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MPP Platforms at Sandia

• Intel Paragon
• 1,890 compute nodes
• 3,680 i860 processors
• 143/184 GFLOPS
• 200 MB/sec network

• Intel TeraFLOPS
• 4,576 compute nodes
• 9,472 Pentium II processors
• 2.12/3.15 TFLOPS
• 400 MB/sec network
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MPP System Software R&D

• SUNMOS lightweight kernel
– High performance compute 

node OS for distributed 
memory MPP’s

– Deliver as much performance 
as possible to apps

– Small footprint 
– Started in January 1991 on 

the nCUBE-2 to explore new 
message passing schemes 
and high-performance I/O

– Ported to Intel Paragon in 
Spring of 1993

• Puma lightweight kernel
– Multiprocess support
– Modularized (QK, PCT)
– Developed on nCUBE-2 in 

1993
– Ported to Intel Paragon in 

1995
– Ported to Intel TFLOPS in 

1996 (Cougar)
– Portals 1.0

• User/Kernel managed buffers
– Portals 2.0

• Avoid buffering and memory 
copies



Goals of Puma

• Targets high performance scientific and 
engineering applications on tightly coupled 
distributed memory architectures

• Scalable to tens of thousands of processors
• Fast message passing and execution
• Small memory footprint
• Persistent (fault tolerant)



Approach

• Separate policy decision from policy enforcement
• Move resource management as close to 

application as possible
• Protect applications from each other
• Let user processes manage resources
• Get out of the way



General Structure
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Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions
• Maintains hardware virtual addressing
• No virtual memory support
• Static size
• Small size
• Non-blocking
• Few, well defined entry points



Process Control Thread (PCT)

• Runs in user space
• More privileged than user applications
• Policy maker

– Process loading 
– Process scheduling
– Virtual address space management
– Name server
– Fault handling



PCT (cont’d)

• Customizable
– Singletasking or multitasking
– Round robin or priority scheduling
– High performance, debugging, or profiling version

• Changes behavior of OS without changing the 
kernel
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CPU Modes

• Chosen at job launch time
• Heater mode (proc 0)

– QK/PCT and application process on system CPU
• Message co-processor mode (proc 1)

– QK/PCT on system CPU
– Application process on second CPU

• Compute co-processor mode (proc 2)
– QK/PCT and application process on system CPU
– Application co-routines on on second CPU

• Virtual node mode (proc 3)
– QK/PCT and application process on system CPU
– Second application process on second CPU



Yod

• Parallel job launcher
• Runs in the service partition
• Communicates via Puma message passing module in 

TeraFLOPS OS (TOS)
• Command line arguments for

– Size of job
– Processor mode
– Stack size
– Heap size
– Sharing

• Services I/O and system call requests from compute node 
processes



Key Ideas

• Protection
• Kernel is small

– Very reliable
• Kernel is static

– No structures depend on how many processes are 
running

– All message passing structures are in user-space
• Resource management pushed out to application 

processes and runtime system
• Services pushed out of kernel to PCT and runtime 

system



Portals

• Openings in a process’ address space
• Basic building blocks for any high-level message 

passing system
• All data structures are in user space
• A Portal consists of one or more of the following:

– A memory descriptor
– A matching list

• Avoids costly memory copies
• Avoids costly context switches to user mode (up 

call)
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Match Entries

• Optional layer
• Linked list in bounded region
• Matching criteria

– Source group, source rank
– 64 matching bits
– 64 ignore bits

• Three-way branching
– No match
– No fit
– No buffer



Memory Descriptors

• Describes layout of application’s buffers
• Attached directly to Portal table or to match entry
• Types

– Dynamic
– Single Block
– Independent Block
– Combined Block
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Memory Descriptor Options

• Read or write
• On write

– Save header and body
– Save header only
– Save body only

• Offset management
– Sender managed

• Incoming message determines offset
– Receiver managed

• Memory descriptor determines offset
• Write acknowledgements
• Buffer list traversal

– Circular
– Linear
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ASCI/Red Ping-Pong MPI Latency Performance



NOP Trap Performance

• Proc 0 mode
– 2.5052 µs

• Proc 1 mode
– 1.6675 µs

• Proc 3 mode
– 2.2968 µs
– 2.7146 µs

• Proc 0 mode with –share
– 4.4973 µs
– 3.3056 µs



Lightweight Kernel?

• Puma
– section         size
– .text          83357
– .data          21856
– .bss          105440
– Total         210653

• PCT
– section         size
– .text         274993
– .data          50928
– .bss          642344
– Total         968265



Memory Use Breakdown

• Executable
– 164833(.text) + 35340(.data) + 135816(.bss) = 335989

• Proc 0 / Proc 1 mode
– Text  = 167936
– Data  = 172032
– Stack = 2097152
– Heap  = 260046848
– NX Heap  = 262144

• Proc 3 mode
– Text  = 167936
– Data  = 172032
– Stack = 2097152
– Heap  = 127926272
– NX Heap  = 262144



Source Lines Of Code (SLOC)*

• QK
– 9078 CPU independent
– 10061 x86-specific
– 6088 i860-specific

• PCT - 12823 
• yod - 13150
• Libraries

– I/O and C – 16343
– MPI

• Device independent - 23849
• Portals – 5234

• Linux (kernel, init, mm, include/linux) - 87453
*Generated using 'SLOCCount' by David A. Wheeler



DOE MICS Lightweight Kernel Project

• Three-year project to design and implement next-
generation lightweight kernel for compute nodes 
of a distributed memory massively parallel 
system

• Assess the performance and reliability of a 
lightweight kernel versus a traditional monolithic 
kernel

• Investigate efficient methods of supporting 
dynamic operating system services

• Leverage Linux as much as possible



FY02 Plans

• Restructure Cougar to work with Linux-based 
boot kernel

• Complete port of Cougar to Alpha EV67 
processors

• Integrate Portals 3.0 into the Cougar (using 
Myrinet)

• Interface Cougar to the Cplant™ service partition
• Demonstrate CTH and Pronto on a development 

system
• Assess the performance and scalability of 

applications relative to a Cplant™ running Linux



Problems with Portals 2.0 in Puma

• No API
– Data structures entirely in user-space
– Protection boundaries have to be crossed to 

access data structures
– Data structures must be copied, manipulated, and 

copied back
– Requires interrupts

• Address validation/translation on the fly
– Incoming messages trigger address validation
– Doesn’t fit Linux model of validating addresses on 

a system call for the currently running process



Portals 3.0

• Operational API with unified memory descriptor
• Provides elementary building blocks for supporting higher-

level protocols, not just MPI
• Allows structures to be placed in user-space, kernel-space, 

or NIC-space depending on underlying transport layer
• Allows for high-performance OS-bypass implementations
• Receiver-managed offset allows for efficient and scalable 

buffering of MPI unexpected messages
• Supports multiple protocols within a process
• Application-bypass is a good thing

– OS-bypass is necessary but not sufficient for high-
performance



MPI Double-Buffer Benchmark

Rank 0
isend A;
isend B;
for ( ) {

fill A; wait CTS A;
isend A;

fill B; wait CTS B;
isend B;

}

Rank 1
start = get_time();
for ( ) {

wait A; sum A;
isend CTS A;

wait B; sum B;
isend CTS B;

}
end = get_time();



MPI Double-Buffer Performance



Portals 3.0 Myrinet MCP Implementation



Portals 3.0 NAL Implementations
• RTS (Sandia)

– Linux kernel module that does reliability and flow control
– Can use any Linux network device (skbufs)

• IP (Sandia)
– Reference implementation
– Really UNIX Pipes

• Quadrics ELAN3 (Sandia)
– Uses ELAN thread and DMA queues

• Myrinet MCP (Sandia)
– Designed to work with Cougar

• Alteon GigE (UNM)
• In-kernel TCP/IP (Peter Braam, Cluster File Systems, Inc.)
• Quadrics ELAN Kernel Comms (Marcus Miller, LLNL)
• Quadrics Tports (Unlimited Scale, Inc.)



New OS Initiative - Filling the Gap

• Current and future initiatives for tera-scale and peta-scale 
systems are focusing on hardware architecture and 
programming models, not on operating systems and 
runtime systems

• SciDAC Scalable System Software project is capturing 
current state of the art and not focused on addressing 
fundamental problems of future large-scale systems

• Two most scalable systems did not use full UNIX-based 
operating systems (ASCI/Red,Cray T3)

• Still many basic research questions regarding operating 
systems and runtime systems for 100 teraOPS and petaOPs
platforms (extensibility, fault tolerance, etc.)

• Need to start gathering support for new initiative now


