
Scalable Parallel Application
Launch on Cplant™

Ron Brightwell
Lee Ann Fisk

Sandia National Laboratories
Scalable Computing Systems Department

bright@cs.sandia.gov



Outline

• Motivation
• Runtime components
• Design issues
• Launch phases
• Overview of experiment
• Results
• Analysis
• Future work
• Summary



Why is scalable parallel
application launch important?

• Reduce time to solution
• Increase effective utilization
• Increase usability
• Most systems address performance once an 

application is running
• Few address the time spent getting a parallel job 

started
• Using rsh/ssh has inherent scalability and 

performance problems



What is Cplant™?

• Cplant™ is a concept
– Provide computational capacity at low cost
– Build MPPs from commodity components 
– Follow ASCI/Red model and architecture

• Cplant™ is an overall effort:
– Multiple computing systems in NM & CA 
– Multiple projects 

• Portals 3.0 message passing (with UNM)
• Cluster infrastructure tools (with HPTi)
• System integration & test
• Operations & management

• Cplant™ is a software package
– Recently released as open source (GPL)
– Commercial license to Unlimited Scale, Inc. (see Compaq 

booth)



Conceptual Partition Model

Net I/O

Service

Users

File I/OCompute

/home



Cplant™ Software

Portals

MPI Library

Cluster Services

Hardware

IP

Parallel I/O
Library

Distributed Services Library

yod PCT bebopd pingd

Applications Portable Batch System

Linux Operating System

Runtime Environment

PERL

Device Database

Add Delete Find Power
Role Database

Discover utility

Hardware Configuration Software

PERL

Power control

Boot node

Boot scalable unit

Boot virtual machine

Remote distribution

Update SSS0

Update virtual machine

Management Software



Runtime Environment Components

• Yod
– xnc++
– Service node parallel job launcher

• Bebopd
– Better Engineered Bag Of PCs Daemon
– Compute node allocator

• PCT
– Process Control Thread
– Compute node daemon

• pingd/showmesh
– Compute node status tools

• PBS
– Batch scheduler



Runtime Environment (cont’d)

• Yod
– Contacts compute node allocator
– Launches the application into the compute partition
– Redirects all application I/O (stdio, file I/O)
– Makes any filesystem visible in the service partition 

visible to the application
– Redirects any UNIX signals to compute node processes
– Allows user to choose specific compute nodes
– Can launch multiple different binaries
– Displays launch timing information
– Same basic interface as SUNMOS and Cougar



Runtime Environment (cont’d)

• PCT
– Contacts bebopd to join compute partition
– Forms a spanning tree with other PCT’s to fan out 

the executable, shell environment, signals, etc.
– Puts executable in a 16 MB RAM disk
– fork()’s, exec()’s, and monitors status of child 

process
– Cleans up after parallel job



Runtime Environment (cont’d)

• Bebopd
– Accepts requests from PCT’s to join the compute 

partition
– Accepts requests from yod for compute nodes
– Accepts requests from pingd for status of compute 

nodes
– Coordinates scheduling with PBS server
– Allows for multiple compute partitions



Runtime Environment (cont’d)

• Pingd
– Displays list of available compute nodes
– Displays list of compute nodes in use
– Displays owner, elapsed time of jobs
– Allows users to kill their jobs
– Allows administrators to kill jobs and free up specific 

nodes
– Allows administrators to remove nodes from the 

compute partition
• Showmesh

– Massages pingd output into TFLOPS-like showmesh



Runtime Environment (concl’d)

• PBS
– Enhanced version of OpenPBS
– Added non-blocking I/O for fault tolerance
– PBS Moms and Server only run in the service 

partition
– Added new attribute – “nodes”
– Contacts bebopd to get a list of nodes to give to 

yod



Timed Phases of Launch

• Allocate nodes – yod asks bebopd for nodes
• Initial load message – yod sends a message to all PCTs
• Form group- the PCTs form a spanning tree and report to 

yod
• Pull arguments – lead PCT pulls arguments from yod and 

fans them out
• Pull environment – lead PCT pulls environment from yod 

and fans it out
• Read file – yod reads executable
• Fan out executable – lead PCT reads executable and fans it 

out
• Pull map – yod gathers nid/pid information and fans it out
• Log time – yod sends log data to bebopd
• Total time – total time from invocation to job start



Design Issues

• Two ways to move executable to compute nodes
– Pull executable to compute nodes

• Requires some intelligence in the filesystem
• Filesystems can’t handle N-to-1 reads

– Push executable to compute nodes
• No filesystem dependency
• Easier to implement

• Need to start processes in parallel
• Support for other programming models

– Job launch should not be specific to the 
programming model

• Fault detection



Design Issues (cont’d)

• Bebopd is a single point of failure
– No new jobs runs if bebopd goes away
– Distributed bebopd

• Failure only affects part of the cluster
• Haven’t needed to do it yet

– Bebopd checkpoints the state of the machine and 
can be restarted



Experiment

• Built a minimal MPI executable
• Padded it with zeroes to build 2 MB – 12 MB files
• Launched jobs at least 10 times and took average
• Gathered data on

– Dedicated system
– System under high load
– Jobs launched under PBS



Antarctica

• 1792+ Compaq DS10L Slates
– 466MHz EV6, 256 MB RAM

• 590 Compaq XP1000s
– 500 MHz EV6, 256 MB RAM

• Myrinet 33MHz 64bit LANai 7.x and 
9.x

• Myrinet Mesh64 switches
• Classified, unclassified, open, and 

development network heads

• Fastest Linux cluster 
• 706.7 GFLOPS on 1369 nodes
• #30 on current Top500
• Launched in 26 seconds



256 Nodes

128 paths

Antarctica – December ‘01
24 Service

& I/O Nodes

24 Service
& I/O Nodes

256
Nodes

256
Nodes

16 Service
& I/O Nodes

256 Nodes

256 Nodes

256 Nodes
256 Nodes

256 Nodes

128 paths
128 paths

128 paths

128 paths

128 paths

32 paths

Ronne - SCN

128
Nodes16 Service

& I/O Nodes

West - SONRoss - SRN

Zermatt - SRN

256
Nodes



Launch Time – Dedicated System



Launch Time – Loaded System



Launch Time – PBS Job



Launch Breakdown for
4 MB and 12 MB Executables

0

5

10

15

20

25

L
a
u
n
c
h
 
T
i

m
e

64 128 256 512 1010
Number of Nodes

Log time
Pull map
Fanout
Read file
Pull environment
Pull arguments
Form group
Initial message
Allocate nodes



Analysis

• Form group
– Involves all nodes sending directly to yod
– Inherently non-scalable, but simple and easy to detect failures
– Move to more scalable approach when message passing is 

more robust
• Broadcast

– Expected result
– Better network bandwidth will help
– Higher-degree fan out may be needed

• Log time
– Yod sends a node list to bebopd
– Bebopd writes log info to a file
– More investigation needed

• Responsiveness of the bebopd is important



Future Work

• Intelligent allocator
– Current allocator does not account for network topology 

or routes
– Ideal allocator would allocate contiguous nodes
– Measure impact on load time

• Dynamic process creation
– Support for MPI-2 dynamic process creation functions

• Multiprocessor support
– Current environment supports one process per node

• Library API for runtime system interaction
– Host library for custom allocator



Summary

• Ability to launch jobs fast is critical to usability 
and efficiency of a large parallel machine

• Designed and implemented a flexible runtime 
system for launching a job on more than a 
thousand nodes in several seconds

• Working on improvements and enhancements
• Baseline for measuring the impact of these new 

features


	Scalable Parallel ApplicationLaunch on Cplant™
	Outline
	Why is scalable parallelapplication launch important?
	What is Cplant™?
	Conceptual Partition Model
	Cplant™ Software
	Runtime Environment Components
	Runtime Environment (cont’d)
	Runtime Environment (cont’d)
	Runtime Environment (cont’d)
	Runtime Environment (cont’d)
	Runtime Environment (concl’d)
	Timed Phases of Launch
	Design Issues
	Design Issues (cont’d)
	Experiment
	Antarctica
	Antarctica – December ‘01
	Launch Time – Dedicated System
	Launch Time – Loaded System
	Launch Time – PBS Job
	Launch Breakdown for4 MB and 12 MB Executables
	Analysis
	Future Work
	Summary

