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A derivation of forward and adjoint sensitivities for ODEs
and DAEs

Roscoe A. Bartlett

Abstract

Here we derive the basic forward and adjoint sensitivity approaches for fully implicit
ODEs and DAEs using just basic calculus and weak formulations. The purpose of this
derivation is to allow a reader to understand transient sensitivities at a first-principles level and
to understand all of the assumptions and steps that go into the derivations.
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1 Introduction

Here we derive forward and adjoint sensitivity methods for general ODEs and DAEs using just
simple calculus and weak formulations. The goal of this derivation is to allow the reader to
understand every part of the derivation and to gain understanding at a basic level.

The general fully implicit parameterized DAE (or ODE) statemodel that we consider is

f (ẋ(t),x(t), p,v(t), t) = 0, t ∈ [t0, t f ] (1)

x(t0) = x0(p), (2)

ẋ(t0) = ẋ0(p), (3)

where

x : t → x(t) ∈ X for t ∈ [t0, t f ] are the state variables,
ẋ : t → ẋ(t) = d(x)/d(t) ∈ X for t ∈ [t0, t f ] are the time-differentiated state variables,
p ∈ P are the steady-state parameters,
v : t → v(t) ∈ V for t ∈ [t0, t f ] are the time-dependent parameters,
f (ẋ,x, p,v, t) : X 2×P ×V × IR → F is the state DAE (ODE) residual function,
x0(p) ∈ P → X is the initial condition function forx(t0),
ẋ0(p) ∈ P → X is the initial condition function for ˙x(t0),
X ⊆ IRnx is the vector space for the state variables,
P ⊆ IRnp is the vector space for the steady-state parameters,
V ⊆ IRnv is the vector space for the transient parameters, and
F ⊆ IRnx is the vector space for the state DAE residual function.

Note that we assume that we have a consistent initial condition where

f (ẋ0(t0),x0(t0), p,v(t0), t0) = 0. (4)

Remarks on notation: We use the commonly accepted convention where the unadorned identifierx
for a function such ast → x(t), t ∈ [t0, t f ], is used to represent the function over the entire domain
t ∈ [t0, t f ]. When appropriate, the notationx(t) will be used to represent a particular evaluation of
the function at pointst in the domain[t0, t f ]. However, in some situations, the argumentt of x(t)
will be omitted and instead a bare identifierx is used and it should be clear from the context (i.e.
inside of an integral) that really a single value of the function is being represented. Cases of
possible ambiguity will be addressed in the sequel.

Here we consider both distributed and terminal responses asshown by the aggregate response
function:

d(x, p,v) =
Z t f

t0
g(ẋ(t),x(t), p,v(t), t)dt +h(ẋ(t f ),x(t f ), p), (5)

where:
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g(ẋ,x, p,v, t) : X 2×P ×V × IR → G is the distributed response function,
h(ẋ,x, p) : X 2×P → G is the terminal response function, and
G ⊆ IRng is the vector space for the response functions.

Above, note that there may be many response functions asng = |G | may be greater than 1. The
ratio ng/np = |G |/|P | has great implications when considering forward and adjoint sensitivity
methods.

The implicit state solution for the DAEs in (1)–(3) at pointst is signified asx(p,v, t) ∈ X and
ẋ(p,v, t) ∈ X , wherev in this case is the selection of transient parameters in the ranget ∈ [t0, t].
Note that selections forv in the range(t : t f ] have no influence on the implicit state solutionx up to
the timet. The full infinite-dimensional implicit state solution forx in t ∈ [t0, t f ] is signified as
x(p,v) where in this casev represents the entire selection for the transient parameters in [t0, t f ].

Given the implicit state functionx(p,v) and its time derivative ˙x(p,v), a reduced set of auxiliary
response functions are defined as

d̂(p,v) =

Z t f

t0
ĝ(p,v(t), t)dt + ĥ(p), (6)

where
ĝ(p,v(t), t) = g(ẋ(p,v, t),x(p,v, t), p,v(t), t)) : P ×V × IR → G is defined ont ∈ [t0, t f ], and
ĥ(p) = h(ẋ(p,v, t f ),x(p,v, t f ), p)) : P → G is defined only att = t f .
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2 Derivation of forward sensitivities

For the derivation of forward sensitivities we will ignore the transient parametersv(t) for t ∈ [t0, t f ]
since forward sensitivity methods for such problems are typically impractical1.

The forward sensitivity problem is easily stated by differentiating (6) with respect top to obtain

∂d̂
∂p

=
Z t f

t0

(

∂g
∂ẋ

∂ẋ
∂p

+
∂g
∂x

∂x
∂p

+
∂g
∂p

)

dt+

(

∂h
∂ẋ

∂ẋ
∂p

+
∂h
∂x

∂x
∂p

+
∂h
∂p

)∣

∣

∣

∣

t=t f

, (7)

where
∂ĝ/∂p∈ G |P is defined ont ∈ [t0, t f ],
∂ĥ/∂p∈ G |P is defined only att = t f ,
∂x/∂p∈ X |P is the forward sensitivity of the state defined ont ∈ [t0, t f ],
∂ẋ/∂p∈ X |P is the forward sensitivity of the state time derivative defined ont ∈ [t0, t f ], and
∂d̂/∂p∈ G |P is defined independent of time.

The forward sensitivity∂x/∂p and∂ẋ/∂p in (7) is computed by solving a set ofnp independent
forward sensitivity equations which are obtained by differentiating (1)–(3) with respect top and
changing the order of differentiation with respect tot andp to give

∂ f
∂ẋ

(

∂ẋ
∂p

)

+
∂ f
∂x

(

∂x
∂p

)

+
∂ f
∂p

= 0, t ∈ [t0, t f ] , (8)

∂x(t0)
∂p

=
∂x0

∂p
, (9)

∂ẋ(t0)
∂p

=
∂ẋ0

∂p
, (10)

where
∂ f/∂ẋ∈ F |X is defined ont ∈ [t0, t f ],
∂ f/∂x∈ F |X is defined ont ∈ [t0, t f ],
∂ f/∂p∈ F |P is defined ont ∈ [t0, t f ],
∂x0/∂p∈ X |P is defined only att = t0, and
∂ẋ0/∂p∈ X |P is defined only att = t0.

Note that above,∂ẋ/∂p = d
dt ∂x/∂p = ∂/∂pdx

dt because the order of differentiation does not matter
with smooth differentiable functions, which is the assumption here.

Thesenp independent sensitivity equations are solved for∂x/∂p∈ X |P and∂ẋ/∂p∈ X |P forward
in time fromt0 to t f . The integral in (7) can be evaluated along with the integration of (1)–(3) and
(8)–(10). Note that (1)–(3) and (8)–(10) are a staggered setof DAE equations in that (1)–(3) are
solved first followed by (8)–(10).

1Note: For some applications wherenv is not too large and wherev is given a very course discretization int ∈ [t0,t f ],
computing forward sensitivities with respect to the discretizedv can be practical.
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3 Derivation of adjoint sensitivities

Here we describe a derivation for the adjoint equation and the gradient expressions that are based
on simple and straightforward principles. In this derivation, we assume that the response functions
g() andh() do not depend on ˙x.

3.1 Derivation of adjoint equation and sensitivities for steady-state parameters

In this section we begin with the basic expressions for the reduced derivative∂d̂/∂p in (7) and the
forward sensitivity equations for∂x/∂p in (8)–(10) and then perform basic manipulations in order
to arrive at the adjoint equations and the adjoint sensitivities for∂d̂/∂p.

We begin our derivation of the adjoint equation and sensitivities for steady-state parameters by
writing the weak form of the forward sensitivity equation (8) which, in multi-vector form, is

Z t f

t0
ΛT
(

∂ f
∂ẋ

(

d
dt

∂x
∂p

)

+
∂ f
∂x

(

∂x
∂p

)

+
∂ f
∂p

)

dt = 0, (11)

where at this point the multi-vector functionΛ, for t → Λ(t) ∈ F |G in t ∈ [t0, t f ], is any
appropriate weighting function2. Later,Λ will be chosen to be the adjoint variables but for nowΛ
is nothing more than an arbitrary weighting function for thepurpose of stating the weak form. The
solution to the weak form of (11) is every bit as valid and is indeed more general than the strong
form in (8) and we lose nothing by considering the weak form [1]. Also note that the multi-vector
form of (11) really givesng separate weak form equations.

Next, we substitute the integration by parts

Z t f

t0

[(

ΛT ∂ f
∂ẋ

)

d
dt

(

∂x
∂p

)]

dt =

(

ΛT ∂ f
∂ẋ

∂x
∂p

)
∣

∣

∣

∣

t f

t0

−
Z t f

t0

[

d
dt

(

ΛT ∂ f
∂ẋ

)

∂x
∂p

]

dt (12)

into (11) and rearrange which yields

Z t f

t0

(

ΛT ∂ f
∂p

)

dt+
Z t f

t0

[

−
d
dt

(

ΛT ∂ f
∂ẋ

)

+ ΛT ∂ f
∂x

]

∂x
∂p

dt+

(

ΛT ∂ f
∂ẋ

∂x
∂p

)
∣

∣

∣

∣

t f

t0

= 0. (13)

At this point in the derivation we decide to restrict the possible set of functions forΛ by forcingΛ
to satisfy the differential equation

d
dt

(

ΛT ∂ f
∂ẋ

)

−ΛT ∂ f
∂x

= −
∂g
∂x

, t ∈ [t0, t f ] . (14)

2The admissible class of weighting functionsΛ are those functions that are sufficiently smooth such that the integrals
of the weak form (and the modified weak form after integrationby parts) are finite and well defined. Other requirements
may also need to be satisfied in some cases [1].
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All that we have done in (14) is to make what appears to be an arbitrary choice to help narrow the
weighting functionΛ from the infinite set of possible choices. It will be clear later why this choice
is a convenient one. Note that the choice in (14) does not in and of itself uniquely determineΛ
since boundary conditions have yet to be specified. It will beshown later that the choice of
boundary condition is arbitrary but when we move toward the end of the derivation, a natural and
very convenient choice for a boundary condition that uniquely specifiesΛ will be obvious.

Side Note:What is critical about the choice for the adjoint equation in(14) is that the derivative
∂g/∂x appear on the RHS. What is largely arbitrary, however, is thesign given to∂g/∂x which of
course defines the sign for the adjoint variablesΛ. The Petzold papers (e.g. [2]) and the IDAS code
[3] use the sign for the adjoint given in (14). However, the CVODES code [4, 3] uses the opposite
sign for∂g/∂x in the RHS and therefore gives the opposite sign for the adjoint solutionΛ. With
respect the the computation of the reduced response derivative, the choice for the sign ofΛ is
arbitrary. However, if one is going to directly interpret the adjoint solutionΛ as we do in Section 4,
then the sign of the adjoint becomes very important and it is critical that the user of any adjoint
code know the significance of the sign of the adjoint and understand its meaning.

The derivation continues by substituting (14) into (13) andrearranging which yields

Z t f

t0

(

∂g
∂x

∂x
∂p

)

dt = −

Z t f

t0

(

ΛT ∂ f
∂p

)

dt−

(

ΛT ∂ f
∂ẋ

∂x
∂p

)
∣

∣

∣

∣

t f

t0

. (15)

Finally, substituting (15) into (7), dropping terms with∂g/∂ẋ and∂h/∂ẋ since we are assuming
there are zero in this derivation, and rearranging gives

∂d̂
∂p

=
Z t f

t0

(

∂g
∂p

−ΛT ∂ f
∂p

)

dt+

(

∂h
∂p

)
∣

∣

∣

∣

t=t f

+

(

ΛT ∂ f
∂ẋ

∂x
∂p

)
∣

∣

∣

∣

t=t0

+

[(

∂h
∂x

−ΛT ∂ f
∂ẋ

)

∂x
∂p

]∣

∣

∣

∣

t=t f

. (16)

We are not finished yet since, as we stated earlier, the choicefor the weighting functionsΛ have
not yet been uniquely specified. The first thing to consider isthat, in general, the adjoint DAE in
(14) is only stable if integrated backwards in time fromt f to t0 [2]. However, as described in the
following theorem, we are free to pick almost any final condition for Λ(t f ) that is consistent with
the adjoint equation att f and then evaluate the terms in (16) involving the resulting adjoint
solution. This is established in the following theorem.

Theorem 1 If Λ1 andΛ2 are any two particular bounded solutions to the adjoint equation (14)
(each associated with a different bounded consistent final condition onΛ(t f )) then

∂d̂
∂p

∣

∣

∣

∣

∣

Λ=Λ1

=
∂d̂
∂p

∣

∣

∣

∣

∣

Λ=Λ2

(17)

where(∂d̂/∂p)
∣

∣

Λ=Λ1
and (∂d̂/∂p)

∣

∣

Λ=Λ1
represent the reduced derivative in (16) evaluated using

the adjoint solutionsΛ1 andΛ2 respectively.
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Proof

Here we prove (17) by proving that

D2−D1 =
∂d̂
∂p

∣

∣

∣

∣

∣

Λ=Λ2

−
∂d̂
∂p

∣

∣

∣

∣

∣

Λ=Λ1

=
Z t f

t0
(Λ2−Λ1)

T ∂ f
∂p

dt+

[

(Λ2−Λ1)
T ∂ f

∂ẋ
∂x
∂p

]
∣

∣

∣

∣

t f

t0

= 0 (18)

for any two particular solutionsΛ1 andΛ2 to the adjoint equation (14). Above, the expression in
(18) comes from substitutingΛ1 andΛ2 into (16), subtracting the two expressions, dropping out
zero terms, and rearranging.

We start the proof by substituting (8) into (18) which yields

D2−D1 =
Z t f

t0
(Λ2−Λ1)

T
[

−
∂ f
∂ẋ

(

d
dt

∂x
∂p

)

−
∂ f
∂x

(

∂x
∂p

)]

dt+

[

(Λ2−Λ1)
T ∂ f

∂ẋ
∂x
∂p

]
∣

∣

∣

∣

t f

t0

. (19)

Substituting the integration by parts

−
Z t f

t0

[(

(Λ2−Λ1)
T ∂ f

∂ẋ

)

d
dt

(

∂x
∂p

)]

dt =
Z t f

t0

[

d
dt

(

(Λ2−Λ1)
T ∂ f

∂ẋ

)

∂x
∂p

]

dt−

[

(Λ2−Λ1)
T ∂ f

∂ẋ
∂x
∂p

]∣

∣

∣

∣

t f

t0

into (19), canceling terms, and rearranging yields

D2−D1 =
Z t f

t0

[

d
dt

(

(Λ2−Λ1)
T ∂ f

∂ẋ

)

− (Λ2−Λ1)
T ∂ f

∂x

](

∂x
∂p

)

dt. (20)

Next, substituting the solutionsΛ1 andΛ2 into (14) and subtracting these two adjoint equations
yields

−
d
dt

(

(Λ2−Λ1)
T ∂ f

∂ẋ

)

+(Λ2−Λ1)
T ∂ f

∂x
= 0, t ∈ [t0, t f ]. (21)

Finally, substituting (21) into (20) yields

D2−D1 = 0 (22)

which completes the proof.2

The above theorem establishes that there are an infinite number of choices for the final condition
for the adjoint solution that all yield the same reduced derivative∂d̂/∂p. While a wide variety of
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final conditions forΛ(t f ) can be chosen to close the adjoint equation, rather than picking just any
final condition, selecting the final condition

(

∂h
∂x

−ΛT ∂ f
∂ẋ

)
∣

∣

∣

∣

t=t f

= 0, (23)

is rather convenient since it zeros out the last term in (16) and allows us to avoid the computation
of ∂x/∂p at t = t f which we do not have available with an adjoint method. This specification of the
final condition closes the adjoint equation and uniquely defines the adjointΛ in all of the cases of
state DAEs what we will consider here3.

Finally, substituting (23) and∂x0/∂p for ∂x/∂p at t = t0 in (16) we arrive the final expression for
reduced derivative

∂d̂
∂p

=

Z t f

t0

(

∂g
∂p

−ΛT ∂ f
∂p

)

dt+

(

∂h
∂p

)
∣

∣

∣

∣

t=t f

+

(

ΛT ∂ f
∂ẋ

)
∣

∣

∣

∣

t=t0

∂x0

∂p
. (24)

In conclusion, (14) and (23) define the set of adjoint DAE equations that specify a unique adjoint
solutionΛ which are integrated backwards in time and (24) gives the expression for the
computation of∂d̂/∂p in terms of the computed adjointΛ. Note that the integral in (24) can be
evaluated at the same time that the adjoint is being solved backward in time. Therefore, no storage
of the adjoint is needed beyond what is needed for the time stepping algorithm.

3.2 Derivation of adjoint sensitivities for transient parameters

Here we consider the derivation of the reduced sensitivity with respect to transient parameters

∂d̂
∂v(t)

∈ G |V , for t ∈ [t0, t f ]. (25)

Our derivation for these sensitivities for the transient parametersv will be a little different than for
the steady-state parametersp. The primary reason for using a different derivation is thatthe
infinite-dimensional transient parametersv are fundamentally different than finite-dimensional
steady-state parametersp. Because of the infinite-dimensional nature ofv, we use a different tool
of functional analysis. The tool we use is the application ofthe infinite-dimensional operator
∂d̂/∂v to the infinite-dimensional perturbationδv where we will then use to identify∂d̂/∂v(t) in
the integrand of

∂d̂
∂v

δv =
Z t f

t0

∂d̂
∂v(t)

δv(t)dt. (26)

The integral in (26) is the definition the infinite-dimensional operator application(∂d̂/∂v)δv.

3A uniquely defined adjointΛ requires that certain regularity conditions are satisfied by the state DAE (see [2]) but
for the purposes of this derivation we assume that such a condition is always satisfied.
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We begin the derivation with the variational derivative ofd̂(v) with respect tov along the variation
δv which is simply

∂d̂
∂v

δv =

Z t f

t0

(

∂g
∂x

∂x
∂v

δv+
∂g
∂v

δv

)

dt+

(

∂h
∂x

∂x
∂v

δv

)
∣

∣

∣

∣

t=t f

. (27)

Next, we write the weak form of the linearization of the stateequation (about a solution for
f (ẋ,x, p,v, t) = 0) with respect tov along the variationδv which is

Z t f

t0
ΛT
[

∂ f
∂ẋ

(

d
dt

∂x
∂v

)

δv+
∂ f
∂x

∂x
∂v

δv+
∂ f
∂v

δv

]

dt = 0 (28)

and has initial condition(∂x/∂v)δv|t=t0 = 0. The sensitivity equation that is used in the weak form
in (28) can be derived using a simple Taylor expansion of the state equation about a solution
f (ẋ,x, p,v, t) = 0 in the variationδv and then dropping off theO(||δv||2) and higher terms.

From here the derivation proceeds almost identically to thecase for the steady-state parametersp
described in the previous section.

Substituting the integration by parts

Z t f

t0

[(

ΛT ∂ f
∂ẋ

)

d
dt

(

∂x
∂v

δv

)]

dt =

(

ΛT ∂ f
∂ẋ

∂x
∂v

δv

)∣

∣

∣

∣

t f

t0

−

Z t f

t0

[

d
dt

(

ΛT ∂ f
∂ẋ

)

∂x
∂v

δv

]

dt (29)

into (28) and rearranging yields

Z t f

t0

(

ΛT ∂ f
∂v

δv

)

dt+
Z t f

t0

[

−
d
dt

(

ΛT ∂ f
∂ẋ

)

+ ΛT ∂ f
∂x

]

∂x
∂v

δvdt+

(

ΛT ∂ f
∂ẋ

∂x
∂v

δv

)
∣

∣

∣

∣

t f

t0

= 0. (30)

Substituting the choice for the adjoint equation (14) into (30) and rearranging yields

Z t f

t0

(

∂g
∂x

∂x
∂v

δv

)

dt = −

Z t f

t0

(

ΛT ∂ f
∂v

δv

)

dt−

(

ΛT ∂ f
∂ẋ

∂x
∂v

δv

)
∣

∣

∣

∣

t f

t0

. (31)

Substituting (31) into (27) and rearranging yields

∂d̂
∂v

δv =
Z t f

t0

(

∂g
∂v

−ΛT ∂ f
∂v

)

δvdt+

(

ΛT ∂ f
∂ẋ

∂x
∂v

δv

)
∣

∣

∣

∣

t=t0

+

[(

∂h
∂x

−ΛT ∂ f
∂ẋ

)

∂x
∂v

δv

]
∣

∣

∣

∣

t=t f

. (32)

Using the choice for the final condition in (23) and noting that (∂x/∂v)δv|t=t0 = 0 (sincev can not
affectx at t = t0 becausev only appears in the DAE RHS, not the initial condition), then(32)
reduces to

∂d̂
∂v

δv =
Z t f

t0

(

∂g
∂v

−ΛT ∂ f
∂v

)

δvdt. (33)

12



Finally, by comparing (33) with (26) it is clear that

∂d̂
∂v(t)

=
∂g

∂v(t)
−Λ(t)T ∂ f

∂v(t)
, t ∈ [t0, t f ] (34)

is the reduced derivative object that we are seeking.
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4 Significance and interpretation of the adjoint

In this section we consider another reason for choosing (23)as the final condition to close the
adjoint equation (14). This choice of the final condition makes the adjoint variablesΛ become the
first-order sensitivity of the auxiliary response functiond(x) with respect the perturbations in the
constraints through the state solution. This is easy to see by simply considering the case where
g(x,v, t) = g(x), h(x) = h(x), and f (ẋ,x,v, t) = f (ẋ,x, t)−v which, when substituted into (34), gives

∂d̂
∂v(t)

= Λ(t)T , t ∈ [t0, t f ], (35)

wherev(t) ∈ F are the perturbations in the state constraintsf (ẋ,x, t).

The knowledge that this selection for the adjointΛ is the sensitivity of a functional of interestd(x)
with respect to the changes in the constraints makes the adjoint a useful quantity in and of itself.
This is why the adjoint is useful in more contexts other than just computing reduced derivatives.
Examples of other areas where adjoints are useful are sensitivity analysis and error estimation [5]

Note that the sign given the adjoint in the choice for the adjoint equation (14) determines the
interpretation for the adjoint in this analysis. If the opposite sign for the adjoint would have been
chosen, then we must interpret the perturbation to the stateequation asf (ẋ,x,v, t) = f (ẋ,x, t)+v.
The only issue here is whether adding a constant to a state equation will increase or decrease the
reduced response function̂d(p). However, since most people just look at the magnitude of this
sensitivity inherent in the adjoint, the sign of the adjointagain becomes unimportant.
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5 The adjoint, the reduced gradient and the augmented adjoint

We now restate the adjoint in (14) and (23), and the reduced sensitivities in (24) and (34) in
standard column-wise multi-vector form forΛ which yields the adjoint DAE equations

d
dt

(

∂ f
∂ẋ

T

Λ

)

−
∂ f
∂x

T

Λ+
∂g
∂x

T

= 0, t ∈ [t0, t f ] , (36)

(

∂ f
∂ẋ

T

Λ

)
∣

∣

∣

∣

∣

t=t f

=
∂h
∂x

T
∣

∣

∣

∣

∣

x=x(t f )

, (37)

and the reduced gradient expressions

∂d̂
∂p

T

=

Z t f

t0

(

∂g
∂p

T

−
∂ f
∂p

T

Λ

)

dt+
∂h
∂p

T
∣

∣

∣

∣

∣

t=t f

+
∂x0

∂p

T
(

∂ f
∂ẋ

T

Λ

)∣

∣

∣

∣

∣

t=t0

. (38)

and

∂d̂
∂v(t)

T

=
∂g

∂v(t)

T

−
∂ f

∂v(t)

T

Λ(t), t ∈ [t0, t f ] (39)

As described in [2], for some classes of DAEs (including someimplicit ODEs), the form of the
adjoint in (36)–(37) may be unstable while the followingaugmented adjoint DAE system(created
by defining the augmented adjoint varaiblesΛ̂ = ∂ f/∂ẋΛ)

d
dt

(

Λ̂
)

−
∂ f
∂x

T

Λ+
∂g
∂x

T

= 0, t ∈ [t0, t f ] , (40)

Λ̂−
∂ f
∂ẋ

T

Λ = 0, t ∈ [t0, t f ] , (41)

Λ̂
∣

∣

t=t f
=

∂h
∂x

T
∣

∣

∣

∣

∣

x=x(t f )

, (42)

generally is stable when the forward DAE (up to index 2) is stable. In addition, when considering
time-stepping algorithms for state and adjoint equations,only the augmented adjoint DAE is
guaranteed to be stable for the same time-step used by the forward DAE [2]. Therefore, the
augmented adjoint DAE system is to be preferred in a softwareimplementation and only imparts a
small additional space/time cost.

15



References

[1] Eric B. Becker, Graham F. Carey, and J. Tinsley Oden.Finite Elements: An Introduction,
volume 1. Prentice Hall, London, second edition, 1981.

[2] Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. Adjoint sensitivity analysis for
differntial-algebraic equations: The adjoint DAE system and its numerical solution.SIAM
Journal on Scientific Computing, 24(3):1076–1089, 2003.

[3] Alan C. Hindmarsh, Peater N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E.
Shumaker, and Carol S. Woodward. Sundials: Suite of nonlinear and differential/algebraic
equation solvers.To apprean in ACM Trans. in Math. Software.

[4] Radu Serban and Alan C. Hindmarsh. Cvodes: An ode solver with sensitivity analysis
capabilities. Technical Report UCRL-JP-200039, LawrenceLivermore National Laboratory,
2003.

[5] Bart van Bloemen Waanders et. al. Sensitivity technologies for large scale simulation.
Technical Report SAND2004-6574, Sandia National Laboratories, 2004.

16



DISTRIBUTION:

2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 4536

17



18



v1.27




