
A Comparison of Three MPI Implementations for Red
Storm

Ron Brightwell

Scalable Computing Systems
Sandia National Laboratories?

P.O. Box 5800
Albuquerque, NM 87185-1110

rbbrigh@sandia.gov

Abstract. Cray Red Storm is a new distributed memory massively parallel com-
puting platform designed to scale to tens of thousands of nodes. Red Storm has a
custom network designed around the Cray SeaStar network interface and router.
In this paper, we present an evaluation of three different MPI implementations for
Red Storm: the vendor-supported MPICH2 implementation, and two other imple-
mentations based on MPICH 1.2.6. We discuss the differences in these implemen-
tations and show how various implementation strategies impact performance and
scalability.

Key words: MPI, Red Storm, XT3, Portals, Performance.

1 Introduction

Cray Red Storm is a new distributed memory massively parallel computing platform de-
signed to scale to tens of thousands of processors. The Cray XT3 is the official product
from Cray that differs slightly from the Red Storm platform that has been installed at
Sandia National Laboratories in Albuquerque, New Mexico, USA. The XT3 has a three-
dimensional torus network, while the Red Storm system is torus only in one direction.
This limitation allows the Red Storm system to support more easily switching large
sections of the machine between classified and unclassified computing. Other than this
feature, the hardware and software environment of Red Storm is identical to the XT3.
Henceforth, we will simply refer to Red Storm, since that is the platform on which all
of our experiments were performed.

Like any other distributed memory parallel computing platform, the performance
of the network and the performance of the MPI implementation are critical to the
overall performance, scalability, and, ultimately, the success of the machine. For Red
Storm, Cray has designed and implemented a custom network interface and router chip,
called the Cray SeaStar [1], specifically to meet the demands of a large-scale distributed

? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

memory scientific computing machine. The network performance requirements for Red
Storm were ambitious when they were first proposed in 2002. The network is required
to deliver 1.5 GB/s of network bandiwidth into each compute node and 2.0 GB/s of
link bandwidth. The one-way MPI latency requirement between nearest neighbors is 2
µsecand is 5 µsecbetween the two furthest nodes.

In this paper, we discuss the design, implementation, and performance of three dif-
ferent MPI libraries for Red Storm. Each of these libraries has different features that
have different performance and scalability implications. We describe these differences
and show performance results from several communication micro-benchmark tests. We
also compare the performance of MPI to the performance of the lowest-level commu-
nication mechanism employed by the SeaStar. Our results show that the overhead of
the MPI implementation for point-to-point message passing operations is less than 0.5
µsec.

The rest of this paper is organized as follows. The following section provides de-
tails of the hardware and software environment on Red Storm. Section 3 describes the
three different implementations of MPI for Red Storm. A performance comparison of
the three implementations is presented in Section 4, and relevant conclusions of this
work are summarized in Section 5. Section 6 outlines plans for continued research and
development activities surrounding MPI on Red Storm.

2 Red Storm

The following describes the hardware and software environment of the Red Storm sys-
tem that was used for our experiments. A more detailed description of Red Storm can
be found in [2].

2.1 Hardware

The Red Storm system installed at Sandia is composed of 10,368 compute nodes in 108
cabinets. The network is configured in a 27 x 16 x 24 mesh topology. Each compute
node contains a 2.0 GHz AMD Opteron processor with 2 GB of main memory. Each
node also contains a SeaStar network interface and router chip attached via a Hyper-
Transport (HT) link. In addition to independent send and receive DMA engines, the
SeaStar has an embedded 500 MHz PowerPC 440 processor for offloading network
protocol processing activities and 384 KB of local scratch memory. The physical links
in the network support up to 2.5 GB/s of data payload in each direction. The interface
to the Opteron uses 800 MHz HT, which provides a theoretical peak of 3.2 GB/s per
direction. After protocol overhead, the link is expected to deliver a peak payload rate of
2.8 GB/s.

2.2 Software

Compute nodes in Red Storm run a third-generation lightweight kernel called Cata-
mount. Catamount is a follow-on to the Puma/Cougar [3] lightweight kernel that ran
on Sandia’s ASCI Red [4] machine. Catamount has been enhanced to provide running

applications in full 64-bit mode on the Opteron and has also undergone some small
changes to integrate it into Cray’s system management infrastructure. Red Storm ser-
vice nodes run SuSE Linux.

The software environment for the SeaStar is based on the Portals [5] network pro-
gramming interface developed jointly by Sandia and the University of New Mexico.
Portals provides one-sided data movement operations between disjoint processes. How-
ever, unlike most one-sided programming interfaces, the target of a remote operation is
not a virtual address or memory key. Rather, the ultimate destination of an incoming
message is determined solely by the receiver when the message arrives. The receiver
is responsible for putting Portals objects together in a way that meets the needs of
the upper-level protocol. Portals are very much like protocol building blocks that can
be combined to meet a variety of needs. In the case of Red Storm, every service that
uses the network does so via Portals, whether it be loading a job onto a compute node,
network-based file systems, or MPI communication.

Portals is currently an active area of development for Red Storm. The current im-
plementation of Portals for Red Storm handles much of the protocol processing on the
Opteron and does not use the PowerPC to its fullest capabilities. This approach allows
for a single instance of firmware for the PowerPC that supports both the physically con-
tiguous memory model of Catamount and the non-contiguous physical memory model
for Linux. When a new message arrives at the network interface, the SeaStar interrupts
the host processor, which then processes the message header, traverses the Portals data
structures, and programs the DMA engines on the SeaStar appropriately. The results
that we present in Section 4 are using this interrupt-driven mode. The results are quite
encouraging, given the cost of using interrupts. We expect an implementation that of-
floads all of the protocol processing to the PowerPC on the SeaStar to be available
within the next few months, and it will be interesting to compare those results as well.

3 MPI Implementations

In this section we describe the three different MPI libraries that have been implemented
for Portals on Red Storm.

3.1 MPICH2-0.97

The Cray supported version of MPI for Red Storm is based on MPICH2 [6]. They
have created a Portals device for MPICH2 (version 0.97) that supports all of the MPI-2
functionality except for the dynamic process creation functions and the connect/accept
functions. The organization of the Portals structures and protocols used for this imple-
mentation to implement the MPI point-to-point communication operations are essen-
tially identical to those describe in [7]. However, Cray has made a few small changes to
their implementation. Rather than having each non-blocking send and receive operation
use a separate Portals event queue, this implementation uses only two event queues to-
tal: one for unexpected messages and one for all other types of communication events.
Cray likely took this strategy to reduce the complexity of the implementation and to re-
duce the amount of memory needed for event queues on the SeaStar. A drawback to this

approach is that the time needed to complete an operation is no longer specific to that
operation. For example, when waiting on a message to arrive for a posted receive, this
implementation must handle all other events that occur while waiting for the message
to arrive. This strategy assumes that there is outstanding work to be done while waiting
for communication operations to complete.

3.2 MPICH-1.2.6

This implementation was developed in support of the previous version of Portals that
ran on the Cplant [8] Linux cluster at Sandia. It was ported forward to the current ver-
sion of Portals that runs on Red Storm. Like the MPICH2 implementation from Cray,
the Portals structures and protocols are essentially identical to the those described in [7],
with one exception. This implementation has an optimization for very short messages
that is similar to message “copy blocks” or “bounce buffers” used in other MPI imple-
mentations [9, 10].

Previously, the short message protocol was implemented by creating a Portals mem-
ory descriptor over the region of memory to be sent and then invoking the Portals put
operation to deliver this data to the destination. In order to avoid the overhead of creat-
ing a new memory descriptor each time a short message is sent, the MPI library creates
a large memory descriptor during initialization. It divides this memory up into several
short message buffers. When a short message is to be sent, the MPI library copies the
message into one of these buffers and sends it. From the user point of view, the send is
complete because the user buffer is free to modify the buffer. From a Portals point of
view, the put operation may not have completed, since the events signifying completion
may still be pending. The completion events for very short messages will be consumed
whenever the library is blocked waiting for an operation to complete or whenever a
short message is to be sent and there are no free short message buffers available. So,
in addition to avoiding the overhead of creating and destroying a memory descriptor
for each short message, this optimization attempts to hide the cost of consuming events
associated with short messages. This approach also helps reduce the number of memory
descriptors used for non-blocking short messages. The very short message optimization
can be disabled via an environment variable, making it easy to measure the performance
gained by using this strategy.

3.3 MPICH-1.2.6 using SHMEM

Since Portals provides one-sided operations, it can easily support the Cray SHMEM [11]
programming model (provided the operating system maps static variables at identical
locations in separate processes, as Catamount does). Thus, it is possible to use the MPI
implementation developed for SHMEM [12] on Red Storm. This is not a complete im-
plementation of SHMEM (which Cray plans to provide for the XT3), but rather a small
subset of SHMEM interface.

This implementation has a few advantages over the others in terms of Portals re-
source usage. Unlike the other two implementations, the number of Portals data struc-
tures that MPI uses is fixed. The SHMEM subset library creates eight memory descrip-
tors and one event queue. These structures are created during MPI initialization and

remain persistent throughout the life of the process. The other implementations cre-
ate and destroy memory descriptors, match entries, and sometimes event queues as the
process runs. This can be an advantage for applications that have large numbers of out-
standing operations where the limited amount of memory on the SeaStar is a problem.
In addition, the SHMEM implementation implements flow control at the user-level, so
there is no way to exhaust the resources for handling unexpected messages. The other
implementations allocate a fixed amount of space during initialization for unexpected
message, and if this space is exceeded, the application process is terminated with a
resource exhaustion error.

The main drawback of this implementation is that it performs all of the matching
semantics of MPI at the user-level. The MPI library is responsible for maintaining the
posted receive queue and traversing it each time a new message arrives. The other im-
plementations take advantage of the matching semantics of Portals.

4 Micro-benchmarks and Results

In order to measure the performance of the three MPI libraries, we use two micro-
benchmarks. The first is a standard ping-pong latency and bandwidth benchmark devel-
oped at Sandia. This benchmark measures the ideal case where a receive is pre-posted.
We also have a version of this benchmark that measures latency and bandwidth at the
Portals level so that we can measure the overhead incurred by MPI.

The second benchmark used is the NetPIPE [13] benchmark. We used the standard
MPI-1 module that comes with the distribution and measured latency and bandwidth
using the standard ping-pong, ping-pong with pre-posting, bi-directional ping-pong,
and streaming modes. We also developed a Portals module for NetPIPE so that we
could again measure the overhead of MPI in these various modes.

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem
mpich2

mpich-1.2.6 no vshort
mpich-1.2.6

portals

Fig. 1. MPI latency performance

Figure 1 shows the results of the Sandia benchmark for Portals, MPICH 1.2.6,
MPICH 1.2.6 without the short message optimization, MPICH2, and MPICH 1.2.6 us-
ing SHMEM. The zero-length latency is 5.23 µsec, 5.64 µsec, 6.25 µsec, 8.12 µsec,

and 11.74 µsecrespectively. The MPI overhead for zero-length messages starts out rela-
tively small, only 0.41 µsec, but eventually steadies at around 1.17 µsecfor 64 bytes and
beyond. Interestingly, the very short message protocol in MPICH 1.2.6 only ends up
being a win for messages smaller than 320 bytes. The very short message switch point
is currently set at 8 KB, so this number will need to be tuned as Portals development
continues.

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem-preposted
shmem

mpich2-preposted
mpich-1.2.6-preposted no vshort ls 5

mpich-1.2.6-preposted
mpich2

mpich-1.2.6 no vshort
mpich-1.2.6

Fig. 2. NetPIPE latency performance

Figure 2 shows the NetPIPE latency performance for both the default mode of oper-
ation and for the mode that insures that a receive is pre-posted. For this test, the latency
for a one-byte message for MPICH 1.2.6 is 5.9 µsec, 6.6 µsecfor MPICH 1.2.6 with-
out the very short message optimization, and 7.97 µsecfor MPICH2. This graph clearly
shows a jump at 12 bytes, which is the largest amount user data that can fit in a single
Portals header packet and be serviced by a single interrupt on the SeaStar. Messages
larger than 12 bytes require two interrupts to be serviced. For this test, pre-posting re-
ceives does not offer a performance gain.

Figure 3(a) shows the bandwidth results for NetPIPE. Both MPICH 1.2.6 and MPICH2
perform similarly up to the long message protocol crossover point of 128 KB. At that
point, MPICH2 continues to perform well, but MPICH 1.2.6 falls off to only about 700
MB/s. The long message protocol for both implementations is eager, which means that
a message will be sent across the wire twice if the message is unexpected. For this par-
ticular test, MPICH 1.2.6 gets the initial message to the receiver before the receive is
posted, but since MPICH2 is slightly slower, it gets the message there after the receive
has been posted. If we insure that a receive is always pre-posted, MPICH 1.2.6 performs
as well as MPICH2. The asymptotic bandwidth is a little over 1.1 GB/s.

Figure 3(b) shows the bi-directional bandwidth results for NetPIPE. There is vir-
tually no difference between MPICH 1.2.6 and MPICH2 for bi-directional bandwidth.
Both are able to achieve an asymptotic bandwidth of a little more than 2.2 GB/s. Even
the SHMEM implementation is able to sustain this level at very large message sizes.

Figure 4 shows the streaming bandwidth results for NetPIPE. The interesting result
in this data is that the very short message optimization in MPICH 1.2.6 actually allows

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (M

B
/s

)

Message Size (bytes)

portals
mpich-1.2.6 preposted

mpich-1.2.6
mpich2
shmem

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (M

B
/s

)

Message Size (bytes)

portals
mpich-1.2.6

mpich2
shmem

(a) (b)

Fig. 3. NetPIPE uni-directional (a) and bi-directional (b) bandwidth

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (M

B
/s

)

Message Size (bytes)

portals
mpich-1.2.6

mpich2
shmem

Fig. 4. NetPIPE Stream Bandwidth

for greater performance than what the raw Portals performance can provide. The Por-
tals module in NetPIPE waits for completion events after each message is sent, while
the very short message optimization does not. This overhead is reflected in messages
smaller than 8 KB. Beyond 8 KB, the performance of MPICH 1.2.6 and MPICH2 are
nearly identical. However, there is an unexplained drop in performance for MPICH
1.2.6 for messages greater than 1 MB. This is most likely attributed to some of the
streaming messages being sent across the wire twice due to a matching receive not
being pre-posted.

5 Conclusions

In this paper, we have compared the performance using micro-benchmarks of three dif-
ferent implementations of MPI on the Cray Red Storm platform. Despite the current
interrupt-driven implementation of Portals for Red Storm, MPI zero-byte half round
trip latency is a little more than 5 µsec. While this number is more than twice the re-
quirements for Red Storm, we expect this will improve significantly once a full offload
implementation of Portals is completed. The bandwidth numbers indicate that the Cray
SeaStar is able to deliver more than 1.1 GB/s of uni-directional bandwidth and is able to
maintain that level of performance in both directions simultaneously. The MPICH 1.2.6
version slightly outperforms the MPICH2 implementation in terms of latency and band-
width. We have measured the overhead of MPI on top of Portals to be a little more than
a microsecond for short messages and have shown that a short message optimization
can also provide an increase in streaming bandwidth performance.

6 Future Work

We expect to do a much more in-depth analysis of the performance of the MPICH 1.2.6
and MPICH2 implementations using real applications. One important area of perfor-
mance yet to be analyzed is collective operations. We also plan to prototype some addi-
tional features, such as a rendezvous mode to avoid sending unexpected long messages
twice, in both implementations. We also plan to measure and compare the performance
of the MPICH2 one-sided operations to that of the point-to-point operations.

References

1. Alverson, R.: Red Storm. In: Invited Talk, Hot Chips 15. (2003)
2. Camp, W.J., Tomkins, J.L.: Thor’s hammer: The first version of the Red Storm MPP archi-

tecture. In: In Proceedings of the SC 2002 Conference on High Performance Networking
and Computing, Baltimore, MD (2002)

3. Shuler, L., Jong, C., Riesen, R., van Dresser, D., Maccabe, A.B., Fisk, L.A., Stallcup, T.M.:
The Puma operating system for massively parallel computers. In: Proceeding of the 1995
Intel Supercomputer User’s Group Conference, Intel Supercomputer User’s Group (1995)

4. Timothy G. Mattson, David Scott, S.R.W.: A TeraFLOPS Supercomputer in 1996: The ASCI
TFLOP System. In: Proceedings of the 1996 International Parallel Processing Symposium.
(1996)

5. Brightwell, R., Hudson, T.B., Maccabe, A.B., Riesen, R.E.: The Portals 3.0 message passing
interface. Technical Report SAND99-2959, Sandia National Laboratories (1999)

6. Gropp, W.: MPICH2: A new start for MPI implementations. In Kranzlmuller, D., Kacsuk,
P., Dongarra, J., Volkert, J., eds.: Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 9th European PVM/MPI Users’ Group Meeting, Linz, Austria. Volume
2474 of Lecture Notes in Computer Science., Springer-Verlag (2002)

7. Brightwell, R., Maccabe, A.B., Riesen, R.: Design, implementation, and performance of
MPI on Portals 3.0. International Journal of High Performance Computing Applications 17
(2003) 7–20

8. Brightwell, R., Fisk, L.A., Greenberg, D.S., Hudson, T.B., Levenhagen, M.J., Maccabe, A.B.,
Riesen, R.E.: Massively Parallel Computing Using Commodity Components. Parallel Com-
puting 26 (2000) 243–266

9. Chaussumier, F., Desprez, F., Prylli, L.: Asynchronous Communications in MPI – the
BIP/Myrinet Approach. In Dongarra, J., Luque, E., Margalef., T., eds.: Proceedings of
the EuroPVM/MPI’99 conference. Number 1697 in Lecture Notes in Computer Science,
Barcelona, Spain, Springer Verlag (1999) 485–492

10. Dimitrov, R., Skjellum, A.: An efficient MPI implementation for Virtual Interface (VI)
Architecture-enabled cluster computing. In: Proceedings of the Third MPI Developers’ and
Users’ Conference. (1999) 15–24

11. Cray Research, Inc.: SHMEM Technical Note for C, SG-2516 2.3. (1994)
12. Brightwell, R.: A new MPI implementation for Cray SHMEM. In: Recent Advances in

Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’
Group Meeting. (2004)

13. Snell, Q.O., Mikler, A., Gustafson, J.L.: NetPIPE: A network protocol independent perfor-
mance evaluator. In: Proceedings of the IASTED International Conference on Intelligent
Information Management and Systems. (1996)

