Scott A. Mitchell
Computational Geometry

"Linearsize nonobtuse triangulation of polygons" is a circle packing based algorithm for generating a triangulation consisting of all right triangles.
"Finding a covering triangulation whose maximum angle is provably small" considers the restriction that no boundary Steinervertices are allowed. This algorithm buffers the input edges with circular arcs, then uses the above algorithm as a subroutine.
"Quality mesh generation in three dimensions" describes a three dimensional octree based tetrahedralization algorithm for no small (solid or dihedral) angles. Probably one of the more novel features are that octree boxes are duplicated for each connected component of their intersection with the input. This avoids the small boxsize "bleedthrough" effect.
The following files are all pdf:
Mesh Generation With Provable Quality Bounds, Scott A. Mitchell, Applied Math Cornell Ph.D. Thesis. On Cornell CS Tech Report TR931327 (1993) , and Cornell CS Tech Reports page.
Cardinality Bounds for Triangulations with Bounded Minimum Angle, S. A. Mitchell, Sixth Canadian Conference on Computational Geometry (1994), 326331.
LinearSize Nonobtuse Triangulation of Polygons, M. Bern, S. A. Mitchell and J. Ruppert, Proc. 10th Annual Symposium on Computational Geometry (1994), 121130.
Refining a Triangulation of a Planar StraightLine Graph to Eliminate Large Angles, S. A. Mitchell, Thirtyfourth Annual Symposium on Foundations of Computer Science (FOCS '93), 583591.
Finding a Covering Triangulation Whose Maximum Angle is Provably Small, S. A. Mitchell, Int. J. Comput. Geometry Appl., pp. 520, 1997. And Seventeenth Annual (Australasian) Computer Science Conference, pp. 5564, 1994. And the 1993 ARO/MSI Stony Brook Workshop on Computational Geometry.
Approximating the MaxMinAngle Covering Triangulation, S. A. Mitchell, Proc. Fifth Canadian Conference on Computational Geometry (1993), 3641. Also in Ph.D. Thesis, Cornell CS TR 921327 and COMPUTATIONAL GEOMETRY: Theory and Applications 7 (1997) 93111.
Quality Mesh Generation in Three Dimensions, S. A. Mitchell and S. A. Vavasis, Proc. 8th Annual Symposium on Computational Geometry (1992), 212221. Also presented a twodimensional implementation at the 1991 SUNY Stony Brook Workshop on Computational Geometry. Also in Ph.D. Thesis, Cornell CS TR 921327.
EdgeInsertion for Optimal Triangulations, M. Bern, H. Edelsbrunner, D. Eppstein, S. A. Mitchell, and T. S. Tan, Proc. Latin American Theoretical Informatics 1992, 4660. Also Discrete & Computational Geometry 10:4765 (1993) SpringerVerlag New York Inc.
An Aspect Ratio Bound for Triangulating a dGrid Cut by a Hyperplace, S. A. Mitchell and S. A. Vavasis, Proc. 12th Annual Symposium on Computational Geometry, (1996) 4857.
Quality Mesh Generation in Higher Dimensions, Scott A. Mitchell and Stephen A. Vavasis, SIAM Journal on Computing Volume 29, Number 4, pp. 13341370. 1999.