
SANDIA REPORT
SAND2008-7593
Unlimited Release
Printed November 2008

Trilinos CMake Evaluation

Roscoe A. Bartlett, Daniel M. Dunlavy, Esteban J. Guillen, Tim Shead

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2008-7593
Unlimited Release

Printed November 2008

Trilinos CMake Evaluation

Roscoe A. Bartlett, Daniel M. Dunlavy, Esteban J. Guillen, Tim Shead

Abstract

Autotools is terrible. We need something better. How about CMake? Here we document our
evaluation of CMake as a build system and testing infrastructure to replace the current autotools-based
system for Trilinos.

3

Acknowledgment

The authors would like to thank Kitware and the open-source community for creating such a great set of
tools.

4

Contents

1 Introduction .. 7
2 Build Capabilities and Features .. 8

2.1 Critical build features currently handled by the existing autotools system 8
2.2 Critical build features not currently handled by the existing autotools system 9
2.3 Less-critical but desirable build features 10

3 Testing and Reporting Capabilities and Features 13
3.1 Critical testing features currently handled by the existing Perl-based test harness 13
3.2 Critical testing features not currently handled by the Perl-based test harness 14
3.3 Less-critical but desirable testing and reporting features . 15

4 Desired enhancements to CMake/CTest/CDash 17
5 Summary and Recommendations .. 19

5.1 Gains and losses for switching from autotools to CMake for the build system 19
5.2 Gains and losses for switching the test harness to the current system to CTest/CDash 19
5.3 Final recommendations .. 20

References .. 21

Appendix

5

6

1 Introduction

Here, we summarize a detailed evaluation of the CMake set of build and testing tools as a possible
replacement for the current autotools-based and home-grown Perl-based test harness. This evaluation
includes the development of a comprehensive prototype build system infrastructure for Trilinos using
CMake that is likely very representative of what a final system would look like.

The CMake set of configuration, build, test, and reporting tools are developed and maintained by Kitware,
Inc.1 The four (4) tools available in the current CMake system are as follows:

• CMake: portable build manager that includes a complete scriptinglanguage for configuring and
building software libraries and executables.

• CTest: executable to handle running tests along with a scripting language to control test flows.

• CPack: cross-platform software packaging tool, with installer support for all systems currently
supported by CMake.

• CDash: build and test reporting dashboard built on PHP, CSS, XSL, MySQL, and Apache HTTPD.

Note that although these tools have been developed to work intandem as a complete build and test
environment, the components can be used independently as well. For example, CMake can be used to
configure and build a library, and testing can be handled using another set of tools. Furthermore, CTest and
CDash can be used to handle testing and reporting of a software library without using CMake as the build
manager. This said, it is recommended to use the full CMake/CTest/CPack/CDash system as there is more
work involved to use only parts of the system.

1www.kitware.com

7

2 Build Capabilities and Features

Here we describe a set of features relating to building and how they are (or are not) supported with the
current autotools build system and the new CMake prototype system. These features are subdivided into
critical and non-critical categories.

2.1 Critical build features currently handled by the existing autotools system

1. Dependency tracking of header files to rebuild object files:

(a) Why this is important: To enable fast, safe, and correct rebuilds.

(b) Autotools: Only supported on Linux and very few other platforms. Not supported on the Sun,
IBM, and SGI.

(c) CMake: Built into CMake for C and C++ so it will work on every platform, period!

2. Dependency tracking of object files to libraries:

(a) Why this is important: To enable fast, safe, and correct rebuilds.

(b) Autotools: Fully supported on all platforms.

(c) CMake: Fully supported on all platforms.

3. Scalable build system where Trilinos package libraries and header file directory locations are only
defined once:

(a) Why this is important: This is needed to allow for the scalable growth and maintenance of
Trilinos.

(b) Autotools: The current export makefile system (with makefile fragments
Makefile.package.export) defines a single file where these things are defined. Every test and
example in Trilinos (with a few shameful exceptions) uses the export makefiles to get all of
these. There is no duplication.

(c) CMake: The prototype CMake-based build system for Trilinos handles all intra-package
dependencies automatically with only simple intra-package dependency lists in
Dependencies.cmake files. There is no duplication at all andthis system is much cleaner than
the current autotools system.

4. Build system must be portable to all required platforms:

(a) Why this is important: Trilinos must support a wide set ofdifferent platforms.

(b) Autotools: Autotools generates very portable makefiles. However, avoiding “command-line too
long” errors on many platforms requires that one use GNU Make.

(c) CMake: One needs to have cmake built on the target platform but all that is needed to build and
install cmake is a fairly recent C++ compiler. A simple ’configure’, ’make’, and ’make install’
is all that is needed.

5. Cross compiling:

8

(a) Why this is important: Cross compiling is required to build for production parallel machines
(e.g. Red Storm).

(b) Autotools: Yes, because everything is manual.

(c) CMake: Cross compiling is a new feature in CMake and it is unclear how well tested this is in
the Sandia environment. However, organization 1420 has hadsome success with using this
feature with Paraview to build for reddish/redstorm.

2.2 Critical build features not currently handled by the existing autotools system

1. Library to executable dependency tracking:

(a) Why this is important: We need this for fast rebuild/retest cycles before repository commits and
faster feedback from continuous integration builds. Currently, it takes up to 50 minutes or
longer on a very fast Linux machine to relink a large number ofthe tests and examples in
Trilinos.

(b) Autotools: No support at all.

(c) CMake: This is built into CMake. This is one of the major motivations for going to CMake.

2. MS Windows support:

(a) Why this is important: Windows represents a big growth area for Trilinos; the Titan project is
one example.

(b) Autotools: No direct support but cygwin can be used with Windows Intel compilers to install
headers/libraries. This is not easy to set up and not very portable.

(c) CMake: Direct support for MS Windows and a variety of other systems. This includes creating
project files for MS Visual Studio and binary installers using NSIS2. There is lots of experience
with this at Sandia for Visual Studio and NMake for native Windows binaries. This is one of
the major selling points for CMake over the autotools system.

3. Support for multiple languages including Fortran 77, Fortran 90, and Fortran 2003:

(a) Why this is important: ForTrilinos requires a very current Fortran 90 compiler with some
Fortran 2003 features. Included in this is name mangling forFortran 77.

(b) Autotools: This is currently handled by setting ’F90’ topoint to the Fortran 90+ compiler when
calling configure. However, Fortran 2003 with gfortran creates auxiliary files that need to be
symbolically linked in a manual way and it is not portable. Basically, autotools really does
not support Fortran 2003. What we have right now is a hack that works with gfortran. Name
mangling with Fortran 77 is well supported and largely automatic on most platforms.

(c) CMake: It is unclear how well CMake supports Fortran 90+ but Chapter 11 in [1] deals with
how to add new compilers so it seems this could be supported more cleanly than with autotools.
One idea is to copy and extend the Fortran 90 macro package forFortran 2003. This may be
hard to make portable but hopefully we would get some help from the CMake community or
Kitware. Right now Fortran 77 name mangling is determined byplatform but it will be easy to
write a Module/Macro that will figure this out automaticallywith thetry compile(...)
command.

2A scriptable win32 installer/uninstaller system available athttp://nsis.sourceforge.net/

9

http://nsis.sourceforge.net/

2.3 Less-critical but desirable build features

1. Shared libraries:

(a) Why this is important: Some customers demand this. Also,shared libraries can allow for much
faster rebuild cycles where executables do not even need to be relinked after a dependent
library is rebuilt. This can substantially speed up pre-checkin testing and shorten the feedback
time from a continuous integration server.

(b) Autotools: Past attempts at using libtool have failed. The Python-based system for creating
shared libraries on Linux is not well characterized.

(c) CMake: Shared library support with CMake is advertised to be very strong (see Section 4.8 in
[1]). Experience that organization 1420 has had with sharedlibraries with CMake in our
computing environment at Sandia includes Linux, Mac OS, andWindows (but Windows
requires some extra work in the CMakeLists.txt files). If shared libraries don’t work on a
particular platform, you can just switch back to static libraries.

Caveat: Currently, at least for the makefile generator, changes in*.cpp files that result in the
recreation of a shared library also result in unnecessary relinking of all dependent test and
example executables. This is unfortunate but understandable given that makefiles are being
used and this type of special shared library logic is not supported by ’make’.Work around: We
can add a ’libs’ target that will result in only libraries being rebuilt and then a developer can
just use ’make libs’ followed by ’ctest’ and avoid relinking. However, if other code related to a
test/example also needs to be rebuilt, then that will resultin inconsistent executables and
therefore inaccurate test results. But, it may be possible to devise a general system of
manipulating time stamps when shared libraries are used so that we can avoid relinking
executables unnecessarily.

2. Creation of export makefiles with compilers, compiler options, include directories, libraries etc. for
use by external client makefiles:

(a) Why this is important: Building compatible client code that will successfully link against
Trilinos can be difficult to do in a portable when done manually. This feature is really only used
by second-tier customers (e.g. graduate students and otheroff projects) as our major customers
handle this differently.

(b) Autotools: This is done by installing Makefile.package.export and
Makefile.package.export.macros in the $prefix/install directory.

(c) CMake: This will be easy to support, and a prototype system is already in place for the
LSALIB library currently used in the Titan project.

3. Clean and understandable mechanism for extending functionality:

(a) Why this is important: We will need to create specializedfeatures form time to time, and we
need a supported way to do this that is clean and understandable.

(b) Autotools: Autotools uses the so-called M4 language which has to be the most confusing and
hacked language ever designed in semi-modern times. It is clear that M4 was hacked together
in a pinch as some wrapper around shell scripting.

10

(c) CMake: CMake has its own scripting language that is fairly general and fairly compact for
basic usage. It is a “Turing complete” (i.e. you can write complete programs with it) which
includes the ability to define lists and loops over those lists and create arbitrary new functions
(call macros). Unlike makefiles, commands in CMake script files are executed from beginning
to end with clear programming language semantics. While there is no CMake “debugger”, you
can effectively debug CMake scripts by putting inMESSAGE(...) calls which are the
equivalent to print statements.

Disclaimers: The CMake scripting language is a little strange. For one, the variable scoping
rules involving cache, internal cache, and non-cache variables are a little confusing and make it
difficult to implement complex logic. I would not try to writea complex stand-alone program
or complex logic in CMake (but you could as all of the tools fordoing so are there). However,
CMake is still many times better than autotools for which we are comparing.

4. Simple development environment:

(a) Why this is important: Leaning how to develop in a Trilinos package needs to be fairly easy
and setting up a development environment needs to be easy as well.

(b) Autotools: In order to develop on Trilinos, you need to goout and find specific versions of
autoconf and automake and put them on whatever system where you will need to change the
build system for any reason (e.g. add/remove files, add new tests, etc.). This is a big hassle
when you work on a variety of platforms, especially ones where you do not have root
administrator privileges (e.g. the SCICO LAN). Also, whenever you changed any Makefile.am
file or configure.ac file, you need to remember to run ./bootstrap in any package that you
change and at the top level. It is easy to forget and a hassle torun these scripts. And if you
don’t remember to bootstrap, the build system will not update anything. This is a real problem,
especially for new developers.

(c) CMake: With CMake there is no intermediate “bootstrap” step. After the CMake files are
modified, you can just type ’make’ and the system will reconfigure itself if it needs to do so.
Also, there are no intermediate files that need to be added to the VS repository. As a developer,
this means only having to get the CMake source and install it (version 2.6 is currently required
but 2.7 is needed for correct CDash reporting). That is better than having to get two different
programs with different versions for automake and autoconf.

5. Simple installation for users:

(a) Why this is important: While installing Trilinos for users for the general case will never be
“easy” because of the complexity of Trilinos, we don’t want to make it harder than it needs to
be.

(b) Autotools: With autotools, a “configure” shell script isprovided and in theory, a user just needs
to run configure with the correct input arguments and then they can do ’make install’. Testing a
serial version of Trilinos is also as easy as ’make runtests-serial’. Running the full serial test
suite requires ’make runtests-serial TRILINOSTEST CATEGORY=FRAMEWORK’.
However, running the MPI tests is not so easy, and we imagine most users will never do this
because of having to specify several other tricky input ’make’ variables like
TRILINOS MPI GO (which requires double quotes). Also, in order to really install and test all
of Trilinos on some systems, you have to use –with-gnumake oryou get “command-line too
long” errors or errors that are much more cryptic. What this means is that you essentially need

11

to have and use GNU Make in order to make Trilinos portable. Onsome systems, user may
have to install GNU Make themselves but usually it is alreadyinstalled and they just need to
use it instead of the default ’make’ command.

(c) CMake: Users must have a current enough version (currently 2.6) of CMake installed on their
system to configure and generate makefiles and then build and install. However, for some
specialized distributions, it will be possible to distribute Trilinos as RPM files, MS Visual
Studio project files, and the like where users would not need CMake. However, this will result
in less flexibility in what packages and options are enabled and disabled. Note, however, that
CMake appears to be as portable and easy to build from source as GNU Make so this is not a
huge extra requirement over the autotools system. Also notethat on MS Windows, there are
binary self-extracting installers for a very nice CMake GUIprogram that users can just
download, double-click to install, and then run. On MS Windows, if you have the free MS
Visual C++ express edition, then configuring project files bydownloading and installing the
Windows version of CMake is really not any harder than downloading a pre-created project file.

6. Circular dependencies allowed between tests/examples in different packages:

(a) Why this is important: It is not clear where to put some examples/tests which require multiple
packages and there are several cases of tests/examples thatrefer to libraries that build later in
the build tree.

(b) Autotools: The default target for ’make’ just builds libraries and the ’tests’, ’examples’, and
’everything’ targets build all libraries before any tests or examples are linked. The support for
this with the current autotools-based system is less than straightforward. Also, support for these
types of circular dependencies has proved to make the current autotools-based system quite
fragile is not scaling well.

(c) CMake: The current CMake build system prototype does notsupport circular dependencies
between tests/examples and later package libraries. However, it is not clear that this feature is
worth preserving. Instead, we can put such troublesome tests/examples into packages like
TrilinosCouplings (and NonlinearStrategies) or others that already have all of the needed
package dependencies. Also, packages have used this feature as a crutch to avoid having to
build appropriate mock objects in order to do proper unit testing.

12

3 Testing and Reporting Capabilities and Features

In this section we list some features that are needed for a testing system for Trilinos and compare current
support for them in the autotools-based and CMake-based Trilinos systems. These features are separated
into critical and less critical sets.

3.1 Critical testing features currently handled by the existing Perl-based test harness

1. Separate archiving and reporting of test results for eachpackage:

(a) Why this is important: It is important to create targetedpackage test result web pages and
emails so that individual package developers can focus on their own packages and not be
distracted by errors from other related packages. This is something that SIERRA does *not*
have worked out yet and it is causing the problems.

(b) Perl test harness: Handled very cleanly but there are still some improvements to be made.
Examples of needed improvements: a) listing of all platforms run, b) email notifications of
specific platform builds.

(c) CMake/CTest/CDash: This can be done at the CTest scripting level and with some PHP
database programing. This might take a significant amount ofwork to accomplish.

2. Platform-specific tests:

(a) Why this is important: One must be able to target and specialize tests for different platforms in
order to deal with portability problems and other issues.

(b) Perl test harness: Handed with ’HOST’ and ’X-HOST’ options in a very clean way with
’uname -n’ but it is not very portable (for example, does not work on the MAC).

(c) CMake: This is trivially handled with a HOST and XHOST argument with the
TRILINOS ADD TEST(...) function. Actually, this is more portable since it relies on the
built-in SITE NAME(...) command in CMake and not the non-portable ’uname -n’ command.

3. Disabling of packages that fail the build and then rebuilding

(a) Why this is important: In order to maximize the amount of (Experimental) code that can be
built and tested, it is desirable to be able to disable packages that fail to compile and then
disable optional support in the other packages.

(b) Perl test harness: This is supported but it requires a lotof manual work to maintain the package
dependencies and the completion banners in every package. This system is also fairly fragile
and breaks a lot giving false results and resulting in code not being tested for days.

(c) CMake/CTest: There is no built-in CMake support for thisbut intra-package dependence
tracking has been implemented in the prototype CMake build system for Trilinos. An advanced
CTest script (see Section 10.9 in [1]) could be written to drive the entire process and the
dashboard display could be modified to support this. Becauseall intra-package dependency
management would be handled automatically, this system would be much more robust than the
current autotools Perl-based test harness.

4. Selection of subsets of tests using keywords:

13

(a) Why this is important: 1) routine developer testing during the development process requires the
ability to run subsets of tests easily, 2) tests for individual packages need to be selected
individually, 3) different sets of test categories like “Performance” and “Scalability” tests must
selected as needed.

(b) Perl test harness: There is only superficial support where only one “keyword” can be selected
for inclusion. However multiple sets of keywords can not be selected and keywords can not be
excluded.

(c) CMake/CTest: While CTest does not directly support keywords, they are emulated with the
TRILINOS ADD TEST(...) function by simply appending the keywords to the name of the
test. Then, ’ctest’ supports the options -R, -E, and -U for including and excluding tests in a
fairly flexible way.

3.2 Critical testing features not currently handled by the Perl-based test harness

1. Code coverage:

(a) Why this is important: This is one of the most basic metrics of code quality and of the
completeness of tests.

(b) Perl test harness: Has been supported in the past but not currently.

(c) CMake/CTest: Built-in support and run on many platformsby lots of groups.

2. Memory usage testing (i.e. Valgrind and/or purify):

(a) Why this is important: Memory usage errors in C/C++ continue to degrade the quality of our
code and they tend to sit dormant for long periods of time and don’t cause major problems until
we really need our software to work. This includes memory leaks, accessing deleted memory,
accessing memory wit.h invalid addresses, out-of-bounds errors, etc.

(b) Perl test harness: Has been supported in the past but not currently

(c) CMake/CTest/CDash: Built-in support and is run on many platforms by lots of other groups.
This can be run in local build with:

ctest -T memcheck

It can also run memory checking as part of the nightly testingprocess with:

ctest -D NightlyMemoryCheck

Individual memory problems are cleanly reported on the CDash dashboard.

3. Automatic timeout of tests:

(a) Why this is important: Hanging tests can freeze up the test harness so that no results are
reported at all and it requires a lot of manual work to monitorthis and to manually kill hanging
tests. Every major test harness used by the Trilinos application customers have support for this
feature (e.g. Alegra, Charon, SIERRA, Xyce).

14

(b) Perl test harness: Not currently supported.

(c) CMake/CTest: Currently supported with the CMake cache variable
DART TESTING TIMEOUT:STRING=<seconds>. A timeout can also be set on a test-by-test basis
with theTIMEOUT test property set by the built-inset tests properties(...) CMake
command. This feature has been tested and verified to work well even with parallel tests (with
Open MPI). This will result in a huge improvement in the robustness of the testing
infrastructure for Trilinos.

3.3 Less-critical but desirable testing and reporting features

1. Performance testing:

(a) Why this is important: Performance tests are typically serial tests that do relative or absolute
run-time comparisons for optimized code. We need a mechanism for defining and selecting to
run performance tests on various platforms for optimized builds.

(b) Perl test harness: No direct support but could be handledwith a special test category (i.e.
keyword) and run for optimized builds?

(c) CMake/CTest: Can be very easily supported with a CATEGORIES option with the
TRILINOS ADD TEST(...) function.

2. Parallel running of (serial) tests:

(a) Why this is important: Running tests is parallel can significantly speed up pre-checking testing
and shorten the feedback time from a continuous integrationserver.

(b) Perl test harness: No support.

(c) CMake/CTest: This is being developed in the current CMake CVS development version (but
does not seem to work yet).

3. PBS-type batch running of MPI tests:

(a) Why this is important: Scalability testing requires some more substantial parallel clusters and
this requires using a batch system like PBS. The test harnessneeds to support submitting batch
jobs of MPI runs and wait for the results to come back in an efficient way.

(b) Perl test harness: No support yet but some experimentation has been done.

(c) CMake/CTest: Not directly supported but given the flexibility of the CMake scripting language,
if it is possible to support, then this can be supported in theTRILINOS ADD TEST(...)
function in a way that is largely transparent to the Trilinosdeveloper. For example, the
TRILINOS ADD TEST(...) function could add an initial PBS submit script with a call to
ADD TEST(...) and then a back-end could store a list of followup commands that would all get
added after all initial tests are defined with additional with ADD TEST(...) calls at the end to
poll for completion of the various PBS jobs. With CMake, all of this can be handled
automatically in a consistent way.

4. Archiving all test outputs for sufficient periods of time:

15

(a) Why this is important: Complete test results are needed to be able to diagnose failing tests.
Otherwise, you must manually go to the platform, build the executable(s) and run the tests
manually. Older test result data can be cleaned out as neededto make space.

(b) Perl test harness: Currently, only stdout is captured and saved and then only a limit of so many
bytes for each file.

(c) CMake/CTest/CDash: CTest/CDash supports grabbing “measurements” including files and
putting them in the CDash database. You can also post files to the dashboard database using the
-A option with ctest.

• TODO: Look into ctest -A option for posting multiple files to dashboard. The VTK
dashboard already has examples of this

We could also augment the system to store larger files in a separate directory structure outside
of the database and then just put in HTML links from the postedCDash files. The new
SIERRA Dart Dashboard system uses a system like this. We would then implement a separate
job to clean out older results based on various criteria. This has been done, for example, for the
SIERRA + Trilinos Integration testing scripts (i.e. the STANA scripts).

5. Allowing the specification of any arbitrary number of programs and/or criteria to determine the
success or failure of a test:

(a) Why this is important: Complex tests require that you be able to define “success” in a variety of
different ways. Examples: a) Grepping an output file lookingfor a specific string, b) checking
for a non-zero return value and grepping for a specific stringin stdout, c) running multiple test
executables and then comparing files to define an overall testthat gets reported (This could also
be used for scalability testing for PBS-type queuing systems).

(b) Perl test harness: The current Trilinos test harness only allows you to run one script as the test
or a single grep of the console output. There is also support for running the compareOutput
program but that is not enough.

(c) CMake/CTest: No direct support but you could do this behind the scenes of the
TRILINOS ADD TEST(...) function in a way that was 100% transparent. For example, the
TRILINOS ADD TEST(...) function or a new similar function could handle multiple
COMMAND and ARGS fields and on the back end could write a portable python script that
would then be directly set by the built-in ADDTEST(...) CMake command.

16

4 Desired enhancements to CMake/CTest/CDash

Here we list some identified areas of missing support in CMake/CTest/CDash that we either strongly need
or would be of great benefit for Trilinos. These are features that could not easily be built over top of
existing support or would greatly benefit from direct CMake support.

1. Strongly desired: CMake/CTest: Support for keywords for tests. This could beadded with a
KEYWORDS property for theset tests properties(...) command.Work around: Simply append
all of the keywords to the name of the test.

2. Desired: Direct support for running (multiple) programs to post-process the output from a test (both
the console and any output files).Workaround: This can be emulated within the
TRILINOS ADD TEST(...) function by writing script files that combine everything but it will be
hard to make this portable and might make it confusing to trace what is happening.

3. CTest: Default outputting issues:

• Desired: Show what the test criteria is and why a test passed or failedin the test output in the
output file Testing/Temporary/LastTest.log. Currently, it does not show if the test passed or
failed, just the command used to invoke the test and the test output. Workaround: Run ’ctest
-VV’ and skip the shorter summary output. However, the absences of the summary output is
greatly missed.

• Desired: Print the CPU time for each test (not just the start and end times in the log file). The
test run time helps to determine what tests are taking too long and need to be revised. This
feature will be easy to add to the CTest C++ source code and we can do this ourselves.

• Desired: Automatically widen the main summary output to show the full test names. Currently,
only the first 30 characters of the name are shown. The option -W was added to the CVS
version of CTest to allow the width to be manually set but thisis a hassle and does not interact
well with MS Visual C++ projects. This will be fairly easy to add to the CTest C++ source code.

4. Desired: CTest/CDash: Submit all test data (no matter the size) and then prune test results over time.
This includes files that get output as well. This is being donefor the SIERRA + Trilinos Integration
test repository for instance.Workaround: We can emulate this with our own handling scripting code
but this will not be available to other CMake projects.

5. Desired: CMake: Generate error messages for missing source files that have line numbers in the
corresponding CMakeLists.txt file. Currently, it just lists the entire CMakeLists.txt file and nothing
else.Workaround: Just add files slowly and re-run CMake each time to debug the problem.

6. Desired: CMake: Strong checking for variables that are not defined. Just letting undefined variables
be empty is a bad practice (used by Make and bad Fortran). Thispractice is well known to result in
higher rates of software defects.Workaround: Use a user-definedASSERT DEFINED(...) macro
(which is being done right now and is somewhat effective).

7. Desired: CMake: Strong checking for user input misspelling CMake cache variables: Currently, if a
user misspells the name of a defined user cache variable, the default for that variable will be used
instead and the misspelled user variable will be ignored. This is very bad behavior that is carried
over from the autotools world and should not be repeated withthe CMake system. It would be very

17

useful if the cmake executable could take a new option (e.g. –validate-cache-variables) that would
force the validation of all user-set cache variables to makesure that they had a matching internally
defined cache variable.Workaround: We could create a new VALIDATEDOPTION(...) command
that would store a list of all defined options and then we coulddevise a system that would validate
that all cache variables set were expected. However, this would only work for Trilinos-defined
variables and not other cache variables defined by built-in CMake commands like SITENAME(...)
and FINDFILE(...). User input checking is a serious software verification issue that needs to be
addressed.

18

5 Summary and Recommendations

Here, we summarize the major gains and (at least initial) losses that we would experience by switching
from the current autotools-based build system for Trilinosto the prototype CMake-based build system for
Trilinos. Then, separately, we summarize the gains and losses that would be experienced in switching from
the current Perl-based test harness for Trilinos to the prototype CMake/CTest/CDash-based test harness for
Trilinos. We list these separately because we can decide to replace the current autotools build system with
the CMake system and still maintain the current Perl-based test harness.

5.1 Gains and losses for switching from autotools to CMake for the build system

1. What we gain:

(a) Full dependency tracking of every kind possible on all platforms (i.e. header to object, object to
library, library to executable, and build system files to allbuilt files).

(b) Support for shared libraries on a variety of platforms.

(c) Support for MS Windows (i.e. Visual Studio projects, Windows installers, etc.).

(d) Simplified build system and easier maintenance (extremely easy to add new packages and
maintain existing packages).

(e) Improved mechanism for extending capabilities (as compared to M4 in autotools).

(f) Ability to affect the development of the build tools withgood existing collaborations (i.e. with
both Kitware and with organization 1420).

(g) Significant “in house” knowledge-base (i.e. visualization group in 1420).

(h) One hundred percent automated intra-package dependency tracking and handling (built into the
prototype Trilinos/CMake build system).

2. What we lose (at least initially):

(a) CMake requires that all uses have ’cmake’ installed on their machine when building from
source and users will need to have at a very recent version of cmake. (However, cmake is very
easy to build from source).

(b) Support for circular test/example and package libraries is not provided in the current prototype
Trilinos/CMake build system.

5.2 Gains and losses for switching the test harness to the current system to CTest/CDash

1. What we gain:

(a) Test time-outs (this is a major maintenance issue for thecurrent Perl-based test harness).

(b) Memory testing with Valgrind and purify that is backed upby Kitware and a larger
development community.

(c) Line coverage testing that is backed up by Kitware and a large development community.

(d) Support for selecting and excluding subsets of tests based on regular expressions (but better
support for keywords would be welcomed).

19

(e) Better integration with the build system (e.g. easier tosupport more advanced features like PBS
batch systems and flexible testing control).

(f) Better tracking of specific tests (i.e. each and every test can have a unique name that is easy to
find).

2. What we lose (at least initially):

(a) Separate reporting of test results for different Trilinos packages on the web page and in emails
sent out (however, such support could be layered on top of CTest and CDash).

(b) Support for selectively disabling package tests/examples and entire packages when a build fails
(however, such support could be layered on top of CTest for driving the test harness).

5.3 Final recommendations

The potential gains for switching from the current autotools-based build system for Trilinos to the
prototype CMake-based build system summarized above are overwhelming. Therefore, our
recommendation is to transition all of Trilinos to the new CMake-based build system and completely drop
the current autotools build system as soon as possible. However, maintaining limited support for the
current autotools-based build system through the next major release of Trilinos would be recommended.

There are also significant advantages to supporting the CMake/CTest/CDash-based test harness as
summarized above. However, some features supported by the home-grown Perl-based test harness will take
considerable time and effort to replicate with the CMake/CTest/CDash system. Therefore, our
recommendation is to maintain test suites for both the new CMake/CTest/CDash system and the current
Perl-based test harness until such time that the infrastructure around the CMake/CTest/CDash system
sufficiently supports the compartmentalization of test results for archiving and reporting. This means
maintaining each package’s test/definition file, and addingTRILINOS ADD TEST(...) calls in
CMakeLists.txt files. By maintaining both testing systems,we will have the best of both worlds but at the
cost of needing to maintain two test systems for some time. However, it is expected that maintaining both
testing system will be much easier that maintaining both build systems for several reasons.

The current Trilinos/CMake prototype build system is now ata state where we believe it can now be
pushed out to all of Trilinos very rapidly.

20

References

[1] Ken Martin and Bill Hoffman.Mastering CMake: A Cross-Platform Build System. Kitware Inc, fourth
edition, 2007.

21

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic)

22

v1.31

	Introduction
	Build Capabilities and Features
	Critical build features currently handled by the existing autotools system
	Critical build features not currently handled by the existing autotools system
	Less-critical but desirable build features

	Testing and Reporting Capabilities and Features
	Critical testing features currently handled by the existing Perl-based test harness
	Critical testing features not currently handled by the Perl-based test harness
	Less-critical but desirable testing and reporting features

	Desired enhancements to CMake/CTest/CDash
	Summary and Recommendations
	Gains and losses for switching from autotools to CMake for the build system
	Gains and losses for switching the test harness to the current system to CTest/CDash
	Final recommendations

	References

