
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

A Preliminary Analysis of the MPI Queue
Characteristics of Several Applications

Ron Brightwell Sue Goudy Keith Underwood
Sandia National Laboratories

Albuquerque, New Mexico, USA

International Conference on Parallel Processing
June 15, 2005

Outline

• Motivation
• Goals
• Background
• Approach
• Lots of data
• A little analysis
• Conclusions
• Future work

Research Motivation

• Intelligent/programmable network interfaces have been
shown to be beneficial for
– Protocol offload (TOE, RTS/CTS, etc.)
– Application offload (MPI matching, collectives, etc.)

• Typical network interface resources
– Slower CPU relative to host CPU(s)
– Smaller memory relative to host

• Research questions:
– What level of resources is needed?
– What is the impact of limited resources?
– Are current resource management strategies are

appropriate?

Practical Motivation

• Cray Red Storm SeaStar NIC
– 500 MHz embedded PowerPC
– 384 KB on-board scratch RAM
– Other (possible) resource limitations
– Portals 3.3 programming interface

• Practical questions:
– Will important Sandia applications work at scale?
– What demands do Sandia applications place on

network resources?
– Will applications need to adapt to Red Storm? If

so, how?

Goals

• Better understanding of how real applications use
network resources

• Explore whether this type of analysis can help
– Characterize performance/scalability of

applications
– Identify potential application

performance/scalability problems
– Determine the amount of required network

resources
– Evaluate different resource management strategies

MPI Queue Abstractions

• Posted receive queue
– List of pending receives that the user has

enqueued using MPI_Irecv() or MPI_Recv()
– An incoming message traverses the posted receive

queue looking for a matching posted receive
• Unexpected message queue

– Also called the early arrival queue
– List of received messages (or partial messages) for

which there is no matching posted receive
– Posting a receive involves atomically searching the

unexpected message queue

Network Resources Needed by MPI

• Processor
– Traversing posted receive queue

• Every time a message arrives
– Traversing unexpected message queue (possibly)

• Every time a receive is posted
• Memory

– Posted receive queue entries
– Unexpected message queue entries (possibly)

Approach

• Instrumented MPICH/GM to track
– Unexpected messages (short/long)
– Expected messages (short/long)
– Posted and unexpected queue data

• Number of times searched
• Number of entries searched
• Maximum number of queue entries
• Maximum number of queue entries search

• Implemented counters as global variables
• Used MPI profiling interface to write data
• Data averaged over four runs
• Two processes per node

Vplant Cluster

• Nodes
– Dual 2.0 GHz Pentium-4 Xeons
– 1 GB main memory

• Network
– Myrinet 2000
– Clos topology

• Software
– Linux 2.4.18 kernel
– GM 1.6.4
– MPICH/GM 1.2.5.11

Integrated Tiger Series (ITS)

• Permits state-of-the-art Monte Carlo solution of
linear time-integrated coupled electron/photon
radiation transport problems with or without the
presence of macroscopic electric and magnetic
fields of arbitrary spatial dependence

• Results are from a typical production simulation

LAMMPS

• Classical molecular dynamics code
• Applications include simulation of proteins in a

solution, liquid-crystals, polymers, zeolites, or
simple Lenard-Jones systems

• Results are from the Bead-Spring Polymer Chains
input deck
– Simulation of a simple system with molecular

bonds
– Simulated system includes 810 atoms and runs for

20000 timesteps

CTH

• Multi-material, large deformation, strong shock
wave, solid mechanics code

• Non Adaptive Mesh Refinement problem
– Traditional 2-Gas problem

• Adaptive Mesh Refinement problem
– Representative production run

Long Expected Messages

Long Unexpected Messages

Short Expected Messages

Short Unexpected Messages

Posted Queue - Max Length

All Ranks No Rank 0

Posted Queue - Max Search

All Ranks No Rank 0

Unexpected Queue - Max Length

All Ranks No Rank 0

Unexpected Queue - Max Search

All Ranks No Rank 0

Average Posted Queue Search

Average Unexpected Queue Search

Possible Explanations for Rank 0 Data

• Interference from mpirun process
– Implemented ‘-nolocal’ option to mpirun
– Little change in rank 0 queue data for NAS parallel

benchmarks
• Collective communication

– Rank 0 may be the preferred root of collective
operations

– Change in collective implementation from MPICH
1.2.4..8 to 1.2.5..11 did show significant change in
rank 0 queue data

Point-to-point Versus Collective

• Offloading of collective operations has strong
support in the community

• Need some idea whether resources significantly
different for collective operations

• Implemented separate queues for point-to-point
and collective operations

Long Expected

Point-to-Point Collective

Long Unexpected

Point-to-Point Collective

Short Expected

Point-to-Point Collective

Short Unexpected

Point-to-Point Collective

Max Posted Queue Length

Point-to-Point Collective

Max Posted Queue Searched

Point-to-Point Collective

Max Unexpected Queue Length

Point-to-Point Collective

Max Unexpected Queue Searched

Point-to-Point Collective

Average Posted Queue Searched

Point-to-Point Collective

Average Unexpected Queue Searched

Point-to-Point Collective

Rank 0 Queue Data

• Still a significant difference in rank 0 data even
when separating the point-to-point and collective
communication operations

• Possible explanations
– Inherent unbalance in application
– Collective algorithm implementation

• Everybody relies on rank 0 to coordinate activities

Conclusions

• Usage of network resources varies dramatically
across applications and NAS parallel benchmark
suite

• Significant variability in parameters for a single
application
– Rank 0 seems to always be significantly different

• Linear growth of queues and queue traversals for
point-to-point and collectives is potentially bad
for scaling

• May require greater amount of NIC resources or
restructuring of applications

Future Work

• Gather data on other platforms
– Elan-4, Red Storm

• Design better benchmarks that test network
parameters under more realistic workloads

• Understand the performance and scalability
implications of resource management policies
and implementations

• Better tools for data gathering and analysis

