SANDIA REPORT

SAND2008-7593
Unlimited Release
Printed November 2008

Trilinos CMake Evaluation

Roscoe A. Bartlett, Daniel M. Dunlavy, Esteban J. Guillen, Tim Shead

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2008-7593
Unlimited Release
Printed November 2008

Trilinos CMake Evaluation

Roscoe A. Bartlett, Daniel M. Dunlavy, Esteban J. Guillemm Bhead

Abstract

Autotools is terrible. We need something better. How abdvuake? Here we document our
evaluation of CMake as a build system and testing infragiredo replace the current autotools-based
system for Trilinos.

Acknowledgment

The authors would like to thank Kitware and the open-souararaunity for creating such a great set of
tools.

Contents

A o o [T o) 7
2 Build Capabilities and FOAIUMES © + . . vttt e et e e e e e e et e e e e 8
2.1 Critical build features currently handled by the exigtautotools s¥st§m 8
2.2 Critical build features not currently handled by thesérg autotools system 9
2.3 Less-critical but desirable build fEatUreSo oo e 10
3 Testing and Reporting Capabilities and FOAIUMES .« . e ettt 13
3.1 Critical testing features currently handled by the taxisPerl-based test harness 13
3.2 Critical testing features not currently handled by tbhd-Based test harmess 14
3.3 Less-critical but desirable testing and reportingUesso.oeere. .. 15
4 Desired enhancements to CMake/CTESYUCDASH vues e e et 17
5 Summary and ReCOmMMENdatioNS ittt i eee et ettt 19
5.1 Gains and losses for switching from autotools to CMakéHe build system 19
5.2 Gains and losses for switching the test harness to thentisystem to CTest/CDash. 19
5.3 Final reCOMMENAALONS . .« .« o' s e e et et e e e e e e e e 20
RETEIENCES . . ettt e 21
Appendix

1 Introduction

Here, we summarize a detailed evaluation of the CMake satitaf nd testing tools as a possible
replacement for the current autotools-based and homergResl-based test harness. This evaluation
includes the development of a comprehensive prototype kyitem infrastructure for Trilinos using
CMake that is likely very representative of what a final systeould look like.

The CMake set of configuration, build, test, and reportirgig@re developed and maintained by Kitware,
Incl! The four (4) tools available in the current CMake system arfobows:

CMake: portable build manager that includes a complete scrigéinguage for configuring and
building software libraries and executables.

CTest: executable to handle running tests along with a scriptmgliage to control test flows.

CPack: cross-platform software packaging tool, with installepgort for all systems currently
supported by CMake.

CDash: build and test reporting dashboard built on PHP, CSS, XS{SML, and Apache HTTPD.

Note that although these tools have been developed to wdakdem as a complete build and test
environment, the components can be used independentlyllsareexample, CMake can be used to
configure and build a library, and testing can be handledyusitother set of tools. Furthermore, CTest and
CDash can be used to handle testing and reporting of a sefteaary without using CMake as the build
manager. This said, it is recommended to use the full CMakef@CPack/CDash system as there is more
work involved to use only parts of the system.

Iwww.kitware.com

2 Build Capabilities and Features

Here we describe a set of features relating to building amdthey are (or are not) supported with the
current autotools build system and the new CMake prototyptes. These features are subdivided into
critical and non-critical categories.

2.1 Critical build features currently handled by the existing autotools system
1. Dependency tracking of header files to rebuild object:files

(a) Why this is important: To enable fast, safe, and correlotitds.

(b) Autotools: Only supported on Linux and very few othertfdlams. Not supported on the Sun,
IBM, and SGI.

(c) CMake: Built into CMake for C and C++ so it will work on eyeplatform, period!
2. Dependency tracking of object files to libraries:

(a) Why this is important: To enable fast, safe, and correlotitds.
(b) Autotools: Fully supported on all platforms.
(c) CMake: Fully supported on all platforms.

3. Scalable build system where Trilinos package librarresteeader file directory locations are only
defined once:

(a) Why this is important: This is needed to allow for the abé growth and maintenance of
Trilinos.

(b) Autotools: The current export makefile system (with nigédragments
Makefile.package.export) defines a single file where thasggtare defined. Every test and
example in Trilinos (with a few shameful exceptions) usesdkport makefiles to get all of
these. There is no duplication.

(c) CMake: The prototype CMake-based build system forAo#i handles all intra-package
dependencies automatically with only simple intra-paekdgpendency lists in
Dependencies.cmake files. There is no duplication at altl@isdsystem is much cleaner than
the current autotools system.

4. Build system must be portable to all required platforms:

(a) Why this is important: Trilinos must support a wide setlifferent platforms.

(b) Autotools: Autotools generates very portable makefitd@wvever, avoiding “command-line too
long” errors on many platforms requires that one use GNU Make

(c) CMake: One needs to have cmake built on the target phatbart all that is needed to build and
install cmake is a fairly recent C++ compiler. A simple 'canfie’, 'make’, and 'make install’
is all that is needed.

5. Cross compiling:

(a) Why this is important: Cross compiling is required tolthdior production parallel machines
(e.g. Red Storm).

(b) Autotools: Yes, because everything is manual.

(c) CMake: Cross compiling is a new feature in CMake and inislear how well tested this is in
the Sandia environment. However, organization 1420 hastam success with using this
feature with Paraview to build for reddish/redstorm.

2.2 Critical build features not currently handled by the existing autotools system

1. Library to executable dependency tracking:

(&) Why this is important: We need this for fast rebuild/stteycles before repository commits and
faster feedback from continuous integration builds. Qutlyeit takes up to 50 minutes or
longer on a very fast Linux machine to relink a large numbeheftests and examples in
Trilinos.

(b) Autotools: No support at all.
(c) CMake: This is built into CMake. This is one of the majortmations for going to CMake.

2. MS Windows support:

(a) Why this is important: Windows represents a big growtador Trilinos; the Titan project is
one example.

(b) Autotools: No direct support but cygwin can be used witimiféws Intel compilers to install
headers/libraries. This is not easy to set up and not venglipler

(c) CMake: Direct support for MS Windows and a variety of athgstems. This includes creating
project files for MS Visual Studio and binary installers @NSI@. There is lots of experience
with this at Sandia for Visual Studio and NMake for native émws binaries. This is one of
the major selling points for CMake over the autotools system

3. Support for multiple languages including Fortran 77 tfeor 90, and Fortran 2003:

(a) Why this is important: ForTrilinos requires a very cutréortran 90 compiler with some
Fortran 2003 features. Included in this is name mangling-tstran 77.

(b) Autotools: This is currently handled by setting 'F90’doint to the Fortran 90+ compiler when
calling configure. However, Fortran 2003 with gfortran ¢esaauxiliary files that need to be
symbolically linked in a manual way and it is not portable sially, autotools really does
not support Fortran 2003. What we have right now is a haelt tiorks with gfortran. Name
mangling with Fortran 77 is well supported and largely awdgbmon most platforms.

(c) CMake: Itis unclear how well CMake supports Fortran 90+ ®hapter 11 in [1] deals with
how to add new compilers so it seems this could be supported afeanly than with autotools.
One idea is to copy and extend the Fortran 90 macro packagdeftyan 2003. This may be
hard to make portable but hopefully we would get some helm filee CMake community or
Kitware. Right now Fortran 77 name mangling is determineglagform but it will be easy to
write a Module/Macro that will figure this out automaticalith thet ry _conpile(...)
command.

2A scriptable win32 installer/uninstaller system avaiahtht t p: / / nsi s. sour cef or ge. net /

http://nsis.sourceforge.net/

2.3 Less-critical but desirable build features

1. Shared libraries:

(a) Why this is important: Some customers demand this. Alsared libraries can allow for much

(b)

©)

faster rebuild cycles where executables do not even neeglitelinked after a dependent
library is rebuilt. This can substantially speed up preegiretesting and shorten the feedback
time from a continuous integration server.

Autotools: Past attempts at using libtool have failede Python-based system for creating
shared libraries on Linux is not well characterized.

CMake: Shared library support with CMake is advertisetie very strong (see Section 4.8 in
[1]). Experience that organization 1420 has had with shhbearies with CMake in our
computing environment at Sandia includes Linux, Mac OS \fmtows (but Windows
requires some extra work in the CMakeLists.txt files). Ifrelolibraries don’'t work on a
particular platform, you can just switch back to staticdities.

Caveat: Currently, at least for the makefile generator, changés épp files that result in the
recreation of a shared library also result in unnecesséinkieg of all dependent test and
example executables. This is unfortunate but understémdalen that makefiles are being
used and this type of special shared library logic is not etipp by ‘'make’.Work around: We
can add a 'libs’ target that will result in only libraries hgirebuilt and then a developer can
just use 'make libs’ followed by 'ctest’ and avoid relinkinglowever, if other code related to a
test/example also needs to be rebuilt, then that will resuftconsistent executables and
therefore inaccurate test results. But, it may be possibtkevise a general system of
manipulating time stamps when shared libraries are useubsove can avoid relinking
executables unnecessarily.

2. Creation of export makefiles with compilers, compileriaps, include directories, libraries etc. for
use by external client makefiles:

(a) Why this is important: Building compatible client codiet will successfully link against

Trilinos can be difficult to do in a portable when done manudrhis feature is really only used
by second-tier customers (e.g. graduate students andadflppjects) as our major customers
handle this differently.

(b) Autotools: This is done by installing Makefile.packaggort and

Makefile.package.export.macros in the $prefix/instakctiory.

(c) CMake: This will be easy to support, and a prototype sydtealready in place for the

LSALIB library currently used in the Titan project.

3. Clean and understandable mechanism for extending &unadity:

(a) Why this is important: We will need to create specialigegtures form time to time, and we

need a supported way to do this that is clean and understi@ndab

(b) Autotools: Autotools uses the so-called M4 languagectviias to be the most confusing and

hacked language ever designed in semi-modern times. kas that M4 was hacked together
in a pinch as some wrapper around shell scripting.

10

()

CMake: CMake has its own scripting language that isyfajegneral and fairly compact for
basic usage. It is a “Turing complete” (i.e. you can write ptete programs with it) which
includes the ability to define lists and loops over thoss ksid create arbitrary new functions
(call macros). Unlike makefiles, commands in CMake scripsfidre executed from beginning
to end with clear programming language semantics. Whileetlseno CMake “debugger”, you
can effectively debug CMake scripts by puttingMESSAGE(. . .) calls which are the
equivalent to print statements.

Disclaimers. The CMake scripting language is a little strange. For ame variable scoping
rules involving cache, internal cache, and non-cache higsaare a little confusing and make it
difficult to implement complex logic. | would not try to wrie complex stand-alone program
or complex logic in CMake (but you could as all of the tools doing so are there). However,
CMake is still many times better than autotools for which we@mparing.

4. Simple development environment:

(a) Why this is important: Leaning how to develop in a Triknpackage needs to be fairly easy

(b)

(©

and setting up a development environment needs to be eassilas w

Autotools: In order to develop on Trilinos, you need toayt and find specific versions of
autoconf and automake and put them on whatever system wbeneilf need to change the
build system for any reason (e.g. add/remove files, add rn&w, tetc.). This is a big hassle
when you work on a variety of platforms, especially ones whau do not have root
administrator privileges (e.g. the SCICO LAN). Also, wheaeyou changed any Makefile.am
file or configure.ac file, you need to remember to run ./bampsin any package that you
change and at the top level. It is easy to forget and a hassalmtinese scripts. And if you
don’t remember to bootstrap, the build system will not updatything. This is a real problem,
especially for new developers.

CMake: With CMake there is no intermediate “bootstraggps After the CMake files are
modified, you can just type 'make’ and the system will recamggitself if it needs to do so.
Also, there are no intermediate files that need to be addéwktd'$ repository. As a developer,
this means only having to get the CMake source and instaléis{on 2.6 is currently required
but 2.7 is needed for correct CDash reporting). That is bt having to get two different
programs with different versions for automake and autaconf

5. Simple installation for users:

(a) Why this is important: While installing Trilinos for usefor the general case will never be

(b)

“easy” because of the complexity of Trilinos, we don’t wamthake it harder than it needs to
be.

Autotools: With autotools, a “configure” shell scriptgsovided and in theory, a user just needs
to run configure with the correct input arguments and they tlae@ do ‘'make install’. Testing a
serial version of Trilinos is also as easy as 'make runtest&!’. Running the full serial test
suite requires 'make runtests-serial TRILINOEST.CATEGORY=FRAMEWORK’.

However, running the MPI tests is not so easy, and we imagivet osers will never do this
because of having to specify several other tricky input 'elafariables like

TRILINOS_MPI_GO (which requires double quotes). Also, in order to reaibtall and test all
of Trilinos on some systems, you have to use —with-gnumak@wget “command-line too
long” errors or errors that are much more cryptic. What thisans is that you essentially need

11

()

to have and use GNU Make in order to make Trilinos portables@ne systems, user may
have to install GNU Make themselves but usually it is alreimdyalled and they just need to
use it instead of the default 'make’ command.

CMake: Users must have a current enough version (clyr2i@) of CMake installed on their
system to configure and generate makefiles and then builchatalli However, for some
specialized distributions, it will be possible to distriburrilinos as RPM files, MS Visual
Studio project files, and the like where users would not neldake. However, this will result
in less flexibility in what packages and options are enabtetidisabled. Note, however, that
CMake appears to be as portable and easy to build from sosiG®&& Make so this is not a
huge extra requirement over the autotools system. Alsothateon MS Windows, there are
binary self-extracting installers for a very nice CMake Gldbgram that users can just
download, double-click to install, and then run. On MS Wiwdpif you have the free MS
Visual C++ express edition, then configuring project filedbynloading and installing the
Windows version of CMake is really not any harder than dowading a pre-created project file.

6. Circular dependencies allowed between tests/examplifferent packages:

(a) Why this is important: It is not clear where to put somemegbes/tests which require multiple

(b)

()

packages and there are several cases of tests/examplesféhad libraries that build later in
the build tree.

Autotools: The default target for 'make’ just buildsr#ties and the 'tests’, 'examples’, and
‘everything’ targets build all libraries before any testesamples are linked. The support for
this with the current autotools-based system is less thiaigbktforward. Also, support for these
types of circular dependencies has proved to make the ¢aweotools-based system quite
fragile is not scaling well.

CMake: The current CMake build system prototype doesuapport circular dependencies
between tests/examples and later package libraries. Howeis not clear that this feature is
worth preserving. Instead, we can put such troublesomg/¢asimples into packages like
TrilinosCouplings (and NonlinearStrategies) or otheet #iready have all of the needed
package dependencies. Also, packages have used thiefaatarcrutch to avoid having to
build appropriate mock objects in order to do proper untiirtigs

12

3 Testing and Reporting Capabilities and Features

In this section we list some features that are needed fotiagesystem for Trilinos and compare current
support for them in the autotools-based and CMake-basédoFisystems. These features are separated
into critical and less critical sets.

3.1 Critical testing features currently handled by the exising Perl-based test harness
1. Separate archiving and reporting of test results for package:

(&) Why this is important: It is important to create targepadkage test result web pages and
emails so that individual package developers can focus@ndatvn packages and not be
distracted by errors from other related packages. Thisneesiting that SIERRA does *not*
have worked out yet and it is causing the problems.

(b) Perltest harness: Handled very cleanly but there dfs@the improvements to be made.
Examples of needed improvements: a) listing of all plat®mm, b) email notifications of
specific platform builds.

(c) CMake/CTest/CDash: This can be done at the CTest swifgivel and with some PHP
database programing. This might take a significant amouwbok to accomplish.

2. Platform-specific tests:

(a) Why this is important: One must be able to target and sjieeitests for different platforms in
order to deal with portability problems and other issues.

(b) Perltest harness: Handed with 'HOST’ and "X-HOST’ op8an a very clean way with
‘uname -n’ but it is not very portable (for example, does notkwon the MAC).

(c) CMake: This is trivially handled with a HOST and XHOST angent with the
TRILINOS_ADD TEST(...) function. Actually, this is more portable sinteelies on the
built-in SITECLNAME(...) command in CMake and not the non-portable 'unami€emmand.

3. Disabling of packages that fail the build and then religd

(a) Why this is important: In order to maximize the amountEfgerimental) code that can be
built and tested, it is desirable to be able to disable paak#gat fail to compile and then
disable optional support in the other packages.

(b) Perltest harness: This is supported but it requires af lstanual work to maintain the package
dependencies and the completion banners in every packagesystem is also fairly fragile
and breaks a lot giving false results and resulting in coddoeimg tested for days.

(c) CMake/CTest: There is no built-in CMake support for thig intra-package dependence
tracking has been implemented in the prototype CMake bystes for Trilinos. An advanced
CTest script (see Section 10.9/in [1]) could be written teelthe entire process and the
dashboard display could be modified to support this. Becallg®ra-package dependency
management would be handled automatically, this systenidimmuch more robust than the
current autotools Perl-based test harness.

4. Selection of subsets of tests using keywords:

13

(a) Why this is important: 1) routine developer testing dgrihe development process requires the
ability to run subsets of tests easily, 2) tests for indiaidpackages need to be selected

individually, 3) different sets of test categories like fRemance” and “Scalability” tests must
selected as needed.

(b) Perltest harness: There is only superficial support &rbaly one “keyword” can be selected

for inclusion. However multiple sets of keywords can not elested and keywords can not be
excluded.

(c) CMake/CTest: While CTest does not directly support kends, they are emulated with the
TRILINOS_ADD_TEST(...) function by simply appending the keywords to thene of the
test. Then, 'ctest’ supports the options -R, -E, and -U fehiding and excluding tests in a
fairly flexible way.

3.2 Critical testing features not currently handled by the Ferl-based test harness

1. Code coverage:

(a) Why this is important: This is one of the most basic metdtcode quality and of the
completeness of tests.

(b) Perl test harness: Has been supported in the past butimendy.
(c) CMake/CTest: Built-in support and run on many platfolmgdots of groups.

2. Memory usage testing (i.e. Valgrind and/or purify):

(a) Why this is important: Memory usage errors in C/C++ amunti to degrade the quality of our
code and they tend to sit dormant for long periods of time ardtdause major problems until
we really need our software to work. This includes memorkdeaccessing deleted memory,
accessing memory wit.h invalid addresses, out-of-boundss etc.

(b) Perltest harness: Has been supported in the past butimendy

(c) CMake/CTest/CDash: Built-in support and is run on malagfprms by lots of other groups.
This can be run in local build with:

ctest -T mencheck

It can also run memory checking as part of the nightly tespirazess with:

ctest -D NightlyMenoryCheck

Individual memory problems are cleanly reported on the Geshboard.

3. Automatic timeout of tests:

(a) Why this is important: Hanging tests can freeze up theht@sess so that no results are
reported at all and it requires a lot of manual work to moniitds and to manually kill hanging

tests. Every major test harness used by the Trilinos apjgicaustomers have support for this
feature (e.g. Alegra, Charon, SIERRA, Xyce).

14

(b) Perl test harness: Not currently supported.

(c) CMake/CTest: Currently supported with the CMake cadreable
DART_TESTI NG_TI MEQUT: STRI NG=<seconds>. A timeout can also be set on a test-by-test basis
with the TI MEQUT test property set by the built-set _t est s_properties(...) CMake
command. This feature has been tested and verified to wotleweat with parallel tests (with
Open MPI). This will result in a huge improvement in the rdibess of the testing
infrastructure for Trilinos.

3.3 Less-critical but desirable testing and reporting featires
1. Performance testing:

(a) Why this is important: Performance tests are typicadhjat tests that do relative or absolute
run-time comparisons for optimized code. We need a mecimafusdefining and selecting to
run performance tests on various platforms for optimizeittbu

(b) Perl test harness: No direct support but could be hanwlitda special test category (i.e.
keyword) and run for optimized builds?

(c) CMake/CTest: Can be very easily supported with a CATE@3option with the
TRILINOS_ADD _TEST(...) function.

2. Parallel running of (serial) tests:

(a) Why this is important: Running tests is parallel can sigantly speed up pre-checking testing
and shorten the feedback time from a continuous integratover.

(b) Perltest harness: No support.

(c) CMake/CTest: This is being developed in the current Cé@k' S development version (but
does not seem to work yet).

3. PBS-type batch running of MPI tests:

(a) Why this is important: Scalability testing requires somore substantial parallel clusters and
this requires using a batch system like PBS. The test haneests to support submitting batch
jobs of MPI runs and wait for the results to come back in aniefficway.

(b) Perltest harness: No support yet but some experimenthts been done.

(c) CMake/CTest: Not directly supported but given the flditibof the CMake scripting language,
if it is possible to support, then this can be supported inMRE_INOS_ADD _TEST(...)
function in a way that is largely transparent to the Triliteveloper. For example, the
TRILINOS_ADD TESTY(...) function could add an initial PBS submit scriptiwa call to
ADD _TEST(...) and then a back-end could store a list of followammands that would all get
added after all initial tests are defined with additionalwADD_TEST(...) calls at the end to
poll for completion of the various PBS jobs. With CMake, dltlis can be handled
automatically in a consistent way.

4. Archiving all test outputs for sufficient periods of time:

15

(a) Why this is important: Complete test results are needéxet table to diagnose failing tests.
Otherwise, you must manually go to the platform, build thecexable(s) and run the tests
manually. Older test result data can be cleaned out as néedeake space.

(b) Perltest harness: Currently, only stdout is capturetisaved and then only a limit of so many
bytes for each file.

(c) CMake/CTest/CDash: CTest/CDash supports grabbingéomements” including files and
putting them in the CDash database. You can also post filéetdashboard database using the
-A option with ctest.

e TODO: Look into ctest -A option for posting multiple files tashboard. The VTK
dashboard already has examples of this

We could also augment the system to store larger files in aatepdirectory structure outside
of the database and then just put in HTML links from the po&i®a&sh files. The new

SIERRA Dart Dashboard system uses a system like this. Wedabah implement a separate
job to clean out older results based on various criterias ias been done, for example, for the
SIERRA + Trilinos Integration testing scripts (i.e. the SVA scripts).

5. Allowing the specification of any arbitrary number of pragns and/or criteria to determine the
success or failure of a test:

(a) Why this is important: Complex tests require that youlile & define “success” in a variety of
different ways. Examples: a) Grepping an output file looKmga specific string, b) checking
for a non-zero return value and grepping for a specific sinrggdout, ¢c) running multiple test
executables and then comparing files to define an overalhasgets reported (This could also
be used for scalability testing for PBS-type queuing sys)em

(b) Perltest harness: The current Trilinos test harnessaildws you to run one script as the test
or a single grep of the console output. There is also supporuhning the compareOutput
program but that is not enough.

(c) CMake/CTest: No direct support but you could do this bdhhe scenes of the
TRILINOS_ADD TEST(...) function in a way that was 100% transparent. Fangle, the
TRILINOS_ADD_TEST(...) function or a new similar function could handleltijple
COMMAND and ARGS fields and on the back end could write a pdetalgthon script that
would then be directly set by the built-in ADDEST(...) CMake command.

16

4 Desired enhancements to CMake/CTest/CDash

Here we list some identified areas of missing support in C¥Mzkest/CDash that we either strongly need
or would be of great benefit for Trilinos. These are featunes tould not easily be built over top of
existing support or would greatly benefit from direct CMakesort.

1. Srongly desired: CMake/CTest: Support for keywords for tests. This couldbded with a
KEYWORDS property for theset _t est s_properties(...) commandWork around: Simply append
all of the keywords to the name of the test.

2. Desired: Direct support for running (multiple) programs to posbgess the output from a test (both
the console and any output file$\brkaround: This can be emulated within the
TRILINOS_ADD_TEST(...) function by writing script files that combine ey#ing but it will be
hard to make this portable and might make it confusing tcetsaleat is happening.

3. CTest: Default outputting issues:

e Desired: Show what the test criteria is and why a test passed or failédue test output in the
output file Testing/Temporary/LastTest.log. Currentigaoes not show if the test passed or
failed, just the command used to invoke the test and the teystib Workaround: Run 'ctest
-VV’ and skip the shorter summary output. However, the abssmf the summary output is
greatly missed.

e Desired: Print the CPU time for each test (not just the start and endgiin the log file). The
test run time helps to determine what tests are taking tog ol need to be revised. This
feature will be easy to add to the CTest C++ source code ancawea@this ourselves.

e Desired: Automatically widen the main summary output to show thétidt names. Currently,
only the first 30 characters of the name are shown. The optibwas added to the CVS
version of CTest to allow the width to be manually set but thia hassle and does not interact
well with MS Visual C++ projects. This will be fairly easy tald to the CTest C++ source code.

4. Desired: CTest/CDash: Submit all test data (no matter the size) agdphune test results over time.
This includes files that get output as well. This is being dimnéhe SIERRA + Trilinos Integration
test repository for instancé\brkaround: We can emulate this with our own handling scripting code
but this will not be available to other CMake projects.

5. Desired: CMake: Generate error messages for missing source filekdha line numbers in the
corresponding CMakelLists.txt file. Currently, it just §ighe entire CMakeLists.txt file and nothing
else.Workaround: Just add files slowly and re-run CMake each time to debug ribiglgm.

6. Desired: CMake: Strong checking for variables that are not definest létting undefined variables
be empty is a bad practice (used by Make and bad Fortran).pradsice is well known to result in
higher rates of software defectbrkaround: Use a user-definedSSERT_DEFI NEDY(. . .) macro
(which is being done right now and is somewhat effective).

7. Desired: CMake: Strong checking for user input misspelling CMakenheaariables: Currently, if a
user misspells the name of a defined user cache variableetheltdfor that variable will be used
instead and the misspelled user variable will be ignoreds iBhvery bad behavior that is carried
over from the autotools world and should not be repeated thé#éhfCMake system. It would be very

17

useful if the cmake executable could take a new option (@aidate-cache-variables) that would
force the validation of all user-set cache variables to nsake that they had a matching internally
defined cache variabl&brkaround: We could create a new VALIDATEEPTION(...) command
that would store a list of all defined options and then we caolgldse a system that would validate
that all cache variables set were expected. However, thigdaanly work for Trilinos-defined
variables and not other cache variables defined by built\fak: commands like SITRAME(...)
and FIND.FILE(...). User input checking is a serious software vediiian issue that needs to be
addressed.

18

5 Summary and Recommendations

Here, we summarize the major gains and (at least initiahdeshat we would experience by switching

from the current autotools-based build system for Trilitmghe prototype CMake-based build system for
Trilinos. Then, separately, we summarize the gains an@ossmt would be experienced in switching from
the current Perl-based test harness for Trilinos to theopoé CMake/CTest/CDash-based test harness for
Trilinos. We list these separately because we can decideptaae the current autotools build system with
the CMake system and still maintain the current Perl-bassithiarness.

5.1 Gains and losses for switching from autotools to CMake fathe build system

1. What we gain:

(a) Full dependency tracking of every kind possible on atfpkms (i.e. header to object, object to
library, library to executable, and build system files tobalilt files).

(b) Support for shared libraries on a variety of platforms.
(c) Support for MS Windows (i.e. Visual Studio projects, \dinvs installers, etc.).

(d) Simplified build system and easier maintenance (extiepasy to add new packages and
maintain existing packages).

(e) Improved mechanism for extending capabilities (as @egbto M4 in autotools).

(f) Ability to affect the development of the build tools wifpod existing collaborations (i.e. with
both Kitware and with organization 1420).

(g) Significant “in house” knowledge-base (i.e. visualizatgroup in 1420).

(h) One hundred percent automated intra-package depenttanking and handling (built into the
prototype Trilinos/CMake build system).

2. What we lose (at least initially):

(a) CMake requires that all uses have 'cmake’ installed eir thachine when building from
source and users will need to have at a very recent versiomake. (However, cmake is very
easy to build from source).

(b) Support for circular test/example and package libsaigenot provided in the current prototype
Trilinos/CMake build system.

5.2 Gains and losses for switching the test harness to the aent system to CTest/CDash

1. What we gain:

(a) Testtime-outs (this is a major maintenance issue foctinent Perl-based test harness).

(b) Memory testing with Valgrind and purify that is backed mpKitware and a larger
development community.

(c) Line coverage testing that is backed up by Kitware andgeldevelopment community.

(d) Support for selecting and excluding subsets of testsan regular expressions (but better
support for keywords would be welcomed).

19

(e) Better integration with the build system (e.g. easiesupport more advanced features like PBS
batch systems and flexible testing control).

(f) Better tracking of specific tests (i.e. each and everydas have a unigue name that is easy to
find).

2. What we lose (at least initially):

(a) Separate reporting of test results for different Todirppackages on the web page and in emails
sent out (however, such support could be layered on top o$iGirel CDash).

(b) Support for selectively disabling package tests/examand entire packages when a build fails
(however, such support could be layered on top of CTest feindrthe test harness).

5.3 Final recommendations

The potential gains for switching from the current autaselmhised build system for Trilinos to the
prototype CMake-based build system summarized above argvbelming. Therefore, our
recommendation is to transition all of Trilinos to the new @léd-based build system and completely drop
the current autotools build system as soon as possible. ¥mwmaintaining limited support for the
current autotools-based build system through the nextmnejease of Trilinos would be recommended.

There are also significant advantages to supporting the €Mddlest/CDash-based test harness as
summarized above. However, some features supported bythe-grown Perl-based test harness will take
considerable time and effort to replicate with the CMake&&ICDash system. Therefore, our
recommendation is to maintain test suites for both the nevakiCTest/CDash system and the current
Perl-based test harness until such time that the infrasteiaround the CMake/CTest/CDash system
sufficiently supports the compartmentalization of testiltesor archiving and reporting. This means
maintaining each package’s test/definition file, and add@iR.INOS_ADD _TESTY(...) calls in
CMakelLists.txt files. By maintaining both testing systemis,will have the best of both worlds but at the
cost of needing to maintain two test systems for some timeveder, it is expected that maintaining both
testing system will be much easier that maintaining botldsystems for several reasons.

The current Trilinos/CMake prototype build system is nova atate where we believe it can now be
pushed out to all of Trilinos very rapidly.

20

References

[1] Ken Martin and Bill Hoffman.Mastering CMake: A Cross-Platform Build System. Kitware Inc, fourth
edition, 2007.

21

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic)

22

v1.31

@ Sandia National Laboratories

	Introduction
	Build Capabilities and Features
	Critical build features currently handled by the existing autotools system
	Critical build features not currently handled by the existing autotools system
	Less-critical but desirable build features

	Testing and Reporting Capabilities and Features
	Critical testing features currently handled by the existing Perl-based test harness
	Critical testing features not currently handled by the Perl-based test harness
	Less-critical but desirable testing and reporting features

	Desired enhancements to CMake/CTest/CDash
	Summary and Recommendations
	Gains and losses for switching from autotools to CMake for the build system
	Gains and losses for switching the test harness to the current system to CTest/CDash
	Final recommendations

	References

