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ABSTRACT

We consider the following problem� given a pla�
nar straight�line graph� �nd a covering triangulation
whose maximum angle is as small as possible� A cov�
ering triangulation is a triangulation whose vertex set
contains the input vertex set and whose edge set con�
tains the input edge set� The covering triangulation
problem di�ers from the usual Steiner triangulation
problem in that we may not add a vertex on any input
edge� Covering triangulations provide a convenient
method for triangulating multiple regions sharing a
common boundary� as each region can be triangulated
independently�

We give an explicit lower bound �opt on the maxi�
mum angle in any covering triangulation of a particu�
lar input graph in terms of its local geometry� Our al�
gorithm produces a covering triangulation whose max�
imum angle � is provably close to �opt� Bounding � by
a constant times �opt is trivial� We prove something
signi�cantly stronger� Speci�cally� we show that

� � � � min�
� � �opt

�
�
�

�
	�

i�e�� our � is not much closer to � than is �opt� To our
knowledge� this result represents the �rst nontrivial
bound on a covering triangulation
s maximum angle�
Our algorithm adds O�n	 Steiner points and runs in
time O�n log� n	� where n is the number of vertices
of the input� We have implemented an O�n�	 time
version of our algorithm�

� INTRODUCTION

In this paper� we consider a class of triangulations
called covering triangulations� A covering triangula�
tion is a triangulation whose vertex set contains the
input vertex set and whose edge set contains the input
edge set� For example� if the input is a polygon� then a
covering triangulation may have additional vertices in
the polygon
s interior� but not on its boundary� Cov�
ering triangulations with bounded triangle shape were
�rst considered in Mitchell ��

���

Traditionally� most triangulation algorithms gen�
erate either a constrained triangulation or a Steiner
triangulation� A constrained triangulation has a ver�
tex set that is exactly the vertex set of the input� and
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an edge set that contains the edge set of the input�
A Steiner triangulation has a vertex set that contains
the vertex set of the input� and every edge of the input
is the union of some edges of the triangulation� This
is also known as a conforming triangulation�

For all three of these classes we assume the tri�
angulations are conformal� That is� if we consider a
triangulation as a lattice of faces� then being confor�
mal means that two faces intersect in a face of the
lattice or not at all� For example� there may be no
vertices in the middle �relative interior	 of an edge or
triangle�

��� PREVIOUS RESULTS

There are several algorithms for generating con�
strained triangulations that exactly optimize some
measure� Edelsbrunner� Tan� and Waupotitsch ��

��
introduce the edge insertion paradigm� which is a
global generalization of local edge �ip� Edge insertion
can be used to �nd a constrained triangulation that
minimizes the maximum angle� Bern� Edelsbrunner�
Eppstein� Mitchell� and Tan ��

�� show that edge in�
sertion may also be used to �nd optimal constrained
triangulations for any measure for which every triangle
has at least one anchor vertex� This property states
that for any triple of vertices of the input forming a
triangle� no constrained triangulation can have mea�
sure better than that of the triangle� unless there is
an edge from the anchor vertex crossing the opposite
edge� Like constrained triangulations� covering trian�
gulations have prescribed edges that cannot be crossed
or subdivided� Hence� this property also has applica�
tion to covering triangulations� as we show in Section
�� Measures that have the anchor property include
minmax angle� maxmin height� and minmax slope for
points embedded in ���

The most famous constrained triangulation is the
�constrained	 Delaunay triangulation� or CDT� It op�
timizes several measures� including maximizing the
minimum angle �Lawson ��
���	� Many algorithms
exist for the CDT� following paradigms such as plane
sweep� edge �ip� and incremental insertion� These are
summarized in Fortune ��

��� Chew��
�
� presents
an algorithm for �nding a CDT in optimal O�n log n	
time�

Triangles in a CDT that contain edges of the input
play a special role for covering triangulations� In par�
ticular� they determine the minimum maximum angle
possible for any covering triangulation� see Section �
and Section �� Also� their circumcircles help guide our
triangulation in Section ��

Steiner triangulations that exactly optimize some



criteria may have a non�polynomial number of ver�
tices� As such� most algorithms seek to come close
to a provable measure bound� while simultaneously
achieving a reasonable cardinality� Bern� Dobkin
and Eppstein ��

�� present algorithms that approxi�
mately maximizes the minimum height and minimize
the maximum angle� They are able to bound the
largest angle away from � by a constant� The car�
dinality of these triangulations for no large angles is
a small polynomial in the number of vertices of the
input� depending on whether the input is a polygon
or polygon with holes� and what constant bound is
desired for the largest angles�

Bern� Mitchell and Ruppert ��

�� has recently
given an algorithm for constructing a Steiner trian�
gulation of a polygon with holes with all non�obtuse
angles� The algorithm adds only O�n	 Steiner points
�matching the worst case lower bounds	 and runs in
time O�n log� n	� The algorithm builds upon some key
ideas presented in this paper� namely how circles can
be triangulated independently with a reasonable angle
bound� The tight angle bound of ��� is based on some
beautiful mathematical properties of tangent circles�

Mitchell ��

�b� gives an algorithm for triangulat�
ing a PSLG so that angles are at most ����� adding
O�n� log n	 Steiner points� The algorithm is based on
re�ning an arbitrary triangulation�

There are many quadtree based algorithms that
yield a no large angle Steiner triangulation� Bern�
Eppstein and Gilbert ��

�� provides an algorithm for
point sets� as well as other algorithms for no small an�
gles� Eppstein ��

�� combines no large angles� and
also separately no small angles� with �nding an ap�
proximately minimum weight triangulation� No large
and no small angles are achieved simultaneously in
Baker� Gross and Ra�erty ��
��� and in Melissaratos
and Souvaine ��

��� However� the cardinality of a
triangulation with no small angles is doomed to be
dependent on the input geometry� Bern and Eppstein
��

�� summarizes much of the Steiner triangulation
literature�

Mitchell��

�� presents the only other known al�
gorithm for a covering triangulation with a provable
bound on triangle shape� Given a PSLG� the algo�
rithm generates a triangulation whose minimum an�
gle is at least a constant factor times an explicit upper
bound provided by the input geometry� This bound�
and generating a triangulation with minimum angle
close to this bound� is signi�cantly di�erent from their
analog for maximum angle�

��� APPLICATION MOTIVATION

Rendering of computer graphics� functional interpola�
tion and �nite element methods all require triangula�
tions in which the largest angle is bounded away from
�� See Babu�ska and Aziz ��
��� and Barnhill��
����
Our algorithm can be used to triangulate two inter�
secting regions independently� where Steiner triangu�
lations might fail to produce a conformal triangula�
tion� That is� most Steiner triangulation algorithms
add many Steiner points on the boundary of a region�
Suppose a region is triangulated� then the triangula�
tion of an intersecting region may introduce noncon�
formal Steiner points on the edges of the �rst region�
Such intersecting regions naturally occur in models of
objects composed of two di�erent materials� such as
semiconductors� These regions also occur when gener�
ating a triangulation of the surface of a three dimen�
sional polytope� such as cubes of an octree�

We give a characterization of the smallest angle
possible without adding Steiner points on the bound�
ary of a region� Thus it may be possible to preprocess
the boundary between two regions by adding Steiner
points� such that our bound on the smallest possi�
ble angle in a covering triangulation of either region
is a constant� In general� this is a di�cult problem
�see Mitchell��

�b�	� but for certain geometries this
task is easy� If this task can be performed� then our
algorithm can be used to triangulate each region in�
dependently� generating a triangulation of the entire
region with largest angle no more than a constant�

��� ALGORITHM OVERVIEW

Our algorithm consists of two main steps� First� for
each input edge E we �nd its almond A� the largest
circular arc with chord E that contains no visible in�
put vertex� See Figure � and Figure �� No covering
triangulation can have largest angle smaller than that
subtended by E at a vertex on the almond A� Given
arbitrary vertices on A� we show how to triangulate
the almond so that we come close to this bound� see
Figure � and Figure ��

Second� after all almonds are triangulated� we have
a polygonal region R inside P that is untriangulated�
see Figure �� We triangulate R using any Steiner
triangulation algorithm for polygons with holes that
achieves no angle larger than ����� see Figure 
� This
introduces �arbitrary	 Steiner points on some edges of
triangulated almonds� We �x such nonconformal ver�
tices by adding the edge between it and the opposite
triangle vertex �inside the almond	� If none of the
edges of R are too large �compared to the correspond�
ing almond	� this does not a�ect our angle bound�

As noted� a key subroutine to our algorithm is a
solution to the following problem� Given a polygon
with holes� �nd a Steiner triangulation with a con�
stant bound on the largest angle� As discussed in the
introduction� we may chose among several known al�
gorithms for this subroutine� Let S�n	 be the number
of Steiner points added by the subroutine� and T �n	
its running time� Then our covering triangulation al�
gorithm adds O�n� S�n		 Steiner points and runs in
time O�n log n � T �n		� Using the current best solu�
tion� that of Bern� Mitchell and Ruppert ��

��� we
have S�n	 � O�n	 and T �n	 � O�n log� n	� Hence our
covering triangulation adds O�n	 Steiner points and
runs in time O�n log� n	�

Like the CDT and unlike quadtree and dicing
based algorithms� our algorithm �including the sub�
routine Bern� Mitchell and Ruppert ��

��	 has no
preferred directions and is independent of the orienta�
tion of the input�

� THE SMALLEST ANGLE POSSIBLE

A key question is what geometric features of the input
determine the smallest angle possible in any covering
triangulation�

In Mitchell��

��� the largest angle possible in a
covering triangulation was determined by the local ge�
ometry around a vertex of the input� that is by nearby
points on a face disjoint from the vertex� We show
below that our angle bound depends on local features
around an input edge� that is by nearby vertices dis�
joint from the edge�

What the smallest angle possible locally in a con�
strained triangulation has been considered in Edels�
brunner� Tan and Waupotitsch ��

��� Let ��T 	 de�



Figure �� Any constrained triangulation of a regular
m�gon has an angle of �����m�while the lower bound
from lemma � is less than ���� A covering triangula�
tion of an m�gon with one Steiner point may have no
obtuse angles�

note the maximum angle of a triangulation T � then
they show the following�

Lemma � Given a vertex set S� in any constrained
triangulation T containing edge UV � we have ��T 	 �
maxW�S � UWV �

This result was written in the context of con�
strained triangulations� For covering triangulations
certain edges V U are prescribed by the input� The
ability to add non�boundary Steiner points will only
increase the input vertex set S� Hence the lemma gives
us a lower bound on the largest angle in any covering
triangulation of a planar straight line graph �PSLG	�
If the input P is a polygon� and we wish to triangu�
late only the interior of P � it is necessary to consider
only vertices W such that �UWV is completely in�
side P � This may yield a smaller lower bound� that is�
a smaller largest angle may be possible�

This lower bound is not always achievable for a
constrained triangulation because of the global geom�
etry� for example see Figure �� Our results are that
we can always construct a covering triangulation that
comes close to achieving this lower bound�

��� WHAT MEASURE OF CLOSENESS
TO OPTIMALITY TO USE

What do we mean by coming close to this bound�
Constrained triangulations exactly achieve some op�
timal value� Steiner triangulations achieve no angles
larger than a constant� which we have shown is im�
possible for covering triangulations �Figure �	�

No small angle Steiner triangulations achieve min�
imum angle at least a constant factor times some up�
per bound determined from the local input geometry�
The analog of this for no large angles� that of achiev�
ing maximum angle no larger than a constant times
our lower bound� is trivial because � is no more than a
constant times the trivial lower bound of ���� Hence
we have decided to consider the di�erence between the
largest angle we produce and ��

The upper bound B� Let B be the di�erence
between � and the lower bound on a covering trian�
gulation from Lemma �� That is� denote the input by
P � let v be its vertex set and e its edge set� Then
B � ��maxW�v�E�e � WE� where � WE denotes the
angle subtended by E at W � If P is a polygon� we
further restrict ourselves to triangles �WE contained
in P �

For � UWV � we de�ne ��UWV 	 � � � � UWV �
Similarly we de�ne � of a triangle to be the minimum
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Figure �� Left� � � �a�a�	��� � � �b� b�	��� where a
may be zero or negative� Right� � � a��� � � b���

of � over the angles of the triangle� and � of a trian�
gulation to be the minimum of � over its triangles�

Theorem � Our triangulation T has ��T 	 �
min�B��� ���	�

Proof� The proof follows from Theorem � and Theo�
rem � below�

We also note the following lower bound on the
worst case number of Steiner points needed to achieve
this bound� Some input� even input consisting of just
vertices and no prescribed edges� require ��n	 Steiner
points in order to achieve a given bound� Fix k� such
that we require a triangulation with � at least B�k�
A regular m�gon with m � d�ke requires one Steiner
point in its interior in order to have � 	 B�k� see
Figure �� Hence n�m copies of the vertices of a reg�
ular m�gon� arranged vertically and spaced far apart�
is an input with n vertices requiring ��n�k	 Steiner
vertices to achieve � 	 B�k� Since our triangulation
has k � � with O�n	 Steiner points� our cardinality is
worst case optimal up to a constant factor�

This worst case example had a large B� but we may
generalize and �nd a worst case construction �with
prescribed edges	 for any B � ���� Almonds with
m � �k � � evenly spaced vertices may be used to
show that for any B� achieving � � B�k may require
n�m Steiner points�

� ALMONDS

We wish to �nd a vertex free region around each input
edge� called an almond� We are able to triangulate
almonds independently with reasonably small largest
angle� The almonds have the property that we may
triangulate outside of them arbitrarily and not a�ect
the lower bound of Lemma � by much� The following
theorem of Euclid is central to this notion�

Theorem � Draw any circle with cord E � V U � For
any points X and X � on the circle and on the same

side of E� we have � VXU � � V X �U � Any point Z
inside the circle has � UZV 	 � UXV � Any point Z �

outside the circle has � Y Z �V 
 � UXV�

We may restate this explicitly as follows�

Theorem � The measure of the angle between two
intersecting chords of a circle is equal to half the sum

of arc lengths between the chords� The measure of the
angle between a chord and a tangent line is equal to

half the arc length between the vertices of the chord�
See Figure ��

Almond� Consider any input edge E � UV � Let
W be the input vertex visible to E such that � UWV
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Figure �� Rotating Y Y � is equivalent to rotating Q�

is maximized� If � UWV � ����� we de�ne the al�
mond A for E to be the circular arc through U�V and
W � Otherwise� we de�ne the almond for E to be the
circular arc in the polygon
s interior such that for any
point X on the arc � UXV � ���� �this is how the
constant ��� arises in Theorem �	� We let c denote
the center of the circle containing the almond arc� We
de�ne the angle of an almond to be the angle � UXV
for any point X on the almond� denoted � opt� We
similarly de�ne ��A	 � ��� opt	� We denote the �nor�
malized	 arc length of an almond by a� and note from
Theorem � that a � ���A	�

��� TRIANGULATING ALMONDS

We now show how to triangulate an almond with ar�
bitrary Steiner points on it� so that no angle is much
larger than the angle of the almond� The proofs are
made particularly elegant by Theorem �� To prove
Theorem � we �rst need the following two technical
lemmas�

The following ancient theorem can be viewed as a
generalization of Theorem �� See Figure ��

Lemma � For any point Q in a circle with center
c� among all chords Y Y � of �xed length� � Y QY � is

maximized for cQ � Y Y ��

Proof� We view the problem as �xing the chord on
the circle and rotating Q about c� see Figure �� The
trajectory of Q is a circle centered at c� Consider
the maximum angle almond A� for Y Y � among all the
vertices of the trajectory of Q� Let Q� be the vertex
determining A�� Note Q� is also the point of tangency
between the almond circle of A� and the trajectory
of Q� and hence lies on the line between c and the
almond circle center� The perpendicular bisector of
Y Y � contains both c and the center of the almond
circle� hence Q� lies on the perpendicular bisector of
Y Y ��

Lemma � Among all chords Y Y � through a point Q�
the arc length cut by the chord is minimized for cQ �
Y Y ��

Proof� Chord length and cut arc length are mono�
tonically decreasing functions of distance to the circle
center c� The chord through Q whose distance to the
circle center c is maximum has cQ � Y Y ��

Theorem � The convex hull of an edge E � UV
and any number of vertices on its almond A may

be triangulated with a covering triangulation T with
��T 	 � ��A	��� At most one Steiner point is required�

Proof� We have two cases� In the �rst case there is
a long edge of the convex hull other than E� and we
may triangulate without adding a Steiner vertex� In

the second case there is no long convex hull edge other
than E� and we add a Steiner vertex near the �center�
of the almond� We parameterize our de�nition of long
by ka� and show that the optimal choice of k is ����

Case �� The �rst case is where a long convex hull
edge E� cuts more than k of the arc of A� That is� the
arc length between the vertices of the convex hull edge
E� is more than ka� Let U � be the closer vertex of E�

to U � and V � the closer vertex of E� to V � Let L be
the list of convex hull vertices between U and U �� and
R the list of those between V and V �� We triangulate
by introducing an edge between U � and each vertex of
R� and an edge between V and each vertex of L� see
Figure ��

We now show that no angle of this triangulation is
large� speci�cally that ��T 	 � k��A	� Consider angle
� XY Z of any triangle� An upper bound on this angle
is the larger angle between XY and a tangent line at
Y �this is the limiting case as Z approaches Y 	� The
arc length between X and Y is at most �� minus the
arc length of E�� or �� � ka� Hence from Theorem ��
� XY Z 
 � � ka��� or ��� XY Z	 	 k��A	�

Case �� The second case is where all the convex
hull egdes are short� That is� the arc length between
the vertices of any convex hull edge �except E	 is at
most ka� Let E� � U �V � be a �ctitious chord of A�
parallel to E� with arc length exactly ka� see Figure
��� We say that E� is �ctitious in the sense that its
vertices are not necessarily given as vertices on A� and
hence are not necessarily in the construction T � Let Q
be the point where the chords UV � and U �V intersect�
We triangulate by adding Steiner vertex Q and edge
XQ for each of the vertices X on A� see Figure �� We
now show that no angle of this triangulation is large�
speci�cally that ��T 	 � min�k� �� k	��A	�

Consider � XYQ of any triangle� As in case �� an
upper bound on this angle is �� the larger angle be�
tween Y Q and the tangent at Y � Consider the chord
Y Y � containing Y Q� By Theorem �� � � � � b���
where b is the arc cut by Y Y �� By Lemma �� b is
minimized by Y Y � � cQ� For this choice Y Y � is
parallel to E� and closer to c� hence b 	 ka and
��� XYQ	 	 k��A	�

Consider � UQV� From Theorem � we have
� UQV � ���� � a	 � ka	�� � � � �� � k	a��� or
��� UQV 	 � �� � k	��A	� Consider � XQY of any

other triangle� As we increase the length of XY �
this angle increases monotonically� Hence an upper
bound on � XQY is achieved in the case where XY
cuts arc length ka� We �x the length of XY at ka�
From Lemma �� � XQY is maximized for XY � cQ�
But for this choice XY is coincident with the �cti�
tious edge E�� Thus � XQY � � QE� � � QE so
��� XQY 	 � ��� k	��A	�

Combining case � and �� a lower bound on the mea�
sure of the angles in our construction T is min�k� ��
k	��A	� This is maximized at ��A	�� for k � ����

� TRIANGULATING P

We form a collection of polygons with holes called R�
lying inside P � R is a straight line approximation
to the region of P outside the visible portion of the
almonds�

Lemma � A point in an almond is visible to either

all or none of the corresponding edge�

Proof� By de�nition no input vertex visible to any
point of E is interior to its almond A� Hence either
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Figure �� Triangulating an almond when a convex hull edge E� is long�
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Figure �� Triangulating an almond when all convex hull edges are short�
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Figure ��� No point is interior and visible to three
almonds� Some other edge of the input must make X
not visible to any point of E�

no edge is in an almond� or there is an edge F closest
to E that completely passes through A� In the latter
case a point in A between E and F is visible to all of
E� and a point on the far side of F is visible to none
of E�

Consider the collection of almonds for all edges of
P � It is possible that they overlap� but not very much
in the following sense�

Lemma � No point is interior and visible to three
almonds�

Proof� Consider a point X strictly inside three al�
monds� By de�nition and Theorem �� the chords �in�
put edges	 of the almonds must each subtend an angle
greater than ���� at X� Hence for at least one of the

chords E � V U � there is a chord F that crosses XV �
see Figure ��� Hence by Lemma �� X is not visible to
any of E�

The construction of R is illustrated in Figure �
and Figure �� Wherever two �or three	 almond arcs
intersect and the intersection point is also visible to
each almond input edge� we introduce a Steiner vertex
at that point� Lemma � ensures that such a Steiner
point is not interior to some other almond�

If the input is a planar straight line graph� we add
the convex hull edges that are not prescribed by P �
We do not form almonds for these edges� but instead
treat them as almond arcs� We add a Steiner vertex
where such an edge intersects an almond� We ignore
the almonds outside of the convex hull arising from
edges of P lying on the convex hull� Vertices of P not
contained in any edge of P can be handled as follows�
If an isolated vertex is on the boundary of an almond�
no modi�cations are necessary� An isolated vertex in�
terior to R can be fattened into a small equilateral
triangle and treated as part of the input P � Alter�
natively� the algorithm used to triangulate R can be
made to handle such vertices� For example� the algo�
rithm of Bern� Mitchell and Ruppert ��

�� and also
of Bern� Dobkin� and Eppstein ��

�� requires only a
trivial modi�cation�

If the input is a polygon� then we ignore almonds
outside of the polygon
s interior� These are the only
di�erences in our algorithm for polygons and PSLGs�

Interior edges� A given pair of almond arcs in�
tersect at zero� one or two vertices� An example of
when they intersect at one vertex is when their corre�
sponding input edges intersect at an input vertex at
an angle greater than ����� When a pair of almond
arcs intersect at two vertices� we introduce an edge
between them� called an interior edge� We similarly
add an interior edge when an arc intersects a convex
hull edge that is not prescribed by P � Interior edges
lie outside of R and as such are not subdivided in the
�nal triangulation�



Figure �� The almonds for a polygon�

Figure �� The triangulation of the almonds� and the region R �shaded	�



Figure �� Almonds for an example polygon generated by our implementation�

Figure 
� The �nal covering triangulation generated by our implementation� Maximum angle � ������� minimum
angle � ����e� ���� ����n points added by our algorithm� �����n points added by Bern� Mitchell and Ruppert
��

���



Exterior edges� Consider a consecutive pair of
Steiner vertices X and Y on an almond A� where X
and Y arise from the intersection of distinct almonds
with A� We wish to ensure that any pair of Steiner
points are not too far apart� If the arc length of A
between X and Y is more than a��� we add Steiner
points between X and Y to ensure that the arc length
between consecutive Steiner points is at most a�� �un�
less there is an internal edge between them	� We now
introduce an edge called an exterior edge between the
�non�internal	 consecutive vertices on A� The bound�
ary of R is formed by the exterior edges� together with
exterior portions of convex hull edges in the case that
P is a PSLG�

We triangulate each almond together with its
Steiner vertices according to Section ���� see Figure ��
We call such triangles almond triangles� We triangu�
late R using the algorithm of Bern� Mitchell and Rup�
pert ��

�� for triangulating polygons with holes so
that no angle is obtuse� This introduces Steiner points
on exterior edges� Since exterior edges are shared with
triangles interior to almonds� this makes the triangu�
lation nonconformal� We �x this situation as follows�
Let E be the almond triangle edge containing a non�
conformal vertex W � and Z the vertex of the almond
triangle opposite E� Then we add WZ� see Figure ��
Note that any almond triangle has at most one exter�
nal edge� so that none of these edges cross� If there
are r vertices interior to an external edge of an almond
triangle� we thus form r � � triangles� The fact that
we subdivided large exterior edges ensures that we do
not decrease the lower bound on angle measure from
Theorem ��

Theorem � Any triangle T inside an almond A has
��T 	 � ��A	���

Proof� We have two cases� depending on whether we
added a central Steiner point when we triangulated
the convex hull of A�

Case �� The �rst case is where we did not add a
central Steiner point in the triangulation of A� Note
that exterior edges all cut arcs shorter than a��� so
the edge E� in Figure � is internal and has no non�
conformal Steiner points on it� Suppose �XYZ has
a nonconformal Steiner point W on XY � with ZY
the longest edge� and ZX and ZY both �long� in the
sense of Theorem �� Then � ZWX is acute� Also
� ZWY is less than the supplement of � ZYX� or
��� ZWY 	 	 � ZYX� By Theorem � and Theorem
� � ZYX 	 a��� 	 a�� � ��A	��� where a� is the
length of the almond arc cut by E��

Case �� The second case is where we did add
a central Steiner point Q� Let �QXY be an al�
mond triangle with W on XY � Angles � XQW and
� WQY are both smaller than � XQY� an original an�
gle already considered in Theorem �� So it remains
to bound � QWY� where without loss of generality
� QWY � � QWX�

Now again � QWY is less than the supplement of
� QY X� or ��� QWY 	 	 � QY X� see Figure ��� As we
increase the distance from X to Y � � QY X decreases�
so a tight lower bound on � QY X is achieved when
XY has maximum allowable length� As stated above
this length is a��� but for exposition we parameterize
the length as ja� then show that a choice of j � ���
is su�cient to prove the theorem�

Consider placing a �xed length XY in order to
minimize � QY X�Consider chord Y Y � containing Y Q�
From Theorem �� � QY X � �y � ja	��� where y is

E

Q

X

Y

Y′
W

Figure ��� Fixing a nonconformal vertex W � The arc
length cut by Y Y � minus the arc length cut by XY
gives the angle at Y � which bounds the supplement of
the angle at W �

E

Q

E′

U

U′
Y Y′

V′

V

q′

q b

b′

Figure ��� Bounding y� the arc length between Y and
Y �� b� 	 a����

the arc length cut by Y Y �� Thus minimizing � QY X
is equivalent to minimizing y� From Lemma � the
minimum y is achieved by Y Y � � cQ�

We now �nd a lower bound on y for this construc�
tion� see Figure ��� Without loss of generality let Y
be between U and U �� where U �V � is the �ctitious edge
E� de�ning Q�

Let q be the distance from Q to E and q� the dis�
tance from Q to E�� By construction �QUV and
�QU �V � are similar� so q��q � jE�j�jEj� the ratio of
edge lengths� Since E cuts a longer arc than E� we
have that jE�j�jEj is greater than the ratio of the cut
arc lengths� ���� Hence q��q 	 ����

Let b be the arc length between Y and V and b�

the arc length between Y and V �� Since E is closer to
c than is E�� we also have that b��b 	 q��q 	 ���� By
construction b� b� � a��� so b� 	 a����

Since y � a�� � �b�� we have � QY X � �a�� �
�b�� ja	�� 	 � �

�
� j	��A	� Taking j � ��� is su�cient

to complete the proof� We also note that the above
inequalities are tight as ��A	 approaches zero� so that
taking j � ��� is also necessary�

There is a slight tradeo� between the maximum
angle bound and the cardinality of the triangulation�
From the proof of Theorem � bounding the maximum
length of an external edge by any value in � �

�
� �
�
	a is

su�cient to guarantee that the angles in our triangu�
lation are all less than a constant factor times ��A	� In
our implementation �gures we have chosen a��� which
guarantees that ��T 	 	 ��A	�� for all triangles in al�
monds� and yields reasonable cardinality�

� STEINER�VERTEX AND TIME
BOUNDS

Theorem � The cardinality of our triangulation is at
most ��n� S���n	� where n is the number of vertices

in the input P � and S�n	 � O�n	 is the cardinality of
the triangulation of R�

Proof� We �rst consider our algorithm for polygons�
Recall that no point is interior and visible to three al�
monds� For every pair of intersecting almonds regions�
we pick a point p common to both almond regions�
We may draw a line segment from p to the midpoint



of each of the two corresponding input edges� This
forms a graph� with the input edges corresponding to
vertices of the graph� and intersecting almonds corre�
sponding to edges of the graph� The graph is planar�
and hence� by Euler
s formula� the number of edges is
at most �n� Each graph edge corresponds to an in�
ternal edge �or an isolated vertex	� Hence there are
at most �n Steiner points on almond arcs� plus those
added to subdivide large external edges� An external
edge must cut more than one sixth of an almond arc
in order to be considered large� so at most �n Steiner
points are added in this way� Hence� R has at most
��n vertices� Since each almond region requires at
most one center Steiner point to triangulate� trian�
gulating the almond regions adds at most n center
Steiner vertices� Hence the cardinality of our trian�
gulation of a polygon is at most ��n � S���n	� The
algorithm of Bern� Mitchell and Ruppert ��

�� trian�
gulates R with only S���n	 � O�n	 vertices�

For PSLG� there are two almonds for each input
edge� We may require �n more Steiner points to sub�
divide long exterior edges� and n more center ver�
tices to triangulate almonds� for a total of at most
��n � S���n	 vertices�

It is interesting to compare this with the fact that
a Steiner triangulation of a PSLG with a constant
upper bound on the largest angle may require ��n�	
Steiner points� This fact follows from an example due
to Paterson in Bern� Dobkin and Eppstein��

���

Theorem � The running time of the algorithm is
O�n log n	 � T ���n	� where T �n	 � O�n log� n	 is the
running time of the algorithm used to triangulate R�

Proof� First for each edge E we must determine the
vertex V that de�nes the almond A at E� assuming
the almond has angle less than ����� The key obser�
vation is that �V E is a triangle of the constrained
Delaunay triangulation of P � The almond contains
no input vertex visible to V � By de�nition �V E is
a triangle of the constrained Delaunay triangulation
if the circle through V with chord E contains no ver�
tex visible to both E and V � The region of the circle
outside of the almond is not visible to V � and hence
the characterizations coincide� Thus the almonds may
be determined by computing the constrained Delau�
nay triangulation of the input in time O�n log n	 via
Chew��
�
��

The next step is to compute the intersection of
the n almonds� There are only a linear number of
intersection points� and the almonds are circular arcs�
Hence this can be done in optimal O�n log n	 time
using plane sweep �see Preparata and Shamos��
���	�

The order of Steiner vertices along almond arcs is
determined by sorting� after which it takes only linear
time to triangulate the almonds� In linear time it
is easy to �x nonconformal triangles created by the
triangulation of R�

� OPEN PROBLEMS

There are several other measures for which near op�
timal covering triangulations are desirable� Most no�
tably� a covering triangulation that has guaranteed
minimum height is needed in Mitchell and Vava�
sis��

�� in the triangulation of the surface of an oc�
tree box� in order to guarantee good three dimensional
aspect ratio of tetrahedra� In fact� any three dimen�
sional triangulation algorithm with bounded aspect

ratio implicitly generates a two dimensional Steiner
triangulation with bounded height on the surface of a
small sphere centered at any input vertex�

Like minmax angle� maxmin height is also a mea�
sure which has the anchor property� so one might sup�
pose the present work could be extended to maxmin
height as well� A rectangle with semicircular ends is
the locus of points determining the maximum height
possible for an input edge� and is the analog of the
almonds for minmax height� However� we conjecture
that it is not possible to triangulate such a rectangle
given arbitrary Steiner points on its boundary� and
achieve triangle height within a constant factor of the
height of the rectangle� Thus our results do not im�
mediately generalize to maxmin height�

Also open is the existence of a covering triangu�
lation algorithm that optimizes a measure that is de�
pendent on both the largest and smallest angles� It
appears impossible to generate a covering triangula�
tion that simultaneously achieves minimum angle and
maximum angle close to optimal�
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