Finding a Covering Triangulation

Whose Maximum Angle is Provably Small

Scott A. Mitchell*

ABSTRACT

We consider the following problem: given a pla-
nar straight-line graph, find a covering triangulation
whose maximum angle is as small as possible. A cov-
ering triangulation is a triangulation whose vertex set
contains the input vertex set and whose edge set con-
tains the input edge set. The covering triangulation
problem differs from the usual Steiner triangulation
problem in that we may not add a vertex on any input
edge. Covering triangulations provide a convenient
method for triangulating multiple regions sharing a
common boundary, as each region can be triangulated
independently.

We give an explicit lower bound 7,p; on the maxi-
mum angle in any covering triangulation of a particu-
lar input graph in terms of its local geometry. Our al-
gorithm produces a covering triangulation whose max-
imum angle v is provably close to vopi. Bounding v by
a constant times vop; is trivial: We prove something
significantly stronger. Specifically, we show that

m— 5 > min( 1Bt %)’
l.e., our v is not much closer to 7 than is vops. To our
knowledge, this result represents the first nontrivial
bound on a covering triangulation’s maximum angle.
Our algorithm adds O(n) Steiner points and runs in
time O(nlog®n), where n is the number of vertices
of the input. We have implemented an O(n?) time
version of our algorithm.

1 INTRODUCTION

In this paper, we consider a class of triangulations
called covering triangulations. A covering triangula-
tion is a triangulation whose vertex set contains the
input vertex set and whose edge set contains the input
edge set. For example, if the input is a polygon, then a
covering triangulation may have additional vertices in
the polygon’s interior, but not on its boundary. Cov-
ering triangulations with bounded triangle shape were
first considered in Mitchell [1993].

Traditionally, most triangulation algorithms gen-
erate either a constrained triangulation or a Steiner
triangulation. A constrained triangulation has a ver-
tex set that is exactly the vertex set of the input, and
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an edge set that contains the edge set of the input.
A Steiner triangulation has a vertex set that contains
the vertex set of the input, and every edge of the input
is the union of some edges of the triangulation. This
is also known as a conforming triangulation.

For all three of these classes we assume the tri-
angulations are conformal. That is, if we consider a
triangulation as a lattice of faces, then being confor-
mal means that two faces intersect in a face of the
lattice or not at all. For example, there may be no
vertices in the middle (relative interior) of an edge or
triangle.

1.1 PREVIOUS RESULTS

There are several algorithms for generating con-
strained triangulations that exactly optimize some
measure. Edelsbrunner, Tan, and Waupotitsch [1990]
introduce the edge insertion paradigm, which is a
global generalization of local edge flip. Edge insertion
can be used to find a constrained triangulation that
minimizes the maximum angle. Bern, Edelsbrunner,
Eppstein, Mitchell, and Tan [1992] show that edge in-
sertion may also be used to find optimal constrained
triangulations for any measure for which every triangle
has at least one anchor vertex. This property states
that for any triple of vertices of the input forming a
triangle, no constrained triangulation can have mea-
sure better than that of the triangle, unless there is
an edge from the anchor vertex crossing the opposite
edge. Like constrained triangulations, covering trian-
gulations have prescribed edges that cannot be crossed
or subdivided. Hence, this property also has applica-
tion to covering triangulations, as we show in Section
2. Measures that have the anchor property include
minmax angle, maxmin height, and minmax slope for
points embedded in R®.

The most famous constrained triangulation is the
(constrained) Delaunay triangulation, or CDT. It op-
timizes several measures, including maximizing the
minimum angle (Lawson [1977]). Many algorithms
exist for the CDT, following paradigms such as plane
sweep, edge flip, and incremental insertion. These are
summarized in Fortune [1992]. Chew[1989] presents
an algorithm for finding a CDT in optimal O(nlogn)
time.

Triangles in a CDT that contain edges of the input
play a special role for covering triangulations. In par-
ticular, they determine the minimum maximum angle
possible for any covering triangulation, see Section 2
and Section 5. Also, their circumcircles help guide our
triangulation in Section 3.

Steiner triangulations that exactly optimize some



criteria may have a non-polynomial number of ver-
tices. As such, most algorithms seek to come close
to a provable measure bound, while simultaneously
achieving a reasonable cardinality. Bern, Dobkin
and Eppstein [1991] present algorithms that approxi-
mately maximizes the minimum height and minimize
the maximum angle. They are able to bound the
largest angle away from 7 by a constant. The car-
dinality of these triangulations for no large angles is
a small polynomial in the number of vertices of the
input, depending on whether the input is a polygon
or polygon with holes, and what constant bound is
desired for the largest angles.

Bern, Mitchell and Ruppert [1993] has recently
given an algorithm for constructing a Steiner trian-
gulation of a polygon with holes with all non-obtuse
angles. The algorithm adds only O(n) Steiner points
(matching the worst case lower bounds) and runs in
time O(n log® n). The algorithm builds upon some key
ideas presented in this paper, namely how circles can
be triangulated independently with a reasonable angle
bound. The tight angle bound of 7/2 is based on some
beautiful mathematical properties of tangent circles.

Mitchell [1993b] gives an algorithm for triangulat-
ing a PSLG so that angles are at most 7x/8, adding
O(n?log n) Steiner points. The algorithm is based on
refining an arbitrary triangulation.

There are many quadtree based algorithms that
yield a no large angle Steiner triangulation. Bern,
Eppstein and Gilbert [1990] provides an algorithm for
point sets, as well as other algorithms for no small an-
gles. Eppstein [1991] combines no large angles, and
also separately no small angles, with finding an ap-
proximately minimum weight triangulation. No large
and no small angles are achieved simultaneously in
Baker, Gross and Rafferty [1988] and in Melissaratos
and Souvaine [1992]. However, the cardinality of a
triangulation with no small angles is doomed to be
dependent on the input geometry. Bern and Eppstein
[1992] summarizes much of the Steiner triangulation
literature.

Mitchell[1993] presents the only other known al-
gorithm for a covering triangulation with a provable
bound on triangle shape. Given a PSLG, the algo-
rithm generates a triangulation whose minimum an-
gle is at least a constant factor times an explicit upper
bound provided by the input geometry. This bound,
and generating a triangulation with minimum angle
close to this bound, is significantly different from their
analog for maximum angle.

1.2 APPLICATION MOTIVATION

Rendering of computer graphics, functional interpola-
tion and finite element methods all require triangula-
tions in which the largest angle is bounded away from
7. See Babuska and Aziz [1976] and Barnhill[1983].
Our algorithm can be used to triangulate two inter-
secting regions independently, where Steiner triangu-
lations might fail to produce a conformal triangula-
tion. That i1s; most Steiner triangulation algorithms
add many Steiner points on the boundary of a region.
Suppose a region is triangulated, then the triangula-
tion of an intersecting region may introduce noncon-
formal Steiner points on the edges of the first region.
Such intersecting regions naturally occur in models of
objects composed of two different materials, such as
semiconductors. These regions also occur when gener-
ating a triangulation of the surface of a three dimen-
sional polytope, such as cubes of an octree.

We give a characterization of the smallest angle
possible without adding Steiner points on the bound-
ary of a region. Thus it may be possible to preprocess
the boundary between two regions by adding Steiner
points, such that our bound on the smallest possi-
ble angle in a covering triangulation of either region
is a constant. In general, this is a difficult problem
(see Mitchell[1993b]), but for certain geometries this
task is easy. If this task can be performed, then our
algorithm can be used to triangulate each region in-
dependently, generating a triangulation of the entire
region with largest angle no more than a constant.

1.3 ALGORITHM OVERVIEW

Our algorithm consists of two main steps. First, for
each input edge F we find its almond A, the largest
circular arc with chord E' that contains no visible in-
put vertex. See Figure 6 and Figure 8. No covering
triangulation can have largest angle smaller than that
subtended by E at a vertex on the almond A. Given
arbitrary vertices on A, we show how to triangulate
the almond so that we come close to this bound, see
Figure 3 and Figure 4.

Second, after all almonds are triangulated, we have
a polygonal region R inside P that is untriangulated,
see Figure 7. We triangulate R using any Steiner
triangulation algorithm for polygons with holes that
achieves no angle larger than 57 /6, see Figure 9. This
introduces (arbitrary) Steiner points on some edges of
triangulated almonds. We fix such nonconformal ver-
tices by adding the edge between it and the opposite
triangle vertex (inside the almond). If none of the
edges of R are too large (compared to the correspond-
ing almond), this does not affect our angle bound.

As noted, a key subroutine to our algorithm is a
solution to the following problem: Given a polygon
with holes, find a Steiner triangulation with a con-
stant bound on the largest angle. As discussed in the
introduction, we may chose among several known al-
gorithms for this subroutine. Let S(n) be the number
of Steiner points added by the subroutine, and 7'(n)
its running time. Then our covering triangulation al-
gorithm adds O(n + S(n)) Steiner points and runs in
time O(nlogn + T'(n)). Using the current best solu-
tion, that of Bern, Mitchell and Ruppert [1993], we
have S(n) = O(n) and T(n) = O(nlog® n). Hence our
covering triangulation adds O(n) Steiner points and
runs in time O(nlog? n).

Like the CDT and unlike quadtree and dicing
based algorithms, our algorithm (including the sub-
routine Bern, Mitchell and Ruppert [1993]) has no
preferred directions and is independent of the orienta-
tion of the input.

2 THE SMALLEST ANGLE POSSIBLE

A key question is what geometric features of the input
determine the smallest angle possible in any covering
triangulation.

In Mitchell[1993], the largest angle possible in a
covering triangulation was determined by the local ge-
ometry around a vertex of the input, that is by nearby
points on a face disjoint from the vertex. We show
below that our angle bound depends on local features
around an input edge, that is by nearby vertices dis-
joint from the edge.

What the smallest angle possible locally in a con-
strained triangulation has been considered in Edels-
brunner, Tan and Waupotitsch [1990]. Let p(T) de-



Figure 1: Any constrained triangulation of a regular
m-gon has an angle of 7—27/m, while the lower bound
from lemma 1 is less than 7/3. A covering triangula-
tion of an m-gon with one Steiner point may have no
obtuse angles.

note the maximum angle of a triangulation 7', then
they show the following:

Lemma 1 Given a vertex set S, in any constrained
triangulation T' containing edge UV, we have p(T) >
maxwes ZUWYV.

This result was written in the context of con-
strained triangulations. For covering triangulations
certain edges VU are prescribed by the input. The
ability to add non-boundary Steiner points will only
increase the input vertex set S. Hence the lemma gives
us a lower bound on the largest angle in any covering
triangulation of a planar straight line graph (PSLG).
If the input P is a polygon, and we wish to triangu-
late only the interior of P, it is necessary to consider
only vertices W such that AUWYV is completely in-
side P. This may yield a smaller lower bound, that is,
a smaller largest angle may be possible.

This lower bound is not always achievable for a
constrained triangulation because of the global geom-
etry, for example see Figure 1. Our results are that
we can always construct a covering triangulation that
comes close to achieving this lower bound.

2.1 WHAT MEASURE OF CLOSENESS
TO OPTIMALITY TO USE

What do we mean by coming close to this bound?
Constrained triangulations exactly achieve some op-
timal value. Steiner triangulations achieve no angles
larger than a constant, which we have shown is im-
possible for covering triangulations (Figure 1).

No small angle Steiner triangulations achieve min-
imum angle at least a constant factor times some up-
per bound determined from the local input geometry.
The analog of this for no large angles, that of achiev-
ing maximum angle no larger than a constant times
our lower bound, is trivial because 7 is no more than a
constant times the trivial lower bound of /3! Hence
we have decided to consider the difference between the
largest angle we produce and =.

The upper bound B. Let B be the difference
between 7 and the lower bound on a covering trian-
gulation from Lemma 1. That is, denote the input by
P, let v be its vertex set and e its edge set. Then
B =7 —maxwev,pee LWL, where ZW E denotes the
angle subtended by F at W. If P is a polygon, we
further restrict ourselves to triangles AW E contained
in P.

For LUWYV, we define v(UWV) = 7 — LUWV.

Similarly we define v of a triangle to be the minimum

b’ b

a a
Figure 2: Left, o = (a +a’)/2,8 = (b+b')/2, where a
may be zero or negative. Right, o =a/2,3 =b/2.

of v over the angles of the triangle, and v of a trian-
gulation to be the minimum of v over its triangles.

Theorem 1 Our triangulation T has v(T) >
min(B/2,7/6).

Proof. The proof follows from Theorem 4 and Theo-
rem 5 below. N

We also note the following lower bound on the
worst case number of Steiner points needed to achieve
this bound. Some input, even input consisting of just
vertices and no prescribed edges, require €2(n) Steiner
points in order to achieve a given bound. Fix k, such
that we require a triangulation with v at least B/k.
A regular m-gon with m = [6k] requires one Steiner
point in its interior in order to have v > B/k, see
Figure 1. Hence n/m copies of the vertices of a reg-
ular m-gon, arranged vertically and spaced far apart,
is an input with n vertices requiring Q(n/k) Steiner
vertices to achieve v > B/k. Since our triangulation
has k = 2 with O(n) Steiner points, our cardinality is
worst case optimal up to a constant factor.

This worst case example had alarge B, but we may
generalize and find a worst case construction (with
prescribed edges) for any B < 7/2. Almonds with
m = 2k + 2 evenly spaced vertices may be used to
show that for any B, achieving v > B/k may require
n/m Steiner points.

3 ALMONDS

We wish to find a vertex free region around each input
edge, called an almond. We are able to triangulate
almonds independently with reasonably small largest
angle. The almonds have the property that we may
triangulate outside of them arbitrarily and not affect
the lower bound of Lemma 1 by much. The following
theorem of Fuclid is central to this notion.

Theorem 2 Draw any circle with cord E =VU. For
any points X and X' on the circle and on the same
side of E, we have tVXU = /VX'U. Any point Z
inside the circle has LUZV > (UXV. Any point Z'
outside the circle has LY Z'V < tUXV.

We may restate this explicitly as follows.

Theorem 3 The measure of the angle between two
intersecting chords of a circle is equal to half the sum
of arc lengths between the chords. The measure of the
angle between a chord and a tangent line is equal to
half the arc length between the vertices of the chord.
See Figure 2.

Almond. Consider any input edge £ = UV. Let
W be the input vertex visible to F such that ZUWV



Figure 5: Rotating Y'Y’ is equivalent to rotating Q.

is maximized. If ZUWV > 2x/3, we define the al-
mond A for E to be the circular arc through U,V and
W. Otherwise, we define the almond for F to be the
circular arc in the polygon’s interior such that for any
point X on the arc ZUXV = 2x/3 (this is how the
constant w/6 arises in Theorem 1). We let ¢ denote
the center of the circle containing the almond arc. We
define the angle of an almond to be the angle LZUXV
for any point X on the almond, denoted Zopt. We
similarly define v(A) = v(Zopt). We denote the (nor-
malized) arc length of an almond by a, and note from
Theorem 3 that a = 2v(A).

3.1 TRIANGULATING ALMONDS

We now show how to triangulate an almond with ar-
bitrary Steiner points on it, so that no angle is much
larger than the angle of the almond. The proofs are
made particularly elegant by Theorem 3. To prove
Theorem 4 we first need the following two technical
lemmas.

The following ancient theorem can be viewed as a
generalization of Theorem 2. See Figure 2.

Lemma 2 For any point Q@ in a circle with center
¢, among all chords YY' of fized length, LY QY is
mazimized for c@Q@ L YY",

Proof. We view the problem as fixing the chord on
the circle and rotating ¢ about ¢, see Figure 5. The
trajectory of @ is a circle centered at ¢. Consider
the maximum angle almond A’ for YY"’ among all the
vertices of the trajectory of Q. Let Qo be the vertex
determining A’. Note Qo is also the point of tangency
between the almond circle of A’ and the trajectory
of @}, and hence lies on the line between ¢ and the
almond circle center. The perpendicular bisector of
Y'Y’ contains both ¢ and the center of the almond
circle, hence Qo lies on the perpendicular bisector of

Yy, 1

Lemma 3 Among all chords Y'Y’ through a point Q,
the arc length cut by the chord is minimized for ¢c@} L
YY'.

Proof. Chord length and cut arc length are mono-
tonically decreasing functions of distance to the circle
center c¢. The chord through @ whose distance to the
circle center ¢ is maximum has ¢cQ L YY", 1

Theorem 4 The convex hull of an edge £ = UV
and any number of vertices on its almond A may
be triangulated with a covering triangulation T with
v(T) > v(A)/2. At most one Steiner point is required.

Proof. We have two cases. In the first case there is
a long edge of the convex hull other than F| and we
may triangulate without adding a Steiner vertex. In

the second case there is no long convex hull edge other
than £, and we add a Steiner vertex near the “center”
of the almond. We parameterize our definition of long
by ka, and show that the optimal choice of k is 1/2.

Case 1. The first case is where a long convex hull
edge E' cuts more than k of the arc of A. That is, the
arc length between the vertices of the convex hull edge
E' is more than ka. Let U’ be the closer vertex of £’
to U, and V' the closer vertex of E' to V. Let £ be
the list of convex hull vertices between U and U’, and
R the list of those between V and V’'. We triangulate
by introducing an edge between U’ and each vertex of
R, and an edge between V and each vertex of L, see
Figure 3.

We now show that no angle of this triangulation is
large, specifically that v(7) > kv(A). Consider angle
LXY Z of any triangle. An upper bound on this angle
is the larger angle between XY and a tangent line at
Y (this is the limiting case as Z approaches Y'). The
arc length between X and Y is at most 27 minus the
arc length of £’ or 27 — ka. Hence from Theorem 3,
LtXYZ < 7w —kaf2,or v(LXYZ) > kv(A).

Case 2. The second case is where all the convex
hull egdes are short. That is, the arc length between
the vertices of any convex hull edge (except E) is at
most ka. Let E' = U'V’ be a fictitious chord of A,
parallel to E, with arc length exactly ka, see Figure
12. We say that E’ is fictitious in the sense that its
vertices are not necessarily given as vertices on A, and
hence are not necessarily in the construction 7. Let Q
be the point where the chords UV’ and U’V intersect.
We triangulate by adding Steiner vertex @ and edge
X @ for each of the vertices X on A, see Figure 4. We
now show that no angle of this triangulation is large,
specifically that v(7) > min(k, 1 — k)v(A).

Consider ZXYQ of any triangle. Asin case 1, an
upper bound on this angle is v, the larger angle be-
tween Y@ and the tangent at Y. Consider the chord
YY' containing YQ. By Theorem 3, v = © — b/2,
where b is the arc cut by YY’. By Lemma 3, b is
minimized by YY’ L ¢@Q. For this choice YY"’ is
parallel to £’ and closer to ¢, hence b > ka and
v(LXYQ) > kv(A).

Consider 2UQV. From Theorem 3 we have
LtUQV = (27 — a) + ka)/2 = © — (1 — k)a/2, or
v(£UQV) = (1 — k)r(A). Consider £XQY of any
other triangle. As we increase the length of XY,
this angle increases monotonically. Hence an upper
bound on ZXQ@QY is achieved in the case where XY
cuts arc length ka. We fix the length of Eat ka.
From Lemma 2, ZXQY is maximized for XY L ¢Q.
But for this choice XY is coincident with the ficti-
tious edge B! Thus /XQY < LQF = /QF so
v(LXQY)> (1—k)v(A).

Combining case 1 and 2, a lower bound on the mea-
sure of the angles in our construction 7 is min(k,1 —

k)v(A). This is maximized at v(A)/2 for k =1/2. |

4 TRIANGULATING P

We form a collection of polygons with holes called R,
lying inside P. R is a straight line approximation
to the region of P outside the visible portion of the
almonds.

Lemma 4 A point in an almond is wisible to either
all or none of the corresponding edge.

Proof. By definition no input vertex visible to any
point of E is interior to its almond A. Hence either
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Figure 3: Triangulating an almond when a convex hull edge £’ is long.
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Figure 4: Triangulating an almond when all convex hull edges are short.

Figure 10: No point is interior and visible to three
almonds. Some other edge of the input must make X
not visible to any point of F.

no edge is in an almond, or there is an edge F' closest
to E that completely passes through A. In the latter
case a point in A between E and F is visible to all of
FE, and a point on the far side of F' is visible to none

of £. 1

Consider the collection of almonds for all edges of
P. Tt is possible that they overlap, but not very much
in the following sense.

Lemma 5 No point is interior and visible to three
almonds.

Proof. Consider a point X strictly inside three al-
monds. By definition and Theorem 2, the chords (in-
put edges) of the almonds must each subtend an angle
greater than 27/3 at X. Hence for at least one of the
chords F = VU, there is a chord F that crosses XV,
see Figure 10. Hence by Lemma 4, X is not visible to

any of £. 1

The construction of R is illustrated in Figure 6
and Figure 7. Wherever two (or three) almond arcs
intersect and the intersection point is also visible to
each almond input edge, we introduce a Steiner vertex
at that point. Lemma 5 ensures that such a Steiner
point is not interior to some other almond.

If the input is a planar straight line graph, we add
the convex hull edges that are not prescribed by P.
We do not form almonds for these edges, but instead
treat them as almond arcs: We add a Steiner vertex
where such an edge intersects an almond. We ignore
the almonds outside of the convex hull arising from
edges of P lying on the convex hull. Vertices of P not
contained in any edge of P can be handled as follows.
If an isolated vertex is on the boundary of an almond,
no modifications are necessary. An isolated vertex in-
terior to R can be fattened into a small equilateral
triangle and treated as part of the input P. Alter-
natively, the algorithm used to triangulate R can be
made to handle such vertices. For example, the algo-
rithm of Bern, Mitchell and Ruppert [1993] and also
of Bern, Dobkin, and Eppstein [1991] requires only a
trivial modification.

If the input is a polygon, then we ignore almonds
outside of the polygon’s interior. These are the only
differences in our algorithm for polygons and PSLGs.

Interior edges. A given pair of almond arcs in-
tersect at zero, one or two vertices. An example of
when they intersect at one vertex is when their corre-
sponding input edges intersect at an input vertex at
an angle greater than 27/3. When a pair of almond
arcs intersect at two vertices, we introduce an edge
between them, called an interior edge. We similarly
add an interior edge when an arc intersects a convex
hull edge that is not prescribed by P. Interior edges
lie outside of R and as such are not subdivided in the
final triangulation.






Figure 8: Almonds for an example polygon generated by our implementation.
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Figure 9: The final covering triangulation generated by our implementation. Maximum angle = 0.8727, minimum
angle = 7.45e — 057, 6.48n points added by our algorithm, 53.33n points added by Bern, Mitchell and Ruppert

[1993].



Exterior edges. Consider a consecutive pair of
Steiner vertices X and Y on an almond A, where X
and Y arise from the intersection of distinct almonds
with A. We wish to ensure that any pair of Steiner
points are not too far apart: If the arc length of A
between X and Y is more than a/6, we add Steiner
points between X and Y to ensure that the arc length
between consecutive Steiner points is at most a/6 (un-
less there is an internal edge between them). We now
introduce an edge called an exterior edge between the
(non-internal) consecutive vertices on A. The bound-
ary of R is formed by the exterior edges, together with
exterior portions of convex hull edges in the case that
Pis a PSLG,

We triangulate each almond together with its
Steiner vertices according to Section 3.1, see Figure 7.
We call such triangles almond triangles. We triangu-
late R using the algorithm of Bern, Mitchell and Rup-
pert [1993] for triangulating polygons with holes so
that no angle is obtuse. This introduces Steiner points
on exterior edges. Since exterior edges are shared with
triangles interior to almonds, this makes the triangu-
lation nonconformal. We fix this situation as follows.
Let E be the almond triangle edge containing a non-
conformal vertex W, and Z the vertex of the almond
triangle opposite E. Then we add W7, see Figure 11
Note that any almond triangle has at most one exter-
nal edge, so that none of these edges cross. If there
are r vertices interior to an external edge of an almond
triangle, we thus form r 4+ 1 triangles. The fact that
we subdivided large exterior edges ensures that we do
not decrease the lower bound on angle measure from
Theorem 4.

Theorem 5 Any triangle T inside an almond A has
W(T) > v(A)[2.

Proof. We have two cases, depending on whether we
added a central Steiner point when we triangulated
the convex hull of A.

Case 1. The first case is where we did not add a
central Steiner point in the triangulation of A. Note
that exterior edges all cut arcs shorter than a/2, so
the edge £’ in Figure 3 is internal and has no non-
conformal Steiner points on it. Suppose AXYZ has
a nonconformal Steiner point W on XY, with ZY
the longest edge, and ZX and ZY both “long” in the
sense of Theorem 4. Then ZZW X is acute. Also
LZWY is less than the supplement of ZZY X, or
v(LZWY) > £ZYX. By Theorem 3 and Theorem
4 LZYX > d'[/2 > a4 = v(A)/2, where a’ is the
length of the almond arc cut by £.

Case 2. The second case is where we did add
a central Steiner point . Let AQXY be an al-
mond triangle with W on XY. Angles ZXQW and
LWQY are both smaller than ZX @Y, an original an-
gle already considered in Theorem 4. So it remains
to bound ZQWY, where without loss of generality
LQWY > QW X.

Now again ZQWY is less than the supplement of
LQY X, or v(LQWY) > LQY X, see Figure 11. As we
increase the distance from X to Y, ZQY X decreases,
so a tight lower bound on ZQY X is achieved when
XY has maximum allowable length. As stated above
this length is a/6, but for exposition we parameterize
the length as ja, then show that a choice of 7 = 1/6
is sufficient to prove the theorem.

Consider placing a fixed length XY in order to
minimize ZQY X. Consider chord YY" containing Y Q.
From Theorem 3, Z/QYX = (y — ja)/2, where y is

Figure 11: Fixing a nonconformal vertex W. The arc
length cut by YY"’ minus the arc length cut by XV
gives the angle at Y, which bounds the supplement of
the angle at W.

U E vV

U \Y,

Figure 12: Bounding y, the arc length between Y and
Y b > a/12.

the arc length cut by YY7. Thus minimizing 2QY X
is equivalent to minimizing y. IFrom Lemma 3 the
minimum ¥ 1s achieved by YY"’ L ¢Q.

We now find a lower bound on y for this construc-
tion, see Figure 12. Without loss of generality let Y
be between U and U’, where U’V is the fictitious edge
E’' defining Q.

Let ¢ be the distance from @ to E and ¢’ the dis-
tance from Q to E’. By construction AQUV and
AQU'V’ are similar, so ¢'/q = |E'|/|E|, the ratio of
edge lengths. Since E cuts a longer arc than £’ we
have that |E’|/|E| is greater than the ratio of the cut
arc lengths, 1/2. Hence ¢'/q > 1/2.

Let b be the arc length between Y and V and b’
the arc length between Y and V'. Since E is closer to
c than is B’ we also have that b'/b > ¢'/q > 1/2. By
construction b+ b = a/4, so b’ > a/12.

Since y = a/2 + 2b', we have LQYX = (a/2 +
20" —ja)/2 > (% —j)v(A). Taking y = 1/6 is sufficient
to complete the proof. We also note that the above
inequalities are tight as v(A) approaches zero, so that
taking j < 1/6 is also necessary. 1

There is a slight tradeoff between the maximum
angle bound and the cardinality of the triangulation:
From the proof of Theorem 5 bounding the maximum
length of an external edge by any value in [é, %)a is
sufficient to guarantee that the angles in our triangu-
lation are all less than a constant factor times v(A). In
our implementation figures we have chosen a/3, which
guarantees that v(T) > v(A)/3 for all triangles in al-
monds, and yields reasonable cardinality.

5 STEINER-VERTEX AND TIME
BOUNDS

Theorem 6 The cardinality of our triangulation is at
most 17Tn + S(15n), where n is the number of vertices
in the input P, and S(n) = O(n) is the cardinality of
the triangulation of R.

Proof. We first consider our algorithm for polygons.
Recall that no point is interior and visible to three al-
monds. For every pair of intersecting almonds regions,
we pick a point p common to both almond regions.
We may draw a line segment from p to the midpoint



of each of the two corresponding input edges. This
forms a graph, with the input edges corresponding to
vertices of the graph, and intersecting almonds corre-
sponding to edges of the graph. The graph is planar,
and hence, by Euler’s formula, the number of edges is
at most 3n. FEach graph edge corresponds to an in-
ternal edge (or an isolated vertex). Hence there are
at most 6n Steiner points on almond arcs, plus those
added to subdivide large external edges. An external
edge must cut more than one sixth of an almond arc
in order to be considered large, so at most 5n Steiner
points are added in this way. Hence, R has at most
11n vertices. Since each almond region requires at
most one center Steiner point to triangulate, trian-
gulating the almond regions adds at most n center
Steiner vertices. Hence the cardinality of our trian-
gulation of a polygon is at most 12n + S(11n). The
algorithm of Bern, Mitchell and Ruppert [1993] trian-
gulates R with only S(11n) = O(n) vertices.

For PSLG, there are two almonds for each input
edge. We may require 5n more Steiner points to sub-
divide long exterior edges, and n more center ver-
tices to triangulate almonds, for a total of at most
17n + S(15n) vertices. W

It 1s interesting to compare this with the fact that
a Steiner triangulation of a PSLG with a constant
upper bound on the largest angle may require Q(n2)
Steiner points. This fact follows from an example due
to Paterson in Bern, Dobkin and Eppstein[1991].

Theorem 7 The running time of the algorithm is
O(nlogn) 4+ T(15n), where T(n) = O(nlog® n) is the

running time of the algorithm used to triangulate R.

Proof. First for each edge £ we must determine the
vertex V' that defines the almond A at E, assuming
the almond has angle less than 27/3. The key obser-
vation is that AV F is a triangle of the constrained
Delaunay triangulation of P! The almond contains
no input vertex visible to V. By definition AV E is
a triangle of the constrained Delaunay triangulation
if the circle through V' with chord F contains no ver-
tex visible to both £ and V. The region of the circle
outside of the almond is not visible to V', and hence
the characterizations coincide. Thus the almonds may
be determined by computing the constrained Delau-
nay triangulation of the input in time O(nlogn) via
Chew[1989].

The next step is to compute the intersection of
the n almonds. There are only a linear number of
intersection points, and the almonds are circular arcs.
Hence this can be done in optimal O(nlogn) time
using plane sweep (see Preparata and Shamos[1985]).

The order of Steiner vertices along almond arcs is
determined by sorting, after which it takes only linear
time to triangulate the almonds. In linear time it
is easy to fix nonconformal triangles created by the
triangulation of R. N

6 OPEN PROBLEMS

There are several other measures for which near op-
timal covering triangulations are desirable. Most no-
tably, a covering triangulation that has guaranteed
minimum height is needed in Mitchell and Vava-
sis[1992] in the triangulation of the surface of an oc-
tree box, in order to guarantee good three dimensional
aspect ratio of tetrahedra. In fact, any three dimen-
sional triangulation algorithm with bounded aspect

ratio implicitly generates a two dimensional Steiner
triangulation with bounded height on the surface of a
small sphere centered at any input vertex.

Like minmax angle, maxmin height is also a mea-
sure which has the anchor property, so one might sup-
pose the present work could be extended to maxmin
height as well. A rectangle with semicircular ends is
the locus of points determining the maximum height
possible for an input edge, and is the analog of the
almonds for minmax height. However, we conjecture
that it is not possible to triangulate such a rectangle
given arbitrary Steiner points on its boundary, and
achieve triangle height within a constant factor of the
height of the rectangle. Thus our results do not im-
mediately generalize to maxmin height.

Also open is the existence of a covering triangu-
lation algorithm that optimizes a measure that is de-
pendent on both the largest and smallest angles. It
appears impossible to generate a covering triangula-
tion that simultaneously achieves minimum angle and
maximum angle close to optimal.
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