
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

A Specialized Approach for
HPC System Software

Ron Brightwell Suzanne Kelly
Sandia National Laboratories

Arthur B. Maccabe
University of New Mexico

Sixth LCI International Conference on Linux Clusters
April 27, 2005

Outline

• Brief history of Sandia/UNM lightweight kernels
• Reasons for a specialized approach
• Basic underlying principles
• Ongoing activities

– Catamount development
– Configurable OS research project

Sandia Experience

Paragon
• Tens of users
• First periods

processing MPP
• World record

performance
• Routine 3D

simulations
• SUNMOS lightweight

kernel

ASCI Red
• Production MPP
• Hundreds of users
• Red & Black

partitions
• Improved

interconnect
• High-fidelity coupled

3-D physics
• Puma/Cougar

lightweight kernel

Cplant
• Commodity-based

supercomputer
• Hundreds of users
• Enhanced simulation

capacity
• Linux-based OS

licensed for
commercialization

Red Storm
• ASC’s next flagship
• 41 Tflops
• Custom interconnect
• Purpose built RAS
• Highly balanced and

scalable
• Catamount

lightweight kernel

nCUBE2
• Sandia’s first large

MPP
• Achieved Gflops

performance on
applications

1990

1993

1997

1999

2004

Lightweight Kernel Goals

• Targets high performance scientific and
engineering applications on tightly coupled
distributed memory architectures

• Scalable to tens of thousands of processors
• Enable fast message passing and execution
• Small memory footprint
• Persistent (fault tolerant)

Approach

• Separate policy decision from policy enforcement
• Move resource management as close to

application as possible
• Protect applications from each other
• Let user processes manage resources
• Get out of the way

Reasons for A Specialized Approach

• Maximize available compute node resources
– Maximize CPU cycles delivered to application

• Minimize time taken away from application process
• No daemons
• No paging
• Deterministic performance

– Maximize memory given to application
• Minimize the amount of memory used for message

passing
• Kernel size is static
• Somewhat less important but still can be significant

on large-scale systems

Maximize Compute Node Resources (cont’d)

– Maximize memory bandwidth
• Uses large page sizes to avoid TLB flushing

– Maximize network resources
• Physically contiguous memory model
• Simple address translation and validation

– No NIC address mappings to manage
– Increase reliability

• Relatively small amount of source code (~30K LOC)
• Reduced complexity
• Support for small number of devices

However….

• Fixed memory regions may lead to inefficient use
of memory
– Executable code that never gets used
– Willing to waste memory to reduce complexity

• Not all applications need large pages
– Considering adding run-time page size option

Basic Principles

• Logical partitioning of nodes
• Compute nodes should be independent

– Communicate only when absolutely necessary
• Limit resource use as much as possible

– Expose low-level details to the application-level
– Move complexity to application-level libraries

• KISS
– Massively parallel computing is inherently complex
– Reduce and eliminate complexity wherever

possible

Sandia Catamount Activities

• Working on dual-core support
– Provides the ability to run in

• Single-core mode (AKA heater mode)
• Virtual node mode

• Working on figuring out multi-core support
– Four dual-core nodes

• OpenCatamount
– Open source version of Catamount
– Working on general configure/build environment
– Lacking one more piece of paperwork

What’s wrong with current operating systems?

Problems with General-Purpose OS’s

• Generality comes at the cost of performance for
all applications

• Assume a generic architectural model
– Difficult to expose novel features
– Can’t make everything look like an x86

Linux Memory Management

• How much usable memory is there?
• Issues with page pinning

– Linux wants to manage all of your pages for you
– RDMA is a great model for high-performance

networking
• As long as a process’ address map stays consistent

– Linux memory management strategies are based
on optimizing system performance by re-mapping
memory pages frequently

– Linux kernel developers don’t like giving up control
of resources

Various Quotes from the OpenIB List

• “If you take the hardline position that ‘the app is
the only thing that matters’, your code is unlikely
to get merged [into Linux]. Linux is a general-
purpose OS.”

• “What doesn't work with that design [for page
pinning] are the braindead designed-by-
committee APIs in the RDMA world - but I don't
think we should care about them too much.”

Interesting Side Note

• Using GNU glibc increased the memory footprint
of the “lightweight kernel” by 300% on Red Storm

Problems with Lightweight OS’s

• Limited functionality
• Difficult to add new features
• Designed to be used in the context of a specific

usage model

The implementation and development of operating
systems is an impediment to new architectures and

programming models

Factors Influencing LWK Design

• Lightweight OS
– Small collection of apps

• Single programming
model

– Single architecture
– Single usage model
– Small set of shared

services
– No history

• Puma/Cougar/Catamount
– MPI
– Distributed memory
– Space-shared
– Parallel file system
– Batch scheduler

Programming Models

Usage Models

Current and Future System Demands

• Architecture
– Modern ultrascale machines have widely varying system-level

and node-level architectures
– Future systems will have further hardware advances (e.g.,

multi-core chips, PIMs)
• Programming model

– MPI, Thread, OpenMP, PGAS, …
• External services

– Parallel file systems, dynamic libraries, checkpoint/restart, …
• Usage model

– Single, large, long-running simulation
– Parameter studies with thousands of single-processor, short-

running jobs

Configurable OS Project Goals

• Realize a new generation of scalable, efficient, reliable, easy
to use operating systems for a broad range of future
ultrascale high-end computing systems based on both
conventional and advanced hardware architectures and in
support of diverse, current and emerging parallel
programming models.

• Devise and implement a prototype system that provides a
framework for automatically configuring and building
lightweight operating and runtime system based on the
requirements presented by an application, system usage
model, system architecture, and the combined needs for
shared services.

Approach

• Define and build a collection of micro-services
– Small components with well-defined interfaces
– Implement an indivisible portion of service

semantics
– Fundamental elements of composition and re-use

• Combine micro-services specifically for an
application and a target platform

• Develop tools to facilitate the synthesis of
required micro-services

Building Custom Operating/Runtime Systems

Project Participants

• Sandia National Laboratories
– Neil Pundit, Project Director
– Ron Brightwell, Coordinating PI
– Rolf Riesen

• University of New Mexico
– Barney Maccabe, PI
– Patrick Bridges

• California Institute of Technology
– Thomas Sterling, PI

• Project funded by DOE Office of Science under the
FAST-OS program

