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Research Motivation

• Intelligent/programmable network interfaces have been 
shown to be beneficial for
– Protocol offload (TOE, RTS/CTS, etc.)
– Application offload (MPI matching, collectives, etc.)

• Typical network interface resources
– Slower CPU relative to host CPU(s)
– Smaller memory relative to host

• Research questions:
– What level of resources is needed?
– What is the impact of limited resources?
– Are current resource management strategies are 

appropriate?



Practical Motivation

• Cray Red Storm SeaStar NIC
– 500 MHz embedded PowerPC
– 384 KB on-board scratch RAM
– Other (possible) resource limitations
– Portals 3.3 programming interface

• Practical questions:
– Will important Sandia applications work at scale?
– What demands do Sandia applications place on 

network resources?
– Will applications need to adapt to Red Storm?  If 

so, how?



Goals

• Better understanding of how real applications use 
network resources

• Explore whether this type of analysis can help
– Characterize performance/scalability of 

applications 
– Identify potential application 

performance/scalability problems
– Determine the amount of required network 

resources
– Evaluate different resource management strategies



MPI Queue Abstractions

• Posted receive queue
– List of pending receives that the user has 

enqueued using MPI_Irecv() or MPI_Recv()
– An incoming message traverses the posted receive 

queue looking for a matching posted receive
• Unexpected message queue

– Also called the early arrival queue
– List of received messages (or partial messages) for 

which there is no matching posted receive
– Posting a receive involves atomically searching the 

unexpected message queue



Network Resources Needed by MPI

• Processor
– Traversing posted receive queue

• Every time a message arrives
– Traversing unexpected message queue (possibly)

• Every time a receive is posted
• Memory

– Posted receive queue entries
– Unexpected message queue entries (possibly)



Approach

• Instrumented MPICH/GM to track
– Unexpected messages (short/long)
– Expected messages (short/long)
– Posted  and unexpected queue data

• Number of times searched
• Number of entries searched
• Maximum number of queue entries
• Maximum number of queue entries search

• Implemented counters as global variables
• Used MPI profiling interface to write data
• Data averaged over four runs
• Two processes per node



Vplant Cluster

• Nodes
– Dual 2.0 GHz Pentium-4 Xeons
– 1 GB main memory

• Network
– Myrinet 2000
– Clos topology

• Software
– Linux 2.4.18 kernel
– GM 1.6.4
– MPICH/GM 1.2.5.11



Integrated Tiger Series (ITS)

• Permits state-of-the-art Monte Carlo solution of 
linear time-integrated coupled electron/photon 
radiation transport problems with or without the 
presence of macroscopic electric and magnetic 
fields of arbitrary spatial dependence

• Results are from a typical production simulation



LAMMPS

• Classical molecular dynamics code
• Applications include simulation of proteins in a 

solution, liquid-crystals, polymers, zeolites, or 
simple Lenard-Jones systems

• Results are from the Bead-Spring Polymer Chains 
input deck
– Simulation of a simple system with molecular 

bonds
– Simulated system includes 810 atoms and runs for 

20000 timesteps



CTH

• Multi-material, large deformation, strong shock 
wave, solid mechanics code

• Non Adaptive Mesh Refinement problem
– Traditional 2-Gas problem

• Adaptive Mesh Refinement problem
– Representative production run



Long Expected Messages



Long Unexpected Messages



Short Expected Messages



Short Unexpected Messages



Posted Queue - Max Length

All Ranks No Rank 0



Posted Queue - Max Search

All Ranks No Rank 0



Unexpected Queue - Max Length

All Ranks No Rank 0



Unexpected Queue - Max Search

All Ranks No Rank 0



Average Posted Queue Search



Average Unexpected Queue Search



Possible Explanations for Rank 0 Data

• Interference from mpirun process
– Implemented ‘-nolocal’ option to mpirun
– Little change in rank 0 queue data for NAS parallel 

benchmarks
• Collective communication

– Rank 0 may be the preferred root of collective 
operations

– Change in collective implementation from MPICH 
1.2.4..8 to 1.2.5..11 did show significant change in 
rank 0 queue data



Point-to-point Versus Collective

• Offloading of collective operations has strong 
support in the community

• Need some idea whether resources significantly 
different for collective operations

• Implemented separate queues for point-to-point 
and collective operations



Long Expected

Point-to-Point Collective



Long Unexpected

Point-to-Point Collective



Short Expected

Point-to-Point Collective



Short Unexpected

Point-to-Point Collective



Max Posted Queue Length

Point-to-Point Collective



Max Posted Queue Searched

Point-to-Point Collective



Max Unexpected Queue Length

Point-to-Point Collective



Max Unexpected Queue Searched

Point-to-Point Collective



Average Posted Queue Searched

Point-to-Point Collective



Average Unexpected Queue Searched

Point-to-Point Collective



Rank 0 Queue Data

• Still a significant difference in rank 0 data even 
when separating the point-to-point and collective 
communication operations

• Possible explanations
– Inherent unbalance in application
– Collective algorithm implementation

• Everybody relies on rank 0 to coordinate activities



Conclusions

• Usage of network resources varies dramatically 
across applications and NAS parallel benchmark 
suite

• Significant variability in parameters for a single 
application
– Rank 0 seems to always be significantly different

• Linear growth of queues and queue traversals for 
point-to-point and collectives is potentially bad 
for scaling

• May require greater amount of NIC resources or 
restructuring of applications



Future Work

• Gather data on other platforms
– Elan-4, Red Storm

• Design better benchmarks that test network 
parameters under more realistic workloads

• Understand the performance and scalability 
implications of resource management policies 
and implementations

• Better tools for data gathering and analysis


