
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

The Puma Lightweight Kernel

Ron Brightwell
Sandia National Labs

Scalable Computing Systems Department
rbbrigh@sandia.gov

MPP Platforms at Sandia

• Intel Paragon
• 1,890 compute nodes
• 3,680 i860 processors
• 143/184 GFLOPS
• 200 MB/sec network

• Intel TeraFLOPS
• 4,576 compute nodes
• 9,472 Pentium II processors
• 2.12/3.15 TFLOPS
• 400 MB/sec network

Compute Node Architecture

Memory

Processor Processor

Memory
Bus

Network FIFOs

Net I/O

Service

Users

File I/OCompute

/home

Conceptual Partition Model

MPP System Software R&D

• SUNMOS lightweight kernel
– High performance compute

node OS for distributed
memory MPP’s

– Deliver as much performance
as possible to apps

– Small footprint
– Started in January 1991 on

the nCUBE-2 to explore new
message passing schemes
and high-performance I/O

– Ported to Intel Paragon in
Spring of 1993

• Puma lightweight kernel
– Multiprocess support
– Modularized (QK, PCT)
– Developed on nCUBE-2 in

1993
– Ported to Intel Paragon in

1995
– Ported to Intel TFLOPS in

1996 (Cougar)
– Portals 1.0

• User/Kernel managed buffers
– Portals 2.0

• Avoid buffering and memory
copies

Goals of Puma

• Targets high performance scientific and
engineering applications on tightly coupled
distributed memory architectures

• Scalable to tens of thousands of processors
• Fast message passing and execution
• Small memory footprint
• Persistent (fault tolerant)

Approach

• Separate policy decision from policy enforcement
• Move resource management as close to

application as possible
• Protect applications from each other
• Let user processes manage resources
• Get out of the way

General Structure

Q-Kernel: message passing, memory protection

App. 1

libmpi.a

libc.a

PCT App. 3

libvertex.a

libc.a

App. 2

libnx.a

libc.a

Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions
• Maintains hardware virtual addressing
• No virtual memory support
• Static size
• Small size
• Non-blocking
• Few, well defined entry points

Process Control Thread (PCT)

• Runs in user space
• More privileged than user applications
• Policy maker

– Process loading
– Process scheduling
– Virtual address space management
– Name server
– Fault handling

PCT (cont’d)

• Customizable
– Singletasking or multitasking
– Round robin or priority scheduling
– High performance, debugging, or profiling version

• Changes behavior of OS without changing the
kernel

Levels of Trust

Node Hardware Node Hardware

Network

QK QK

App. App. App. App.

PCT PCT

CPU Modes

• Chosen at job launch time
• Heater mode (proc 0)

– QK/PCT and application process on system CPU
• Message co-processor mode (proc 1)

– QK/PCT on system CPU
– Application process on second CPU

• Compute co-processor mode (proc 2)
– QK/PCT and application process on system CPU
– Application co-routines on on second CPU

• Virtual node mode (proc 3)
– QK/PCT and application process on system CPU
– Second application process on second CPU

Yod

• Parallel job launcher
• Runs in the service partition
• Communicates via Puma message passing module in

TeraFLOPS OS (TOS)
• Command line arguments for

– Size of job
– Processor mode
– Stack size
– Heap size
– Sharing

• Services I/O and system call requests from compute node
processes

Key Ideas

• Protection
• Kernel is small

– Very reliable
• Kernel is static

– No structures depend on how many processes are
running

– All message passing structures are in user-space
• Resource management pushed out to application

processes and runtime system
• Services pushed out of kernel to PCT and runtime

system

Portals

• Openings in a process’ address space
• Basic building blocks for any high-level message

passing system
• All data structures are in user space
• A Portal consists of one or more of the following:

– A memory descriptor
– A matching list

• Avoids costly memory copies
• Avoids costly context switches to user mode (up

call)

Portal Objects

Portal
Table

Matching
Lists

Memory
Descriptors

Match Entries

• Optional layer
• Linked list in bounded region
• Matching criteria

– Source group, source rank
– 64 matching bits
– 64 ignore bits

• Three-way branching
– No match
– No fit
– No buffer

Memory Descriptors

• Describes layout of application’s buffers
• Attached directly to Portal table or to match entry
• Types

– Dynamic
– Single Block
– Independent Block
– Combined Block

Dynamic

Memory
Descriptor Arrived Messages List

HEAP

Single Block

Memory
Descriptor Single

Contiguous
Buffer

Independent Block

Memory
Descriptor

Buffer Descriptor Table

Buffers

Combined Block

Memory
Descriptor

Buffer Descriptor Table

Buffers

Memory Descriptor Options

• Read or write
• On write

– Save header and body
– Save header only
– Save body only

• Offset management
– Sender managed

• Incoming message determines offset
– Receiver managed

• Memory descriptor determines offset
• Write acknowledgements
• Buffer list traversal

– Circular
– Linear

Portal Example

Posted Receive
Queue

Dynamic MD

Independent Block MDs

Unexpected
Queue

Match List

From Portal
Table

ASCI/Red Ping-Pong MPI Latency Performance

NOP Trap Performance

• Proc 0 mode
– 2.5052 µs

• Proc 1 mode
– 1.6675 µs

• Proc 3 mode
– 2.2968 µs
– 2.7146 µs

• Proc 0 mode with –share
– 4.4973 µs
– 3.3056 µs

Lightweight Kernel?

• Puma
– section size
– .text 83357
– .data 21856
– .bss 105440
– Total 210653

• PCT
– section size
– .text 274993
– .data 50928
– .bss 642344
– Total 968265

Memory Use Breakdown

• Executable
– 164833(.text) + 35340(.data) + 135816(.bss) = 335989

• Proc 0 / Proc 1 mode
– Text = 167936
– Data = 172032
– Stack = 2097152
– Heap = 260046848
– NX Heap = 262144

• Proc 3 mode
– Text = 167936
– Data = 172032
– Stack = 2097152
– Heap = 127926272
– NX Heap = 262144

Source Lines Of Code (SLOC)*

• QK
– 9078 CPU independent
– 10061 x86-specific
– 6088 i860-specific

• PCT - 12823
• yod - 13150
• Libraries

– I/O and C – 16343
– MPI

• Device independent - 23849
• Portals – 5234

• Linux (kernel, init, mm, include/linux) - 87453
*Generated using 'SLOCCount' by David A. Wheeler

DOE MICS Lightweight Kernel Project

• Three-year project to design and implement next-
generation lightweight kernel for compute nodes
of a distributed memory massively parallel
system

• Assess the performance and reliability of a
lightweight kernel versus a traditional monolithic
kernel

• Investigate efficient methods of supporting
dynamic operating system services

• Leverage Linux as much as possible

FY02 Plans

• Restructure Cougar to work with Linux-based
boot kernel

• Complete port of Cougar to Alpha EV67
processors

• Integrate Portals 3.0 into the Cougar (using
Myrinet)

• Interface Cougar to the Cplant™ service partition
• Demonstrate CTH and Pronto on a development

system
• Assess the performance and scalability of

applications relative to a Cplant™ running Linux

Problems with Portals 2.0 in Puma

• No API
– Data structures entirely in user-space
– Protection boundaries have to be crossed to

access data structures
– Data structures must be copied, manipulated, and

copied back
– Requires interrupts

• Address validation/translation on the fly
– Incoming messages trigger address validation
– Doesn’t fit Linux model of validating addresses on

a system call for the currently running process

Portals 3.0

• Operational API with unified memory descriptor
• Provides elementary building blocks for supporting higher-

level protocols, not just MPI
• Allows structures to be placed in user-space, kernel-space,

or NIC-space depending on underlying transport layer
• Allows for high-performance OS-bypass implementations
• Receiver-managed offset allows for efficient and scalable

buffering of MPI unexpected messages
• Supports multiple protocols within a process
• Application-bypass is a good thing

– OS-bypass is necessary but not sufficient for high-
performance

MPI Double-Buffer Benchmark

Rank 0
isend A;
isend B;
for () {

fill A; wait CTS A;
isend A;

fill B; wait CTS B;
isend B;

}

Rank 1
start = get_time();
for () {

wait A; sum A;
isend CTS A;

wait B; sum B;
isend CTS B;

}
end = get_time();

MPI Double-Buffer Performance

Portals 3.0 Myrinet MCP Implementation

Portals 3.0 NAL Implementations
• RTS (Sandia)

– Linux kernel module that does reliability and flow control
– Can use any Linux network device (skbufs)

• IP (Sandia)
– Reference implementation
– Really UNIX Pipes

• Quadrics ELAN3 (Sandia)
– Uses ELAN thread and DMA queues

• Myrinet MCP (Sandia)
– Designed to work with Cougar

• Alteon GigE (UNM)
• In-kernel TCP/IP (Peter Braam, Cluster File Systems, Inc.)
• Quadrics ELAN Kernel Comms (Marcus Miller, LLNL)
• Quadrics Tports (Unlimited Scale, Inc.)

New OS Initiative - Filling the Gap

• Current and future initiatives for tera-scale and peta-scale
systems are focusing on hardware architecture and
programming models, not on operating systems and
runtime systems

• SciDAC Scalable System Software project is capturing
current state of the art and not focused on addressing
fundamental problems of future large-scale systems

• Two most scalable systems did not use full UNIX-based
operating systems (ASCI/Red,Cray T3)

• Still many basic research questions regarding operating
systems and runtime systems for 100 teraOPS and petaOPs
platforms (extensibility, fault tolerance, etc.)

• Need to start gathering support for new initiative now

