Rick Muller

Sandia National Laboratories, Albuquerque, NM, 87185-1411 - (505) 284-3669 - rmuller@sandia.gov

I'm interested in high performance computing, quantum information theory, materials/molecules, and how combinations of these can help advance science for national and economic security. I'm currently manager of the Computational Materials and Data Science Department (1864) at Sandia National Laboratories.

Privacy/Security Information

Experience

Manager

Sandia National Laboratories

Managed the Computational Materials and Data Science department. Developed new areas of research in reactive interatomic potentials, trusted computing, and quantum information sciences.

August 2017 - Present

Joint Program Office

National Strategic Computing Initiative

Worked on the NSCI with DOD, DOE, NSF, OSTP, OMB, NIST, IARPA. Led workshops exploring impact of foreign HPC on national and economic security. Initiated programs developing novel hardware and software paradigms for heterogeneous computing.

2016 - 2017

Distinguished Member of the Technical Staff

2016 - 2018

Principal Member of the Technical Staff

Sandia National Laboratories

Deputy director of Sandia Science and Engineering of Quantum Information Sciences Research Challenge. Deputy Project Lead and Modeling Lead, Quantum Information Science and Technology, developing Silicon donor and dot qubits. PI for development of QCAD simulation tool for nano- and quantum electronic devices. Sandia representative for quantum computing road mapping with DOE/ASCR, DOE/ASC and DOE/Materials. Modeling Team Lead, QIST GC-LDRD project developing semiconductor qubits.

2007 - 2016

Senior Member of the Technical Staff

Sandia National Laboratories

Modeling representative for Sandia National Laboratory energy storage road mapping activities. PI of an LDRD project to model safety of Li-ion transportation batteries (aspects of the program have also been funded under the DOE/CAEBAT program). PI of a program, first funded by Lockheed Martin Internal R+D funding, then by the Sandia-Lockheed Martin Shared Vision program, to develop electrochemical fuel sources for hypersonic transport. PI of project to use density functional theory for materials properties calculations relevant to DOE/ASC. Development and application of electronic structure techniques for catalysis, enzyme function, high explosives.

2003 - 2007

Director, Quantum Simulations

Materials Simulation Center, Caltech

Managed industrial collaborations in catalysis, non-linear optics, and energy storage with Dow Chemical, Dupont, Asahi Chemical, Seiko-Epson. Ran the materials property database component of the ASCI/ASAP Shock Physics Test Facility.

1997 - 2003

Postdoctoral Research Associate

University of Southern California

Worked with Prof. Arieh Warshel modeling enzyme catalysis and solvation using QM/MM methods, DFT, and implicit solvation techniques.

1994 - 1997

Education

1988 - 1994

Rice University

B.A., Chemistry
1984 - 1988

University of Oxford

Visiting Scholar, Chemistry, Oriel College
1985 - 1986

Publications

h-index: 29

Journal Articles
  1. Advanced Electronic Structure Calculations for Nanoelectronics John K. Gamble, Erik Nielsen, Andrew Baczewski, Jonathan E. Moussa, Xujiao Gao, Andrew G. Salinger, and Richard P. Muller. In Press, Springer Series in Materials Science series Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile.

  2. U.S. Leadership in High Performance Computing: A Report from the NSA-DOE Technical Meeting on High-Performance Computing 2016.

  3. Sympy: Symbolic computing in Python. Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondrej Certik, Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E Granger, Richard P Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J Curry, Ashutosh Saboo, Isuru Fernando, Sumith, Robert Cimrman, Anthony Scopatz. PeerJ Comput. Sci. 3, e103 (2017). DOI 10.7717/peerj-cs.103.

  4. Valley splitting of single-electron Si MOS quantum dots. John King Gamble, Patrick Harvey-Collard, N. Tobias Jacobson, Andrew D. Baczewski, Erik Nielsen, Leon Maurer, Ines Montano, Martin Rudolph, M. S. Carroll, C.H. Yang, A. Rossi, A.S. Dzurak, and Richard P. Muller. Applied Physics Letters, 109, 253101 (2016). arXiv 1610.03388

  5. Scaling Up Semiconductor Quantum Computers Through Multiscale Analysis. John King Gamble, Andrew Baczewski, N. Tobias Jacobson, Erik Nielsen, and Richard P. Muller. SAND REPORT 2016-11577, Sandia National Laboratories, 2016.

  6. Albany: Using Component-Based Partial Design to Develop a Flexible, Generic Multiphysics Analysis Code Andrew G. Salinger, Roscoe A. Bartlett, Andrew M. Bradley, Qiushi Chen, Irina P. Demeshko, Xujiao Gao, Glen A. Hansen, Alejandro Mota, Richard P. Muller, Erik Nielsen, Jakob T. Ostien, Roger P. Pawlowski, Mauro Perego, Eric T. Phipps, Waiching Sun, Irina K. Tezaur. International Journal for Multiscale Computational Engineering. 14, 415-438 (2016).

  7. Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer. T. M. Lu, J. K. Gamble, R. P. Muller, E. Nielsen, D. Bethke, G. A. Ten Eyck, T. Pluym, J. R. Wendt, J. Dominguez, M. P. Lilly, M. S. Carroll, and M. C. Wanke. Applied Physics Letters. 109, 039102 (2016). arXiv 1609.08107

  8. Robust Quantum Operations: SEQIS Late Start LDRD Final Report. Tzvetan S. Metodi, Andrew J. Landahl, Ciaran Ryan-Anderson, Malcolm S. Carroll, Jonathan E. Moussa, and Richard P. Muller. SAND Report, 2015.

  9. The Promise of Quantum Simulation. Richard P. Muller and Robin Blume-Kohout. ACS Nano 9, 7738 (2015). arXiv 1507.06035

  10. Report: ASCR Report on Quantum Computing for Science. Alan Aspuru-Guzik, Wim van Dam, Edward Farhi, Frank Gaitan, Travis Humble, Stephen Jordan, Andrew Landahl, Peter Love, Robert Lucas, John Preskill, Richard Muller, Krysta Svore, Nathan Wiebe, Carl Williams.

  11. Materials Frontiers to Empower Quantum Computing: A Report on Materials Opportunities for Quantum Computing. Christopher Richardson, John Sarrao, Antoinette Taylor, Nathan Baker, Vincent Ballarotto, Matthew Blain, Jay Dawson, David Dean, Jonathon Dubois, Vincenzo Lordi, Richard Muller, Kelly Perry, Marvin Warner. Report on DOE Workshop, Los Alamos, 2015.

  12. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon. Wayne M. Witzel, Ines Montano, Richard P. Muller, and Malcolm S. Carroll. Physical Review B 92, 081407(R) (2015). arXiv 1410.2245.

  13. Multivalley effective mass theory simulation of donors in silicon.. John King Gamble, N. Tobias Jacobson, Erik Nielsen, Andrew D. Baczewski, Jonathan E. Moussa, Ines Montano, and Richard P. Muller. Physical Review B 91, 235318 (2015). arXiv 1408.3159.

  14. Influence of Overcharge and Over-Discharge on the Impedance Response of LiCoO2/C Batteries. Salim Erol, Mark E. Orazem, and Richard P. Muller. Journal of Power Sources, 270, 92 (2014).

  15. Efficient self-consistent quantum transport simulator for quantum devices. X. Gao, D. Mamaluy, E. Nielsen, R. W. Young, A. Shirkhorshidian, M. P. Lilly, N. C. Bishop, M. S. Carroll, and R. P. Muller. Journal of Applied Physics, 115, 133707 (2014). arXiv 1403.7564.

  16. QCAD Simulation and Optimization of Semiconductor Double Quantum Dots. E Nielsen, X Gao, I Kalashnikova, R P Muller, A G Salinger, and R W Young. SAND Report, 2013.

  17. Charge-sensed Pauli blockade in a MOS lateral double quantum dot. Khoi. T. Nguyen, Michael. P. Lilly, Erik Nielsen, Nathan Bishop, Rajib Rahman, Ralph Young, Joel Wendt, Jason Dominguez, Tammy Pluym, Jeffery Stevens, Tzu-Ming Lu, Richard Muller, Malcolm. S. Carroll. Nano Letters, 13, 5785, 2013.

  18. QCAD Simulation and Optimization of Semiconductor Quantum Dots. X. Gao, E. Nielsen, R. P. Muller, R. W. Young, A. G. Salinger, N. C. Bishop, M. Lilly, and M. S. Carroll. Journal of Applied Physics, 114, 164302 (2013). arXiv 1403.7561.

  19. Modelling challenges for battery materials and electrical energy storage. Richard P. Muller and Peter A. Schultz. Modeling and Simulation in Materials Science and Engineering, 21, 070301 (2013).

  20. Phase field model of solid electrolyte interphase formation in Li-ion batteries. Jie Deng, Gregory J. Wagner, and Richard P. Muller. Journal of the Electrochemical Society 160, A487 (2013).

  21. A many-electron tight binding method for the analysis of quantum dot systems. Erik Nielsen, Rajib Rahman, Richard P. Muller. Journal of Applied Physics 112, 114304 (2012). arXiv 1202.4931.

  22. Modeling Thermal Abuse in Transportation Batteries Richard P. Muller, Randall T Cygan, Jie Deng, Amalie L Frischknecht, John C Hewson, Harry K Moffat, Craig M Tenney, Peter A Schultz, Gregory J Wagner. SAND Report, SAND2012-7816, September, 2012.

  23. Simulation of Abuse Behavior of Lithium-Ion Batteries. Robert Spotnitz and Richard Muller. Interface, 21, 57 (2012).

  24. Phase field model of solid electrolyte interphase formation in Li-ion batteries. Jie Deng, Gregory J. Wagner, and Richard P. Muller. MRS Proceedings, 1278, 1440 (2012).

  25. The QCAD Framework for Quantum Device Modeling. X. Gao, E. Nielsen, R. P. Muller, R. W. Young, A. G. Salinger, N. C. Bishop, and M. S. Carroll. International Workshop on Computational Electronics Proceedings, 15, 1, (2012).

  26. Voltage controlled exchange energies of a two electron silicon double quantum dot with and without charge defects in the dielectric. Rajib Rahman, Erik Nielsen, Richard P. Muller, Malcolm S. Carroll. Physical Review B, 85, 125423 (2012). arXiv 1112.4025

  27. Configuration interaction calculations of the controlled phase gate in double quantum dot qubits. Erik Nielsen, Richard P. Muller, Malcolm S. Carroll. Physical Review B, 85, 35319 (2012). arXiv 1106.1441

  28. Coherent electron transport by adiabatic passage in an imperfect donor chain. Rajib Rahman, Richard P. Muller, James E. Levy, Malcolm S. Carroll, Gerhard Klimeck, Andrew D. Greentree, and Lloyd C. L. Hollenberg. Physical Review B, 82, 155315 (2010). arXiv 1008.1494

  29. Implications of Simultaneous Requirements for Low Noise Exchange Gates in Double Quantum Dots. Erik Nielsen, Ralph W. Young, Richard P. Muller, M. S. Carroll. Physical Review B, 82, 075319 (2010). arXiv 0909.0047

  30. Calculation of chemical reaction energies using the AM05 density functional. Richard P. Muller, Ann E. Mattsson, Curtis L. Janssen. Journal of Computational Chemistry, 31, 1860-1863 (2010). arXiv

  31. Enhancement mode double top gated MOS nanostructures with tunable lateral geometry. E.P. Nordberg, G.A. Ten Eyck, H.L. Stalford, R.P. Muller, R.W. Young, K. Eng, L.A. Tracy, K.D. Childs, J.R. Wendt, R.K. Grubbs, J. Stevens, M.P. Lilly, M.A. Eriksson, M.S. Carroll. Physical Review B, 80, 115331 (2009). arXiv 0906.3748.

  32. Atomistic simulations of adiabatic coherent electron transport in triple donor systems. Rajib Rahman, Seung H. Park, Jared H. Cole, Andrew D. Greentree, Richard P. Muller, Gerhard Klimeck, Lloyd C. L. Hollenberg. Physical Review B, 80, 35302 (2009). arXiv 0903.1142

  33. Hydrogenolysis of Palladium(II) Hydroxide and Methoxide Pincer Complexes. Gregory R. Fulmer, Richard P. Muller, Richard A. Kemp, and Karen I. Goldberg. Journal of the American Chemical Society, 131, 1346 (2009).

  34. Manager-worker-based model for the parallelization of quantum Monte Carlo on heterogeneous and homogeneous networks. Michael T. Feldmann, Julian C. Cummings, David R. Kent IV, Richard P. Muller, William A. Goddard III. Journal of Computational Chemistry, 29, 8-16 (2007).

  35. Efficient algorithm for on the fly error analysis of local or distributed serially correlated data. David R. Kent IV, Richard P. Muller, Amos G. Anderson, William A. Goddard III, Michael T. Feldmann. Journal of Computational Chemistry, 28, 2309-2316 (2007).

  36. Mechanism of Direct Molecular Oxygen Insertion in a Palladium (II) Hydride Bond. Jason M. Keith, Richard P. Muller, Richard A. Kemp, Karen I. Goldberg, William A. Goddard, III, and Jonas Oxgaard. Inorganic Chemistry. 45, 9631 (2006).

  37. Optimized Effective Potential from a Correlated Wave Function: OEP-GVB. Richard P. Muller and Michael P. Desjarlais. Journal of Chemical Physics. 125, 54101 (2006).

  38. Alkylation of phenol: A mechanistic view. Qisheng Ma, Deb Chakraborty, Francesco Faglioni, Richard P. Muller, William. A. Goddard, III, Thomas Harris, Curt Campbell, and Yongchun Tang. Journal of Physical Chemistry A. 110, 2246 (2006).

  39. A candidate LiBH4 for hydrogen storage: crystal structures and reaction mechanisms of intermediate phases. Jeung Ku Kang, SY Kim, YS Han, Richard P. Muller, and William A. Goddard, III. Applied Physics Letters. 87, 111904 (2005).

  40. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. Xin Xu, Qingsong Zhang, Richard P. Muller, and William A. Goddard, III. Journal of Chemical Physics. 122, 14105 (2005).

  41. Mechanism of the Stoddart-Heath Bistable Rotaxane Molecular Switch. Weiqiao Deng, Richard P. Muller, and William A. Goddard, III. Journal of the American Chemical Society, 126, 13562 (2004).

  42. Hydrogen storage in LiAlH4: Predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics. Jeung Ku Kang, Jai Young Li, Richard P. Muller, and William A. Goddard, III. Journal of Chemical Physics, 121, 10623 (2004).

  43. The synthesis of symmetrical bis-1,2,5-thiadiazole ligands. Dean M. Philipp, Richard P. Muller, William A. Goddard, III, Khalil A. Abboud, Michael J. Mullins, R. Vernon Snelgrove, and Phillip S. Athey. Tetrahedron Letters. 45, 5441 (2004).

  44. Evidence of O-Atom Exchange in the O (1D) + N2O Reaction as the Source of Mass-Independent Fractionation in Atmospheric N2O. Yuk L. Yung, Mao-Chiang Liang, Geoffrey A. Blake, Richard P. Muller, and Charles E. Miller. Geophysical Research Letters, 31, L19106 (2004).

  45. Mechanism of Homogeneous Ir(III) Catalyzed Regioselective Arylation of Olefins. Jonas Oxgaard, Richard P. Muller, William A. Goddard, III, and Roy A. Periana. Journal of the American Chemical Society, 126, 352 (2004).

  46. Meccano on the Nanoscale: A Blueprint for Making the World's Smallest Devices. Amar H. Flood, Robert J. A. Ramirez, Wei-Qiao Deng, Richard P. Muller, William A. Goddard, III, and J. Frasier Stoddard. Australian Journal of Chemistry, 57, 301 (2004).

  47. Internal Lewis Acid Single Site Catalyst Family for Polymerization of Polar Monomers. Dean M. Phillipp, Richard P. Muller, and William A. Goddard, III. US Patent # 6,777,510 B1, awarded August 17, 2004.

  48. Chemisorption of Atomic Oxygen on Pt (111) from DFT Studies of Pt Clusters. Timo Jacob, Richard P. Muller, and William A. Goddard, III. Journal of Physical Chemistry B, 107, 9465 (2003).

  49. Computing Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices. Wilfried Gansterer, Robert C. Ward, Richard P. Muller, and William A. Goddard, III. SIAM Journal on Scientific Computing, 25, 65 (2003).

  50. Quantum Mechanical-Rapid Prototyping Applied to Methane Activation. Richard P. Muller, Dean M. Philipp, and William A. Goddard, III. Topics in Catalysis, 23, 81 (2003).

  51. Application of Lightweight Threading Techniques to Computational Chemistry. John Thornley, Richard P. Muller, Daniel T. Mainz, Tahir Cagin, and William A. Goddard, III. Journal of Computer Aided Materials Design, 8 (2-3), 173-184 (2002).

  52. A Detailed Reaction Model for the Detonation of Nitramines: RDX and HMX. Debashis Chakraborty, Richard P. Muller, Siddharth Dasgupta, and William A. Goddard, III. Journal of Computer Aided Materials Design, 8 (2-3), 203-212 (2002).

  53. Computational Insights on the Challenges of Polymerizing Polar Monomers. Dean Philipp, Richard P. Muller, William A. Goddard, III, Joey Storer, Mark McAdon, and Mike Mullins. Journal of the American Chemical Society, 124 (34), 10198-10210 (2002).

  54. Copolymerization Studies of Vinyl Chloride and Vinyl Acetate with Ethylene Using a Transition-Metal Catalyst. Harold W. Boone, Phillip S. Athey, Michael J. Mullins, Dean Philipp, Richard Muller, and William A. Goddard, III. Journal of the American Chemical Society, 124 (30), 8790-8791 (2002).

  55. An Extension of the Divide-and-Conquer Method for a Class of Symmetric Block-Tridiagonal Eigenproblems. Wilfried N. Gansterer, Robert C. Ward, and Richard P. Muller. ACM Transactions on Mathematical Software. 28 (1), 45-58 (2002).

  56. An NMR and QM Investigation of Tetrahydrofuran Solvent Effects on the Conformational Equilibria of 1,4-Butanedioic Acid and its Salts. David R. Kent, IV, Krag A. Petterson, Francoise Gregoire, Ethan Snyder-Frey, Linda J. Hanely, Richard P. Muller, William A. Goddard, III, and John D. Roberts. Journal of the American Chemical Society, 124 (16), 4418-4486 (2002).

  57. The Gas Phase Reaction of Singlet Dioxygen with Water, a Water Catalyzed Reaction. Xin Xu, Richard P. Muller, William A. Goddard, III. Proceedings of the National Academy of Sciences, 99 (6), 3376-3381 (2002).

  58. Valence Bond Theory. Richard P. Muller and William A. Goddard, III. Encyclopedia of Physical Science and Chemistry. Third Edition. Robert A. Meyers, ed. Academic Press, 2002.

  59. Gas Phase and Surface Kinetic Processes in Polycrystalline Silicon Hot-wire Chemical Vapor Deposition. Jason K. Holt, M. Switek, David G. Goodwin, Richard P. Muller, William A. Goddard, III, and Harry A. Atwater. Thin Solid Films, 395, 29 (2001).

  60. Si + SiH4 Reactions and Implications for Hot-Wire CVD of a-Si:H. Computational Studies. Richard P. Muller, William A. Goddard, III, Jason K. Holt, and David G. Goodwin. Material Research Society Symposium Proceedings, 609, A6.1.1 (2001).

  61. The Mechanism for Unimolecular Decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine); An Ab Initio Study. Debashis Chakraborty, Richard P. Muller, Siddharth Dasgupta, and William A. Goddard, III. Journal of Physical Chemistry A, 105(8), 1302-1314 (2001).

  62. The Mechanism for Unimolecular Decomposition of RDX (1,3,5-trinitro-1,3,5-triazine); An Ab Initio Study. Debashis Chakraborty, Richard P. Muller, Siddharth Dasgupta, and William A. Goddard, III. Journal of Physical Chemistry A, 104(11), 2261-2272 (2000).

  63. Hybrid ab Initio Quantum Mechanics/Molecular Mechanics Calculations of Free Energy Surfaces for Enzymatic Reactions: The Nucleophilic Attack in Subtilisin. J. Bentzien, R. P. Muller, J. Florian, and A. Warshel. Journal of Physical Chemistry B, 102, 2293-2301 (1998).

  64. Semiempirical and ab initio modeling of chemical processes: From aqueous solution to enzymes. Richard P. Muller, Jan Florian, and Arieh Warshel. NATO Symposium Series: Biomolecular Structure and Dynamics: Recent Experimental and Theoretical Advances. G. Vergoten, ed.

  65. Calculations of chemical processes in solution by density functional and other quantum mechanical techniques. Richard P. Muller, Tomek Wesolowski, and Arieh Warshel. Density Functional Methods in Chemistry and Materials Science, M. Springborg, ed. John Wiley and Sons, New York, 1997.

  66. Ab initio calculations of free energy barriers for proton transfer in FHF- in solution. Richard P. Muller and Arieh Warshel. Pacific Syposium for Biocomputing 1996 L. Hunter and T. Klein, eds. World Scientific Press, Singapore, 1996, p. 524.

  67. Ab Initio Frozen Density Functional Calculations of Proton Transfer Reactions in Solution. Tomasz A. Wesolowski, Richard P. Muller, and Arieh Warshel. Journal of Physical Chemistry, 100, 15444 (1996).

  68. Ab Initio Calculations of Free Energy Barriers for Chemical Reactions in Solution. Richard P. Muller and Arieh Warshel. Journal of Physical Chemistry, 99 (49), 17516 (1995).

  69. Development and Optimization of Quantum Chemical Techniques for Application to Large Molecules. Richard P. Muller, Graduate Dissertation, California Institute of Technology, 1994.

  70. Rule-Based Trial Functions for Generalized Valence Bond Theory. Jean-Marc Langlois, Terumasa Yamasaki, Richard P. Muller, and William A. Goddard, III. Journal of Physical Chemistry, 98, 13498 (1994).

  71. A Generalized Direct Inversion in the Iterative Subspace Approach for Generalized Valence Bond Wave Functions: GVB-DIIS. Richard P. Muller, Jean-Marc Langlois, Murco N. Ringnalda, Richard A. Friesner, and William A. Goddard, III. Journal of Chemical Physics, 100, 1226 (1994).

  72. Pseudospectral Generalized Valence Bond (PS-GVB) Calculations: Application to Methylene, Ethylene, and Silylene. Jean-Marc Langlois, Richard P. Muller, Terry R. Coley, William A. Goddard, III, Murco N. Ringnalda, Yongdo Won, and Richard A. Friesner. Journal of Chemical Physics, 92, 7488 (1991).

  73. A Model for Impulsive Mode-Mode Energy Transfer in Highly Vibrationally Excited Molecules. Richard P. Muller, John S. Hutchinson, and Thomas A. Holme. Journal of Chemical Physics, 90, 4582 (1989).