
Optimizing an MPI Implementation to
Increase CPU Availability

Arthur B. Maccabe, Christopher Wilson
University of New Mexico

Ron Brightwell, Bill Lawry
Sandia National Labs

Outline

• Objective
• COMB benchmark suite
• ASCI/Red Hardware
• ASCI/Red Software
• Results and analysis
• Summary

Objective

• Demonstrate the utility of the COMB benchmark
in helping to more completely analyze MPI
performance

• Provide more insight than simple ping-pong
latency and bandwidth measurements

Communication Offload MPI
Benchmark(COMB)

• Measures the ability of an MPI implementation to
overlap computation and communication

• Ability to overlap related to
– Quality of MPI implementation
– Capabilities of the underlying network layers

• Provides insight into the relationship between
network performance and host CPU performance

• Needed to quantify the benefit of “application
offload”

COMB Design Goals

• Quantify effectiveness of offloading MPI
functionality to programmable NICs and Portals
hardware

• Accurately measure
– CPU availability
– Bandwidth

• Portable

Previous Work

• Overhead
– Netperf

• Two processes per node
• Assumes process driving communication

relinquishes the CPU
– Portability and accuracy issues

• Overlap
– Pallas MPI benchmark’s “exploit CPU method”
– Various others, but no definitive metric for

measuring overlap with respect to overall
performance

COMB Approach

• Two nodes
• One process per node

– Node 0
• Facilitate communication
• I/O

– Node 1
• Simulate computation
• Communication
• Timing

• Use MPI for portability

COMB Approach (cont’d)

• Time a specified amount of work with no
communication

• Time same amount of work with communication
• Ratio is CPU availability (1 – overhead)

COMB Methods

• Poll
– Measures sustained maximum bandwidth
– Perform communication throughout work
– Allow for maximum possible overlap

• Post-Work-Wait (PWW)
– Time all MPI calls and do work
– Tests for overlap under practical restrictions on

MPI calls

PWW Method

read current time
pre-post asynchronous send(s) & receive(s)
read current time
for (i = 0; i < work interval; i++) {

/* nothing */
}

read current time
wait for asynchronous send(s) & receive(s)
read current time

PWW Method (cont’d)

• Time work independent of messaging
• Collects wall clock times for different phases

– Non-blocking post phase
– Work phase
– Wait phase

• Worker process waits for current batch of
messages

ASCI/Red Hardware

• 4640 compute nodes
– Dual 333 MHz Pentium II

Xeons
– 256 MB RAM

• 400 MB/sec bi-directional
network links

• 38x32x2 mesh topology
• Red/Black switchable
• First machine to

demonstrate 1+ TFLOPS
• 2.38/3.21 TFLOPS
• Deployed in 1997

ASCI/Red Compute Node Software

• Puma lightweight kernel
– Follow-on to Sandia/UNM Operating System

(SUNMOS)
– Developed for 1024-node nCUBE-2 in 1993 by

Sandia/UNM
– Ported to 1800-node Intel Paragon in 1995 by

Sandia/UNM
– Ported to Intel ASCI/Red in 1996 by Intel/Sandia
– Productized as “Cougar” by Intel

ASCI/Red Software (cont’d)

• Puma/Cougar
– Space-shared model
– Exposes all resources to applications
– Consumes less than 1% of compute node memory
– Four different execution modes for managing dual

processors
– Portals 2.0

• High-performance message passing
• Avoid buffering and memory copies
• Supports multiple user-level libraries (MPI, Intel N/X,

Vertex, etc.)

ASCI/Red Software (cont’d)

• Puma/Cougar processor modes
– Proc 0 (Heater mode)

• OS and application only use main CPU
– Proc 1 (Communication co-processor mode)

• OS dedicated to main CPU
• Application dedicated to second CPU

– Proc 2 (Application co-processor mode)
• OS and application on main CPU
• Application can spawn co-routines on second CPU

– Proc 3 (Virtual node mode)
• OS and one application process on main CPU
• Separate application process on second CPU

ASCI/Red MPI Implementation

• MPICH 1.0.12 (1997)
• Direct ADI-1 device on Portals 2.0
• Validated as a product by Intel and never

upgraded

Half Round-Trip Latency

Ping-Pong Bandwidth

PWW: Bandwidth (100 KB)

PWW: CPU Availability (100 KB)

PWW: Time To Post Send (Proc 1)

PWW: New CPU Availability (100 KB)

Half Round-Trip Latency

Ping-Pong Bandwidth

Summary

• COMB measures the ability of an MPI
implementation to overlap computation and
communication

• COMB provides more insight into the relationship
between network performance and host CPU
performance

• Valuable tool in diagnosing a significant
performance problem on ASCI/Red

