Highly Configurable Operating Systems for Ultrascale
Systems’

Arthur B. Maccabe and
Patrick G. Bridges
Department of Computer
Science, MSC01-1130
1 University of New Mexico
Albuquerque, NM 87131-0001

maccabe,bridges@cs.unm.edu

ABSTRACT

Modern ultrascale machines have a diverse range of usage
models, programming models, architectures, and shared ser-
vices that place a wide range of demands on operating and
runtime systems. Full-featured operating systems can sup-
port a broad range of these requirements, but sacrifice op-
timal solutions for general ones. Lightweight operating sys-
tems, in contrast, can provide optimal solutions at specific
design points, but only for a limited set of requirements.
In this paper, we present preliminary numbers quantifying
the penalty paid by general-purpose operating systems and
propose an approach to overcome the limitations of pre-
vious designs. The proposed approach focuses on the im-
plementation and composition of fine-grained composable
micro-services, portions of operating and runtime system
functionality that can be combined based on the needs of
the hardware and sofware. We also motivate our approach
by presenting concrete examples of the changing demands
placed on operating systems and runtimes in ultrascale en-
vironments.

1. INTRODUCTION

Due largely to the ASCI program within the United States
Department of Energy, we have recently seen the deploy-
ment of several production-level terascale computing sys-
tems. These systems, for example ASCI Red, ASCI Blue
Mountain, and ASCI White, include a variety of hardware
architectures and node configurations. In addition to dif-
fering hardware approaches, a range of usage models (e.g.,
dedicated vs. space-shared vs. time-shared) and program-

*This work was supported in part by Sandia National Lab-
oratories. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under contract DE-
AC04-94AL_85000.

Ron Brightwell and

Rolf Riesen

Sandia National Laboratories Inc.
PO Box 5800; MS 1110

Albuquerque, NM 87185-1110

rbbrigh,rolf@cs.sandia.gov hudson@osresearch.net

Trammell Hudson
Operating Systems Research,

1729 Wells Drive NE
Albuquerque, NM 87112

ming models (e.g. message-passing vs. shared-memory vs.
global shared address space) have also used for programming
these systems.

In spite of these differences and other evolving demands,
operating and runtime systems are expected to keep pace.
Full-featured operating systems can support a broad range
of these requirements, but sacrifice optimal solutions for gen-
eral ones. Lightweight operating systems, in contrast, can
provide optimal solutions at specific design points, but only
for a limited set of requirements.

In this paper, we present an approach that overcomes the
limitations of previous approaches by providing a framework
for configuring operating and runtime systems tailored to
the specific needs of the application and environment. Our
approach focuses on the implementation and composition
of micro-services, portions of operating and runtime system
functionality that can be composed together in a variety of
ways. By choosing appropriate micro-services, runtime and
operating system functionality can be customized at build
time or runtime to the specific needs of the hardware, system
usage model, programming model, and application.

The rest of this paper is organized as follows: section 2 de-
scribes the motivation for our proposed system, including
the hardware and software architectures of current terascale
computing systems and the challenges faced by operating
systems on these machines, and presents preliminary num-
bers and experiences to outline the scale of this problem. It
also presents several motivating examples that are driving
our design efforts. Section 3 describes the specific challenges
faced by operating systems in ultrascale environments, and
section 4 presents our approach to addressing these chal-
lenges. Section 5 describes various related operating system
work, and section 6 concludes.

2. MOTIVATION

2.1 Current and Future System Demands
Modern ultrascale systems, for example the various ASCI

machines and the Earth Simulator, have widely varying system-

level and node-level hardware architectures. The first teras-
cale system, ASCI Red, is a traditional distributed memory
massively parallel processing machine — thousands of nodes,
each with a small number of processors (2). In contrast,

the ASCI Blue Mountain machine was composed of 128-
processor nodes, while ASCI White employs 16-way SMP
nodes. We also expect additional hardware advances such as
multi-core chips and processor-in-memory chips to be avail-
able in similar systems in the near future.

In addition to hardware, the approach from a programming
model standpoint has varied as well. The lightweight com-
pute node operating system on ASCI Red does not sup-
port a shared-memory programming model on individual
compute nodes, while the other platforms support a va-
riety of shared memory programming constructs, such as
threads and semaphores. This has lead to the development
of mixed-mode applications that combine MPI and OpenMP
(or pthreads) to fully utilize the capabilities of systems with
large numbers of processors per node. Applications have also
been developed for these platforms that extend the bound-
aries of a traditional programming model. The distributed
implementation of the Python scripting language is one such
example [12]. Advanced programming models, such as the
Global Address Space model, are also gaining support within
the parallel computing community.

Even within the context of a specific programming model
such as MPI, applications can have wide variations in the
number and type of system services they require and can
also have varying requirements for the environment in which
they run. For example, the Common Component Architec-
ture assists in the development of MPI applications, but it
requires dynamic library services to be available to the in-
dividual processes within the parallel job. Environmental
services, such as system-level checkpoint/restart, are also
becoming an expected part of the standard parallel applica-
tion development environment.

The usage model of these large machines has also expanded.
The utility of capacity computing, largely driven by the
ubiquity of commodity clusters, has led to changes in the
way in which large machines are partitioned and scheduled.
Machines that were originally intended to run a single, large
parallel simulation are being used more frequently for pa-
rameter studies that require thousands of small jobs.

2.2 Problems with Current Approaches
General-purpose operating systems such as Linux provide a
wide range of services. These services and their associated
kernel structures enable sophisticated applications with ca-
pabilities for visualization and inter-networking. This gen-
erality unfortunately comes at the cost of performance for
all applications that use the operating system because of the
overheads of unnecessary services.

In an initial attempt to measure this performance differ-
ence, we compared the performance of the mg and cg NAS
B benchmarks on ASCI Red hardware [19] when running two
different operating systems. We use Cougar, the productized
version of the Puma operating system [24], as the specialized
operating system, and Linux as the general-purpose operat-
ing system. To make the comparison as fair to Linux as
possible, we have ported the CplantT™version of the Por-
tals high-performance messaging [1] layer to the ASCI Red
hardware. Cougar already utilizes this Portals for message
transmission.

Figures 1 and 2 show the performance of these benchmarks
when running on two different operating systems. Linux out-
performs Cougar on the cg benchmark with small numbers
of nodes because Cougar uses older, less optimized compil-
ers and libraries, but as the number of nodes used increases,
application performance on Linux falls off. Similar effects
happen on the mg benchmark, though mg on Cougar outper-
forms mg on Linux even on small numbers of nodes despite
using older compilers and libraries. A variety of different
overheads cause Linux’s performance problems on larger-
scale systems, including lack of contiguous memory layout
and the associated TLB overheads and suboptimal node al-
locations due to limitations with Linux job-launch on ASCI
Red.

Cougar —+—
1200 | Linux/Portals ------ |

1200

1000

800

600

Millions of Operations per Second

400

200

ot L L L
4 16 32 64 128

Number of Processors

Figure 1: CG Performance on Linux and Cougar on

ASCI/Red Hardware

5000
Cougar ——
Linux/Portals ------

4000

3000

2000

Millions of Operations per Second

1000

0 L L L
4 16 32 64 128

Number of Processors

Figure 2: MG Performance on Linux and Cougar on
ASCI/Red Hardware

Such operating system problems have also been seen in other
systems. Researchers at Los Alamos, for example, have
shown that excess services can cause dramatic performance
degradations [15]. Similarly, researchers at Lawrence Liver-
more National Laboratory have shown that operating sys-
tem scheduling problems can have a large impact on appli-
cation performance in large machines [11].

2.3 Motivating Examples
The changing nature of demands on large scale systems
present some of the largest challenges to operating system

design in this environment. We consider changing demands
in several areas along with specific examples from each are
to motivate our work.

2.3.0.1 Changing Usage Models.

As large-scale systems age, they frequently transition from
specialized capability-oriented usage for a handful of appli-
cations to capacity usage for a wide range of applications.
Operating systems for capability-oriented systems often pro-
vide a restricted usage model (dedicated or space-shared
mode) and need to provide only minimal services, allowing
more operating system optimizations. Operating systems
for capacity-oriented systems, in contrast, generally support
much more flexible usage models, such as timesharing, and
must provide additional services including TCP/IP inter-
networking and dynamic process creation.

2.3.0.2 Changing Application Demands.
Applications have varying demands for similar operating
system services depending on their needs. Correctly cus-
tomizing these services can have a large impact on appli-
cation performance. As a concrete example, consider four
different ways for a signal to be delivered to an application
indicating the receipt of a network packet:

e Immediate delivery using interrupts (e.g. UNIX sig-
nals) for real-time applications

e Coalescing of multiple signals and waiting until some
other activity (e.g., an explicit poll) causes an entry
into the kernel, thereby minimizing signal handling
overhead.

¢ Extending the kernel with application-specific handler
code for performance-critical signals

e Forking a new process to handle each new signal /packet
(e.g. inetd in UNIX)

2.3.0.3 Changing Hardware Architecture.

Operating system structure can present barriers to hardware
innovation for ultrascale systems. Operating systems must
be customized to present novel architectural features to ap-
plications and to make effective use of new hardware fea-
tures themselves. Existing operating systems such as Linux
assume that each machine is similar to a standard architec-
ture, the Intel x86 architecture in the case of Linux, and in
doing so limit their ability to expose innovative architectural
features to the application or to use such features to opti-
mize operating system performance. The inability of current
operating systems to do so presents a significant impediment
to hardware innovation.

Counsider, for example, operating system support for parcel-
based processor-in-memory (PIM) systems [20]. Operating
systems for such architectures must be flexible enough to
perform scheduling and resource allocation on these archi-
tectures and make effective use of this hardware for its own
purposes. We specifically consider the use of a PIM as a
dedicated OS file cache that makes its own prefetching, re-
placement, and I/O coalescing decisions. Processes that ac-
cess files would send parcels to this PIM, which could im-
mediately satisfy them from a local cache, coalesce small

writes together before sending the request on to the main
I/0 system, or aggressively prefetch data based on observed
access patterns. Doing such work in a dedicated PIM built
for handling latency-sensitive operations would free the sys-
tem’s heavyweight (e.g. vector) processors from having to
perform the latency-oriented services common in operating
systems.

2.3.0.4 Changing Environmental Services.

Finally, consider the variety of shared environmental ser-
vices that operating systems must support, such as file sys-
tems and checkpointing functionality. New implementations
of these services are continually being developed, and these
implementations require changing operating system support.
As just one example, the Lustre file system [2] is currently
being developed to replace NFS in ultrascale systems. Lus-
tre requires a specific message-passing layer from the oper-
ating system (i.e., Portals), in contrast to the general net-
working necessary to support NFS but in return provides
much better performance and scalability. Similarly, check-
pointing services require a means to determine operating
system state and network quiescence. Finally, these services
are often implemented at user-level in lightweight operating
systems; in these cases, the operating system must provide a
way to authenticate trusted shared services to applications
and other system nodes.

3. CHALLENGES

There are four primary factors that influence the design
of operating systems for ultrascale computing systems: ap-
plication needs, system usage models, architectural models
(both system-level and node-level architectures), and the de-
sign of shared services like file systems.

Programming

Shared
Services

Usage Model

Runtime / OS
Architecture

Figure 3: Factors Influencing the Design of Operat-
ing Systems

3.1 Application Needs

Applications present challenges at two levels. First, applica-
tions are developed in the context of a particular program-
ming model. Programming models typically have a basic
set of services that must exist. For example, in the ex-
plicit message passing model, it is necessary to allow for
data to be moved efficiently between local memory and the
network. Secondly, applications themselves may require ex-
tended functionality beyond the minimal set needed to sup-
port the programming model. An application developed us-
ing a component architecture may require system services
to enable the use of dynamic libraries.

While lightweight operating systems have been shown to
support the development of scalable applications, this ap-
proach places an undue burden on the application devel-
oper. Given any feature typically associated with modern

operating systems (e.g., UNIX sockets), there is at least one
application that could benefit from having the feature read-
ily available. In the lightweight operating system approach,
the application developer is required to either implement
the feature or do without. In fact, this is the reason that
many of the terascale operating systems today are based on
full-featured operating systems. The real challenge is to pro-
vide features needed by a majority of applications without
adversely affecting the performance and scalability of other
applications that do not use these features.

Advanced programming models strive to provide a high-
level abstraction of the resources provided by the comput-
ing system. Describing computations in terms of abstract
resources enhances portability and can reduce the amount
of effort needed to develop an application. While high-level
abstractions offer significant benefits, application develop-
ers frequently need to bypass the implementations of these
abstractions for the small parts of the code that are time
critical. For example, while the vast majority of the code in
an application may be written in a high-level language (e.g.,
FORTRAN or C), it is not uncommon for application devel-
opers to write a core calculation, such as a BLAS routine,
in assembly language to ensure an optimal implementation.
The crucial point is that the abstractions implemented to
support advanced programming methodologies must allow
application developers to drop through the layers of abstrac-
tion as needed to ensure adequate performance. Because we
are interested in supporting resource constrained applica-
tions, providing variable layers of abstraction is especially
important.

Finally, because the development of new programming mod-
els is an ongoing activity, the operating and runtime system
must be designed so that it is relatively easy to develop
high-performance implementations of the features needed to
support a variety of existing programming models as well as
new models that may be developed.

3.2 System Usage Models

The system usage model defines the places where the princi-
pal computational resources can be shared by different users.
Common usage models include: dedicated systems in which
these resources are not shared; batch dedicated system in
which the resources are not shared while the system is being
used, but may be used by different users at different time;
space-shared systems in which parts of the system (e.g., com-
pute nodes) are not shared, but multiple users may be using
different parts of the system at the same time; and time-
shared systems in which the resources are being used by
multiple users at the same time.

Sharing requires that the operating system take on the role
of arbiter, ensuring that all parties are given the appropri-
ate degree of access to the shared resources — in terms of
time, space, and privilege. Here the challenge is to provide
mechanisms that can support a wide variety of sharing poli-
cies, while ensuring that these mechanisms do not have any
adverse impact on performance when they are not needed.

3.3 Architectures

Architectural models present challenges at two levels: the
node level and the overall systems level. An individual com-

pute node may exhibit a wide variety of architectural fea-
tures, including: multiple processors, support for PIM, mul-
tiple network interfaces, programmable network interfaces,
access to local storage, etc. Variations in systems-level ar-
chitectures may require different levels of operating system
functionality on the compute nodes. As an example, lim-
ited access to the compute nodes may eliminate the need for
some functionality related to protection.

3.4 Shared Services

Finally, the implementation of shared services, for example
file systems, will depend on the three previously mentioned
factors and will place requirements on the operating system.
As an example, the operating system may need to maintain
user credentials in a secure fashion while an application is
running so that these credential can be trusted by the shared
file system.

4. APPROACH

In the context of the factors discussed in the previous sec-
tion, a “lightweight operating system” reflects a minimal set
of services that meet the requirements presented by a small
set of applications, a single usage model, a single architec-
ture, and a single set of shared services. The Cougar oper-
ating system, for example, represents a lightweight with the
following bindings: application needs are limited MPI and
access to a shared file system, the system usage model is
space sharing, the system architecture consists thousands of
simple compute nodes connected by a high performance net-
work, and the shared services include a parallel file system
which relies on Cougar to protect user identification.

Our goal is to develop a framework for building operating
and runtime systems that are tailored to the specific require-
ments presented by an application, the system usage model,
the system architecture, and the shared services. Our ap-
proach is to build a collection of micro-services and tools
that support the automatic construction of a lightweight op-
erating system for a specific set of circumstances.

4.1 Micro-Services

At a minimum, each application will need micro-services for
managing the primary resources: memory, processor, com-
munication, and file system. We can imagine several imple-
mentations for each of these micro-services. One memory al-
location service might perform simple contiguous allocation;
another might map physical page frames to arbitrary loca-
tions in the logical address space of a process; another might
provide demand page replacement; yet another may provide
predictive page replacement. A processor management ser-
vice may simply run a single process whenever a processor
is available, and another might include thread scheduling.

There may be dependencies and incompatibilities within the
micro-services. As an example, a communication micro-
service that assumes that logically contiguous addresses are
physically contiguous (thus reducing the size of a memory
descriptor) would depend on a memory allocation service
that provides this type of address mapping. There will also
be dependencies between micro-services and system usage
models. For example, a communication service that provides
direct access to a network interface would not be compatible
with a usage model that supports time sharing on a node.

In addition to micro-services that provide access to primary
resources, there will be higher-level services layered on top
of the basic micro-services. As an example, a micro-service
might provide garbage collected dynamic allocation, another
might provide first fit, explicit allocation and de-allocation
(malloc and free) for dynamic memory allocation. Other
examples include an RDMA service or a two-sided message
service layered on top of a basic communication service.

Finally, we will need “glue” services: micro-services that en-
able combinations of other services. As an example, consider
a usage model that supports general time-sharing among the
applications on a node. Further, suppose that one of the ap-
plications to be run on a node requires a memory allocator
that supports demand page replacement and another appli-
cation requires a simple contiguous memory allocator. A
memory compactor service would make it possible to run
both applications on the same node.

4.2 Tools

In addition to micro-services, we will need to develop tools
that analyze combinations of micro-services to determine an
optimal set. Some of these tools will be needed to ensure
that the required micro-services are available, others to en-
sure that applications are isolated from one another within
the context of a usage model.

We cannot burden application programmers with all of the
micro-services that provide the runtime environment for their
applications. Application programmers should only be con-
cerned with the highest-level services that they need (e.g.,
MPI) and the general goals for lower-level services. Here,
we envision a tool that will take as input a set of the top-
level services used by an application and produce a directed
graph of the permissible lower-level services for the required
runtime environment. Nodes of this graph will be weighted
by the degree to which the micro-service represented by the
node meets the goals of the application developer. We plan
to base some of our work on tools for composing micro-
services on existing tools, such as the Knit composition tool
developed at the University of Utah in the context of the
Flux project [17]. Other tools will be needed to select partic-
ular services in the context of a system usage model. These
tools will also need to ensure that the services selected meet
the sharing requirements of the system.

4.3 Signal Delivery Example

To illustrate how our micro-services approach can be used
to address the challenges presented by ultrascale systems,
we consider the signal delivery example presented toward
the end of Section 2. Because signal delivery may not be
needed by all applications, micro-services associated with
signal delivery would be optional and, as such, would not
have any performance impact on applications that did not
need signal delivery.

For applications that do require signal delivery, we would
need a collection of “signal detector” micro-services that are
capable of observing the events of interest to the applica-
tion (e.g., the reception of a message). These micro-services
would most likely run as part of the operating system ker-
nel. To ensure that they are run with sufficient frequency,

the signal detector micro-services may place requirements
on the micro-service used to schedule the processor.

The signal detector micro-services would then be tied to
one of several specialized “signal delivery” micro-services.
The specific signal delivery micro-service will depend on
the needs of the application. An immediate delivery service
would modify the control block for the target process so that
the signal handler for the process is run the next time the
process is scheduled for execution. A coalescing signal de-
livery service would simply record the relevant information
and make this information available to another micro-service
that would respond to explicit polling operations in the ap-
plication. A user defined signal delivery service could take a
user defined action whenever an event is detected. Finally,
a message delivery service could convert the signal informa-
tion into to data and pass this to the micro-service that is
responsible for delivering messages to application processes.
The runtime level could then include a micro-service that
would read these messages and fork the appropriate process.

5. RELATED WORK

A number of other configurable operating systems have been
designed including microkernel systems, library operating
systems, extensible operating systems, and component-based
operating systems. In addition, configurability has been de-
signed into a variety of different runtime systems and system
software subsystems, including middleware for distributed
computing, network protocol stacks, and file systems.

5.1 Configurable Operating Systems

Most standard operating systems such as Linux include a
limited amount of configuration that can be used to add or
remove subsystems and device drivers from the kernel. How-
ever, this configurability does not generally extend to core
operating system functions, such as the scheduler or virtual
memory system. In addition, the configuration available in
many subsystems such as the network stack and the file sys-
tem is coarse-grained and limited; entire networking stacks
and file systems can be added or removed, but these sub-
systems cannot generally be composed and configured at a
much finer granularity. In Linux, for example, the entire
TCP/IP or Bluetooth stack can be optionally included in
the kernel, but more fine-grained information about exactly
which protocols will be used cannot easily be used to cus-
tomize system configuration.

Other operating systems have allowed more fine-grained con-

figuration. Component-based operating systems such as Scout [13],

the Flux OSKit [4], eCos [16], and TinyOS [8], on the other
hand allow kernels to be built from from a set of composable
modules. Scout, for example, is built from a set of routers
that can be composed together into custom kernels. eCos
and TinyOS provide similar functionality in the context of
embedded systems and sensor networks, respectively. The
Flux OSKit provided a foundation for component-based OS
development based on code from the Linux and BSD kernels,
focusing particularly on allowing device drivers from these
systems to be used in developing new kernels. Unlike our
proposal, however, none of these systems have concentrated
on customizing system functionality at the fine granularity
necessary to take full advantage of new hardware environ-

ments or optimize for the different usage models of ultrascale
systems.

Microkernel and library operating systems such as L4 [6],
Exo-kernels [3], and Pebble [5], for example, allow oper-
ating system semantics to be customized at compile-time,
boot-time, or run-time by changing the server or library that
provides a service, though this composability is even more
coarse-grained than the systems described above. Such flex-
ibility generally comes at a price, however; these operating
systems may have to use more system calls and up-calls to
implement a given service than a monolithic operating sys-
tem, resulting in higher overheads. It also can result in a loss
of cross-subsystem optimization opportunities. In contrast,
our approach seeks to decompose functionality using more
fine-grained structures and to preserve cross-subsystem opti-
mization opportunities through tools designed explicitly for
composing system functionality.

5.2 Configurable Runtimes and Subsystems
A variety of different systems have also been built that en-
able fine-grained configuration of system services, generally
in the realm of protocol stacks and file systems. In contrast
to our approach, none of these systems seek to use configu-
ration pervasively across in a an entire operating system.

Coarse-grained configuration on network protocols stacks

has been explored in System V STREAMS [18], the z-kernel [10],

and CORDS [21]. Composition in these systems is layer-
based, with each component defining one protocol layer.
Similar approaches have been used for building stackable
file systems [7, 25].

More fine-grained composition of protocol semantics has been
explored in the context of Cactus [9], [22], Ensemble [23],
and Rwanda [14]. Cactus’s event-based composition model,
in particular, has influenced our approach to building; in
fact, we are using portions of the Cactus event framework
to implement our system. To date the Cactus project has fo-
cused primarily on using event-based composition in network
protocols, not the more general operating system structures
as described in this paper.

6. CONCLUSIONS

In this paper, we have presented an argument for a frame-
work for customizing an operating system and runtime en-
vironment for parallel computing. Based on the results of
preliminary experiments, we conclude that the demands of
current and future ultrascale systems cannot be addressed
by a general-purpose operating system if high-levels of per-
formance and scalability are to be maintained and achieved.
The current methods of using specialized lightweight ap-
proaches and generalized heavyweight approaches will not be
sufficient given the challenges presented by current and fu-
ture hardware platforms, programming models, usage mod-
els and application requirements. To address this problem,
we presented a design for a framework that uses micro-
services and supporting tools to construct an operating sys-
tem and associated runtime environment for a specific set
of requirements. This approach minimizes the overhead of
unneeded features, allows for carefully tailored implemen-
tations of required features, and enables the construction

new operating and runtime systems to adapt to evolving
demands and requirements.

7. REFERENCES
[1] R. Brightwell, T. Hudson, R. Riesen, and A. B.
Maccabe. The Portals 3.0 message passing interface.
Technical report SAND99-2959, Sandia National
Laboratories, December 1999.

[2] Cluster File Systems, Inc. Lustre: A Scalable,
High-Performance File System, November 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[3] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-level
resource management. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, pages
251-266, Copper Mountain Resort, CO, 1995.

[4] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel
and language research. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles,
pages 38-51, Saint-Malo, France, 1997.

[6] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and
A. Silberschatz. The Pebble component-based
operating system. In Proceedings of the 1999 USENIX
Annual Technical Conference, pages 267-282,
Monterey, CA, USA, 1999.

[6] H. Hartig, M. Hohmuth, J. Liedtke, S. Schénberg, and
J. Wolter. The performance of p-kernel-based systems.
In Proceesings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[7] J. Heidemann and G. Popek. File-system development
with stackable layers. ACM Transactions on Computer
Systems, 12(1):58-89, 1994.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages
93-104, 2000.

[9] M. A. Hiltunen, R. D. Schlichting, X. Han,
M. Cardozo, and R. Das. Real-time dependable
channels: Customizing QoS attributes for distributed
systems. IEEE Transactions on Parallel and
Distributed Systems, 10(6):600-612, 1999.

[10] N. Hutchinson and L. L. Peterson. The z-kernel: An
architecture for implementing network protocols.
IEEE Transactions on Software Engineering,
17(1):64-76, 1991.

[11] T. Jones, W. Tuel, L. Brenner, J. Fier, P. Caffrey,
S. Dawson, R. Neely, R. Blackmore, B. Maskell,
P. Tomlinson, and M. Roberts. Improving the
scalability of parallel jobs by adding parallel awareness
to the operating system. In Proceedings of SC’03,
2003.

[12] P. Miller. Parallel, distributed scripting with python.
In Third Linuz Clusters Institute Conference, October
2002.

[13]

[14]

[15]

[16]
[17]

(18]

[19]

20]

[21]

[22]

(23]

[24]

25]

D. Mosberger and L. L. Peterson. Making paths
explicit in the Scout operating system. In Proceedings
of the 2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 153-168,
1996.

G. Parr and K. Curran. A paradigm shift in the
distribution of multimedia. Communications of the
ACM, 43(6):103-109, 2000.

F. Petrini, D. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Achieving

optimal performance on the 8,192 processors of ASCI
Q- In Proceedings of SC’03, 2003.

Redhat. eCos. http://sources.redhat.com/ecos/.

A. Reid, , M. Flatt, L. Stoller, J. Lepreau, and

E. Eide. Knit: Component composition for system
software. In Proceesings of the 4th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 347660, 2000.

D. M. Ritchie. A stream input-output system. AT¢T
Bell Laboratories Technical Journal, 63(8):311-324,
1984.

Sandia National Laboratories. ASCI Red, 1996.
http://www.sandia.gov/ASCI/TFLOP.

T. L. Sterling and H. P. Zima. The gilgamesh MIND
processor-in-memory architecture for petaflops-scale
computing. In Internatinal Sympoium on High
Performance Computing (ISHPC 2002), volume 2327
of Lecture Notes in Computer Science, pages 1-5.
Springer, 2002.

F. Travostino, E. M. III, and F. Reynolds. Paths:
Programming with system resources in support of
real-time distributed applications. In Proceedings of
the IEEE Workshop on Object-Oriented Real-Time
Dependable Systems, 1996.

R. van Renesse, K. P. Birman, R. Friedman,

M. Hayden, and D. A. Karr. A framework for protocol
composition in Horus. In Proceedings of the 14th ACM
Principles of Distributed Computing Conference, pages
80-89, 1995.

R. van Renesse, K. P. Birman, M. Hayden,

A. Vaysburd, and D. A. Karr. Building adaptive
systems using Ensemble. Software Practice and
Ezperience, 28(9):963-979, 1998.

S. R. Wheat, A. B. Maccabe, R. Riesen, D. W. van
Dresser, and T. M. Stallcup. PUMA: An operating
system for massively parallel systems. In Proceedings
of the Twenty-Seventh Annual Hawaii International
Conference on System Sciences, pages 56—65. IEEE
Computer Society Press, 1994.

E. Zadok and I. Badulescu. A stackable file system
interface for Linux. In Proceedings of the 5th Annual
Linuz Ezpo, pages 141-151, Raleigh, North Carolina,
1999.

