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and DAEs

Roscoe A. Bartlett

Abstract

Here we derive the basic forward and adjoint sensitivityrapphes for fully implicit
ODEs and DAESs using just basic calculus and weak formulatidhe purpose of this
derivation is to allow a reader to understand transientiteities at a first-principles level and
to understand all of the assumptions and steps that go iatddfivations.
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1 Introduction

Here we derive forward and adjoint sensitivity methods femeral ODEs and DAESs using just
simple calculus and weak formulations. The goal of thisw@gion is to allow the reader to
understand every part of the derivation and to gain undeditg at a basic level.

The general fully implicit parameterized DAE (or ODE) statedel that we consider is

FX(®),x(t), p,v(t),t) = 0, tefto,ty] 1)
X(to) = Xo(p), )
X(to) = Xo(p), ®3)

where

X:t—Xx(t) € x fort € [to,t7] are the state variables,

X:t—X(t) =d(x)/d(t) € x fort € [to,t7] are the time-differentiated state variables,
p € 2 are the steady-state parameters,

v:t—v(t) € ¥ fort € [to,tf] are the time-dependent parameters,

f(%,x p,wt) : Xx%x P x ¥ xR — 7 is the state DAE (ODE) residual function,
Xo(p) € 2 — x is the initial condition function fok(to),

Xo(p) € P — x is the initial condition function fok(tp),

X C R™ s the vector space for the state variables,

P C R"™ is the vector space for the steady-state parameters,

v C R"™ is the vector space for the transient parameters, and

F C R™ s the vector space for the state DAE residual function.

Note that we assume that we have a consistent initial comdithere

f (Xo(t0)7xo(t0)7 p, V(t0)7t0) =0. (4)

Remarks on notationNVe use the commonly accepted convention where the unagiatastifierx

for a function such as— x(t), t € [to,t¢], is used to represent the function over the entire domain
t € [to,tr]. When appropriate, the notatiodt) will be used to represent a particular evaluation of
the function at points in the domainlty, tt]. However, in some situations, the argumeaf x(t)

will be omitted and instead a bare identifieis used and it should be clear from the context (i.e.
inside of an integral) that really a single value of the fimtis being represented. Cases of
possible ambiguity will be addressed in the sequel.

Here we consider both distributed and terminal responssb@egn by the aggregate response
function:

tf

d(x p.v) = | g(X(V.X(1), p.v(t),Udt+ h(k(to). x(tr). ) ©)

o

where:



g(x,x,p,Vit) 1 x2x P x ¥ x R — ¢ is the distributed response function,
h(x,x,p) : X% x ? — G is the terminal response function, and
G C R" is the vector space for the response functions.

Above, note that there may be many response functiong as/g | may be greater than 1. The
rationg/np = |G |/|#| has great implications when considering forward and atigensitivity
methods.

The implicit state solution for the DAEs in (1)—(3) at points signified ax(p,v,t) € x and
X(p,vt) € x, wherev in this case is the selection of transient parameters inathget < [to,t].
Note that selections forin the ranggt : t;] have no influence on the implicit state solutioop to
the timet. The full infinite-dimensional implicit state solution f&iin t € [to,t] is signified as
x(p,Vv) where in this case represents the entire selection for the transient parasiet, t¢].

Given the implicit state functior(p,Vv) and its time derivative(p, V), a reduced set of auxiliary
response functions are defined as

~ tf ~
d(p,v) = : g(p,v(t),t)dt+h(p), (6)
0
where
g(p,v t),t) = ag(x(p,v,t),x(p,v;t), p,v(t),t)) : » x ¥ x R — ¢ is defined on € [to,t¢], and
h(p) = h(x(p,v;ts),X(p,v,ts),p)) : » — G is defined only at = t;.



2 Derivation of forward sensitivities

For the derivation of forward sensitivities we will ignotieettransient parametevét) fort € [to, tf]
since forward sensitivity methods for such problems ar&afly impracticat.

The forward sensitivity problem is easily stated by diffgrating (6) with respect t@ to obtain

: (7)

t=ts

o0 [ (%90¢ d0dx 20y (hdK ahax on
op Ji, \Oxdp o0xdp ap oxo0p O0xdp ap

where
0g/0p € g |7 is defined on € [to,t¢],
oh/dp € G| is defined only at = t,
0x/dp € x | is the forward sensitivity of the state definedton [to, t¢],
ox/0p € x |2 is the forward sensitivity of the state time derivative defiront € [to,t], and
66/6p € g |2 is defined independent of time.

The forward sensitivityx/dp andox/dp in (7) is computed by solving a set nf independent
forward sensitivity equations which are obtained by défdiating (1)—(3) with respect tp and
changing the order of differentiation with respect &mdp to give

% (%) +% (%) +% = 0,t€[to,tg], (8)
55;(:)0) _ %’ (10)
where

of /ox € ¥ |x is defined ont € [to,t¢],

of /ox € ¥ |x is defined ont € [to,t¢],

of /op e 7|2 is defined ont € [to, t¢],
0x%p/0p € x | is defined only at = tp, and
0Xo/0p € x | is defined only at = to.

Note that abovedx/dp = %ax/ap = 6/6p%‘ because the order of differentiation does not matter
with smooth differentiable functions, which is the assupthere.

Thesen,, independent sensitivity equations are solved$giop € x | andox/op € x |» forward
in time fromtg to t;. The integral in (7) can be evaluated along with the intégmnadf (1)—(3) and
(8)—(10). Note that (1)—(3) and (8)—(10) are a staggeredfdeAE equations in that (1)—(3) are
solved first followed by (8)—(10).

INote: For some applications whengis not too large and whereis given a very course discretizationtir [to, tf],
computing forward sensitivities with respect to the disizezlv can be practical.



3 Derivation of adjoint sensitivities

Here we describe a derivation for the adjoint equation aadythdient expressions that are based
on simple and straightforward principles. In this derigatiwe assume that the response functions
g() andh() do not depend oRr.

3.1 Derivation of adjoint equation and sensitivities for seady-state parameters

In this section we begin with the basic expressions for tdeced derivativ@cf/ap in (7) and the
forward sensitivity equations fax/dp in (8)—(10) and then perform basic manipulations in order
to arrive at the adjoint equations and the adjoint senséwiforod/dp.

We begin our derivation of the adjoint equation and senséi/for steady-state parameters by
writing the weak form of the forward sensitivity equatior) {ghich, in multi-vector form, is

of [dox\ of [ox\ of
/to/\ <0>< (dt0p>+&<%> 0p>dt -

where at this point the multi-vector functigq fort — A(t) € # |g int € [to,t], is any

appropriate weighting functidn Later,A will be chosen to be the adjoint variables but for naw

is nothing more than an arbitrary weighting function for thepose of stating the weak form. The
solution to the weak form of (11) is every bit as valid and iddad more general than the strong
form in (8) and we lose nothing by considering the weak forin £lso note that the multi-vector
form of (11) really givesg separate weak form equations.

Next, we substitute the integration by parts

t af\ d /ax L of ax
TY " _
/to KA 0>’<> dt <0p>]d (A 0x0p>

into (11) and rearrange which yields

T of t [ d [ ;of af 7 ax af ax\ |
dt+ —— (AT +AT dt+ [ AT=—==
/t< ap) /to[dt< ax) ax}ap +< axap>to

At this point in the derivation we decide to restrict the pblesset of functions fon\ by forcing A
to satisfy the differential equation

d(,rof\ tof  ag

trd / cof\ ox
e ge o

—0. (13)

2The admissible class of weighting functiofsre those functions that are sufficiently smooth such tfeairtiegrals
of the weak form (and the modified weak form after integrabgrparts) are finite and well defined. Other requirements
may also need to be satisfied in some cases [1].



All that we have done in (14) is to make what appears to be atrambchoice to help narrow the
weighting function/\ from the infinite set of possible choices. It will be cleaelaivhy this choice
is a convenient one. Note that the choice in (14) does notdrohitself uniquely determiné
since boundary conditions have yet to be specified. It wiklawn later that the choice of
boundary condition is arbitrary but when we move toward the @ the derivation, a natural and
very convenient choice for a boundary condition that unigspecifies/\ will be obvious.

Side NoteWhat is critical about the choice for the adjoint equatioiflif) is that the derivative
0g/0x appear on the RHS. What is largely arbitrary, however, isthe given todg/ox which of
course defines the sign for the adjoint variabled he Petzold papers (e.g. [2]) and the IDAS code
[3] use the sign for the adjoint given in (14). However, the@MES code [4, 3] uses the opposite
sign fordg/ox in the RHS and therefore gives the opposite sign for the adgailution/A. With
respect the the computation of the reduced response degividite choice for the sign aX is

arbitrary. However, if one is going to directly interpreetadjoint solutiom\ as we do in Section 4,
then the sign of the adjoint becomes very important and itiisal that the user of any adjoint

code know the significance of the sign of the adjoint and wstdad its meaning.

The derivation continues by substituting (14) into (13) asairanging which yields
tr /0g 0x t/ ;o0f T 0f ox
—— |dt = — N — )dt— (A" ——
/to <0x0p> /to < 0p> < ox op

Finally, substituting (15) into (7), dropping terms wg/dx andoh/ox since we are assuming
there are zero in this derivation, and rearranging gives

od /tf (ag Taf> <6h> ( T of ax>
— = = A" )dt+ [ — + (AN ===
op o, \Op op 0p/ |1, ox ap

oh  1of\ ox
*[(a‘“ &>a—p]

We are not finished yet since, as we stated earlier, the cfmi¢he weighting functiong\ have
not yet been uniquely specified. The first thing to considénas, in general, the adjoint DAE in
(14) is only stable if integrated backwards in time frogmo tg [2]. However, as described in the
following theorem, we are free to pick almost any final coioditfor A(t;) that is consistent with
the adjoint equation @t and then evaluate the terms in (16) involving the resultidigiat
solution. This is established in the following theorem.

tf

: (15)
to

t=to

(16)

t=ts

Theorem 1 If A; and/\, are any two particular bounded solutions to the adjoint edura(14)
(each associated with a different bounded consistent fiordlition onA(ts)) then

P N=N\1 P N=N\2
where (0d| /op)| A—p, @nd (ad /op)| A—n, fepresent the reduced derivative in (16) evaluated using

the adjoint solutiong\1 and A\, respectively.



Proof

Here we prove (17) by proving that

5D od ad
2— UVl — 3o - 3=
ap/\:/\2 ap/\:/\1
t of of ax 1|
— No— AT —dt+ |[(A—ADT =] = 18
/to(z 1) ap +[(2 1) OXODLO (18)

for any two particular solutiond; and/\;, to the adjoint equation (14). Above, the expression in
(18) comes from substituting; andA; into (16), subtracting the two expressions, dropping out
zero terms, and rearranging.

We start the proof by substituting (8) into (18) which yields

t of /d ox of [/ ox of ox
Dz ~D1= [ (ha=) { aX<dtap> ox (apﬂd” [(’\2 M) axap]

Substituting the integration by parts

Ll B2 el 3) 3o [nnrs

into (19), canceling terms, and rearranging yields

i [d ; of L 0f7 [ ox
D2—D1—/t(J [a ((/\2—/\1) &> —(N2a—N1) &] (%) dt. (20)

Next, substituting the solutions; and/A; into (14) and subtracting these two adjoint equations
yields

t
. (19)

fo

t

fo

d

; of rof

0x
Finally, substituting (21) into (20) yields
D,—D;1=0 (22)

which completes the proof

The above theorem establishes that there are an infiniteenmlhlghoices for the final condition
for the adjoint solution that all yield the same reducedw@eie 0d /0p. While a wide variety of
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final conditions forA(ts) can be chosen to close the adjoint equation, rather thampigkst any
final condition, selecting the final condition

oh  ;of
(&‘A &>

is rather convenient since it zeros out the last term in (h@)alows us to avoid the computation
of 0x/0p att = t; which we do not have available with an adjoint method. Thex#jration of the
final condition closes the adjoint equation and uniquelyrgesfithe adjoint\ in all of the cases of
state DAEs what we will consider hére

=0, (23)
t=ts

Finally, substituting (23) andxo/dp for dx/dp att =ty in (16) we arrive the final expression for

reduced derivative
ad /tf <6g T6f> <6h> ( T6f>
— = — N — |dt+ | — + (N =
op Ji, \op op 0p/ |i—, ox

In conclusion, (14) and (23) define the set of adjoint DAE ¢igna that specify a unique adjoint
solution/\ which are integrated backwards in time and (24) gives thessson for the
computation oﬁcf/ap in terms of the computed adjoint. Note that the integral in (24) can be
evaluated at the same time that the adjoint is being solvekiWzd in time. Therefore, no storage
of the adjoint is needed beyond what is needed for the tinppitg algorithm.

0%

— (24)
t—t, OP

3.2 Derivation of adjoint sensitivities for transient parameters
Here we consider the derivation of the reduced sensitivitii vespect to transient parameters

od
EY0] € g|v, fort € [to, t5]. (25)

Our derivation for these sensitivities for the transiemapaeterss will be a little different than for
the steady-state parametgrsThe primary reason for using a different derivation is that
infinite-dimensional transient parameterare fundamentally different than finite-dimensional
steady-state parametgrsBecause of the infinite-dimensional naturevofve use a different tool
of functional analysis. The tool we use is the applicatiothefinfinite-dimensional operator
ad/av to the infinite-dimensional perturbatidiv where we will then use to identif§d /dv(t) in
the integrand of

od " od
Wév_ 5 mév(t)dt. (26)

The integral in (26) is the definition the infinite-dimensaboperator applicatio(\acf/av)év.

3A uniquely defined adjoint\ requires that certain regularity conditions are satisfigthle state DAE (see [2]) but
for the purposes of this derivation we assume that such atammés always satisfied.

11



We begin the derivation with the variational derivativeci()f/) with respect tos along the variation
ov which is simply

od dgox_  dg oh ox
—ov= ov ov | dt ——0 27
v /to (axa Y o V> * (axav V) . 27)
Next, we write the weak form of the linearization of the stadggiation (about a solution for
f(x,x, p,v,t) = 0) with respect tar along the variatiodv which is
of /d ox of ox of
/to/\ [ax<dt0v>6v v 6}dt_0 28)

and has initial conditior(dx/dv)dv|;_ = 0. The sensitivity equation that is used in the weak form
in (28) can be derived using a simple Taylor expansion of tée £quation about a solution
f(%,x, p,v,t) = 0 in the variationdv and then dropping off th@(||dv||?) and higher terms.

From here the derivation proceeds almost identically taccHse for the steady-state paramefers
described in the previous section.

Substituting the integration by parts

tt of\ d [/ox of ox
T _ T__
J, K’\ aX>dt<65>]dt (’\ x af’)
into (28) and rearranging yields
of 4l d of of ] ox of ox
T T T i T
/to <A06v>dt+ i [ OIt(/\ ax>+/\a}a€>dt (/\ axav5>
Substituting the choice for the adjoint equation (14) irf@80)(and rearranging yields
dg ox of 10f ox
dt = - ov | dt— ——0V
[ (Gam)a = [ (vas)a- (w530
Substituting (31) into (27) and rearranging yields
ad (Y (09 Taf T 0f ox
ov = /to (6_\/ - >6dt+< &a—\/s)

oh  Lof)\ ox
+ K&"\ &) avé]

Using the choice for the final condition in (23) and notingttf@x/dv)dv|,_,, = 0 (sincev can not
affectx att = to becauser only appears in the DAE RHS, not the initial condition), th{88)
reduces to

od_ dg ,rof
avav_/to (av A a)é vt (33)

12

Yotrd /9 ox
ha( ) aefa e

=0. (30)

to

(31)

to

t=tp

(32)
t=t¢



Finally, by comparing (33) with (26) it is clear that

od  dg . of
o oy gy te ot 34

is the reduced derivative object that we are seeking.

13



4  Significance and interpretation of the adjoint

In this section we consider another reason for choosingd&3he final condition to close the
adjoint equation (14). This choice of the final condition mskhe adjoint variable& become the
first-order sensitivity of the auxiliary response functiix) with respect the perturbations in the
constraints through the state solution. This is easy to ge@tply considering the case where
g(x,v,t) = g(x), h(x) = h(x), andf (x,x,v,t) = f(X,x,t) — v which, when substituted into (34), gives

ad
YO AT, t € [to, tf], (35)

wherev(t) € # are the perturbations in the state constrair{ts x,t).

The knowledge that this selection for the adjohis the sensitivity of a functional of interedtx)
with respect to the changes in the constraints makes theadjaseful quantity in and of itself.
This is why the adjoint is useful in more contexts other thast fomputing reduced derivatives.
Examples of other areas where adjoints are useful are isé@gsainalysis and error estimation [5]

Note that the sign given the adjoint in the choice for the adjequation (14) determines the
interpretation for the adjoint in this analysis. If the opjte sign for the adjoint would have been
chosen, then we must interpret the perturbation to the statation ad (X, x,v,t) = f(x,x,t) 4+ V.
The only issue here is whether adding a constant to a statgiequvill increase or decrease the
reduced response functidﬁp). However, since most people just look at the magnitude ef thi
sensitivity inherent in the adjoint, the sign of the adjagain becomes unimportant.

14



5 The adjoint, the reduced gradient and the augmented adjoin

We now restate the adjoint in (14) and (23), and the reducesitsdties in (24) and (34) in
standard column-wise multi-vector form férwhich yields the adjoint DAE equations

d [of" of T ag’
of T oh’
t=t; x=X(tf)
and the reduced gradient expressions
;T t T T T T T
@Z/f 99" 9T A g | L0 (Of . (38)
op b \Op 0p op op ox o
—ty -
and
;T T T
od 0 of
g A, t € [to.t1] (39)

ovit)  ov(t)  owv(t)

As described in [2], for some classes of DAESs (including samgicit ODES), the form of the
adjoint in (36)—(37) may be unstable while the followiaggmented adjoint DAE systesreated
by defining the augmented adjoint varaibles- 0 f /9x/\)

d .. of" ag’
/A\—ﬂT/\ = 0, t€ [to,ty] (41)
aX - 9 07 f Y
~ oh'"
Ny = 3 : (42)
Xx=X(t )

generally is stable when the forward DAE (up to index 2) ibkaln addition, when considering
time-stepping algorithms for state and adjoint equationgy the augmented adjoint DAE is
guaranteed to be stable for the same time-step used by thartbDAE [2]. Therefore, the
augmented adjoint DAE system is to be preferred in a softiwapéementation and only imparts a
small additional space/time cost.
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