINSTANT_SCALARTYPES(...) is provided which
is set at configure time to determine the desired/requirgticixinstantiations. More general
instantiations can also be performed by defining a macroarithSomeClass _def.hpp file
and then instantiating this macro using the helper macro
TEUCHOSVACROTEMPLATEINSTANT_SCALARTYPES(...) (See examples from real Thyra
source code).

If one follows the above guidelines, one will never have adelgacy ordering problems with
templated code. The partitioning the template code intddahefiles

SomeClass|[_decl, _def].[hpp,cpp] gives template code all the desirable compilation properti
of non-template code. That is, changes to the implementafiS8omeClass only require the
recompilation of the source filtomeClass.cpp and not any other source files. Also, the amount of
code that a C++ compiler has to see to compile any singdp file is much less when explicit
instantiation is enabled and this can massively speed ugifitre compilation. Overall, explicit
instantiation can massively speed up first-time compitaéind later recompilations as code is
modified.

5.2 Specification of data members and passing and returningogects from functions

The guidelines for specifying local variables and data mensilpassing objects to and from functions, and
returning objects from functions given in [1] are summadire Tables 1-6. In general, it is assumed that
arguments passed through the smart pointer tpesRCR ArrayView , andArrayRCP are non-null by
default. If the argument is allowed to be null, then that nhestiocumented in the Doxygé¶m field

for that argument.

19

Class Data Members for Value-Type Objects

Data member purpose

\ Data member declaration \

non-shared, single, const object

const S' s _;

non-shared, single, non-const object

S s

non-shared array of non-const objects

Array<S> as _;

shared array of non-const objects

RCP<Array<S> > as

non-shared statically sized array of non-const objecisple<S,N> as _;

shared statically sized array of non-const objects | RCP<Tuple<S,N> > as _;

shared fixed-sized array of const objects

ArrayRCP<const S> as _;

shared fixed-sized array of non-const objects ArrayRCP<S> as _;

Table 1. Idioms for class data member declarations for value-type ob

jects.

Class Data Members for Reference-Type Objects

Data member purpose

\ Data member declaration

non-shared or shared, single, const object

RCP<const A> a _;

non-shared or shared, single, non-const ob

REP<A> a;

non-shared array of const objects

Array<RCP<const A> > aa _;

non-shared array of non-const objects

Array<RCP<A> > aa _;

shared fixed-sized array of const objects

ArrayRCP<RCP<const A> > aa _;

... (const ptr)

ArrayRCP<const RCP<const A> > aa

shared fixed-sized array of non-const objec

tArrayRCP<RCP<const A> > aa _;

..." (const ptr)

ArrayRCP<const RCP<const A> > aa

Table 2. Idioms for class data member declarations for referenpesy

objects.

20

Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \ Formal Argument Declaration \

single, non-changeable object (required s or const S s or const S &s
single, non-changeable object (optionalyonst Ptr<const S> &s
single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuiags
(Use cases not covered by reference semantics used fortypks

| Argument Purpose

\ Formal Argument Declaration

array of non-changeable objeq

tgonst ArrayRCP<const S> &as

array of changeable objects

const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as rg Args

(Use cases not covered by reference semantics used fortypks

| Argument Purpose

\ Formal Argument Declaration

array of non-changeable obje

gtsonst Ptr<ArrayRCP<const S> > &as

array of changeable objects

const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objestas Func Args

(Use cases not covered by reference semantics used fortypks

Argument Purpose

Formal Argument Declaration

array of non-changeable objeq

tgonst Ptr<ArrayView<const S> > &as

array of changeable objects

const Ptr<ArrayView<S> > &as

Table 3. Idioms for passing value-type objects to C++ functions.

21

Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

donst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Pitr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu€bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objedtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vaft) Objects as Func Args

| Argument Purpose

| Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Ptr<RCP<A> > &a

array of non-changeable objegtsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

Table 4. Idioms for passing reference-type objects to C++ functions

22

Returning Non-Persisting Associations to Value Objects
Purpose | Return Type Declaration

Single copied object (return by value) | S

Single non-changeable object (requiredjonst S&

Single non-changeable object (optionalPtr<const S>
Single changeable object (required) | S&

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks
Purpose | Return Type Declaration |
Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks
Purpose | Return Type Declaration |

Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Table 5. Idioms for returning value-type objects from C++ functions

23

Returning Non-Persisting Associations to Reference (or fae) Objects

| Purpose | Return Type Declaration |
Single cloned object RCP<A>
Single non-changeable object (requiredjonst A&
Single non-changeable object (optionalpPtr<const A>
Single changeable object (required) | A&
Single changeable object (optional) | Ptr<A>

Array of non-changeable objects

ArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)bjects

| Purpose

| Return Type Declaration |

Single non-changeable object

RCP<const A>

Single changeable object

RCP<A>

Array of non-changeable objectsAr

rayView<const RCP<const A> >

Ar

Array of changeable objects

rayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Re

turn Type Declaration \

Single non-changeable object

Ptr<const A>

Single changeable object

Ptr<A>

Array of non-changeable objec

ISArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Table 6. Idioms for returning reference-type objects from C++ func-

tions.

24

6 Formatting of source code

At the minimum, source code should be formatted consistavithin a single file or a set of tightly

coupled files [10, Item 0]. Ideally, source code should benfitted consistently enough across a code
project so as not to cause undue difficulty in shared mainnand in performing code reviews [7]. Some
consistency in formatting helps and to facilitate multiplenership and shared development of a collection
of software, such as in Extreme Programming (XP) [2] (seeefpiix E for an outline of the arguments for
adopting a consistent code formatting style). By “fornrmegjtiwe generally refer to the use of white-space
in the line-to-line formatting of the program or in the oriter of lines of code such that the meaning of the
program to the compiler is unchangethe handling of indentation styles can largely be autorffatédch
allows individual developers to work with any style they weblike for files that they create but also makes
it easy for developers to edit files created by other devesoared keep to their styles as well. Appendix F
gives some guidelines for how individuals should conduetrteelves where more than one code
formatting style is in use within a project.

Our main goal in this section is to try to provide reasonabtmmendations for those formatting issues
that are largely a matter of style and personal preferentattibe same time affect the overall readability
of the code and promote pair programming and joint ownershgnde [2]. The formatting and indentation
guidelines presented here are largely consistent withetb@mnmendations in [7, Chapter 31] and try to
reduce the amount of “right drift” that can occur with somencoon formatting and indentation styles.

The indentation guidelines outlined below can be largelpmatically supported by Emacs and are used
by the custom style “thyra” defined in the Emacs package fi-I'eh;z[a-sters.. Other custom styles can
also be added to this file and used as well. Any of these stglede listed in each source file and therefore
anyone using Emacs can automatically use a particular iatien style without having to fight the editor

to manually reformat code to abide by a foreign style.

6.1 General formatting source code principles (FSCP)
Some general principles of good formatting, based on thmudgson in [7, Section 31.1], are:

e FSCP 1 Formatting should accurately and consistently show the&kdgstructure of the coddt is
somewhat subjective what formatting styles “show the lalgstructure” of code but McConnell
makes some good arguments for some styles over others. ldgvitas up the group of
programmers to decide as a group what style items “show tiedbstructure”.

e FSCP 2 Formatting should improve the readability of the code forstq@eople There are specific
studies cited in [7, Chapter 31] that provide good evidengaréfer some styles over others.

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for those
modifications performed by automated todhanging one line of code should not require changes
to other lines of code to maintain the formatting style.

SWhile technically changing the name of a class, functionasiable changes the meaning of a program, if name changes are
done in such a way as to avoid name collisions, then namingetions also do not affect the meaning of the program and are
therefore very much related to other formatting issues sgdhe treatment of “white-space”.

4Emacs supports multiple file-specific formatting styles@sr+ and tools like Artistic Style [4] can format source filesrf
the command line. A flavor of thé editor may also support indentation styles.

5SeeTrilinos/packages/thyralemacs/README for a description of the “thyra” Emacs style

25

e FSCP 4 Formatting style should follow the most common idiom untegsof the above principles
are violated When there is no good technical argument for one formasigig choice over another,
then the style choice that is the most common should bePudeis is not advocated per-say in [7,
Chapter 31] but it is a good idea in general to follow poputboins when there are several equally
good choices and therefore the decision is arbitrary. Heweawt selecting a single style choice can
create artificial complexity in the code from irregularityformatting.

6.2 Specific guidelines for formatting source code (FSC)

Below, specific recommendations are spelled out that trypidarm to common practices but also try to
avoid excessive “right drift”:

e FSC 1 The formatting style in any single file or group of closehated files should be the same
Consistent formatting includes the placement of bracesntimber spaces to indent etc.
Justification This is recommended in [10, Item O].

e FSC 2 Try to keep all text within the first 80 character columKgeping most of the source code
within the first 80 character columns helps to make the code meadable and helps to facilitate
side-by-side two-column editing and comparisons of soaozke. Most of the style and indentation
guidelines described below help to avoid code that exteagsrd the 80th column too rapidly.
Justification “Studies show that up to ten-word text widths are optimaleige tracking” [10, Item
0]. Also, some developers are still stuck with 80 column wieninals.

e FSC 3 Indent with spaces and not tabs (two spaces by defaliti® amount of spaces to use per
indentation level is up to the individual developer but aseintation of onlytwo spacess
recommended (and is set in the ‘Emacs ‘thyra” indentatiglestA study showed that an
indentation offset of two-to-four spaces was optimal faleoeading comprehension [7, Section
31.2]. Whatever indentation amount is used, it should baistent in at least each source and header
file [10, Item 0] (which can be enforced using a custom Emadsrnitation style). Emacs by default
will put in a tab when the tab-width is equal to the number dfeintation spaces. Emacs can be told
to always use spaces instead of tabs by setting:

(setq indent-tabs-mode nil)

in the indentation style (as is done in the “thyra” style).wéwer, it is easy to support different
preferences for the amount of spaces to indent by using ede$eed indentation style for Emacs
(sorryvi users).

Justification “Some teams legitimately choose to ban tabs ... when nistige indenting into
out-denting and non-denting.” [10, Item 0].

e FSC 4 Use two vertical spaces to separate class declarationgtium definitions, namespace
enclosure bounds, and other such major entries in a file

Justification Using two black spaces is preferable to long lines with séitiee like -’ or '=" or other
separators and they clearly separate the entities and sisg @amaintain (see [7, Section 31.8]).

6The measure of the commonality of a particular style chome lse determined according to a local software development
community or the larger developer community.

26

e FSC 5 Do not indent source code inside of namespace enclosusdgsanh use commented end
braces Indenting for namespace enclosures results in unnegessal in some cases excessive,
indentation. Instead, for example, use:

namespace MyNameSpace {

namespace MylnnerNamespace {

class SomeClass {.};

void someFunc(...) {..}

} /I namespace MylnnerNamespace

} /I namespace MyNameSpace

Above, note that two vertical blank lines are used betweeh efthe major entities (see above
item).

Justification While indentation within namespaces is helpful in sma#draple code fragments, it
provides little help in showing namespace structure in meadistic code. The use of commented
end braces is generally sufficient to show namespace steuaid will not result in excessively
indented code. In addition, typically, each file will onlyrtain code from one (or more nested)
namespace and therefore indenting for namespaces praoodeseful information. Not indenting for
namespace enclosures is also consistent with the “anei*kth, and the “linux” styles as defined by
Artistic Style [4].

e FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming before
pr ot ect ed members coming befop i vat e members and indented as shown in Figure 1

Justification This ordering of sections and data members is quite commoBdction 31.8]. Above,
we show private member functions after private data mendiece private data members are more
prominent and more common in the class implementationsdtaprivate member functions. Also,
private types (where typedefs are most common) must bel lstéore they are used in the
declaration of the private data members. Note that pubfiegyused in public member functions
must be listed above (or at least forward declared) bef@@tiblic member functions that use them.

e FSC 7. List short function prototypes on one line and longer prgpeis on multiple lines, indenting
arguments one unitBelow, guidelines for formatting short function protoggand long prototypes
are given. These guidelines seek to produce function ymstthat are fairly tight (i.e. not too
much white-space explosion), are robust to modificationd,keep code inside of the 80th character
column. This indentation style can (and should) also beiegpb function definitions and function
calls.

— List short function prototypes on one line if possitfi®r example,

ReturnType someFunction(int arg = 0);

27

class SomeClass {
Il Friends
friend void foo();
friend class SomeOtherClass;
public:
Il Public types
typedef int integral_type;
/I Public member functions
void funcl();
protected:
Il Protected member functions
void func2();
private:
Il Private types
typedef std::vector<int> int_array t;
Il Private data members

int datal ;
int_array_t arrayl ;

/I Private member functions

void func3();

Figure 1. Example of suggested layout of a C++ class declaration com-
plete with ordering of sections, indentation, and line spgc

28

or

ReturnType someFunction(int arg=0);

or some other style for white-space within ’(...)" but theeapg (' should come directly after
the function name in all cases.

For longer prototypes, indent arguments on continuatioedi one unitFunction prototypes
that cannot approximately fit on a single line in the first 8@releter columns should have the
function arguments listed starting on the second line with onit of indentation (e.g. two
spaces) from the function return type and function name ke example, several different
valid formats for a longer function prototype are:

ReturnType someFunction(
int argl,
bool arg2,
const ArrayView<double> &arg3,
const std::string &argd = "

);

or

ReturnType someFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std::string &argd = "

);

or

ReturnType someFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std::string &argd = ");

or

ReturnType someFunction(int argl, bool arg2,
const ArrayView<double> &arg3, const std::string &argd = " ")

As shown above, the function arguments can be listed separat different lines, or in groups
on sets of lines. The arguments can begin on the same line &g + function name line or
can start on the next line. The ending parenthesis ')’ carappn the same line as the last line
of arguments or can appear alone on the last line. Other terana possible also and can be
appropriate in different situations.

Justification See [7, Section 31.1].

Return types can be listed on same line as the function natesauithe line is too longA
function prototype’s return type should appear on the sameedls the function name unless it is
excessively long and would result in the return type + fusrctiame line to extend past the
80th character column. When the return type + function nanted long, then it can be listed
on separate lines with no indent, for example, as:

29

Teuchos::RCP<ReturnType>
someVeryLongAndVerylmportantFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std:string &argd = "

);

However, listing the function return type on a separate éwen in cases of shorter prototypes
is also okay.

e FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of those
entities For example, one should order the definitions of a set oftfans the same as the ordering
of the declarations. Maintaining the ordering of definis@nd declarations makes the code more
readable and more maintainable. For example, if the functefinitions are ordered the same as the
declarations, it can be easy to spot that a function definianissing (i.e. which could be the cause
of the link error that you are seeing).

e FSC 9 Use “modified K&R” or “ANSI” style for the placement of bracesd indentation of control
structures Two basic styles of brace placement and indentation inrobstructures are recommend
here. The first general style is a modification of the K&R J&jevhere the brace comes
immediately after the control statement on the same line/stas:

/I Modified K&R Style (recommended)
if (someCondition) {

}

else {

}
Note that the pure K&R style (for example, as defined by AdiStyle [4]) shown as:

/I Pure K&R Style (*NOT* recommended)
if (someCondition) {

} else {
=

is not recommended. Even through pure K&R style meets McE€lBsistrict pictorial definition of
“emulation of pure block style” (i.e. the equivalent to piteck format such as in Visual Basic)
which he says is good, he actually recommends the above ed#&R style (as do we since we
feel it is more readable).

The second general style that is recommended is the “AN$IE[d] where the opening brace begins
flush on the next line from the control statement shown as:

/I ANSI Style (recommended)
if (someCondition)

{

30

else

Both the modified K&R and the ANSI styles help to avoid righiftdiThe modified K&R style
creates tighter code vertically and seems to be preferredany communities and authors but
variations of the ANSI style are also very common. Note thatANSI style seems to have a distinct
advantage in cases where the control statement is contouggdnultiple lines. For example, the
modified K&R style with line continuations looks like:

/I Modified K&R Style with line continuations (*NOT* recomm ended)
if (someLongCondition &&

anotherVeryLongCondition &&

theLongestConditionThatWillFitOnOneLine) {

Il Statements

and it is hard to argue that this shows the logical structfimde. One could argue that the ANSI
style which looks like:

/I ANSI Style with line continuations (recommended)

if (someLongCondition &&
anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine)

{

/I Statements

better shows the logical structure of the code in clearlasspng the control structure logic from the
inner block of code.

Note that while the modified K&R style meets McConnell’'s sieg of “showing the logical
structure of code” where he refers to it as “emulating puoeki! format that he cites the ANSI
styles as violating this principle [7, Section 31.1]. Howg\it is somewhat subjective what styles
“show the logical structure” and McConnell himself seemsdatradict himself at times (see the
formatting of if/else statements below).

When choosing between one of these styles, try to be consatéeast within a single file.
However, for control statements that extend over a singks prefer the “ANSI” style.

Below, the application of the modified K&R style and the AN8/las are shown in the context of
several different types of C++ loop and control structures.

— Formatting if/else if/else statement&/hen applied to if statements, the two recommended
styles are:

31

/I Modified K&R Style (recommended)
if (someCondition) {

}

else if (someOtherCondition) {

}

else {

}

and:

/I ANSI Style (recommended)
if (someCondition)

{
-

else if (someOtherCondition)

— Formatting switch/case statemenishe two recommended formats for switch/case statements
are:

/I Modified K&R Style (recommended)
switch (someEnumValue) {
case ENUM_VALUEL:

break;
case ENUM_VALUEZ2:

break;

default:
TEST_FOR_EXCEPT("Should never get there!");
}
and

/I ANSI Style (recommended)
switch (someEnumValue)

{
case ENUM_VALUEL:
break;
case ENUM_VALUEZ2:

32

break;
default:
TEST_FOR_EXCEPT("Should never get there!");

As shown above, every switch structure should haslefault case that throws an exception
(see “use the default clause to detect errors” in [7, Sedttof]).

Also, if needed, the case blocks can be wrapped in braces as:

/I Modified K&R Style (recommended)
switch (someEnumValue) {
case ENUM_VALUEL: {

break;
}
case ENUM_VALUE2: {

break;
}
default: {

TEST_FOR_EXCEPT("Should never get there!");

}
}

and

/I ANSI Style (recommended)
switch (someEnumValue)

{
case ENUM_VALUEL:

{

break;
}
case ENUM_VALUEZ2:

{

break;
}

default:

{
TEST_FOR_EXCEPT("Should never get there!");

}
}

— Formatting for and while loopsThe two recommended styles for formatting for loops are:

/I Modified K&R Style (recommended)
for (inti=0;i< size; ++i) {

}

33

and:

/I ANSI Style (recommended)
for (inti=0;i< size; ++)

{
-

Note that line continuations are often needed for a for lampgrol structure, especially if long
type names or variable names are used. In these cases, tHes#Ss more highly
recommended as:

/I ANSI Style (recommended)

for (
std::vector<SomeVeryLongClassName>::const_iterator i tr = longVarName.begin();
itr != someLongVariableName.end();
+Htr)

{
-

Similarly, while loops should be formatted as:

/I Modified K&R Style (recommended)
while (someCondition) {

}

or:

/I ANSI Style (recommended)
while (someCondition)

{
-

34

7 Doxygen documentation guidelines

In this section, a set of reasonable guidelines are statedrfting Doxygen (and plain old) documentation
for classes, functions, etc. that makes the specificatiear dlut is not too verbose or hard to maintain.
While other types of higher-level documentation are alsdee such as design documents and tutorials,
guidelines for these other types of higher-level docuntamiare not covered here.

7.1 General principles for function and class level documeation (DOXP)

e DOXP 1: The level of documentation should vary depending on theipeme and/or the role of
the software entity or collectioimportant interfaces or widely disseminated concretesea or
functions require an appropriate level of precise docuatent. Concrete implementations that are
less widely disseminated can provide less (or none in sosesg®oxygen documentation if the
implementation code itself is sufficiently easy to underdtaHowever, major parts of an
implementation should have at least some plain old (i.e-oxygen) documentation to describe
the basics of what is going on.

DOXP 2: Important abstract interfaces must be fully specified irhelent of any single concrete
implementation (i.e. preconditions, postconditionsaimants, etc.) In the case of important abstract
interfaces, the full specification of behavior for the coiapl objects (i.e. invariants, preconditions,
postconditions) must be clearly stated [10, Item 69]. Ins@ases, this must be done completely
within the Doxygen documentation for the interface. In otteses, standard unit testing code can be
used to help specify the behavior of the interface. In famtppiled and verified unit testing code
may be superior to standard Doxygen documentation sine@itat be ignored and cannot become
invalid. On the other hand, it may be difficult for readers tde through unit testing code to find the
specification of behavior and therefore both Doxygen docuat®n and unit testing code should be
used to provide the fullest benefit. Also, Doxygen docum@niecan automatically include bits and
pieces of compiled and tested code using\t@tinclude and related Doxygen commands.

DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or other higher-level documentation @reconditions, postconditions,
invariants, etc.) This item is an amendment to the above item as a special ca4eskr” interfaces.
A "user” could be someone that simply writes client code wittierface or one that provides
implementations of the interface or both. User’s shouldbeoéxpected to study unit testing code to
figure out the preconditions and/or postconditions for afiom call.

DOXP 4: Wrong documentation is (almost) worse than no documemtati@ll: Documentation

must be maintained as code is changed and therefore exzxessimnecessary documentation that is
not rigorously maintained degrades the overall qualityaafec However, documentation with small
errors is generally better than no documentation at all.

DOXP 5: The same documentation should not be repeated in more tteplace if possibleWe
should strive for a single source for documentation for aityeand not repeat the same
documentation over and over again. This is critical to ingbat the documentation can be
successfully maintained.

DOXP 6: The documentation should maintain itself as much as pesaitdl be testable as much as
possible Any significant fragments of code that are shown in the Dexygenerated HTML

35

documentation should come from compiled and tested code.ciih be accomplished by using the
\dontinclude or related Doxygen command to read in code fragments auicatigt In this way,
the compiler and our test suite can be used to help verifydde ragments in our Doxygen
documentation.

7.2 Specific Doxygen documentation principles (DOX)

Now that some of the general goals for our Doxygen documientaiave been presented, more detailed
guidelines are given below.

e DOX 1: Write Doxygen documentation directly in header files witbutoented entities/Nriting
Doxygen documentation comments directly attached to tesels, functions and other entities helps
make the documentation as tightly tied to the code as pes@bk “Keep comments close to the
code they describe” in [7, Section 32.5]). This has the unfate side-effect of requiring complete
recompilations whenever documentation is modified but tlegall benefits are usually worth the
disadvantages. Note that the Doxygen documentation catmipeesl out of Doxygen-generated
hyper-linked versions of the code, leaving clean C++ codbawit the clutter of detailed
documentation. Therefore, developers should browse Deneggnerated source code instead of the
source code directly when looking at the code and perforrogatg reviews.

e DOX 2: Use a centralized set of definitions for common argumentsiexres possibleUse clear and
consistent naming of arguments in multiple functions (imitine same class and across as many
classes and functions as makes sense) and provide a aadrdéfinition of these arguments if
possible to avoid repeating detailed descriptions in eadividual function’s documentation. This
helps to avoid duplicate documentation that is likely ndbéamaintained correctly. In the case of
classes, this means providing some common definitions im#ia “detailed” documentation
section for the class. In the case of nonmember functiorsnight involve a common Doxygen
group or module (i.e. using thelefgroup command) for the set of functions. In the case of
collections of nonmember functions, it may be difficult tgpegt readers to find the common
definitions, but links to the common documentation are pbssising a variety of approaches.

e DOX 3: Provide typical pre- and postconditions along with the doemtation for common
arguments whenever possibleor common arguments that are shared among many functlefisg
the most common preconditions for them in a central placesandl listing them on a
function-by-function basis unless they change for an iiddial function. For a C++ class, place
descriptions for these common arguments in the main classndentation under gsection named
“Common Function Arguments and Pre/Postconditions”. miyude preconditions for these
arguments in specific function documentation sectionsisfdifferent from the most common
preconditions.

e DOX 4: Add a\br i ef description for every entity that should be seen by the:uBlee \ brief
field is used to provide the short one-line documentatiangsthat is included in the function
summary section of classes, groups, namespaces etc. EwveteXt documentation is
needed/wanted, add an empty

[** \orief . */
void someFunction();

36

[** \brief Apply the linear operator to a multi-vector : <tt> Y =

* alpha*op(M)*X + beta*Y</tt>.

*

* \param M_trans [in] Determines whether the operator is app lied or the
* adjoint for <tt>op(M)</tt>.

*

* \param X [in] The right hand side multi-vector.

* \param Y [infout] The target multi-vector being transform ed. When

* <tt>beta==0.0</tt>, this multi-vector can have uninitia lized elements.

*

* \param alpha [in] Scalar multiplying <tt>M</tt>, where <t t>M==*this</tt>.

* The default value of <tt>alpha</tt> is </tt>1.0</tt>

* \param beta [in] The multiplier for the target multi-vecto ro<tt>Y</tt>.
* The default value of <tt>beta</tt> is <tt>0.0</tt>.

* <h>Preconditions:
* <tt>nonnull(this->domain()) && nonnull(this->ran ge()</tt>

* <tt>this->opSupported(M_trans)==true</tt> (thro w
* <tt>Exceptions::OpNotSupported</tt>)

* <tt>X.range()->isCompatible(*op(this)->domain()) == true</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)

* <tt>Y->range()->isCompatible(*op(this)->range()) == true</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)

* <tt>Y->domain()->isCompatible(*X.domain()) == tr ue</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)

* <Ji> <t>Y</tt> can not alias <tt>X</tt>. It is up to the cli ent to

* ensure that <tt>Y</tt> and <tt>X</tt> are distinct since i n general this
* can not be verified by the implementation until, perhaps, i t is too late.
* |If possible, an exception will be thrown if aliasing is dete cted.

*

*

* <p>Postconditions:

* Is it not obvious? After the function returns the muilti -vector <tt>Y</tt>
* is transformed as indicated above.

* <ful>

*

void apply(

const EOpTransp M_trans,

const MultiVectorBase<Scalar> &X,
const Ptr<MultiVectorBase<Scalar> > &Y,
const Scalar alpha,

const Scalar beta

) const;

Figure 2. Example of more complete doxygen documentation for a
function. 37

comment so that Doxygen will include the class, functiomtbier entity in the HTML
documentation. Note that this is important when the Doxygmmfiguration optiofEXTRACTALL is
set toNQ

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments uretion; do
not define partia\par amfield lists All arguments should be listed iyparam fields with at least the
[in], [out], or [in/out] specifications and these should éat least a very short description. Or, if the
function arguments are clear and trivial (and/or have diydseen defined in the common
documentation section), then param fields for any of the arguments should be included at all. If
any of the arguments in a function’s documentation aredigte param fields then all arguments
should be listed inparam fields.

DOX 6: Only add a\r et ur ns field if necessary and if so refer to the return object as
returnVal : Don't add a\returns description of the return value if it is already clearly sfied

in the\brief description of the function. However, if the nature of thiure value is at all complex,
then include areturns field to describe it. When referring to the return objectereb it as
returnVal . By consistently using the identifiegturnVal for the return value, user’s will
immediately know what this is referring to.

DOX 7: Prefer specifying postconditions for output argumentsirt\par amfield; otherwise
specify their postconditions in the ’postconditions’:li§he postconditions for output arguments can
be listed directly in theparam field for the argument if they only involve just that argumana

fairly simple way. Otherwise, if the postconditions are moomplex or involve multiple arguments
in order to specify, then they can be listed in the postcamuiitlist. It may be difficult to objectively
determine the best place to list the postconditions for dpudargument.

DOX 8: Order the documentation fields in function documentatiohlas ef , \par am

Preconditions, Postcondition§r et ur ns, then detailed documentation; omitting those components
that do not apply A consistent ordering of sections of documentation forrecfion makes it easier

for readers to find what they are looking for.

DOX 9: If possible, try to us&r el at es to associate nonmember functions with a single cldss
nonmember function is most closely related to a single cthes use th&relates field to cause

the documentation for the function to be listed with the eéssdocumentation. This makes it easier
for readers to find out everything that they can do with a obdgsct (or set of class objects) just by
looking at a single HTML page and a single summary list of fioms (which includes member and
nonmember related functions).

DOX 10: Provide detailed documentation for only the initial deetaon of a virtual function Only
provide detailed documentation of the initial declaratidra virtual function in the class where it is
first defined agirtual . In general, documentation should not be included for thesrales of
virtual functions in derived classes. Doxygen automdiigallits in a link to the original virtual
function in the base class so readers are just one click asvaseging the detailed documentation.
Always add an empty

[** \brief . */
void someFunction();

comment for every class and every function that should Headied in the HTML documentation but
where no text documentation is wanted or needed.

38

e DOX 11: Aggregate the overrides of virtual functions into groupsading their base clasg-or
example, the overrides of the virtual functions for Treechos::ParameterListAcceptor
interface would look like:

class SomeClass : public Teuchos::ParameterListAcceptor
public:

[** \name Overriden from Teuchos::ParameterListAccpetor

la{

** \brief . */

void setParameterList(
Teuchos::RCP<Teuchos::ParameterList> const& paramList

[\brief . */

Teuchos::RCP<Teuchos::ParameterList> getParameterLis

** \brief . */

Teuchos::RCP<Teuchos::ParameterList> unsetParameterL

[\brief . */

Teuchos::RCP<const Teuchos::ParameterList> getParamet

** \brief . */

Teuchos::RCP<const Teuchos::ParameterList> getValidPa

la}

*/

t0);
ist();
erList() const;

rameters() const;

e DOX 12: Example source code used in Doxygen-generated and othmas fof documentation should
be extracted automatically from code that is compiled astetknightly Any significant fragment of
example code that is shown in Doxygen HTML documentation latex document needs to come
from compiled and tested code that can be updated autoithatithese C++ code fragments can be
selectively inserted automatically into Doxygen docuragah using thé dontinclude ~ Doxygen
command.

e DOX 13: Sample output should be generated automatically from deshpind tested codé&le
output included in Doxygen documentation should be geedratitomatically by the test harness
code and should be written to files that are included in thecgodirectory. The sample output in
these files can then be inserted into the Doxygen HTML doctmtien automatically using the

\verbinclude

39

Doxygen command. Similar approaches can also be used éardacumentation.

[1]

[2]

[3]

References

R. A. Bartlett. Teuchos C++ memory management clasgeanis, and related topics: The complete
reference (a comprehensive strategy for safe and efficientary management in C++ for high
performance computing). Technical report SAND2010-2Z3hdia National Laboratories,
Albuguerque, New Mexico 87185 and Livermore, Californi®5d, 2010.

Kent Beck. Extreme Programming Explained: Embrace Changddison-Wesley Professional,
2000.

Kent Beck and Cynthia Andregxtreme Programming Explained: Embrace Change (2nd Huitio
Addison-Wesley Professional, 2004.

[4] T. Davidson and J. Pattee. Artistic style 1.2@p://astyle.sourceforge.net

[5]

[6]
[7]
[8]
[9]
[10]

Lockheed Martin. Joint strike fighter air vehicle c++ @ogl standards for the system development and
demonstration program. Technical report 2RDU00001 Revdackheed Martin Corporation, 2005.

R. Martin. Agile Software Development (Principles, Patterns, andcBcas) Prentice Hall, 2003.

S. McConnell.Code Complete: Second EditioMicrosoft Press, 2004.

S. Meyers.Effective C++: Third Edition Addison Wesley, 2005.

B. Stroustrup.The C++ Programming Language, special editioiddison-Wesley, New York, 1997.

H. Sutter and A. AlexandrescC++ Coding Standards: 101 Rules, Guidelines and Best Pcasti
Addison Wesley, 2005.

40

A Summary of guidelines
NC (Naming conventions)

e NC 1: Capitalize C++ class and struct names 8eneCl ass.
e NC 2: Capitalize C++ namespace names @gneNaneSpace.

e NC 3: C++ enum type names should begin wittas ESome Enumand enum values should use all
caps and scope context SOVE_ENUM VAL UE.

e NC 4: C++ object instance identifier names should begin with a Ioease letter asoneObj ect .

e NC 5. C++ class data member names should begin with a lower-caser land end with an
underscore asoneDat aMenber _.

e NC 6: C++ function names should begin with a lower-case lettesasreFuncti on(...).

e NC 7: Name C++ pure abstract base clas€isobBase, default implementation base classes
Bl obDef aul t Base, and default concrete implementation clasBe$ aul t TypeABI ob.

e NC 8: Prefer to name const and non-const access functiomggea#art () and
get Nonconst Part () , respectively

NOSF (Naming and organization of source files)

e NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h (C header),
and=*. ¢ (C source)

e NOSF 2 Include only one major C++ class with supporting code perderaand source file with
name(sNaneSpaceA.l nner Namespace_Soned ass. [hpp, cpp] .

e NOSF 3 Use internal include guards in all header files
GCG (General coding guidelines)

e Error handling

— GCG 1: UseTEST_FOR EXCEPTI ON(. . .), TEUCHOS_ASSERT(. . .) and related
macros for reporting all errors, even developer programgn@rrors

e Memory management

— GCG 2 Avoid the use of raw C++ pointers in all but the very speciedisiturations
— GCG 3. Usest d: : stringinstead ofchar * orconst char

— GCG 4 UseTeuchos: : Pt r as function arguments and return types in the place of raw
C++ pointers to single objects for non-persisting and sgraisisting associations

41

— GCG 5. UseTeuchos: : RCPfor memory management of single dynamically allocated
objects and for handling persisting associations

— GCG 6: Use non-member constructors for all reference-type ciasséorce dynamic
allocation returning strong owningeuchos: : RCP objects

— GCG 7. Specify “generalized view” semantics for all views of abstrobjects

— GCG 8 UseTeuchos: : ArrayVi ewas function arguments and return types in the place of
pointers into raw arrays or other container classes for mmrsisting and semi-persisting
associations and where the array does not need to be resized

— GCG 9 UseTeuchos: : Array in place ofst d: : vect or as a contiguous general
purpose data container

— GCG 10 UseTeuchos: : Arr ayRCP for memory management of dynamically allocated
objects stored in contiguous arrays of data and for pensgsssociations involving contiguous
arrays

— GCG 11 Always returnPt r , RCP, Ar r ay Vi ew, andAr r ay RCP smart pointer objects by
value, never by reference

— GCG 12 Only return a raw C++ reference from a function for non-pestang associaitons and
use the reference and discard it in the same same statement

— GCG 13 Return onlyPt r andAr r ay Vi ewobjects by value to establish semi-persisting
associations; never use a raw C++ reference for a semi-gérgj association

— GCG 14 When raw C++ pointers must be exposed (i.e., due to intanfperith non-compliant
code), minimize the amount of code exposed to the raw pointer

e Object Control

— GCG 15 Accept user options at runtime througfieuchos: : Par anmet er Li st object by
deriving from theTeuchos: : Par anet er Li st Accept or interface

— GCG 16 Fully validate all parameters and sublists in accepted
Teuchos: : Par anet er Li st objects usingral i dat ePamat er s(. ..) and other
means

e Object Introspection

— GCG 17 Always send output to some genesald: : ost r eamobject; Never send output
directly tost d: : cout orstd: : cerr;Never print output withprint (...) or
printf(...).

x Prefer to print output through &euchos: : FancyOSt r eamobject instead of through
a barest d: : ost r eamobject to more easily produce indented formatted output

x Derive fromTeuchos: : Descri babl e and implement the functions
description() anddescri be() to allow clients to print the current state of an
object

x Derive fromTeuchos: : Ver boseObj ect and print to*t hi s- >get OSt r eanm() to
give information about what an object is doing

x As a last resort, always prefer printing to
*Teuchos: : Ver bose(bj ect Base: : get Def aul t OSt r ean() instead of
std::cout orstd::cerr.

42

e Miscellaneous coding guidelines

GCG 18 Prefer to explicitly specify template arguments in a tertgofanction call to avoid
protability problems and enable implicit covnersions giuharguments

GCG 19 Use the template functioheuchos: : as<T_t o>(Tf r om) for all conversion of
value data types that may result in loss of precision or inraorrect conversion

GCG 20 Use namespace enclosure for the definition of C++ class menbe

GCG 21 Use explicit namespace qualification for the definition éhahmember C++
functions

GCG 22 For general functions, prefer to list function argumentshie order of input,
input/output, output, and finally optional arguments witfallt values

GCG 23 For non-member object functions, list the object as the firgtment passed in as a
const reference or non-const reference

GCG 24 Preferenuns tobool s as formal function arguments when conversion mistakes are
likely.

GCG 25 Avoid overloading virtual functions

GCG 26. Avoid overloading functions on different smart pointereyge.g.RCP, Pt r , etc.)

GCG 27 Include only standard C++ headersc X>, not standard C headersX. h>, and

avoid allusi ng nanmespace st d directives

GCG 28 Break up templated code into four fil8enmeC ass _decl . hpp,

SoneCl ass_def . hpp, SoneC ass. hpp,andSonmeCl ass. cpp to support both implicit
and explicit instantiation, minimize recompilation, angb@d problems in mutually dependent
(i.e. circular) declarations

FSCP(General principles for formatting of source code)

e FSCP 1 Formatting should accurately and consistently show the&kdgstructure of the code

e FSCP 2 Formatting should improve the readability of the code forstrfzeople

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for those

modifications performed by automated tools

e FSCP 4 Formatting style should follow the most common idiom untegsof the above principles

are violated

FSC (Specific source code formatting principles)

FSC 1 The formatting style in any single file or group of closehated files should be the same
FSC 2 Try to keep all text within the first 80 character columns
FSC 3 Indent with spaces and not tabs (two spaces by default)

FSC 4 Use two vertical spaces to separate class declarationstim definitions, namespace
enclosure bounds, and other such major entries in a file

43

FSC 5 Do not indent source code inside of namespace enclosusdsainh use commented end
braces

FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming before
pr ot ect ed members coming befop i vat e members and indented as shown in Figure 1

FSC 7: List short function prototypes on one line and longer prgpais on multiple lines, indenting
arguments one unit

— List short function prototypes on one line if possible

— For longer prototypes, indent arguments on continuatioeedi one unit

— Return types can be listed on same line as the function natasaithe line is too long

FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of those
entities

FSC 9 Use “modified K&R” or “ANSI” style for the placement of bracesd indentation of control
structures

DOXP (Goals for function and class level documentation)

DOXP 1: The level of documentation should vary depending on theipeme and/or the role of
the software entity or collection

DOXP 2: Important abstract interfaces must be fully specified irhelent of any single concrete
implementation (i.e. preconditions, postconditionsamants, etc.)

DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or other higher-level documentation @reconditions, postconditions,
invariants, etc.)

DOXP 4: Wrong documentation is (almost) worse than no documemntatiall.
DOXP 5: The same documentation should not be repeated in more treplace if possible

DOXP 6: The documentation should maintain itself as much as pesaitdl be testable as much as
possible

DOX (General Doxygen documentation principles)

DOX 1: Write Doxygen documentation directly in header files witbutoented entities
DOX 2: Use a centralized set of definitions for common argumentai@xes possible

DOX 3: Provide typical pre- and postconditions along with the doemtation for common
arguments whenever possible

DOX 4: Add a\bri ef description for every entity that should be seen by the.user

44

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments uretion; do
not define partial\ par amfield lists

DOX 6: Only add a\r et ur ns field if necessary and if so refer to the return object @$ ur nVval .

DOX 7: Prefer specifying postconditions for output argumentseirt\par amfield; otherwise
specify their postconditions in the ’postconditions’.list

DOX 8: Order the documentation fields in function documentatiohbas ef , \par am
Preconditions, Postcondition§r et ur ns, then detailed documentation; omitting those components
that do not apply

DOX 9: If possible, try to us&r el at es to associate nonmember functions with a single class
DOX 10: Provide detailed documentation for only the initial deelaon of a virtual function
DOX 11: Aggregate the overrides of virtual functions into groupsa@ding their base class

DOX 12: Example source code used in Doxygen-generated and othmas fof documentation should
be extracted automatically from code that is compiled astetk nightly

DOX 13: Sample output should be generated automatically from dechpind tested code

45

B Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting
Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes
| Array class | Specific use case \
Array<T> Contiguous dynamically sizable, expandable, and coriibtecirrays
Tuple<T,N> | Contiguous statically sized (with si2g arrays

Equivalencies for const protection for raw pointers and Tewhos smart pointers types

| Description | Raw pointer | Smart pointer |
Basic declaration (non-const obj)| typedef A* ptr _A RCP<A>
Basic declaration (const obj) typedef const A* ptr _const _A | RCP<const A>
non-const pointer, non-const objecptr _A RCP<A>
const pointer, non-const object | const ptr _A const RCP<A>
non-const pointer, const object | ptr _const _A RCP<const A>
const pointer, const object const ptr _const _A const RCP<const A>

Summary of operations supported by the basic Teuchos smartqginter types
Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Raw pointer-like functionality
Implicit conv derived to base
Implicit conv hon-const to const
Dereferenceperator*()
Member accesgperator->()
operator{](i) X
operatorst+, -- , +=(i) , -=(i)
Other functionality
Reference counting machinery X
Iterators: begin(), end() X X
ArrayView subviews X X

X | X | X | X
XX | XX

X | X[X[X]|X

x

Basic implicit and explicit supported conversions for Teutios smart pointer types

| Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Implicit conv derived to base X X
Implicit conv non-const to const X X X X
const _cast X X X X
static _cast X X
dynamic _cast X X
reinterpret _cast X X

46

Class Data Members for Value-Type Objects

Data member purpose

| Data member declaration |

non-shared, single, const object

const S s _;

non-shared, single, non-const object

S s

non-shared array of non-const objects

Array<S> as _;

shared array of non-const objects

RCP<Array<S> > as _;

non-shared statically sized array of non-const objecisple<S,N> as _;

shared statically sized array of non-const objects

RCP<Tuple<§,N> > as _;

shared fixed-sized array of const objects

ArrayRCP<const S> as

shared fixed-sized array of non-const objects

ArrayRCP<S> as

Class Data Members for Reference-Type Objects

Data member purpose \

Data member declaration

non-shared or shared, single, const object

RCP<const A> a _;

non-shared or shared, single, non-const ob

eREP<A> a;

non-shared array of const objects

Array<RCP<const A> > aa

non-shared array of non-const objects

Array<RCP<A> > aa _;

shared fixed-sized array of const objects

ArrayRCP<RCP<const A> > aa

“..." (const ptr)

ArrayRCP<const RCP<const A> > aa

shared fixed-sized array of non-const objec

tArrayRCP<RCP<const A> > aa _;

“...” (const ptr)

ArrayRCP<const RCP<const A> > aa

47

Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

donst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Ptr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu€bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objedtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vaft) Objects as Func Args

| Argument Purpose

| Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Ptr<RCP<A> > &a

array of non-changeable objegtsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

48

Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \ Formal Argument Declaration

single, non-changeable object (required s or const S s or const S &s

single, non-changeable object (optionalyonst Ptr<const S> &s

single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuags

(Use cases not covered by reference semantics used fortypks)
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objedtsonst ArrayRCP<const S> &as
array of changeable objects | const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as lrg Args
(Use cases not covered by reference semantics used fortypks)
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objeatsonst Ptr<ArrayRCP<const S> > &as
array of changeable objects | const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objegias Func Args
(Use cases not covered by reference semantics used fortypks

Argument Purpose Formal Argument Declaration

array of non-changeable objeqgtsonst Ptr<ArrayView<const S> > &as

array of changeable objects | const Ptr<ArrayView<S> > &as

49

Returning Non-Persisting Associations to Reference (or ae) Objects

Purpose \ Return Type Declaration

Single cloned object RCP<A>

Single non-changeable object (requiredjonst A&

Single non-changeable object (optionalpPtr<const A>

Single changeable object (required) | A&

Single changeable object (optional) | Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)bjects

| Purpose | Return Type Declaration |
Single non-changeable object | RCP<const A>
Single changeable object RCP<A>

Array of non-changeable objectsArrayView<const RCP<const A> >

Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Return Type Declaration |
Single non-changeable object | Ptr<const A>
Single changeable object Ptr<A>

Array of non-changeable objectsArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Non-Persisting Associations to Value Objects

Single copied object (return by value) | S

Single non-changeable object (requiredjonst S&

Single non-changeable object (optionalPtr<const S>

Single changeable object (required) | S&

Purpose | Return Type Declaration

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks

Purpose \ Return Type Declaration

Array of non-changeable objectsArrayRCP<const S>

Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
(Use cases not covered by reference semantics used fortypks

Purpose \ Return Type Declaration

Array of non-changeable objectsArrayView<const S>

Array of changeable objects ArrayView<S>

50

Conversions of data-types for single objects

.getRawPtr () AVOID THIS!

<Derived> to <Base> |

|
. ! operator* () I
<T> to <const T> 1 _| RCP<T> | _-Operator™() N T& :
| O -7 |
: ptr() ot -7 :
et? -~

re-- | .o@ /// |
<Derived> to <Base> i v 3 //// :
<T> to <const T> ' _ | Ptr<T> T* la—|

[

.getRawPtr () AVOID THIS!

Legend

<<implicit conversion>>
______________________ 5

<<explicit conversion>>

Conversions of data-types for contiguous arrays

RCP<std::vector<T> >

N
N_arcp(.) r--=---4
Y v | <T> to
_______ > | <const T>
RCP<Array<T> > -~ ArrayRCP<T> |-
- T ~
L/ y ‘- 9€tRawPtr ()\

o)
~ \D@be
~ St
~

fal
0T et U T e g N
S = TRy o
—~ \\A
D i i
-
Array<T> ArrayView<T> |7 ..
N A ! <const T>
- Tuple<T,N>
.:vector<T>

Legend

<<implicit view conversion>>

<<implicit copy conversion>>

<<explicit copy conversion>>

51

Most Common Basic Conversions for Single Object Types

| Type To | Type From | Properties | C++ code

RCP<A> A* Ex, Ow rep(a -p) 1]

RCP<A> A* Ex, NOw rcp(a _p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)

RCP<A> A& Ex, NOw rcpFromUndefRef(a)

RCP<A> Ptr<A> Ex, NOw, DR | rcpFromPtr(a)

RCP<A> boost::shared _ptr<A> | Ex, Ow, DR | rcp(a _sp)

RCP<const A> RCP<A> Im, Ow, DR | RCP<const A>(a _rcp)

RCP<Base> RCP<Derived> Im, Ow, DR | RCP<Base>(derived _rcp)

RCP<const Base> RCP<Derived> Im, Ow, DR | RCP<const Base>(derived _rcp)

boost::shared _ptr<A> | RCP<A> Ex, Ow, DR | shared _pointer(a _rcp)

A* RCP<A> Ex, NOw a_rcp.getRawPtr() 3

A& RCP<A> Ex, NOw *a_rcp 4

Ptr<A> A* Ex, NOw ptr(@ -p) 2

Ptr<A> A& Ex, NOw outArg(a) B

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp.ptr()

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp()

Ptr<A> RCP<A> EXx, NOw, DR | ptrFromRCP(a _rcp)

Ptr<const A> Ptr<A> Im, NOw, DR | Ptr<const A>(a _ptr)

Ptr<Base> Ptr<Derived> Im, NOw, DR | Ptr<Base>(derived _ptr)

Ptr<const Base> Ptr<Derived> Im, NOw, DR | Ptr<const Base>(derived _ptr)

A* Ptr<A> Ex, NOw a_ptr.getRawPtr() 3

A& Ptr<A> Ex, NOw *a _ptr) 4

A* A& Ex, NOw gal3

A& A* Ex, NOw *a _p‘3
Types/identifiersA* a_p; A& @, Ptr<A> a _ptr ; RCP<A> arcp ; boost::shared _ptr<A> a _sp;

Properties: Im = Implicit conversion, Ex = Explicit convins, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection (NOTE: All conuwessare shallow conversions, i.e. copies pointers not
objects.)

1. Constructing an ownin@®CPfrom a raw C++ pointer is strictly necessary but must be doitk great care
according to the commandments in Appen@tx

2. Constructing a non-owningCPor Ptr directly from a raw C++ pointer should never be needed iryfodm-
pliant code. However, when inter-operating with non-caamil code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation ghoever be necessary in compliant code but
may be necessary when inter-operating with external caze$gctior??).

4. Exposing a raw C++ reference will be common in compliant cadteshould only be used for non-persisting
associations.

5. See other helper constructors for pas$imgdescribed in Sectiof?.

52

Most Common Basic Conversions for Contiguous Array Types

| Type To | Type From | Properties | C++ code (or impl function)
ArrayRCP<S> St Sh, Ex, Ow arcp(s -p,0,n) 1
ArrayRCP<S> St Sh, Ex, NOw arcp(s -p,0,nfalse) 2
ArrayRCP<S> Array<S> Sh, Ex, NOw, DR| arcpFromArray(s _a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR| arcpFromArrayView(s _av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s _av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR | arcp(s _a_rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR | arcp(cs _a_rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR | ArrayRCP::operator()()
St ArrayRCP<S> Sh, Ex, NOw s_arcp.getRawPtr() 3
S& ArrayRCP<S> Sh, Ex, NOw s_arcp[i] 4
ArrayView<S> St Sh, Ex, NOw arrayView(s _p,n) 1
ArrayView<S> Array<S> Sh, Im, NOw, DR| Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR| Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s _v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR| ArrayRCP::operator()()

ArrayView<const S>

const Array<S>

Sh, Im, NOw, DR

Array::operator ArrayView()

ArrayView<const S>

const Tuple<S>

Sh, Im, NOw, DR

Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs _v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR| ArrayRCP::operator ArrayView()
St ArrayView<S> Ex, NOw s_av.getRawPtr() 3
S& ArrayView<S> Ex, NOw s_av[i] 4

Array<S> St Dp, Ex Array<S>(s _p,s _p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s _v)
Array<S> ArrayView<S> Dp, Im Array<S>(s _av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s _t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s _arcp());
std::vector<S> Array<S> Dp, Ex s_a.toVector();

St Array<S> Ex, NOw s_a.getRawPtr() 3
S& Array<S> Ex, NOw s_ali] 4

Types/identifiersS* s _p;
std:vector<S> s v;

ArrayView<S> s _av; ArrayRCP<S> s _arcp ; Array<S> s _a;
RCP<Array<S> > s _a_rcp; RCP<const Array<S> > ¢s _a_rcp ;

Tuple<SN> s _t;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling egfees not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references notssue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointen mnaningArrayRCP object directly. Instead, use
the non-member constructancp<S>(n)

2. Constructing a non-owningrrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operatinghwiton-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed

3. Exposing a raw C++ pointer should never be necessary in ganmmode but may be necessary when inter-
operating with external code (see Sectki).

4. Exposing a raw C++ reference will be common in compliant cdogieshould only be used for non-persisting
associations.

53

C Summary of “C++ Coding Standards” (CPPCS) with amendments

Below, the 101 items in “C++ Coding Standards” by Sutter afekAndrescu [10] are listed along with
items that are amended or invalidated in the Thyra codindadimes. General amendments that apply to all
items are:

e Replacerl:shared _ptr with Teuchos::RCP
e Replacestd::vector with Teuchos::Array

e Replaceassert(someTest) with TEUCHOSASSERT(someTest)

Organizational and Policy Issues:

Item O : Don't sweat the small stuff. (Or: Know what not to standaed)
[Amended, see Section|6 and Appendix E]

Iltem 1 : Compile cleanly at high warning levels
Item 2 : Use an automated build system.

Item 3 : Use a version control system.

Item 4 : Invest in code reviews

Design Style:

ltem 5 : Give one entity one cohesive responsibility.

Item 6 : Correctness, simplicity, and clarity come first.

Item 7 : Know when and how to code for scalability.

Item 8 : Don't optimize prematurely.

Iltem 9 : Don’t pessimize prematurely.

Item 10 : Minimize global and shared data.

Item 11 : Hide information.

Item 12 : Know when and how to code for concurrency.

Item 13 : Ensure resources are owned by objects. Use explicit RAllsamart pointers.

Coding Style :

Item 14 : Prefer compile- and link-time errors to run-time errors.
Item 15 : Use const proactively.

Item 16 : Avoid macros.

Item 17 : Avoid magic numbers.

Item 18 : Declare variables as locally as possible.

Item 19 : Always initialize variables.

Item 20 : Avoid long functions. Avoid deep nesting.

54

Item 21 : Avoid initialization dependencies across compilatiofitsin

Item 22 : Minimize definitional dependencies. Avoid cyclic depencies.

Item 23 : Make header files self-sufficient.

Item 24 : Always write internal #include guards. Never write extrfiinclude guards

Functions and Operators :

Item 25 : Take parameters appropriately by value, (smart) poioteigference.
[Amendedby Section 5.2]

Item 26 : Preserve natural semantics for overloaded operators.

Item 27 : Prefer the canonical forms of arithmetic and assignmeataiprs.

Item 28 : Prefer the canonical form of ++ and —. Prefer calling thdipferms.

Item 29 : Consider overloading to avoid implicit type conversions.

Item 30 : Avoid overloading '&&’,’

, or’; (comma).
Item 31 : Don't write code that depends on the order of evaluatiorun€fion arguments.

Class Design and Inheritance:

Item 32 : Be clear what kind of class you're writing.

Item 33 : Prefer minimal classes to monolithic classes.

Item 34 : Prefer composition to inheritance.

Item 35 : Avoid inheriting from classes that were not designed to &selclasses.

Item 36 : Prefer providing abstract interfaces.

Item 37 : Public inheritance is substitutability. Inherit, not &use, but to be reused.
Item 38 : Practice safe overriding.

Item 39 : Consider making virtual functions nonpublic, and publiadtions nonvirtual.
Item 40 : Avoid providing implicit conversions.

Item 41 : Make data members private, except in behaviorless agg®e(@-style structs).
Item 42 : Don't give away your internals.

Item 43 : Pimpl judiciously.

Item 44 : Prefer writing nonmember nonfriend functions.

Item 45 : Always provide new and delete together.

Item 46 : If you provide any class-specific new, provide all of thenstard forms (plain, in-place,
and nothrow).

Construction, Destruction, and Copying :

Item 47 : Define and initialize member variables in the same order.

Item 48 : Prefer initialization to assignment in constructors.

Item 49 : Avoid calling virtual functions in constructors and destiors.

Item 50 : Make base class destructors public and virtual, or preteahd nonvirtual.

55

Item 51 : Destructors, deallocation, and swap never fail.

Item 52 : Copy and destroy consistently.

Item 53 : Explicitly enable or disable copying.

Item 54 : Avoid slicing. Consider Clone instead of copying in basessks.

Item 55 : Prefer the canonical form of assignment.

Item 56 : Whenever it makes sense, provide a no-fail swap (and peavicbrrectly).

Namespaces and Modules

Item 57 : Keep a type and its nonmember function interface in the ssameespace.

Item 58 : Keep types and functions in separate namespaces unlgssréhgpecifically intended to
work together.

Item 59 : Don't write namespace usings in a header file or before arldtie.
[Amended, see Appendix D]

Item 60 : Avoid allocating and deallocating memory in different nubes.
[Invalidated, see Appendix D]

Item 61 : Don't define entities with linkage in a header file.

Iltem 62 : Don't allow exceptions to propagate across module boueslar
[Invalidated, see Appendix D]

Item 63 : Use sulfficiently portable types in a module’s interface.
[Invalidated, see Appendix D]

Templates and Genericity :

Item 64 : Blend static and dynamic polymorphism judiciously.
Item 65 : Customize intentionally and explicitly.

Item 66 : Don’t specialize function templates.

Item 67 : Don’t write unintentionally nongeneric code.

Error Handling and Exceptions :

Item 68 : Assert liberally to document internal assumptions andriiants
Item 69 : Establish a rational error handling policy, and followtitictly.
Item 70 : Distinguish between errors and non-errors.

Item 71 : Design and write error-safe code.

Item 72 : Prefer to use exceptions to report errors.

Item 73 : Throw by value, catch by reference.

Item 74 : Report, handle, and translate errors appropriately.

Item 75 : Avoid exception specifications.

STL: Containers :

Item 76 : Use vector by default. Otherwise, choose an appropriattaoeer.

56

Item 77
Item 78
Item 79
Item 80
ltem 81
Item 82

. Use vector and string instead of arrays.

: Use vector (andtring::.c _str) to exchange data with non-C++ APIs.

. Store only values and smart pointers in containers.

. Preferpush _back to other ways of expanding a sequence.

. Prefer range operations to single-element operations.

: Use the accepted idioms to really shrink capacity andyestise elements.

STL: Algorithms :

Iltem 83

: Use a checked STL implementation.

[Amended With GCC, configure Trilinos witfrilinos _ENABLECHECKEDSTL=ON

Item 84
Item 85
Item 86
Item 87
Item 88
Item 89

Type Safety :

Item 90
ltem 91
Item 92
Item 93
Item 94
Item 95
Item 96
Item 97
Item 98
Item 99

. Prefer algorithm calls to handwritten loops.

. Use the right STL search algorithm.

. Use the right STL sort algorithm.

: Make predicates pure functions.

. Prefer function objects over functions as algorithm anthjgarer arguments.
. Write function objects correctly.

. Avoid type switching; prefer polymorphism.

: Rely on types, not on representations.

. Avoid usingreinterpret _cast .

. Avoid usingstatic _cast on pointers.

: Avoid casting away const.

: Don’t use C-style casts.

: Don’t memcpy or memcmp non-PODs.

: Don’t use unions to reinterpret representation.

: Don'’t use varargs (ellipsis).

: Don't use invalid objects. Don't use unsafe functions.

Item 100 : Don't treat arrays polymorphically.

57

D Miscellaneous amendments to “C++ Coding Standards”

In this appendix, some of the amendments mentioned in App&itb some of the items in [10] are
discussed in more detail.

D.1 Amendments to items related to compiler/linker incompaibilities

There are three items in [10] that relate to portability pealis associated with mixing and matching code
in different binary libraries compiled with different C+emmpilers or with different compiler options. In
this context, the authors use the term “module” to mean desiitlyary or a set of libraries containing
simiarly compiled binary object code.

In general, one can not assume that object code compileddgitwore different C++ compilers will

work together since the name-mangling needed for typelisii@ge is not even specified by the ISO C++
standard. A more typical problem is when the same compilesésl, but different compiler and/or linker
options are used. For example, some compilers allow youtosiupport for exception handling on and off
and if an exception is thrown by one module it will not be haaldtorrectly by another module that has
exception handling support turned off. A similar problenm ¢@ppen when mixing static and shared
libraries, in Linux for example, where RTTI is handled difatly and can result in dynamic casting
failures in cases where it would otherwise succeed.

In our model of software deployment, we distribute souragecand a build process that users can
manipulate in order to set the exact compiler and linkeramstito match what is used by other libraries and
the application code that uses the libraries. Because waaeelass libraries, it is simply not realistic to
isolate this type of code into libraries with small “Facadgie interfaces that are advocated in [10].

The specific items that we consider inappropriate are:

e Item 60: Avoid allocating and deallocating memory in diéfier modules
e Item 62: Don'’t allow exceptions to propagate across modwlerularies

e Item 63: Use sufficiently portable types in a module’s irstesf

All three of these items are related to the problem of mixingeccreated by different compiler and/or
linker options. However, they may also be related to mixedleage programming. For example, in order
to ensure that your module is the most reusable, you mighteige C-compatible interface that allows
clients coding in C (and even Fortran 77 in some cases) t@ndlbe called by your module. If mixed
language programming is the issue, then a spegiain "C" interface should be created for the module
which will automatically satisfy Items 60, 62, and 63. Ndtattreference counting machinery in tReP
andArrayRCP classes actually solves the problem of calliegy anddelete in different modules that is
described in Item 60 because the deallocator object thistdedte is create and assigned in the same
module wheraew is called which guarantees that they are consistent.

58

D.2 Amendments for 'using’ declarations and directives

In [10, Item 59], the authors say to never put 'using’ dedlare into header files or befo#include s and
that 'using namespace SomeNamespace’ directives arefigiafe for code in source files after all
#include s. However, we will argue that:

e employingusing declarations to inject names of C++ classes or enums fronmamespace into
another is perfectly safe (this is more lax than what is sstggein [10, Item 59])

e employing ausing namespace SomeNameSpace directive in any context is harmful and should be
avoided (this is more restrictive than what is suggested, [tem 59]).

However, we agree that employinging declarations for nonmember functions is dangerous andis to
avoided because of problems related to overloading and at arider overloads are declared and used (as
described in [10, Item 59]) .

Are all using declarations employed in header files dang&dn [10, Item 59], the authors clearly show
that employing 'using’ declarations for nonmember funatiogs dangerous because of overloading. But
what about employing 'using’ declarations for C++ classas @ther types?

To investigate the issues involved, consider the follovtmgC++ program (in the file
NamespaceClassUsinglssues.cpp):

/1
/! Header-like declarations
/1l

#include <iostreanr
#include <cstdlib>

namespace Namespacef

template<class T
class A{
public:
explicit A(const T& a) : a(a) {}
void print(std::ostream &os) consf 0s << "\na=<<a.<<"\n"; }
private:
T a_;

b
+ /1 namespace NamespaceA

/l/ Add a using declaration to inject 'A’ into another namespa
namespace NamespaceB using NamespaceA::A;}

I/l Now use the A class without namespace qualification in MapaceB
namespace NamespaceB

A<double> foo(std::ostream &os, const<Ant> &aa);

59

+ I/l namespace NamespaceB

I/l Create another A class in the global namespace. With cane, should
/I not have any problems with this and our code should not bdeafed by
/Il the presence of this class.
template<class T
class A{
public:

explicit A(const T& a) : a(a)

{ std::cerr<< "\nOh no, called ::A::A(...)A\n”"; std::exit(1l); }

void print(std::ostream &os){ 0s << "\na=<<a.<<"\n"; }
private:
T a_;
}

/I See what happens when you define another class A in Nante§avhich
/!l conflicts with the using declaration! This should not bdleawed and
/!l should be caught by the compiler!

#ifdef SHOWDUPLICATE_.CLASSA
namespace NamespaceB

template<class T
class A{
public:
explicit A(const T& a) : a(a)
{ std::cerr<< "\nOh no, called ::A::A(...)\n”"; exit(l); }
void print(std::ostream &os){ 0s << "\na=<<a.<<"\n"; }
private:
T a_;

b
+ I/l namespace NamespaceB

#endif // SHOWDUPLICATE.CLASS A

/1
/!l Implementations
/1

/I Define function in NamespaceB without namespace quaddiion for class A
NamespaceB ::Adouble>
NamespaceB :: foo(std::ostream &os, constiAt> &aa)
{
A<double> ab(2.0);
aa.print(std::cout);
ab.print(std::cout);
return ab;

I/ NOTE: Above, we need explicit namespace qualificationrfohe return

Il type ’'NamespaceB ::Adouble>" since we use namespace qualification to
/I define nonmember functions (see Thyra coding guidelines Without this

60

/!l namespace qualification, the global class ’'::A’ would lessumed and
/! you would get a compilation error. However, within the fation , which
/1 is in the scope of NamespaceB, we don’t need namespace ifulcdtions!

/1

/!l User’s code. This code does not typically live in a namespa(or is
[/l in another unrelated namespace). Here, some explicit espace

I/l qualification and using declarations will be required tavoid

/I ambiguities.

/11

int main()

{

#if defined (SHOWMISSING_.USING.DECL)
/!l Here, no using declaration is provided. This will resuln ithe
/!l global class '::A’ being used below which will result in aompiler
/!l error when the NamespaceB::foo (...) function is calledThis is a
/I feature!

#elif defined (SHOWERRONEOUSUSING.DIRECTIVE)
I/l Here we try to just inject all of the names from NamespaceAtd the
/!l local scope. However, this will result in the names ’'NamaseA::A’
[/l and ’'::A’ being equally visible which will result in a comper error
/!l when the first unqualified 'A’ object is created below!
using namespace NamespaceA;

#else
I/l Inject the class name 'A’ into the local scope and will ovéde any
Il (sloppy) names polluting the global namespace. This wdause the
/1 global ’'::A’ class to be hidden (which is good!).
using NamespaceA::A;

#endif

A<int> aa(5);
A<double> ab = NamespaceB::foo(std::cout,aa);
ab.print(std::cout);

return O;

The above program defines a templated chassnamespac8lamespaceA and then does @sing
NamespaceA::A to inject this class name intéamespaceB.

When the program is compiled and run with g++ (version 4,34¢ gets:

$ g++ -ansi -pedantic -Wall -0 NamespaceClassUsinglssues. exe
NamespaceClassUsinglssues.cpp

$./NamespaceClassUsinglssues.exe

a=5

61

a=2

a=2
This program has a few different ifdefs to show differentaypf errors that a compiler will detect.

1. What happens if one tries to define another clasis namespac®lanespaceB?

In the case of nonmember functions, overloads of a functibiibé strange and non-intuitive
behavior when one employs 'using’ declarations. Howevéathappens with classes?

In the above program, when one defines the m&eil@WDUPLICATE.CLASS A when compiling, one
will get the following compile-time error:

$ g++ -ansi -pedantic -Wall -DSHOW_DUPLICATE_CLASS A \

-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp
NamespaceClassUsinglssues.cpp:53: error; redefinition of

‘class NamespaceA::A<T>'
NamespaceClassUsinglssues.cpp:11: error: previous defi nition of

‘class NamespaceA::A<T>'

Above, the error message generated by g++ 4.3.4 is very gwbgiapoints the problem exactly.
This is in stark contrast to what happens when you have a@eld member functions which [10,
Item 59] explains.

Take-home MessageEmployingusing SomeNamespace::SomeClass declarations to inject
names from one namespace into another seems to be safe ambtsaffer from the gotchas
associated witlising declarations for (overloaded) nonmember functions.

2. What happens when the user’s code does not have an appmpisatg declaration?

While theusing NamespaceA::A declaration ifNamespaceB allows the code itNamespaceB to

avoid having to explicitly qualiffNamespaceA::A all the time, this does not automatically mean that
user code that does not live NamespaceB will not have to do something to get at the namdhe

user can either do explicit qualificatiodfamespace::A or can put aising NamespaceA::A

declaration at the top of their namespace or in each funttiarthey have (as is done in thnain()
function above).

In the above program, if one defines the ma@HOWMISSING_USING_DECL, theusing

Namespace::A declaration will be missing imain() and this will result in the compiler finding the
global::A class which will cause a compiler error whdamespaceB::foo(...) gets called. Here
is the error message that one gets when compiling with thigordefined:

$ g++ -ansi -pedantic -Wall -DSHOW_MISSING_USING_DECL \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:121: error: invalid init ialization of
reference of type 'const NamespaceA:A<int>&' from expres sion of type ’
A<int>’

NamespaceClassUsinglssues.cpp:80: error; in passing arg ument 2 of *
NamespaceA::A<double> NamespaceB::foo(std::ostreamg&, const

NamespaceA::A<int>&)’

62

The above error message generated by g++ 4.3.4 here is haidadls the compiler catches the
mistake and states the types involved.

Take-home MessageAlways employusing SomeNamespace::SomeClass to inject type hames
from other namespaces that you want to use in your namespacetéct your code from others who
pollute the global namespace.

. What happens when the user code employsiang nanespace NanespaceAdirective when
there are conflicting names?

Since there is a global clasa , the user can not simply employsing namespace NamespaceA
directive or the compiler will complain that it does not knakich class to use.

In the above program, when one defines the m&EIOWERRONEOUYSING DIRECTIVE when
compiling one gets the following very good compile error saese:

$ g++ -ansi -pedantic -Wall -DSHOW_ERRONEOUS _USING DIREC TIVE \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:120: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error: first declare das
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A’ here

NamespaceClassUsinglssues.cpp:120: error: parse error b efore >’ token

NamespaceClassUsinglssues.cpp:121: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error: first declare das
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A’ here

NamespaceClassUsinglssues.cpp:121: error: parse error b efore *>" token

NamespaceClassUsinglssues.cpp:122: error: ‘ab’ undecla red (first use
this function)

NamespaceClassUsinglssues.cpp:122: error; (Each undecl ared identifier

is reported only once for each function it appears in.)

Note that this type of example goes against the advise inf@, 59] where the authors state that it
is safe to employsing namespace SomeNamespace directives in*.cpp source files. This example
shows that this does not protect the code from others thhattpdhe global namespace. Note that
code that is written this way might compile one day and noti as it is fragile and can be broken
by other people that pollute the global namespace.

Take-home MessageNever employsing namespace AnyNamespace in any context as you
cannot guarantee the integrity of your code since peopkdribf your namespace can cause your
code to not compile.

63

E Arguments for adopting a consistent code formatting style

While there are reasonable ways to handle different codedting styles within a project (e.g. custom file
styles in emacs), there are arguments for preferring a morsistent code formatting style that is used
throughout a project by all developers in the project. IyEdally more difficult to modify code than to
read code that uses an unfamiliar coding style and therefmsistent coding styles is more important in
cases where multiple developers modify the same code base.

One of the more lenient opinions on coding style in the lite@ comes from [10, Item O] where the
authors state:

“Do use consistent formatting within each source file or exach project, because it's jarring
to jump around among several styles in the same piece of &dealon’t try to enforce
consistent formatting across multiple projects or acrossrnpan@".

Much stronger arguments for working toward a consistenedodnatting style within a project are made
by other individuals and organizations who represent a wadge of views of software development.
These organizations and persons vary from those assoegvétedpen-source organizations (e.g. GNU) to
newer Agile methodologists (e.g. Extreme Programmingatgd software companies (e.g. Microsoft). As
different as these various people and organizations viem#ture of software (e.g. GNU vs. Microsoft)
and how it should be developed (e.g. GNU vs. Extreme Progiiag)nthey all agree that some
consistency in coding style is a good idea.

A few points are worth making before looking at opinions omfatting style expressed by these different
individuals and organizations. In each of the referenceeslcthe individual or organization gives a
justification for the opinions expresses and it is up to tlzelee to weigh these arguments on their own.
Also, just because an opinion is expressed by an “expert$ doein and of itself automatically give that
opinion a lot of credence. However, when a wide number oédiffit and diverse “experts” espouse the
same opinion, then such a point of view should be considei@@ seriously.

E.1 Statements on coding style from varied persons and/or ganizations

Here we overview some options on consistent code formastiylg from a variety of sources.

E.1.1 Open source software (the GNU project)

On one end of the spectrum is the open source software corynbat one can think of as the freest form
of software. A GNU package is usually not even developed lghasive set of developers but yet the
official GNU Coding Standafdstates:

"The implicit assumption in this latter qualification is thiEvelopers don't interact heavily with multiple projectsdamulti-
ple projects don't interact much with each other and theeetbere is typically little advantage to having a comparigieancode
formatting standard. However, if the same developers wagkther on multiple projects and go back and forth betweejegtis
frequently, it is unclear what the opinion of the authors lddae in this case.

Shttp://www.gnu.org/prep/standards/standards.html

64

“The rest of this section gives our recommendations forroéispects of C formatting style ...
We don't think of these recommendations as requiremernBit.whatever style you use,
please use it consistently, since a mixture of styles witima program tends to look ugly. If
you are contributing changes to an existing program, pléaksv the style of that program”.

While the above passage does not mandate a consistent abglimgvithin a GNU package (because it
can't, its free software), it does recommend a coding E%Iatej it asks that each project please use a
consistent coding style throughout a GNU project.

E.1.2 Agile Methods (Extreme Programming)

While the Extreme Programming and GNU movements are milag apterms of how it expects coders to
work together to create code, they both agree that usingsistent coding style within a project is
important.

In his popular 1999 book “Extreme Programming Explained; k&nt Beck explicitly listed “Coding
Standards” as one of XP’s twelve recommended practice$idribbok, Beck states

“You couldn’t possibility ask the team to code to a commomdgad. Programmers are deeply
individualistic, and would quit rather than put their cubdsaces somewhere else. Unless:

e The whole of XP makes them more likely to be members of a wintéam.

Then perhaps they could be willing to bend their style elitBesides, without coding
standards the additional friction slows pair programming eefactoring significantly”.

In this first book, Beck also comments on coding standardsdrcontext of “collective ownership” of code
by stating:

“You couldn't possibly have everybody potentially chargenything anywhere. Folks would
be breaking stuff left and right, and the cost of integratiauld go up dramatically. Unless:

e You integrate after a short enough time, so that chancesndficts go down.

e You adhere to coding standards, so you don't get into thedéce&urly Brace Wars.

Then perhaps you could have anyone change code anywheresgdtem when they see the
chance to improve it".

As a result, many XP projects have insisted on requiringyenermber of the team to code in the same
way. So much to the point that one should not be able to tell wiwbe a piece of code just in how it is
formatted. As of this writing, almost every source of infation on XP on the Internet takes a very strong
opinion on the adoption of a consistent coding style by an ¥dRg The specific details of the coding

9The official GNU formatting style is one of the built-in stglen Emacs called the “gnu” style

65

style are not important, what is important is that everyomé¢he team helps to formulate and agrees to use
the same coding style.

In his updated 2005 book “Extreme Programming Explainedo8eé Edition” [3], Kent Beck has
restructured XP and now the “Coding Standards” practice ionger specifically listed as a practice.
Does this mean that consistent code formatting is not lomggortant in XP? The simple answer is no. In
her article “The New XP' which outlines the second edition of Beck’s book and congpir® the first
edition, Michele Marchesi states:

“You must note that in the new XP we cannot find original pr@agiofcoding standardsthat
is considered obvious, ... "

And to put to rest any doubt how Beck himself feels about iest coding styles he states in the second
edition:

“For example, people get passionate about coding styleléttnere are undoubtedly better
styles and worse styles, the most important style issuaidhle team chooses to work towards
a common style. Idiosyncratic coding styles and the valaesaled by them, individual
freedom at all costs, don’t help the team succeed”.

Therefore, it is clear that the flagship of the Agile programgrmovement, XP, clearly advocates that a
team of developers should work towards a consistent codeafiting style.

E.1.3 Code Complete

In [7], Steve McConnell makes a strong argument that grobpsld adopt a consistent coding standard,
including reasonable guidelines for the formatting of seurode.

There are several places in his book where McConnell ssghsedmportance of using a consistent
formatting style in a group project:

e “The bottom line is that the details of a specific method aicturing a program are much less
important than the fact that the program is structured sbasily” [7, Section 31.1]. This quote is
almost an exact paraphrase of the statements made in the Gdiystandard document and by
Beck in the Extreme Programming books mentioned above.

e “The importance to comprehension and memory of structurimgjs environment in a familiarly way
has lead some researchers to hypothesize that layout naghtdm expert's ability to read a program
if the layout is different from the scheme the expert use€l1981, Soloway and Ehrlich 1984)”
[7, Section 31.1]. This implies that working with an unfaiamilstyle might handicap expert coders
more than beginner and intermediate coders.

e “Structuring code is important for its own sake. The spedafinvention you follow is less important
than the fact that you follow the same convention consistefit, Chapter 31].

10 http://www.agilexp.org/downloads/TheNewXP. pdf

66

“Many aspects of layout are religious issues. Try to sepavhjective preferences from subjective
one. Use explicit criteria to help ground your discussionsua style preferences.” [7, Chapter 31].

“Use conventions to spare you brain the challenge of remantarbitrary differences between
different sections of code . [7, Section 34.1].

“The point of having coding conventions is to mainly reduoenplexity. When you standardized
decisions about formatting, loops, variable names, mogdelbtations, and so on, you release mental
resources that you need to focus on more challenging aspfeitts programming problem. One
reason coding conventions are so controversial is thateb@mong the options have some limited
aesthetic base but are essentially arbitrary. People hawaost heated arguments over their smallest
differences. Conventions are most useful when they sparehgtrouble of making and defending
arbitrary decisions. They are less valuable when they impestrictions in more meaningful areas.”
[7, Section 34.1].

“The motivation behind many programming practices is taugeda program’s complexity, and
reducing complexity is arguably the most important key timpen effective programmer.” [7,
Chapter 34].

“When abused, a programming convention can be a cure thatsawhan the disease. Used
thoughtfully, a convention adds valuable structure to tietbpment environment and helps with
managing complexity and communication.” [7, Chapter 34].

“In general, mandating a strict set of technical standami® the management position isn't a good
idea.” [7, Section 28.1].

“If someone on a project is going to define standards, havepeoted architect define the standards
rather than a manager ... If the architect is regarded asthects’ thought leader, the project team
will generally follow standards set by that person.” [7, &t 28.1].

“If your group resists adopting strict standards, consalfaw alternatives: flexible guidelines, a
collection of suggestions rather than guidelines, or afsexamples that embody the best practices.
[7, Section 28.1].

“Even if your shop hasn'’t created explicit coding standardgiews provide a subtle way of moving
toward a group coding standard—decisions are made by tlg giuring reviews, and over time
group derives its own standards.” [7, Section 28.1].

One could summarize that McConnell advocates that havirmnsistent coding style as being an
advantage in many ways but cautions that the standardsdsheueveloped by the programmers in the
group and not dictated by nontechnical managers.

E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard

TheJoint Strike Fighter Air Vehicle C++ Coding Standardscument [5] from Lockheed Martin defines
C++ coding standards for high consequence applicatioastiiie multi-billion dollar JSF program). While
this standard is not the most strict standard out there gi¢ doandate many different aspects of code
formatting such as the placement and indentation of brgge$AVv Rules 59, 60, and 61) and the
formatting of function prototypes (AV Rule 58). The pointligt standards for high consequence (i.e. low

67

tolerances for defects) may legitimately or otherwise neggreater uniformity in source code. While
some of the formatting mandates of this document are diffdten those suggested in [7, Chapter 31],
this JSF standard in general is advocated by such indisdagBjarne Stroustrup and is therefore not
without some merit.

E.2 The keyboard analogy for coding styles

The issues involved in going back and forth between diffevafamiliar code formatting styles are similar
to the issues in going back and forth between different caergkeyboard layouts. While some people
may naturally prefer one type of keyboard to another (e.ch s1$ preferring an ergonomic keyboard to
avoid problems with repetitive stress injuries or peopléhwarger hands having trouble with smaller
keyboar), a person is most proficient when using a single type of kaxdéor a long period of time.
While a person can generally get used to using a few diffeygras of keyboards that are used frequently
(such as the ergonomic keyboard for a desktop computer amalées laptop keyboard), having to work
occasionally on a very different keyboard really slows dagood typer and increases typing mistakes.
For example, a person who uses PC-style keyboards with ther@dC&ey on the lower left, are completely
handicapped when using a Sun keyboard where the Controskefjere the Caps Lock key is on a PC
keyboard.

When given enough time, almost anyone can become accustoraeg reasonable keyboard layout and
can be productive (as long a unusual physical constraieta@trinvolved). As long as the person uses the
keyboard consistently, the productivity will be about then® as with a more favored keyboard layout.
Therefore, except for certain physical constraints, agrecsin learn how to use most keyboard layouts
given enough time, but switching back and forth occasigriaditween different keyboards really damages
productivity and increases mistakes.

The same is true for having to read and modify code that usiesatit code formatting styles. Just about
anyone can become accustomed to just about any reasondbig style if given enough time working

with a particular style. However, switching back and fomguently between different coding styles really
does damages productivity and increases coding mistakesiite people, just as switching back and forth
between different keyboards can really damage produgtant increase typing mistakes.

E.3 Conclusions

The antagonism between pushing a common formatting stg@bmwing for individual freedom is

similar to a system-wide optimization problem that inva\aenumber of subsystems. In our case, the
subsystems are individual coders and the whole system tedine as a whole. Optimizing each subsystem
separately would mean that each developer would own andacddgrict part of the overall system. While
this approach maximizes individual developer produgtjvitdoes not maximize overall productivity in

that it discourages and hinders collective code ownerslaiphas been demonstrated to be highly effective
in the right settings (e.g. Extreme Programming). On themtiand, an overly ridged code formatting
standard will allow for collective code ownership but it Mdlso damage the individual productivity of

Lhttp:/www.research.att.com/"bs/C++.html

12Computer mice layouts show even greater variability tharfb&ards and going between different types can hurt prodticti
even greater. For example, a standard mouse could not bedifferent than a trackball-type of mouse and going from adéad
mouse to a trackball only occasionally can severely degpaalductivity if the individual is unfamiliar with the tradall.

68

every member of the team. Therefore, the “optimal” solutmithe code formatting problem is to have the
group adopt enough of a uniform style to foster collectivdecownership and speed code reviews, but not
to needlessly damage individual coder productivity. Thartee between these conflicting goals must be
handled with care and only group communication along witheglence and experimentation will yield a
near-optimal solution to the code formatting standard$lpro for a particular team of developers.

While the above varied sources have different levels ofiopgson the importance on consistent code
formatting, they all agree that it is the developers themesethat should come up with the guidelines, and
not non-technical managers. They also all seem to agree ttwting standard that is too ridged will do
more harm than good (i.e. by damaging the productivity andairaf individual programmers).

The majority opinion of these experts, therefore, seeme tihét a team of software developers should get
together and collectively decide on a sufficient set of diride for code formatting and each member
should try to follow the spirit of the agreed upon style as mas is reasonable while being allowed to
bend or break the guidelines when appropriate.

69

F Guidelines for reformatting of source code

When a sufficiently common coding style is not being used bglelelopers in a project and no
recommendations for a common coding style exists, then guidgelines are needed for the situations
where code written by one individual is modified by anotheiividual that uses a different coding style.
These guidelines address how developers should condueséiees when modifying source files written
largely by someone else.

1. First and foremost, each developer should respect tlee ddvelopers’ formatting styles when
modifying their code. If a developer has a preferred Emads,dhen that style should be listed
explicitly at the top of each source file that is modified. TWil help other developers that use
Emacs to stay consistent with the file’s style.

2. When only small changes are needed, a developer shodle lapithe formatting style already in use
in the file. This helps to respect other developers and helpsdid needless changes for the version
control system to have to track. Again, when user-defineesfilecific Emacs styles are specified,
then it is easy to maintain a file’s style when editing file®tlygh Emacs.

3. Reformatting a file written by someone else and checkiigi# only justified if significant changes
are made. However, if a developer needs to understand a icaepl piece of code in order to make
perhaps even a small change in the end, then that developealswabe justified in reformatting the
file. When a reformatting is done, the new Emacs formattigig sthould be added to the top of the
source file in order to make it easier for the original ownetheffile and other developers to
maintain the new style.

4. Multiple re-formats of the same file should not be checkeolvier and over again as this will result
in massive increases the the amount of information thatéhgian control system needs to keep
track of and makes diffs more difficult to perform.

The above guidelines ensure that individuals are given mabfreedom to format code to their liking but
also helps to foster the shared ownership and developmeoidef In addition, the use of user-defined
file-specific formats makes it easy for developers to accodatgoformatting styles different from their
own.

70

v1.32

@ Sandia National Laboratories

	Introduction
	Alpha-numeric item designations
	Naming conventions (NC)
	Naming and organization of source files (NOSF)
	Coding guidelines
	General coding guidelines (GCG)
	Error handling
	Memory management
	Object Control
	Object Introspection
	Miscellaneous coding guidelines

	Specification of data members and passing and returning objects from functions

	Formatting of source code
	General formatting source code principles (FSCP)
	Specific guidelines for formatting source code (FSC)

	Doxygen documentation guidelines
	General principles for function and class level documentation (DOXP)
	Specific Doxygen documentation principles (DOX)

	References
	Summary of guidelines
	Summary of Teuchos memory management classes and idioms
	Summary of ``C++ Coding Standards'' (CPPCS) with amendments
	Miscellaneous amendments to ``C++ Coding Standards''
	Amendments to items related to compiler/linker incompatibilities
	Amendments for 'using' declarations and directives

	Arguments for adopting a consistent code formatting style
	Statements on coding style from varied persons and/or organizations
	Open source software (the GNU project)
	Agile Methods (Extreme Programming)
	Code Complete
	Lockheed Martin Joint Strike Fighter C++ Coding Standard

	The keyboard analogy for coding styles
	Conclusions

	Guidelines for reformatting of source code

