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Abstract— We propose the RatNest protocol for low-overhead 

ad-hoc routing over a small wireless radio network in support of 
certain novel communication patterns and nodes. Nodes have 
fixed position in an urban environment and have up to five 
dedicated wireless radio channels to nearby nodes. Links vary in 
quality and reliability. The protocol provides for the quick 
establishment and repair of routes to support circuit-like 
communication of both streaming video and sensor-chirps. As in 
link-state routing, our protocol stores a graph representation of 
the network at each node, annotated with transient information 
about the network state. Transient information is gathered using 
both pro-active and reactive mechanisms. To establish a circuit, a 
shortest-latency or highest-throughput path is computed locally 
on this graph, then the route is locally adapted and verified on 
the actual network. In this paper we focus on the main 
algorithms of the protocol and some analysis. We do not report 
simulation results in this paper, but we have implemented a 
prototype in C++ and integrated it into OPNET Modeler. 
 

Index Terms— Communication system routing  
 

I. INTRODUCTION 
E propose the RatNest protocol for ad-hoc 
communication over a small radio network. Our 

scenario of interest is non-traditional for ad-hoc networks, but 
solves a particular scenario of military surveillance in foreign 
urban environments. The application network is relatively 
small, comprising a few hundred nodes. The dynamics of the 
network are limited. The nodes are non-mobile, but fail and 
recover occasionally. Nodes have essentially unlimited power, 
but limited compute capabilities. Nodes are sparsely arranged 
in an urban environment, say at street corners; see figure 1. 
Links communicate through line of sight; mainly along streets 
or urban canyons. Each node has a dedicated radio link to 
each of its neighbors, but it only has a few (up to 5) neighbors. 
Link quality varies slightly, so some links are preferred over 
others. We weight links inversely proportional to bandwidth, 
and weights are bounded between 1 and 4.  

The communication pattern is that of long-lived circuits. 
Circuits are requested by a central (human) controller, are 
time-sensitive, and have no predictable pattern. Each circuit 
transmits either high-bandwidth streaming video/audio, or 

low-bandwidth (but latency-sensitive) sensor chirps. We 
consider two metrics for paths: for sensor chirps we use path 
length, the sum of link weights along the path; for streaming 
data we use bottleneck, the maximum weight over all links 
along the path.  
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The structured society of naked mole rat colonies provides 
some metaphors and inspiration for RatNest, but we are not 
“bio-inspired”[12] in the sense of accurately implementing in 
software specific natural activity. Nodes of the network are 
called “nests,” after the hub-like nests of naked mole rats. 
Unless otherwise stated, features described in this paper have 
been implemented in a C++ prototype integrated with 

OPNET. 

Fig. 1.  Right, circuit in a sample of an urban-canyon network. Left, an 
induced graph G with a few edge weights labeled. 

A. Protocol Goals 
In our urban surveillance scenario it is important to 

establish a circuit quickly and reliably maintain it in order to 
monitor and record an activity of interest. The following 
describes the prescribed goals and derived requirements, in 
priority order:  

1. Low routing overhead, especially when data are in hand. 
• Only a few bits for establishing routes, a few bits of 

message overhead for maintenance. 
2. Low memory and computation for each nest. 

• Messages are not queued. If a circuit can not be 
established (or was broken and cannot be repaired) 
then packets are dropped.  

• Little memory for storing routing tables, graphs, etc. 
• A simpler and faster routing engine is preferred. 

3. High transmission data-rates (good circuits). 
• High bandwidth for streams, low latency for sensors. 

4. Route repair or “self-healing.” 
• In the event of a nest failure, find an alternate route. 

Since packets are dropped while the route is repaired, 
repairing the route quickly and locally is more 
important than finding the best-metric route.  

In addition, a very simple protocol is desired for 
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verification of reliability. These goals compete, so the 
protocol design seeks reasonable tradeoffs among them. The 
RatNest protocol is tailored to the strengths and weaknesses of 
the nests’ hardware.  

B. Our Scenario Compared to Other Settings 
Our setting has some similarities to traditional sensor 

networks, but some key differences. Node failure patterns and 
the goal of low routing overhead are similar. Network layout, 
and the lack of GPS position and time information is similar to 
a deliberately placed (non-scattered) sensor network. 
However, our nodes are much more compute-capable and 
have essentially unlimited power. Our setting includes high 
bandwidth data as in other recent multimedia surveillance 
sensor networks[1], but also low-latency few-bits messages, 
and time-sensitive human-selected circuit establishment. 
Circuits are of interest in telecommunications, but our network 
is different: our network is more dynamic, smaller, and 
simpler; nodes are less capable;  links have less (routing) 
bandwidth. Also the fraction of the network being used for 
active circuits is much less so it is undesirable to pre-compute 
a global schema of collision-avoiding routes because 
individual routes would be inherently sub-optimal.  

Our setting also has some similarities to traditional wireless 
radio networks, but some key differences. The main difference 
is that nodes are fixed in our setting, which motivates graphs 
rather than routing tables. There has been some recent interest 
in streaming video over MANETs[5] (Mobile Ad-Hoc Radio 
Networks), so our interest in circuits is novel but not unique. 
Centralized control, and the high-consequences for data 
collection, allows the RatNest protocol to ignore some issues 
of route admission. In contrast to both traditional sensor and 
wireless settings, our nodes have multiple dedicated directed 
channels.   

II. CONCEPTS AND DEFINITIONS 

A. Definitions 
P = a directed circuit path from source S to destination D 

over intermediate nests Ti, i.e. P = {S=T0, T1, … Tk=D} 
L = the number of nests in P, i.e. k when P = {T0, T1, … 

Tk} 
N = number of nests in the network, between 100 and 1000. 
G = persistent graph of the network: nodes are all the nests, 

directed edges are radio links between pairs of nests. This 
graph is fixed regardless of whether any nest is actually up. 

H = transient graph of the network: G annotated with 
(possibly out-of-date) information X on which nests are 
currently up, and which links are in use by established 
circuits. 

X = set of transient network features in a packet used to 
update H. Either a nest is up or it is down. Either a link is 
dedicated to an established circuit or it is available.  

Blinking = when a nest fails it “blinks off” and when it 
recovers it “blinks on.” (Naked mole rats are nearly blind.) 

Rat = a packet containing X, that traverses the network. 

Nests receive, interpret, modify, and forward rats. 
 

B. Local Graphs G and H 
 Since nests are non-mobile, we chose for each nest to 

maintain a graph model of the network in its local memory, as 
in link-state routing, e.g. OSPF[2]. This model includes the 
graph G of all nests of the network, with edge weights related 
to the bandwidth of each link. This “persistent” graph G is 
annotated with transient information about which nests are 
currently blinked on or off, and which links are currently 
dedicated to any circuit, to produce the transient graph H. 
(The nest keeps detailed information about the entire circuits 
through its own links, but to reduce memory requirements it 
does not store which circuit is using which edge for non-local 
links.) Graphs G and H require about the same memory as 
distance-vector routing  tables. Competing paradigms that 
exploit geographic information[4], and also hierarchical 
routing protocols with implicit address capabilities, are able to 
use less memory; but our scenario does not have that 
structure. Constructing virtual geographic coordinates[9] or 
overlay networks[4] is possible but would overly complicate 
our algorithms and does not seem well suited to our traffic 
patterns. The graph model is size O(N), the same order as the 
minimal amount of information needed to store just the 
existence (address) of nests in the graph. The geographic 
persistence of our network, and the nature of the transient 
information makes the graph much more appealing than in 
most highly mobile ad-hoc scenarios in the literature.[10] 

 
1) Time Stamping 

Transient information on H may be out of date. The 
transient information comes pro-actively from rats and re-
actively from route validation and other feedback. While the 
nests have a local clock for time-outs, there is no global clock, 
no GPS. We consider two methods of dealing with the 
asynchrony of graph information.  

The first method is “overwrite,” and simply assumes that 
the last-received information is most accurate,  and  
overwrites H whenever new information is received. This is 
the simplest approach and performs well enough because the 
network is relatively static on the time-scale of route 
validation, repair, and pro-active and event-driven rats;  and 
these all have very local information based on probing the 
status of a nest’s neighbors. 

The second method is “sequence-numbering:”[6] nests 
assign a sequence number to any packet they send out, and a 
receiving nest can use it to tell whether received or stored 
information is more current. Links are unidirectional, so an 
edge is owned by a unique nest and its sequence numbers are  
consistent. When a nest fails and recovers it must gather its 
old sequence number from its neighbors’ memories. This 
more complicated approach is required when the network is 
changing rapidly compared to the amount of protocol traffic. 
(“Sequence-numbering” is not implemented in the prototype.) 
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III. RATNEST PROTOCOL 
One main algorithm of the protocol is circuit establishment, 

which includes path computation, adaptation, and updating H. 
We also describe route repair, which is similar to path 
adaptation. Network initialization is fairly standard and 
relatively unimportant in our application. Packet 
acknowledgement and route dismissal are standard, modulo 
some time-out values which depend on whether streaming 
video or sensor chirps are expected, so these are omitted for 
brevity. We describe a couple of pro-active strategies for 
keeping H up to date. 

A. Network and Persistent Graph Initialization 
When the network is deployed, nests discover their 

neighbors up to two hops away and dedicate channels to avoid 
radio interference. After a delay, nests flood the network with 
a packet describing its ID (address) and links. Using the radios 
in promiscuous mode, rather than as dedicated channels, 
speeds this process. Each nest builds G from these messages. 

B. Circuit Establishment: 
A distinguishing feature of RatNest is that each source nest 

first computes the desired (shortest) path locally on its 
transient graph H, rather than going directly to the network. 
That is, the initial desired path is fully source routed as in 
DSR.[4] The source nest then seeks to validate this route in 
the actual network; there may be competing circuits or 
blinked-off nests that the source does not know about. The 
protocol attempts to deal with these problems locally. Some 
data bandwidth is reserved for routing protocol traffic, so that 
a nest fully participates in all rat and route traffic, even if its 
links are reserved or participating in a circuit, unless the nest 
itself is off. (Circuit establishment with the detour variation is 
fully implemented. The fork variation is not implemented.) 

 
1) Path Computation 

A source nest S is told by the central (human) controller to 
establish a circuit to a given destination nest D. It computes a 
shortest weighted path to D, P = {S=T0, T1, … Tk=D}, over its 
local graph H,. Here “shortest” means either highest-
bandwidth or lowest-latency, and is also specified by the 
controller. The computed path may be sub-optimal, because of 
stale information in H. (E.g. if a link is thought to be in 
another circuit, then it is not part of H.) S then attempts to 
establish this path in the “real” network. Beginning with S, a 
nest Ti sends a route validation packet with the desired path to 
the next nest Ti+1 on the path. Nests reserve their requested 
link. If D is reached the circuit is established and two return 
route acknowledgement messages are sent backward along the 
route from D to S. The first message is lightweight, containing 
only the loop-free circuit that was established. This is done in 
order to establish the circuit as quickly as possible. The 
second message is heavier weight, containing transient graph 
information used to update the H of each nest. 

 

2) Path Adaptation 
It may be that a nest Ti can not establish the prescribed path 

to nest Ti+1 because either Ti+1 has blinked off or the directed 
link from Ti to Ti+1 is already part of an established circuit for 
a different (S, D) pair; in either case we say that Ti has 
encountered a problem X and must attempt to find an 
alternative route. The alternate route is always the 
concatenation of the sub-route of P from S to Ti, plus a new 
shortest route from Ti to D. This route is likely to be longer 
than the shortest route that the source could compute if it had 
known about X ahead of time. Hence this protocol represents 
a choice of low overhead and local adaptation (robustness) 
over getting the best-metric routes, which is consistent with 
our protocol goals. The protocol does not burden forward 
communication with the overhead of transient information 
until a problem is encountered, and then only with the 
particular problems X encountered. This reduces overhead and 
speeds up circuit completion. See figure 2. 

a) Path Adaptation Variants Detour and Fork 
We consider two path adaptation variants, called detour and 

fork. Both variants accumulate and forward certain problems 
X. If the problem is a competing circuit reservation for a link, 
all links of the competing circuit are accumulated in X. 
(Recall this information is available because a nest keeps 
detailed information about the circuits it is a part of, namely 
the entire route.) This transient information may be useful 
downstream right away, as these nests might need to re-route 
and avoid those X’s. Non-problem transient information is 
updated only on route acknowledgement. 

Detour. Ti computes a new shortest path from itself to D 
using its H updated with any X’s in the route validation 
packet. It updates the route validation packet with the new 
path P′, appends X, and forwards the packet to T′i+1. The 
protocol continues as before.  

Fork. Ti forwards a copy of the route validation packet 
(along with X) to each of its blinked-on neighbors; Ti-1 is 
skipped unless it is the only blinked-on neighbor. Each 
neighbor computes a new shortest path to D and the protocol 
continues as in the detour variant. If another problem X is hit, 
the packet detours but does not fork again. If a packet hits a 
nest that another fork already visited, the packet attempts to 
detour around that nest and so establish a nest-independent 
alternate path to D. The first route validation packet to reach 
D “wins” and generates a route acknowledgement. (“Fork” is 
not implemented; given the extra overhead it would only be 
worth doing in niche contexts.)  

b) New Path Features 
It is possible that the shortest path (perhaps the only path) 

from an intermediate nest to the destination is to revisit prior 
nests and re-trace prior hops, e.g. T′i+1 = Ti-1. This is allowed 
temporarily in order to keep the circuit request progressing 
quickly. But care is taken so that it does not degrade the final 
path:  backtracks and other types of loops are pruned from the 
circuit when the destination is reached. Note that retracing is 
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not stymied by competing circuit reservations along the links 
in the backwards direction, because a nest can determine that a 
retraced link will eventually be pruned and allow the route 
validation traffic to temporarily use it. See figure 2. 

c) Recourse 
It may be that there is no route on H from a nest to D. In 

that case, the nest attempts a “recourse” strategy. Each nest 
may attempt a recourse strategy only once for a given circuit 
request. The nest attempts to find a path on a modified graph 
H′ which has more available edges and nests than H. Here H′ 
is G annotated with just the accumulated problems X and any 
other information ensured to be current. (E.g. It is ensured that 
all the nests upstream in the traverse are blinked-on, and the 
active circuits through this nest make some edges unavailable. 
But it is uncertain whether circuits elsewhere in the network 
have been dismissed, and whether remote nests have blinked 
off, so these features are not included in H′.) If there is a 
recourse route, it is validated on the real network as before. 
Otherwise, the nest sends circuit acknowledgement messages 
back to the source saying there is no route. To keep overhead 
low, only a few, O(log(L), nests attempt a recourse. 

d) Termination 
This route validation strategy works well in practice for our 

scenario. In addition, the protocol is provably guaranteed to 
terminate, although the theoretical bounds are not optimal. 
Each computed path is finite, O(N). A new path is only 
computed when the route validation packet goes through a 
nest that has a neighbor that is unexpectedly down, or a link 
that is unexpectedly reserved for another circuit. Each nest has 
only a few neighbors, 5, so the number of reroutes is also 

O(N). Hence the number of messages sent throughout the 
network is O(N2), and each message is O(N) in size. (The size 
of a message is the length of the path plus the size of 
accumulated X’s.) In practice the number and size of 
messages are usually much smaller. Initial paths are usually 
shorter than the diameter of the graph. Even when competing 
circuits completely block the destination from the source, 
usually only a handful of reroutes are attempted, and they are 
usually only a few hops long in an attempt to get around a 
single nest. In our scenario only 10% of the nests are likely to 
be down at any given time. Hence nest-blinked-off blockages 
X are rare and sparse, and it is likely that such a problem can 
be re-routed around locally. Note also that nests do not 
“flicker”, meaning that if a nest is down or up, it stays in that 
state longer than the time needed to establish a route. Hence it 
will switch states at most once and even that with low 
probability. In addition, for large networks, we add a 
maximum hop count to the packet. 

S

D

source routed path

XC

detourAdetourC

unexpected
blocking circuit

TATC
XA

TB

S

D

source routed path

XC

detourAdetourC

unexpected
blocking circuit

TATC
XA

TB

Fig. 2.  Detour example. Source S does not know about the unexpected 
blocking circuit, so source-routes using one of its links. At TA the blocking 
link XA  is discovered and detourA is selected, which goes through TB to TC

and then continues on the original path. At TC it is discovered that nest XC is 
unexpectedly blinked off.  So detourC is selected, which avoids both XC and 
all the links of the unexpected blocking circuit. The route validation packet 
reaches D. The  first link of detourA is pruned from the route and a route 
acknowledgement is sent back along the other links from D to S.  

e) Failure 
It may be that there is no path (in either H or H′) from a 

nest Ti to D. In this failure condition, the nest returns two 
route validation packets with a failure message, using the 
same mechanisms as described below. It sends these to its 
“spawning nest.” In the detour variant, the spawning nest is S. 
In the fork variant, the spawning nest is the one that generated 
the multiple forked messages. Since some other fork may have 
found a valid route to D, the spawning nest only sends a 
failure message to S if it receives a failure messages from all 
of its forks.  

f) Pruning and Route Acknowledgement 
The hoped-for case is that a route validation packet actually 

reaches D. In this case, D generates two route 
acknowledgement packets. The first is to quickly establish the 
circuit, the second to update H and clean up unneeded link 
reservations. The destination computes a pruned, loop-free 
circuit in the following simple way. The destination checks 
each nest of the loop, starting from the source, in sequence. If 
the nest appears more than once in the path, the portion of the 
path between its first and last occurrence is removed (pruned). 
The brute-force solution  takes O(L2) time and O(L) space, 
where L is the length of the traverse taken from S to D. 
(Theoretical bounds are O(L log L). In the worst case L is 
O(N2) but in practice it is usually smaller than the diameter of 
the graph. The length of the circuit is O(N), since each nest 
appears at most once. The first acknowledgement packet is 
sent along the pruned circuit only, and contains just the 
pruned route and a message of “success.” Each nest of the 
circuit stores the complete circuit, and forwards the 
acknowledgement to the next nest back towards the source. 
The source S is now ready to send data to D. 

The simple pruning algorithm avoids some complicated 
choices in the case of a complicated set of loops as in figure 3. 

After a delay, the destination sends the second 
acknowledgement packet, which contains the full traverse the 
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packet took from S to D, along with the pruned circuit, and 
the X problems accumulated during the forward traverse. 
Each nest updates its link reservations, removing any 
reservations it made during the traverse that are not in the 
pruned circuit. The first (or only) time a nest is visited on the 
backwards traverse, the nest gathers its knowledge of all 
circuits through it, and the blinked on/off status of all of its 
immediate neighbors; although these graph updates are not 
“problems,” it appends them to X to be forwarded to the prior 
nest of the traverse. The second (or only) time a nest is 
traversed, these updates X are applied to H. The updates 
implied by the successful traverse and established (S, D) 
circuit are also applied to H: all the nests traversed were up, 
and, if the circuit was successful, the links of the circuit are 

now unavailable. 

g) Reservation 
Care is taken so that two incompatible routes (between 

different S/D pairs) are not established nearly simultaneously, 
and to avoid other race conditions. Intermediate nests Ti 
reserve requested links immediately upon receiving the first 
route validation packet, not waiting for the route 
acknowledgement (except during fork). This policy keeps 
negotiations and route acknowledgement simple, but requires 
that if the route is not established, or the route that is 
established detours around that link, the nest should be 
informed. Reservations time out if a route acknowledgement 
is not received, which also covers the rare case of a nest 
failure occurring between reservation and acknowledgement 
which  cuts off the acknowledgement packet to upstream 
nests. In the fork variant, nests downstream of the fork set 
reservations only on route acknowledgement. This prevents 
too much of the network from being reserved for alternative 
routes that are never used, at the risk of non-reserved links 
being taken by other circuits. (Details of the mechanisms that 
handle this case are omitted for brevity.) 
3) Route Repair 

Once established, a circuit can not be interrupted by any 
other circuit request. However, a nest Ti (=X) on the circuit 
could blink off. In this case, a route repair is initiated. The 
main goal is to quickly re-establish the circuit; getting a short 
path is of secondary consideration. The nest prior to the 
problem, Ti-1, will be the first to notice the problem. Ti-1 
computes a new shortest path from it to any nest in the sub-

path Ti+1 to D; this shortest path is called a “patch,” Ti-1 is 
called the “patch head,” the sub-path Ti+1 to D is the “tail”, 
and the nest of the tail that is the patch’s destination is the 
“patch tail.” The patch head then attempts to establish that 
path on the real network using the same basic mechanisms as 
for route validation. That is, nests may locally reroute. If loops 
in the whole circuit are created, which may occur even if the 
patch is loop-free, they are pruned on acknowledgement as 
before. If there is no path from Ti-1 to the tail, then the 
protocol backs up two hops to Ti-3 and attempts to use it as a 
patch head. Every time there is no route, the protocol backs up 
the patch head twice as many hops as before (i.e. 2, 4, 8, 16 
...) and attempts to reach the same tail. (In order to keep 
overhead low, recourse rerouting is only allowed if the patch 
head is S.) If it is determined that there is no route to the tail, 
or a route repair is not successful within a certain number of 
seconds (implemented, but the choice of the length of time has 
not been vetted), then the route is dismissed. If a route repair 
is successful, the patch tail prunes the new circuit and sends 
an updated description to all nests upstream and downstream.  
The segments of the old circuit that are circumvented are 
dismissed. 

 
Fig. 3. A trefoil presents some interesting choices for loop pruning. Since 
nest C is the first nest visited twice from S to D, RatNest would prune at nest 
C by removing sub-paths 6, 5, 4. The resulting circuit is sub-paths 7, 3, 2, 1. 

C. Shortest Path Computations 
Shortest paths are computed using dynamic programming. 

When the metric is the sum of link weights, then this is 
Dijkstra’s algorithm, as in OSPF[2][3]. The same basic 
dynamic program also works when the metric is the 
bottleneck, so implementing both options was easy. The only 
difference is what value to use  when updating distances. Let 
Dj(S,T) denote the intermediate stage j computation of the 
distance from S to T. When updating distances using link L of 
nest U, then for the bottleneck metric Dj+1(S,T) = max( 
Dj(S,U), weight(L) ), in contrast to the usual Dj+1(S,T) = 
Dj(S,U) + weight(L) in Dijkstra. Recall that dynamic 
programming can compute the shortest path from S to all 
nests of the graph, so that the theoretical time-bound for 
shortest path computations for route repair is no more 
expensive than those for circuit initialization.  

D. Pro-active transient information mechanisms 
Pro-active mechanisms are not included in the C++ prototype. 
1) Soldier Rats 

A fixed pool of soldier rats (say N/10) pro-actively roams 
the network and update nests with transient information. 
Having a fixed pool of agents is a common bio-inspired 
strategy[12] with the following two desirable features: it is a 
relatively simple protocol and it transitions well between static 
and dynamic networks. By “transitions well”, we mean: it 
requires no information about the rate of dynamics; it provides 
a lot of useful information if the network is relatively static; 
the information is less useful if the network is highly dynamic, 
but the overhead does not grow if the network is dynamic.  

A soldier rat saves transient information about the last 20 
nests visited and their links. For a given nest, it saves its blink 
state, the reservations of all the edges of all circuits through it, 
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and the blink state of its neighbors. At each hop, H is updated, 
then the soldier rat is updated by deleting the oldest 
information and adding the newest. We take care not to add 
redundant information, but update its age, which reduces 
protocol overhead at the expense of some computation. 

On initialization a soldier rat picks a random destination D 
in G. The nest it is on computes a shortest path on G to D and 
the soldier rat deterministically follows that path until it 
reaches D or encounters a nest that has blinked off. Then it 
picks a new random destination. In this way, we suspect that 
soldier rats will preferentially spend time in the important 
parts of the graph, the areas that are on a lot of shortest paths, 
as well as on problem (dynamic) areas of the graph. 
(Alternatives include gossip-based strategies and ways to bias 
the search towards regions that have not been explored 
recently.[2]) 

A soldier rat may die (i.e. the nest it is on blinks off) or get 
isolated (i.e. the network becomes disconnected and part of 
the network has no soldier rats). These are rare but possible. 
To keep the population stable, if a nest has not been visited by 
a soldier rat in a given time, it generates a new soldier rat. 
This is another common swarm strategy.  
2) Tunneling Rats 

Tunneling Rats are event-driven rats. The events that 
generate a tunneling rat are route establishment, route 
dismissal, nest blinking on, and nest blinking off. 

When a route is dismissed, each nest on the route generates 
one tunneling rat. If the nest received an explicit route 
dismissal packet, then the tunneling rat contains the 
information that all of the links of the circuit are now 
available. Otherwise it is dismissing the route due to a time-
out, and the tunneling rat only knows that the links of that 
particular nest (and perhaps its neighbors) are now available. 
Each nest sends its tunneling rat to a (different) random nest 
in G, using the same mechanism as for soldier rats. A 
tunneling rat dies when it reaches its destination or encounters 
a down nest, but recall rats may still traverse across links in an 
active circuit using the protocol-reserved bandwidth. 

A nest that has not received normal traffic from one of its 
neighbor for a long time performs a simple handshake to 
discover if the neighbor has changed state. When a nest blinks 
off, each of its neighbors will detect it and generate a 
tunneling rat with the fact that the nest is blinked-off. When a 
nest blinks on, it recovers G and its last sequence number 
from its neighbors, then sends an event-driven tunneling rat 
with the fact that it is now blinked on.  These rats are sent out 
in a sparse broadcast as in the case of route dismissal. 

IV. CONCLUSION 
The RatNest protocol meets the objectives of a particular 

surveillance scenario. The protocol uses a mix of features 
borrowed from other protocols and adapted to this scenario’s 
capabilities and needs. We have described the main algorithms 
and some analysis, focusing on the aspects that appear to have 
the most general interest and applicability. We believe that our 
annotated graph approach has certain advantages, and has no 

critical shortcomings in this particular setting where the 
dynamics of the network are limited, and we are not 
constrained by other layers of the protocol. Follow-on work 
may involve tuning protocol parameters and simulation 
studies. We speculate that naked mole rats, with their 
hierarchical societies, specialized roles, complex brains, and 
network-like habitat, may provide some bio-inspired 
algorithms (say for network discovery and maintenance) that 
are fundamentally different than the more well studied insect-
inspired ones.[12] 
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