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ABSTRACT: In this paper we describe an iterative linear system solution methodology used for parallel unstructured
finite element simulation of strongly coupled fluid flow, heat transfer, and mass transfer with non-equilibrium chemical
reactions. The nonlinear/linear iterative solution strategies are based on a fully-coupled Newton solver with
preconditioned Krylov subspace methods as the underlying linear iteration. Our discussion considers computational
efficiency, robustness and a number of practical implementation issues. The evaluated preconditioners are based on
additive Schwarz domain decomposition methods which are applicable for totally unstructured meshes. A number of
different aspects of Schwarz schemes are considered including subdomain solves, use of overlap and the introduction of
a coarse grid solve (a two-level scheme). As we will show, the proper choice among domain decomposition options is
often critical to the efficiency of the overall solution scheme. For this comparison we use a particular spatial
discretization of the governing transport/reaction partial differential equations (PDEs) based on a stabilized finite
element formulation. Results are presented for a number of standard 2D and 3D computational fluid dynamics (CFD)
benchmark problems and some large 3D flow, transport and reacting flow application problems.

Key Words: Newton-Krylov, fully-coupled solvers, Schwarz Domain Decomposition, two-level methods,
multilevel methods, parallel methods, stabilized finite element methods.

1.  INTRODUCTION 

Modern computational fluid dynamics simulations often require the solution of strongly-coupled
interacting physics in complex three-dimensional (3D) geometries with high resolution
unstructured meshes to capture all the relevant length scales. After suitable spatial discretization
and linearization, these simulations can produce large linear systems of equations with on the order
105 to 108 unknowns. As a result efficient and robust parallel iterative solution methods are
required to make such simulations tractable for use in analysis or in engineering design cycle times.
Preconditioned Krylov iterative methods are among the most robust and fastest iterative solvers
over a wide variety of CFD applications [10,21,33,26,38,41]. In the last decade, there has been a
significant amount of work on parallel Krylov methods, and a number of general purpose Krylov
solver libraries have been developed [11,16,22]. In general, these Krylov methods are relatively
straightforward to implement, highly parallel, and are often “optimal” in some sense. While the
convergence characteristics of specific Krylov methods remains a topic of research interest, it is
now clear that the key factor influencing the robustness and efficiency of these solution methods is
preconditioning. 

The focus of this study is to evaluate several different domain decomposition preconditioner
variants for the computational solution of incompressible and low Mach number variable density
reacting and non-reacting fluid flows with unstructured mesh finite element methods. These flow
problems are characterized by both locally elliptic and nearly hyperbolic behavior, localized steep
gradients, and often strongly coupled interactions between the flow velocities, hydrodynamic
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pressure, temperature and chemical species. This strong coupling results from the nonlinear
transport terms in the governing PDEs as well as the localized chemical reaction source terms (see
Table 1). The discussion and comparison of the proposed methods are framed in the context of
steady state solutions to the governing flow and transport equations. This context provides a more
numerically challenging comparison since the absence of the transient terms (in general) produces a
less well conditioned system of equations. The evaluated preconditioners fall into the family of
Schwarz domain decomposition methods [3,4,11,28]. These schemes partition the original domain
into subdomains and approximately solve the discrete problems corresponding to the individual
subdomains in parallel. Among Schwarz schemes, there are a number of choices which can greatly
affect the overall solution time and robustness. These choices include the subdomain size, the
amount of overlap between subdomains, and the partitioning metric which can alter the shape and
aspect ratio of subdomains (see e.g. [7,11,12,13,28]). The choices also include the selection of
subdomain solver such as an incomplete LU factorization (ILU) (with further options for dropping
nonzeros in the factorizations and ordering equations within a subdomain [1] ), and the introduction
of a coarse grid solve [10,37]. Therefore among these issues we explore the effects of the choice of
subdomain solver, the amount of subdomain overlap, and the effect of exact and inexact coarse grid
solvers for the two-level methods. The numerical studies include a variety of fluid flow, transport,
and a challenging reacting flow application. As will be demonstrated, the proper choice among
domain decomposition options is often critical to the efficiency of the overall solution scheme. 

The remainder of the paper is organized as follows. After presenting the transport equations in
Section 2, a brief overview of the parallel Newton-Krylov methodology is presented in Section 3
with a presentation of the domain decomposition preconditioners. Section 4 describes the problems
used to generate the numerical examples to evaluate the solution methods. The results of this
comparison study are then presented in Section 5. Section 6 presents a brief discussion of the
parallel efficiency of these methods. Application of the methods to large-scale problems is
presented in Section 7. Finally, in Section 8, a number of conclusions are drawn.

2.  THE GOVERNING EQUATIONS AND NUMERICAL FORMULATION

The governing transport PDEs describing fluid flow, thermal energy transfer, mass transfer and
non-equilibrium chemical reactions are presented in Table 1 in residual form. In these equations, the
unknown quantities are , ,  and ; these are, respectively, the fluid velocity vector, the
hydrodynamic pressure, the temperature, and the mass fraction for species . The equations include
constitutive relations for a Newtonian stress tensor T, the Fourier law for the heat flux vector qc, and
the Fickian diffusion fluxes jk. Additional variables are the density, , and the specific heat at
constant pressure, .  is the molecular weight of species k,  is the volumetric reaction source
term for species k, and is the enthalpy of formation for species k. In the heat equation  is the
volumetric heat source term from viscous dissipation,  is a volumetric source term and  is the
radiation heat flux vector. In the stabilized FE formulation of the equations,  is a generic FE basis
function, in our case these are linear basis functions on quads (2D) and hex elements (3D). These
residual definitions are used in the subsequent brief discussion of the discretization technique based
on a stabilized finite element (FE) formulation.
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The continuous problem, defined by the transport equations, is approximated by a stabilized finite
element formulation [15,28,32,35]. This formulation allows for equal order interpolation of
pressure and velocity (without spurious pressure solutions), and for stabilization of highly
convected flows. The resulting stabilized FE equations are shown in Table 2.

The stabilization parameters ,  and  are given in [15,32,35]. For clarity in our later
discussion of the solution methods and linear algebra, the Newtonian stress tensor  is expanded to
include the pressure  and the viscous stress tensor term . The resulting stabilized FE total mass
residual equation in expanded form is given in Eqn. 1. 

(1)

This expansion exhibits the weak form of a Laplacian operator acting on pressure
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Table 2.   Stabilized FE Formulation of Transport PDEs
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(2)

produced by the stabilized FE formulation of the total mass conservation equation. In addition to
the pressure stabilization provided by this operator, this term also enables the development of
effective Krylov based solvers with various preconditioners [26,28]. Finite element (FE)
discretization of the stabilized FE equations gives rise to a system of coupled, nonlinear,
nonsymmetric algebraic equations, the numerical solution of which can be very challenging. These
equations are linearized using an inexact form of Newton’s method [6]. A formal block matrix
representation of these discrete linearized equations is given in Eqn. 3 where the block diagonal
contribution of the stabilization procedure has been highlighted by a specific ordering. In this
representation, the vector  contains the Newton updates to all the nodal solution variables with
the exception of the nodal pressures . The block matrix  corresponds to the combined discrete
convection, diffusion and reaction operators for all the unknowns; the matrix  corresponds to the
discrete divergence operator with its transpose the gradient operator; the diagonal matrix  results
from the group FE expansion of the density and velocity; and the matrix  corresponds to the
discrete “pressure Laplacian” operator discussed above. The vectors  and  contain the right
hand side residuals for Newton’s method.
The existence of the well conditioned nonzero matrix  in the stabilized FE discretization of the
equations allows the solution of the linear systems with a number of algebraic and domain
decomposition type preconditioners. This is in contrast to other formulations, such as Galerkin
methods using mixed interpolation, that produce a zero block on the total mass continuity diagonal.
The difficulty of producing robust and efficient preconditioners for the Galerkin formulation has
motivated the use of many different types of solution methodologies. A number of these use two-
level iteration schemes, penalty methods, pseudo-compressibility techniques or decoupled/
segregated solvers [38,41]. A detailed presentation of the characteristics of current solution
methods is far beyond the scope of this manuscript. However the intent of our method of fully-
coupling the transport PDEs in the nonlinear solver is to preserve the inherently strong coupling of
the physics with the goal to produce a more robust solution methodology. Preservation of this
strong coupling, however, places a significant burden on the linear solution procedure to solve the
fully coupled algebraic systems.

(3)

Our current linear algebra solution procedure uses a specific ordering of the unknowns locally at
each FE node with each degree of freedom ordered consecutively ( ). A single
coupled matrix problem, , is solved at each Newton step with sophisticated algebraic
domain decomposition and multilevel preconditioned Krylov methods to solve this system as
described below.
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3.  OVERVIEW OF PARALLEL NEWTON-KRYLOV IMPLEMENTATION

In this section, a brief overview of the parallel numerical solution procedure is presented. This
discussion provides context for the evaluation of the domain decomposition (DD) preconditioners.
References are provided to more complete sources on each of the topics.

3.1.  Problem Partitioning

Chaco [14], a general graph partitioning tool, is used to partition the FE mesh into subdomains and
make subdomain-to-processor assignments. Chaco constructs partitions and subdomain mappings
that have low communication volume, good load balance, few message start-ups and only small
amounts of network congestion. It supports a variety of new and established graph partitioning
heuristics. For the results in this paper, multilevel methods with Kernighan-Lin improvement were
used. For a detailed description of parallel FE data structures and a discussion of the strong link
between partitioning quality and parallel efficiency, see [10,28].

3.2.  Newton-Krylov Methods

A Newton-Krylov method [2,17,27] is an implementation of Newton’s method in which a Krylov
iterative solution technique is used to approximately solve the linear systems that are generated at
each step of Newton’s method. Specifically, to solve the nonlinear system , we seek a zero
of  where  is a current approximate solution. The Krylov iterative solver is applied
to determine an approximate solution of the Newton equation 

(4)

where  is the Jacobian matrix of  at . A Newton-Krylov method is usually implemented as
an inexact Newton method [6,30]. That is, in approximately solving Eqn. 4, one chooses a forcing
term  and then applies a Krylov method until an iterate  satisfies the inexact Newton
condition

(5)

Intuitively one would assume that in the initial stages of the Newton iteration, when the current
approximation is far from the true solution, there would be no benefit from solving too accurately
the Newton equations with the inaccurate Jacobian matrix  that is currently available. Normally
our inexact Newton method formulation uses an adaptive convergence criteria to reduce the amount
of over-solving that occurs and thereby to produce a more computationally efficient nonlinear
solution procedure. To improve robustness, a back-tracking algorithm can be used. This
globalization method selects an update vector  by scaling a Newton step as needed to ensure that
the nonlinear residual has been reduced adequately before the step is accepted. The details of this
inexact Newton implementation can be found in [30]. In the discussion of results that follows we
attempt to separate the issues associated with the nonlinear solution methods and the linear systems
solved by preconditioned Krylov methods. In this context we select a constant, moderately small,
value for the convergence criteria. Unless it is stated otherwise, we chose the convergence criteria
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to be 10-4 to focus on the role of the preconditioners in the linear solver rather than allow adaptive
selection of the criteria.

3.3.  Parallel Preconditioned Krylov Implementation

The linear subproblems generated from the inexact Newton method are solved by preconditioned
Krylov methods as implemented in our Aztec parallel iterative solver library [16]. The Krylov
algorithms implemented in Aztec include techniques such as the restarted generalized minimal
residual [GMRES(k)] and transpose-free quasi-minimal residual techniques for nonsymmetric
systems. All Krylov methods rely on a small, well defined set of basic kernel routines. These kernel
routines consist of parallel matrix-vector, vector-vector, vector inner-product, and preconditioning
operations. In our previous papers [26,28,31], we discussed in detail the implementation and
parallel efficiency of these Krylov kernel routines with the exception of the preconditioners. In this
paper, we focus on the preconditioner issues. To focus on the role of the preconditioning technique
we present results only with the restarted GMRES(k) [23] Krylov solver (as these results are
representative for the other solvers as well).

It is well known that the overall performance of Krylov methods can be substantially improved
when one uses preconditioning [23]. The basic idea is that instead of solving the system , the
system  is solved, where  is an approximation to  and is easily computed, Since
only matrix-vector products are needed, it is not necessary to explicitly form  (only software
to solve  is needed). We note that the preconditioning described here corresponds to “right”
preconditioning; it is also possible to precondition on the “left” (i.e. ). In this paper only right
preconditioning is considered as the comparisons are more straightforward. Specifically, when left
preconditioning is used the computed residual corresponds to a preconditioned residual. Thus, if
convergence is based on the size of the residual, changing the preconditioner effectively changes
the convergence criteria. 

The preconditioners that are considered are based on algebraic additive Schwarz domain
decomposition (DD) preconditioners with variable overlapping between subdomains. For
comparison purposes, we also include some brief results based on classical iterative methods
(Jacobi, block Jacobi and polynomial expansions) as preconditioners. More details of these
preconditioners can be found in [26,28,31]. 

3.4.  Additive Schwarz Domain Decomposition Preconditioner

A formal description of the variable overlap additive Schwarz preconditioner can be described by
considering the following linear system:

(6)
where  is an  nonsymmetric matrix and the matrix entry in the  row and  column is given
by . This matrix induces a directed graph which can be defined in the following way. Each row of

 corresponds to a vertex and each  corresponds to an edge incident from node  to . We
denote the set of graph vertices by  and similarly the set of edges by . Throughout the rest
of this discussion, the argument  in  and  will be dropped to facilitate the presentation.
The set of edges and vertices defines a matrix graph .
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Domain decomposition methods rely on approximate solutions on subdomains. These subdomains
are defined in terms of vertex subsets. To discuss vertex subsets we use the notation  to denote
the  subdomain in an -overlap method. For now, let us assume that  is defined and
corresponds to a subset of vertices. The following edge set can be associated with the vertex subset

 (7)

Intuitively,  includes all edges emanating from . To complete the definition of the Schwarz
method, we must now define the vertex subsets. Assume that the vertices have been partitioned into

 disjoint sets  such that

(8)

and
. (9)

This vertex partitioning corresponds to the distribution of the matrix over the processors via Chaco
and effectively defines the 0th-overlap subdomains. To define the -overlap subdomains, we use the
edge sets associated with the -overlap subdomains:

(10)

To define overlap in an -overlap additive Schwarz method, we use the vertex sets .
Specifically, consider the restriction matrix  of size  where  is the number of nodes in , 
is the total number of nodes in , and

(11)

These  operators essentially map from the entire space to the  subdomain. The -overlap
additive Schwarz preconditioner is now given by 

. (12)

This method corresponds to projecting the equations onto a series of overlapping subdomains
defined by the vertex sets and solving each subsystem. Since these subdomain solves are
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independent, they can be performed concurrently. Intuitively overlapping can be view as means to
increase robustness by expanding individual subdomains (to include FE nodes assigned to
neighboring processors) by allowing more coupling between subdomains (processors). In a
geometric sense, this overlap corresponds to increasing the size of the locally defined subdomain to
include additional levels of FE nodes outside of the processor’s assigned nodes. Thus a single level
of overlapping uses only information from FE nodes that are connected by an edge (in the FE
connectivity graph) that was cut by the original subdomain partition. Successive levels of overlap
now use this method recursively by considering the previously overlapped points to now be
assigned nodes to the subdomain. As described this method would be referred to as a one-level
scheme. A two-level scheme uses not only the fine grid operator defined above but also adds an
additional projection of the original equations onto a coarser grid. That is, a two-level domain
decomposition method is given by 

(13)

where  is defined as above for k > 0 and  is an interpolation operator that maps solution vectors
from the original FE mesh to an auxiliary coarser mesh that covers the same domain as the original
but with significantly fewer grid points. Theoretically, the number of mesh points should be about
the same size as the number of subdomains. When A is a symmetric positive definite discrete
elliptic operator and a sufficient amount of overlap is used, the iterative method convergence using
a domain decomposition preconditioner is independent of the number of unknowns in the matrix
[34]. In cases where more modest overlap is used, the theoretical convergence depends mildly on
the size of the subdomains. In the case where A is nonsymmetric, results have been obtained for
single PDE systems [3]. Much less is known about coupled systems of nonsymmetric PDEs. It is
important to notice that with the addition of the coarse grid solve, the domain decomposition
method is no longer completely algebraic. 

A number of practical simplifications can be made to the preconditioner described by Eqn. 13. In
particular, we rewrite the preconditioner as 

(14)

where for we could use an independent discretization of the PDE problem on a coarse mesh and
for the an approximate solver method on each subdomain can be used. In our experiments, we
use Aztec [16] to implement the one-level Schwarz method. Aztec automatically constructs the
overlapping submatrices. While a direct factorization could be used on the subdomains, our
experience indicates that this is rarely practical as the storage and time associated with this direct
factorization is too high. Instead of solving the submatrix systems exactly we use an incomplete
factorization technique on each subdomain (processor). In this paper, we use two specific ILU
factorizations: the standard ILU(0) method with no fill-in as well as the ILUT(fill-in,drop)
incomplete factorization [20] which allows specification of a user-specified fill-in parameter
( ) and a drop tolerance. In this nomenclature, a fill-in of 1.5 denotes an ILU factor with
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up to 1.5 times as many nonzeros as the original matrix. In the examples presented in Section 5,
there are no entries dropped due to magnitude (drop = 0.0). 

The ML multilevel solver library [37] is used to implement the coarse grid solve of the two-level
domain decomposition method. There are several possibilities for generating  including
completely algebraic techniques. In this paper, we use a technique based on the standard finite
element basis functions. In particular, the user supplies two meshes: the original fine grid FE mesh
and a coarser grid FE mesh. Additionally, users supply a call back function so that ML can evaluate
the user’s coarse grid FE basis functions. Using this call back function, ML constructs a grid
transfer operator that corresponds to the interpolant associated with the FE basis functions. The 
matrix can be generated by the matrix-matrix multiplication  or the user can supply it. In
this paper, is supplied by the application and corresponds to a finite element discretization on the
coarser mesh.

4.  NUMERICAL EXPERIMENTS

To illustrate the robustness, convergence and efficiency of the fully-coupled domain decomposition
preconditioners, we present representative results for a number of 2D benchmark CFD type
simulations as well as some more challenging 3D CFD simulations and a challenging 3D reacting
flow problem. The important features of each of these test problems are summarized in Table 3. A
more detailed description of each of these problems is given in the Appendix. The example
problems include straightforward Stokes flow solutions to the momentum and continuity equations
(without the convection operators); Navier-Stokes solutions to the momentum and continuity
equations; thermal convection flows of the momentum, continuity, and the thermal energy
equations; and full reacting flow simulations of the momentum, continuity, thermal energy and
mass species equations with chemical reaction source terms. The corresponding FE discretizations
of these problems include both structured and unstructured FE meshes. In general the structured
mesh examples correspond to a number of well accepted 2D and 3D benchmark CFD problems and
provide a straightforward means of systematically increasing problems sizes for studying the
robustness, algorithmic scaling (convergence rate) and parallel performance of the DD
preconditioners. These results are then verified with the unstructured mesh examples that we
present.

In the numerical studies comparing the one-level DD preconditioners and the block Jacobi and
polynomial preconditioners, GMRES uses a restart value of 200, which was sufficiently large that
GMRES stagnation did not become an issue for even the most difficult of the linear subproblems
generated by the inexact Newton algorithm. We also allowed a maximum of 600 GMRES iterations
at each inexact Newton step, after which the GMRES iterations were terminated and a new inexact
Newton step started even if the convergence criteria did not hold. However, in cases where
algorithmic scaling studies were carried out for the one- and two-level methods we employed non-
restarted GMRES to isolate the growth in iterations due to preconditioner performance as opposed
to restarting effects. In these cases, the tables indicate that non-restarted GMRES was used. In all
cases, unless otherwise noted, the initial approximate solution was the zero vector.
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5.  RESULTS AND DISCUSSION

5.1.  An Illustration of Preconditioner Choice and Robustness
To illustrate the favorable robustness properties of DD preconditioners over classical iterative
schemes applied to fully coupled systems, we consider results for two 2D CFD benchmark
problems (Example Problem 1 and Example Problem 3). Each of these example problems is
characterized by a nondimensional parameter that essentially controls the strength of the convection
transport mechanism to the diffusion process. As the Rayleigh number  and the Reynolds number

 are increased, the nonsymmetry and the nonlinearity of the problem increases. In our results, we
restrict our experiments to ranges of these parameters where the effects of the linear solvers can be
more clearly separated from the nonlinear solvers [27,30]. In Table 4, we present a comparison of

Example 
Problem

Description Equations Solved

1 2D Thermal convection in a square Momentum, Total Mass, Thermal Energy

2 3D Thermal convection in a cube Momentum, Total Mass, Thermal Energy

3 2D Lid driven cavity flow Momentum, Total Mass

4 2D Internal channel flow about an obstruction Momentum, Total Mass (Stokes, Navier-Stokes)

5 3D chemical vapor deposition (CVD) reactor 
for GaAs deposition

Momentum, Total Mass, Thermal Energy,
Mass species - no reactions

6 2D and 3D fluid flow and chemical agent 
transport in a building

Momentum, Total Mass, Mass species - no 
reactions

7 3D CVD reactor for poly-Silicon deposition Momentum, Total Mass, Thermal Energy,
Mass species - with reactions

Table 3.  Summary of Numerical Example Problems

Preconditioner Mesh
Ra

102 103 104 105

DD & ILUT(1.0,0.0)

32x32 4/251/10.1 5/327/12.8 7/451/17.6 9/562/22.9

64x64 4/470/45.6 5/748/66.0 7/1251/104.3 11/1701/147.5

100x100 5/2265/349.2 5/2425/367.0 9/4211/644.4 11/4333/683.0

1 Step block-Jacobi
32x32 11/6316/106.7 failed failed failed

64x64 failed failed failed failed

3 Step block-Jacobi
32x32 5/846/30.4 6/1386/47.5 8/1940/66.4 11/2396/82.8

64x64 12/6807/656.5 failed failed failed

5 Step block-Jacobi
32x32 4/327/18.4 6/455/25.6 8/662/36.7 11/966/53.2

64x64 11/5977/854.1 10/5243/753.1 failed failed

3 Order LS - Poly 32x32 5/1810/60.8 11/5307/174.6 failed failed 

Table 4.  Comparison of Various Preconditioners on Thermal Convection Example Problem 1. Results: Newton steps/
Linear its./CPU sec.

Ra
Re



the number of Newton steps, the total number of restarted GMRES(128) iterations and the time to
solution for Example Problem 1 for three choices of preconditioners. These results compare two
classical iterative schemes used as preconditioners, a multi-step block Jacobi, a least squares
polynomial expansion (order = 1), and a one-level domain decomposition preconditioner that uses
the ILUT preconditioner within each processor subdomain with one level of subdomain overlap and
no fill-in. The block Jacobi method uses the Jacobian entries that correspond to all of the unknown
at a particular node of the FE mesh. The table presents the effect of increasing nonsymmetry
(increasing ) and increasing mesh size. From these results, it is clear that the simple multi-step
block-Jacobi preconditioner is not robust enough to solve the problem from a simple zero initial
guess for the full range of  and meshes. The preconditioner based on a least squares polynomial
expansion lacks robustness as well. While these two preconditioners are straightforward to
implement in parallel, have low memory requirements and achieve high computational rates [28],
the robustness for solving difficult systems direct-to-steady-state is lacking. In comparison, results
are shown for the one-level DD ILUT preconditioner with no fill-in and one level of overlap. In this
case, it is clear that the most efficient and robust solution is obtained by the domain decomposition
preconditioner. These methods are also highly parallel (see Section 6) and can provide reasonably
robust and efficient solutions for CFD applications. However the one-level DD schemes do exhibit
a detrimental growth of the required iterations-to-solution as the mesh size decreases (or number of
unknowns increases). This decrease in convergence rate with increasing problem size has been
theoretically predicted for single unknown PDE systems [4]. As a further illustration, we present
Table 5 that demonstrates a similar lack of robustness for the multi-step Jacobi preconditioner as
compared to the DD preconditioner as the Re is increased in Example Problem 3.

5.2.  Illustrations of the Effectiveness of Increasing ILU fill-in and Overlap for DD Preconditioners

In Table 6 and Table 7, we present a comparison of the effectiveness of increasing fill-in and
subdomain overlap for a domain decomposition preconditioner based on ILUT. These tables
demonstrate that, in general, increasing fill-in and overlap can decrease iterations and often CPU
time as well. Table 7 presents results for the fluid flow and transport calculations in the GaAs CVD
reactor. In this case, we see a close connection between fill-in and robustness. The ability to adjust
parameters such as the fill-in and amount of overlapping for Schwarz domain decomposition
preconditioners allows solution algorithms to be adjusted to produce more robust and often faster
solutions. In general, while the number of iterations decreases with increasing fill-in and overlap,
there is a point of diminishing returns and CPU time does not decrease monotonically. However, as
can be seen in Table 7, the robustness of the increasing fill-in can sometimes mean the difference
between a convergent method and a non-convergent method. In the context of the one-level
methods, this robustness comes at the expense of scalability. In the next section, the scalability of

Preconditioner Re

100 500 1000

5 Step block - Jacobi 9/3110/331.8 failed failed

DD & ILUT(1.0,0.0) 6/404/41.3 10/809/75.3 13/1198/110.3

Table 5.  Comparison of Multi-step Block Jacobi and one-level DD Preconditioners on Lid Driven Cavity Example 
Problem 3. Results: Newton steps/Linear its./CPU sec.

Ra

Ra



the one-level and two-level methods is described. It should be noted that these same one-level DD
methods have been applied to reacting flow solutions for GaAs deposition in [28].

6.  A COMPARISON OF ONE-LEVEL AND TWO-LEVEL DD METHODS FOR 2D AND 3D TRANSPORT SIMULATIONS

To illustrate the use of the two-level DD preconditioners as implemented in the ML library we
present characteristic results for a standard 2D benchmark thermal convection flow problem
(Example Problem 1) along with a generalization to a 3D problem (Example Problem 2). In this 2D
benchmark problem [5], a thermal convection (or buoyancy-driven) flow in a differentially heated
square box in the presence of gravity is modeled. The momentum transport, energy transport and
total mass conservation equations defined in Table 1 are solved on a unit square. No-slip boundary
conditions are applied on all walls. The temperature on the heated wall and other parameters are
chosen so that the Rayleigh number  can be varied. The 3D problem adds two no-slip insulated
walls in the third dimension to form a 1x1x1 cube. A solution for this problem with  is
shown in Figure 5. These simple geometries facilitate algorithmic/parallel studies as different mesh
sizes can be easily generated. The results were obtained on the ASCI-Red Tflop computer at Sandia
National Laboratories, which consists of nodes with 333 MHz Pentium II Xeon processors and 256
MB RAM.

In Figure 1 - Figure 2 and in Table 8 - Table 10 results are presented for the algorithmic scaling of
the one- and two-level DD schemes applied to the solution of the thermal convection example
problems. Figure 1 and Figure 2 presents graphically the average iteration count per Newton step as
a function of problem size (also processor count since the problem size per processor is fixed). In
these computations the one-level method uses a DD preconditioner with an ILU preformed on each
subdomain with one level of overlap between subdomains. The two-level methods employ a fine
grid smoother which is based on a pointwise Gauss-Seidel iteration that is confined independently
to each subdomain. The coarse grid solver for the two-level method is either based on a direct

Preconditioner 
Level of Overlap

1 2 3 4

ILUT(1.0,0.0) 4200/756 3960/715 3072/590 2680/545

ILUT(2.0,0.0) 1974/418 819/205 729/205 663/220

ILUT(3.0,0.0) 1853/438 792/238 700/249 620/271

Table 6.  Effect of ILUT Fill-in and Level of Overlap for Thermal Convection Example Problem 1, Ra = 10,000. 
Results: iterations/cpu sec.

Preconditioner 

Level of Overlap

1 2

Linear its. CPU sec. Linear Its. CPU sec.

ILUT(1.0,0.0) failed failed Not Run Not Run

ILUT(1.5,0.0) 1873 1336 477 447

Table 7.  Effect of Fill-in and Level of Overlap for GaAs CVD Transport Example Problem 5. 

Ra
Ra 1000=



sparse solver (SuperLU) or an approximate coarse solver as described below. Clearly as the number
of unknowns N is increased, the number of iterations to convergence for the one-level schemes
increases significantly. This increase is roughly proportional to N2/3 in 2D and N1/2 in 3D. The two-
level schemes are shown to be optimally convergent for the given fine-to-coarse grid ratio of 64 in
2D and 512 in 3D. The CPU time comparison indicates that while the two-level scheme can be
faster, careful attention needs to be directed to the coarse grid solve times. In the 2D cases, the serial
version of SuperLU is replicated on all processors to solve exactly the coarse grid problem; in the
3D case, a parallel version of SuperLU was invoked. Since using all P processors to factor this
small system is not efficient, groups of approximately P1/2 are utilized to solve a partially replicated
linear system. Since the fine grid smoother is highly parallel [28] and the fine grid work per
processor is fixed, it is the SuperLU performance on the increasingly larger coarse grid that causes
an increase in the CPU time on the larger problems. Also in Figure 1 and Figure 2, CPU time results
are presented for the 2D and 3D problems. In both cases, the CPU time is seen to increase as the
coarse problem size grows. In the 3D case, the larger bandwidth or fill-in of the direct factorization
is apparent even for moderately sized coarse grid problems. However, by using even coarser coarse
grids or approximate solves instead of direct solves, it is possible to overcome the computational
bottleneck associated with this direct solve. In this study, as an approximate solve, we have applied
one-step of a DD ILU factorization with two levels of overlap between subdomains. These results,
shown in the lower entries of Table 10, indicate that even this inexact coarse grid solve provides a
suitable correction to the fine grid problem to accelerate convergence. However, for this case, the
optimal convergence property is not obtained and a modest increase in the number of iterations is
evident.

One-Level Method Two-Level Method

No. of 
Processors

Fine Grid 
Size

Total 
Unknowns

Avg Its per 
Newton Step

Total Time
(sec.)

Coarse Grid 
Size

Avg Its per 
Newton Step

Total Time
(sec.)

1 32x32 4,356 41 23 4x4 32 18

4 64x64 16,900 98 62 8x8 33 26

16 128x128 66,564 251 275 16x16 34 30

64 256x256 264,196 603 1399 32x32 31 46

256 512x512 1,052,676 1478 8085 64x64 30 107

Table 8.  Comparison of one-and two-Level Schemes for 2D Thermal Convection Example Problem 1, Ra=1000, Pr=1. 
ASCI-Red, non-restarted GMRES, one-level - ILU DD, two-level with 2 sweeps of Gauss-Seidel as Smoother, Superlu 

Coarse Grid Solver. The fine-to-coarse grid ratio is 64.



One-Level Method Two-Level Method

No. of 
Processors

Fine Grid 
Size

Total 
Unknowns

Avg Its per 
Newton Step

Total Time
(sec.)

Coarse Grid 
Size

Avg Its per 
Newton Step

Total Time
(sec.)

1 8x8x8 3645 18 38 1x1x1 19 24

8 16x16x16  24,565 47 62 2x2x2 38 48

64 32x32x32 179,685 114 150 4x4x4 45 66

512 64x64x64 1,373,125 308 521 8x8x8 48 110

Table 9.  Comparison of One- and Two-Level Schemes for 3D Thermal Convection Problem, Ra=1000, Pr=1., non-
restarted GMRES, one-level - DD ILU, two- level with 2 Gauss-Seidel sweeps as a Smoother, Superlu Coarse Grid 

Solver. The fine-to-coarse grid ratio is 512.

One-Level Method Two-Level Method

No. of 
Processors

Fine Grid Size Total 
Unknowns

Avg Its per 
Newton Step

Total Time
(sec.)

Coarse Grid 
Size

Avg Its per 
Newton Step

Total Time
(sec.)

4 16x16x16 24,565 40 123 2x2x2 36 101

32 32x32x32 179,685 112 282 4x4x4 44 107

256 64x64x64 1,373,125 296 863 8x8x8 47 179

2048 128x128x128 10,733,445 650 2915 16x16x16 47 546

4 16x16x16 24,565 40 123 2x2x2 42* 112*

32 32x32x32 179,685 112 282 4x4x4 56* 156*

256 64x64x64 1,373,125 296 863 8x8x8 73* 200*

2048 128x128x128 10,733,445 650 2915 16x16x16 114* 358*

Table 10.  Comparison of One- and Two-Level Schemes for 3D Thermal Convection Problem, Ra=1000, Pr=1., non-
restarted GMRES, one-level - DD ILU, two- level with 2 Gauss-Seidel sweeps as a Smoother, Superlu Coarse Grid Solver. 

The fine-to-coarse grid ratio is 512
*. Coarse grid solve corresponds to a DD ILU factorization/backsolve in parallel with two levels of overlap.



Figure 1.  Parallel and Algorithmic Scaling of Iteration Count and CPU Time for one- and two-
Level DD preconditioners on 2D Thermal Convection Problem Example Problem 1. Ra = 1000.

Figure 2.  Parallel and Algorithmic Scaling of Iteration Count and CPU Time for one- and two-Level 
DD preconditioners on 3D Thermal Convection Example Problem 2. Ra = 1000.



The next example considers flow in a channel with an obstruction (Example Problem 4). The results
demonstrate the two-level Schwarz capability on an unstructured mesh problem for which the fine
mesh is not a refinement of the coarse mesh. In this study the meshes were independently generated
and therefore totally unrelated in structure (see Figure 3). Since each mesh is partitioned separately
by an automatic tool, Chaco [14], the resulting mesh partitions are not aligned in any way. In this
example the one-level solver uses a domain decomposition ILUT preconditioner with roughly twice
as many nonzeros (fill-in=2.0) as the original matrix and two levels of subdomain overlap [28]. The
two-level solver uses the standard DD-ILU solver as a smoother with one level of overlap and
employs a direct sparse solver (SuperLU) on the coarse grid solution which is replicated on each
processor. 

The first example of flow for Example Problem 4, a Stokes flow, considers the scaling of the
methods on unstructured meshes. A typical coarse and fine mesh for this problem is presented in
Figure 3 along with solutions on each grid. Clearly while the coarse grid solution is under-resolved,
there is significant information about the fine grid solution structure for this problem. As is evident
from the convergence results presented in Table 11 and Table 12, optimal convergence rates are
obtained along with faster solution times for the two-level method for sufficiently large coarse
grids. The CPU time scaling is again non-optimal but still provides faster solutions than the
corresponding one-level methods. As a final example of flow about the diamond obstruction, we
consider a Navier-Stokes flow in the same flow geometry and examine the role of the fine grid
smoother for the two-level methods. Table 13 presents the iteration count and CPU time to solution
as a function of increasing Reynolds number . Clearly as  is increased, the robustness and
efficiency of the two-level methods require a more robust smoother for the fine grid subdomains.
The development of appropriate smoothers for higher  flows is an active area of research for
multigrid as well as two-level DD methods [36,40].

Figure 3.  Stokes flow about an obstruction, Example Problem 4. Two-level DD method uses two unrelated meshes.

(a) Coarse mesh, ~150 elements (b) Coarse mesh solution, x-velocity contour plot

(c) Fine mesh, ~15,000 elements (d) Fine mesh solution, x-velocity contour plot
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7.  A COMPARISON OF ONE- AND TWO-LEVEL METHODS FOR LARGE-SCALE FLOW, TRANSPORT AND REACTION 
SIMULATIONS

In this section, we demonstrate the performance of the one- and two-level domain decomposition
preconditioners on two classes of large-scale applications. The first is a flow and transport problem
that simulates the dispersion of a chemical agent in a large-scale indoor structure (Example Problem
6). A comparison of the performance of the one- and two-level methods is presented in Table 14. As
demonstrated in this table the two-level preconditioners can provide substantial increases in
performance even for modest sized problems. In 2D, execution time is reduced by a factor of
roughly 90, and in 3D, by a factor of about 2.3 for problems with less than one million unknowns.
Additionally we demonstrate solutions of very large problems with about 10 and 30 million
unknowns in 2D and 3D, respectively, with the two-level methods. Specifically for the 3D 30
million unknown flow and transport problem, there is a very respectable solution time of less than

One- Level Two-Level

Procs Unknowns Iterations Time (sec.) Iterations Time 
(sec.)

16 4704 32 5.9 25 6.0

64 13,008 73 9.9 33 6.6

256 55,008 316 48.3 34 14.1

Table 11.  Stokes flow Example Problem 4, GMRES solver. one-level - preconditioner = ILUT(2.,.2), two-level 
smoother=Gauss-Seidel, coarse solver Superlu, fine/coarse mesh ratio = 64.

One-Level Two-Level

Procs Unknowns Iterations Time (sec.) Iterations Time (sec.)

16 18,240 52 34.1 41 33.1

64 50,976 136 60.9 59 34.5

256 217,920 704 390.2 77 70.5

Table 12.  Stokes flow Example Problem 4, GMRES solver. one-level - preconditioner = ILUT(2.,.2), two-level 
smoother=Gauss-Seidel, coarse solver Superlu, fine/coarse mesh ratio = 256.

oother Two-Level with 
Jacobi (2 sweeps)

Two-Level with 
Gauss-Seidel (2 sweeps)

Two-Level with 
ILUT

One - level DD ILUT

Re Newton 
Steps

Linear
Its

Time
(sec.)

Newton 
Steps

Linear
Its

Time
(sec.)

Newton 
Steps

Linear
Its

Time
(sec.)

Newton 
Steps

Linear
Its

Tim
(sec

1.0 4 996 3376.8 4 534 2065.7 4 301 645.9 4 831 2045

10.0 5 1442 5172.9 5 760 3001.6 5 415 917.6 5 1065 2633

00.0 - - - 12 5721 27439.7 8 687 1564.8 8 1460 3310

le 13.  Comparison of One- and Two-Level Schemes for 2D Navier-Stokes Flow past Diamond Obstruction (Example Probl
4). The fine mesh has 96,768 unknowns and the coarse mesh has 468 unknowns.
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Ta l 
two hours for a direct-to-steady-state calculation on 256 processors of the Sandia Cplant machine.
Cplant consists of nodes with Dec Alpha 500 MHz processors and 1 GB RAM connected by
Myrinet. For both the 2D and 3D cases, the convergence criterion for the linear solve was chosen to
be 4x10-4.

Our last example problem is a 3D reacting flow simulation for the deposition of poly-Silicon in a
horizontal rotating disk reactor (Example Problem 7). This problem is a full reacting flow problem
with unknowns for the three velocity components, hydrodynamic pressure, temperature, and 3
chemical species (H2, SiCl3H, HCl). We present results for a simple continuation run, incrementally
increasing the reactor thermodynamic pressure from 0.6 atmospheres to the operating pressure of
0.85 atmospheres. This type of continuation procedure is a common technique to follow physically
realistic paths through a complex nonlinear solution space as often encountered in reacting flow
simulations. In this context, it should be noted that, in some sense, the one-level scheme benefits (or
conversely the two-level method loses some of its advantage) because the coarse scales or global
modes of the solution are approximately set by using the 0.6 atmosphere solution as a starting guess
for the nonlinear scheme, and consequently in the linear subproblems that are generated by
Newton’s method. Preliminary results for this calculation are shown in Table 15, which presents the
convergence and CPU times for a set of three differently sized meshes for this problem. The
problems sizes range from 0.6M to 38M unknowns and all of the two-level solvers use the same
large (87,400 unknowns) coarse mesh. The convergence criterion for the linear solve was chosen to
be 3x10-4. The results indicate reasonable performance for the largest of problems with the two-
level method being on the order of 25% faster that the one-level method. The solution to the very
large 38M unknown problem requires about 2.25 hrs. on 1000 processors of CPlant. While the ratio
of CPU time for the one-level to two-level method is not as impressive as the fluid flow or fluid
flow with transport calculations presented earlier, there is still a benefit to using the two-level
method. In addition the same scaling or trend is visible in the results as the problem size increases
with the two-level method becoming faster. When interpreting these results it must be kept in mind
that this is a particularly difficult problem to solve and a direct-to-steady-state fully-coupled solver
is being used. In this context, the convergence of the two-level preconditioner is encouraging. It
should also be noted that the two-level method is not always faster than the one-level method on
this problem for the small levels of refinement between the fine and coarse mesh. For one level of
refinement, the fine mesh has eight times as many elements as the coarse mesh, and the cost of the

Preconditioner Smoothers/coarse 
solver

Fine Mesh 
Unknowns

Coarse Mesh
Unknowns

Avg. Its per
Newton Step

Total Time 
(sec.)

Computing Hardware

D 1-level DD ILU 619,300 10,720 500 10,460 20 1-GHz P3

2-level DD ILU/SuperLU 619,300 10,720 17 118 20 1-GHz P3

2 level DD ILU/SuperLU 9.8M 10,720 293 3266 128 procs CPlant

D 1-level DD ILU 872,000 17,360 118 1801 16 1-GHz P3

2-level DD ILU/SuperLU 872,000 17,360 21 795 16 1-GHz P3

2 level DD ILU/GMRES 28.9M 68,320 40 5536 256 procs CPlant

ble 14.  Comparison of one- and two-level Preconditioners for Steady State Solve of Fluid Flow and Transport of a Chemica
Agent in a 2D and 3D Large-scale Indoor Structure for Laminar Flow Conditions. Example Problem 6.



coarse mesh solve is significant compared to the fine mesh solve, perhaps offsetting any gains from
the reduction in iteration count. 

When interpreting the results of one- and two-level methods there are at least two particular issues
about the current multilevel solution methodology that should be kept in mind to explain the less
than impressive results on the 3D CVD reactor problem. First, due to the limitation of accurately
meshing the complex 3D reactor geometry, the coarse problem is quite large. This required using an
approximate ILU coarse grid solver instead of the direct sparse solver for the coarse grid problem
and most likely contributes to the only moderate reduction from 480 to 230 average linear solver
iterations per Newton step. In general this limitation of producing a coarse grid that reflects the
underlying geometric complexity is important. To eliminate this requirement we are pursuing a new
aggressive coarsening algebraic multigrid technique based on graph partitioning for coupled
systems of equations [19]. Secondly, we believe that the possible indefiniteness of the chemical
reaction source terms for this system might also be contributing to the only moderate reduction of
the iteration count. Currently we are considering, in more detail, this issue and exploring multi-level
formulations which attempt to handle these type of systems[39]. Clearly, further analysis and
experimentation with these two-level methods in the reacting flow context is required and is
currently being pursued. However we consider these modest steps to be encouraging. 
.

8.  CONCLUSIONS

This set of numerical studies has presented a number of important issues related to efficient and
robust solution of unstructured FE flow solutions with heat and mass transport by parallel fully-
coupled Newton-Krylov solution methods. As presented, careful attention to problem formulation
and the use of an inexact Newton method with domain decomposition preconditioned Krylov based
solvers can produce efficient and robust solution algorithms on large-scale parallel supercomputers.

Levels 
of Ref.

Preconditioner Smoother/coarse 
solver

Fine Mesh 
Unknowns

Avg. Its per
Newton Step

Total Time 
(sec.)

Computing Hardware

1 1-level DD ILU 636,168 99 262 64 - 3GHz P4

2 level DD ILU/ILU 636,168 50 249 64 - 3GHz P4

2 1-level DD ILU 4,845,640 184 2971 64 - 3 GHz P4

2 level DD ILU/ILU 4,845,640 84 2204 64 - 3 GHz P4

1 1-level DD ILU 636,168 111 384 128 Procs CPlant

2 level DD ILU/ILU 636,168 53 406 128 procs CPlant

2 1-level DD ILU 4,845,640 243 1,186 1,000 Procs CPlant

2 level DD ILU/ILU 4,845,640 124 1,152 1,000 Procs CPlant

3 1-level DD ILU 37,806,984 482 10,973 1,000 Procs CPLant

2 level DD ILU/ILU 37,806,984 230 8,174 1,000 Procs CPlant

Table 15.  Comparison of one- and two-level Preconditioners for Steady State Solve of Reacting Flow Simulation of 
Epitaxial Silicon Deposition in 3D CVD Horizontal Spinning Disk Reactor. The coarse problem has 87,400 unknowns. 

Example Problem 7.



These methods allow the selection of algorithmic parameters such as the Krylov subspace
dimension, the fill-in for incomplete factorizations, and the level of subdomain overlapping for
Schwarz domain decomposition preconditioners to tailor the robustness and computational
efficiency of the resulting CFD solution method. As presented, the results verify that these methods
can produce robust and efficient solution methods. As the problem size increases, the scaling of the
average iteration count per Newton step for the one-level fully-coupled domain decomposition
preconditioners is roughly proportional to N2/3 in 2D and N1/2 in 3D. This adverse scaling for large
problems has been demonstrated to be reduced by the use of two-level methods. Using these
techniques we have demonstrated optimal algorithmic scaling for a range of fluid flow and transport
problems. The scaling of CPU time has not yet been demonstrated to be optimal. However, the
results have been very encouraging for fully-coupled solution methods and have allowed solution of
large problems of O(107) unknowns for direct-to-steady-state computations in very respectable
times. The use of approximate coarse grid solvers for the two-level methods has been demonstrated
to be effective to reduce the total CPU time for the large coarse-grid problems. These results are
very encouraging for the simulation of fluid flow with transport, an important subproblem of
reacting flow calculations. Currently the one-level method is the standard preconditioner that we
use for reacting flow simulations [28]. The reacting flow results presented in this study are the first
applications of two-level methods to our reacting flow problems; they are however, preliminary. For
these reacting flows we have demonstrated convergence of the one- and two-level methods for a
large-scale reacting flow epitaxial-Silicon CVD simulation as a final example. This problem with
approximately 40M unknowns was solved direct-to-steady-state in less than 2.5 hours on a large-
scale parallel machine, a very encouraging result. While the two-level method was not significantly
faster than the one-level method as in some of the nonreacting flow cases, it did provide a
performance increase over the one-level method in some of the computations. In future work, we
will consider further studies of these methods for reacting flows and study the effect of strong
convection (anisotropic behavior) and reaction (indefinite source terms) on convergence and
scaling of these methods.
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Appendix: Example Problem Description

In the following section we describe the test problems listed in Table 3 that make up the numerical
studies. These examples consist of two 2D test problems (Thermal Convection, Lid Driven Cavity)
which are standard test problems, a 3D generalization of the 2D Thermal Convection problem, a 2D
flow about a diamond shaped body, two CVD reactor simulations and a fluid flow and transport
calculation in a large-scale internal structure. In Table 3 a summary is provided of the specific
governing PDE equations that are solved for each example problem.

Example Problem 1.  2D Thermal Convection
In this standard 2D benchmark problem [5], a thermal convection (or buoyancy-driven) flow in a
differentially heated square box in the presence of gravity is modeled. The momentum transport,
energy transport and total mass conservation equations defined in Table 1 are solved on a unit
square. No-slip boundary conditions are applied on all walls. The temperature on the heated wall
and other parameters are chosen so that the Rayleigh number  can be varied. In Figure 4, weRa



show a typical solution of this problem with . A second parameter, the Prandtl
number , is taken to be , implying that the diffusion of momentum and thermal energy are
roughly equivalent. 

Example Problem 2.  3D Thermal Convection

The 3D Thermal convection example problem adds two no-slip insulated walls in the third
dimension to form a 1x1x1 cube from Example Problem 1. A typical solution is shown in Figure 5.

Example Problem 3.  Lid Driven Cavity

In this standard 2D benchmark problem [9, 25], the momentum transport and total mass
conservation equations defined in Table 1 are solved on a unit square to simulate confined flow
driven by a moving boundary on the upper wall. No-slip boundary conditions are applied on all
other walls. As the Reynolds number  is increased, the nonlinear inertial terms in the momentum
equation become more dominant and the solution becomes more difficult to obtain. A typical
solution for this problem is shown in Figure 6.
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Figure 5.  Constant x-velocity iso-surfaces with 
streamlines and temperature contours on slice 
plane. Ra = 1,000. Pr = 1, Example Problem 2

Figure 4.  Contour plot of the temperature for 
Example Problem 1 at  = 1,000,000.Ra

Re

Figure 6.  Lid driven cavity. Contour plot of the stream 
function for Example Problem 3 at  = 4,000Re



Example Problem 4.  2D Internal Channel Flow about an Obstruction

In this internal channel flow example the flow is accelerated about a diamond shaped obstruction at
the center. The momentum transport and total mass conservation equations defined in Table 1 are
solved on a complex unstructured mesh. The Stokes flow solution exhibits the isotropic flow field,
whereas the Navier-Stokes solution at  clearly shows the non-isotropic effect of the
convection operator in the governing transport / reaction equations (see Figure 7).

Example Problem 5.  Flow and Transport in a 3D Tilted Chemical Vapor Deposition (CVD) Reactor
This example problem involves computing the 3D solution for fluid flow, heat transfer and the mass
transfer of three chemical species in a horizontal tilted chemical vapor deposition (CVD) reactor.
Fluid enters in the larger cross sectional area inlet and accelerates up the inclined surface with the
inset rotating heated disk. At the elevated disk temperature, chemical reactions are initiated to
deposit gallium arsenide (GaAs). In this example, we only transport the precursors for this reaction
(tri-methylgallium, Ga(CH3)3, arsine, AsH3) and a carrier gas (hydrogen, H2) and do not allow
chemical reactions. In our example calculation, the inlet velocity is 100 cm/s, the inlet temperature
is 600 degrees K, and the disk rotates at 200 rpm and is heated to 900 degrees K. To simulate the
deposition process, we use a Dirichlet condition on the reactants that introduces significant
diffusion gradients and boundary layers that approximate the average behavior of the full reacting
system depositing GaAs on the rotating disk. In practice, CVD reactors are run at low pressures and
fluid velocities, and thus the Reynolds numbers are small ( ). In addition, for gases at these
temperatures and pressures, the Prandtl number and the Schmidt number for mass transport
(analogous to the Prandtl number) are approximately one as well. A typical reacting flow solution is
shown in Figure 8, where the streamlines show the effect of the counterclockwise rotation of the
disk. Included is a contour plot of the concentration of tri-methylgallium at the heated surface [28].
This contour plot is from the full reacting flow solution. For these experiments, the number of
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Figure 7.  Example Problem 4 Flow About a Diamond Shape Obstruction. a) Stokes Flow Solution. 
b) Navier - Stokes Flow Solution and FE mesh at Re = 100.0. x- velocity field contour plot shown.
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unknowns for the discretized problem was 384,200. The number of Intel TFlop processors used was
48. The GMRES restart value was 150, with a maximum of 600 GMRES iterations allowed at each
inexact Newton step.
.

Example Problem 6.  Fluid Flow and Transport of a Chemical Agent in a Building
This example problem simulates the flow and transport of a chemical agent in a large-scale indoor
structure [19]. There are 2D and 3D versions of this problem. The 2D structure is 11 meters high
and 105 meters wide. The 3D structure is 11 m x 105 m x 24 m. In these example problems,  is
restricted to a lower than normal operating condition of one order of magnitude in the 2D case and
two orders of magnitude in the 3D case based on an inlet duct reference length and flow. The low

 allows us to quickly solve direct-to-steady-state with the DD solvers and simplifies the
presentation of the results. In addition, these lower Reynolds number solutions can sometimes be
used as initial guesses to attempt to solve mean-steady RANS type turbulence models in the same
geometries at higher . While we do not present the results here, we have also used the one- and
two-level methods to solve for transient turbulent large eddy simulations (LES) at the standard
operating conditions of the ventilation systems. In Figure 9 the upper inset figure shows the detailed
steady state streamlines of the flow in the 2D structure along with color contours of a neutrally
buoyant chemical agent (in this case SF6) that is released at two locations on the lower floor of the
structure. There are inlets on the sidewalls of both floors, the ceiling of the lower level, and the floor
of the upper level. Outlets are arranged on the ceiling of the upper floor, and the main outlet
collector is above an atrium (or opening) between the two floors. The 3D structure is shown in the
lower inset figure and exhibits three iso-surfaces of SF6 from two source locations on the lower
floor. There is a similar arrangement of inlets and outlets in the 3D model as well, with the addition
of extra inlets on the 105 m length face.

Figure 8.  Solution for the tilted CVD reactor used in Example Problem 5. Streamlines and filled 
contours of tri-methyl gallium are shown.
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Example Problem 7.  Flow, Transport and Reaction in a 3D Horizontal Epitaxial-Silicon CVD Reactor

This is an example of reacting flow through a CVD reactor and involves the solution for fluid flow,
heat and mass transfer of three chemical species. A mixture of trichlorosilane (SiCl3H), HCl, and
H2 enters from the left, flows over a forward facing step, and over an inset rotating disk. The disk is
heated to 1398K, which initiates chemical reactions to deposit silicon on the wafer. The reaction
model of Kommu, Sinha, and Knieling [18] was used. The top left figure in Figure 10 shows the
different side sets for the solid model. The top right figure shows an example of the mesh
partitioned for 48 processors. The bottom figure shows the contour plot of HCl mass fraction on the
rotating disk surface and the flow streamlines. Three different sized meshes were used for this
calculation to give 0.6 M, 4.8 M, and 37.8 M unknowns.

Figure 9.  2D and 3D Fluid Flow and Chemical Agent Transport in a Building Example Problem 6



Figure 10.  Flow, Transport and Reaction in a 3D Horizontal Epitaxial-Silicon CVD Reactor, Example 
Problem 7. Upper images: solid model and partitioned subdomains for parallel execution. Lower image: 

flow streamlines and a color contour plot of HCl mass fraction on the rotating disk surface.


