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Outline 

•  Application context 
•  Distances 
•  3d plots 
•  Algebraic reformulation as Z, Q 
•  Ratios 
•  Worst-case difference construction 



Text Document Clustering at Sandia 
 

Source Credit: Danny Dunlavy  

Example Software:  
Prototype-2 from Network Grand Challenge LDRD  

Dataflow 

Problem: given a pile of documents, categorize them 
-  so you only have to read one category  
-  to identify outliers not in any category 

Example: How strange is my technical paper, the one I’m giving this talk on? 

•  Google Scholar search “mixture model geometry”, get 529,000 hits, save them all to local disk 
•  Throw out “the”, “and”, “however” to de-noise. Stem “geometrical”, “geometry”, to “geometry”. 
•  Identify grammar, to help answer “expository or framing?” 
•  Identify authors, institutions, to help identify relationships. 

•  Each document is a bag of “words”, unordered 
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Source Credit: David G. Robinson 

Reduce word-space to feature-space 
e.g. 20,000 dimensions to 50 
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Cluster points 
•  Pick distance function  
•  Pick distance threshold 
•  Build a graph,  
  with an edge between documents x,y if 
distance(x,y) < threshold 
•  Look at the graph 

Need coherent research program. Distances are one puzzle piece. 

  

What happens if I tweak one of the 50+ knobs on this Frankenstein? Why? Predictable changes? 
What does it all mean? 

This or That? 
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Which Distance? 
•  Criteria 

–  Reproduce ground truth? 
•  What ground truth?  Journal I sent my paper to?  Expert opinion? 

–  Stability of outcome? 
•  stability ≠ accuracy 

–  Use the one this application area always uses? 
•  Maybe not such a bad idea: leverage insight, one knob at a time comparisons  

–  Information theory? 
•  “I think entropy is relevant and this distance measures it” 

•  Let’s try something else 
–  Does it even matter? When do two distance functions give a different ordering to points? 
–  Geometry and algebra  
 



Generality 
•  “Documents” could be any pile of data 
•  “Words” could be any discrete categorical features you care about 
•  “Graphs” could have more structure: filtered simplicial complexes;  

or less: proximity to cluster center 
•  Any dimension K – typically > 50 

 e.g. documents in 50-d concept space, or concepts in 20,000-d wordspace 
•  Applications 

–  Cluster cyber-traffic based on header features, content analysis. 

Specialization 
•  Bivariate distances 

•  Not convoluting document-in-conceptspace with concept-in-wordspace. 
•  Not univariate measure of points.  
•  Not univariate measure of partition as Graph Entropy (Berry, Phillips)  

•  Distances between points which are mixture models 
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Outline 

•  Application context 
•  Distances  

properties 
•  3d plots 
•  Algebraic reformulation as Z, Q 
•  Ratios 
•  Worst-case difference construction 



Distance Properties 
100’s of distances to choose from.  
Bivariate: D(x,y). Not D(x). Not D(partition). 
Where variants exist, pick the ones with 
 
 
 
 
 
 
 
Most won’t satisfy 3. 



Iter-Distance Properties 
•  What matters is ordering of points, level-set shape 

 same level sets → same clusterings 

•  Stronger properties don’t hold, but we’ll see how they don’t. 
–  Max 1, Bounded Ratio c2 → Bounded Difference c1 = 1-c2  

but we’ll show smaller c1 
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Outline 

•  Application context 
•  Distances  

properties 
the distances 

•  3d plots 
•  Algebraic reformulation as Z, Q 
•  Ratios 
•  Worst-case difference construction 



•  Base 
 

•  Problems 
–  unbounded as y→0, no Max 1 
–  unsymmetric 

Chi-Squared χ2 

! 

" 2(x,y) =
(xk # yk )

2

ykk=1

K

$ =
(x # y)2

y 1

•  Fix (a.k.a Trianglar Discrimination) 

 

•  View: f(x,0) = x, const x+y, x, head-on, iso-curves 
–  fig 1, 2, 3 

)expected,observed(2χ expected = midpoint if same distribution 

! 

p " x + y
d " x # y



Chi-Squared χ2 

•  Componentwise 
 Algebraic Properties 

•  Q 
p = x+y; d = x-y; q = d/p 
p in [0,2]; d,q in [0,1] 

  
 

•  Z 
u = max(x,y); v = min(x,y); z = u/v 
u,v,z in [0,1] 

   
revisit figures 1,2,3 
 

•  Further study: f-divergence, Csiszár(1967), Dragomir(1980+) RGMIA 
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Chi-Squared χ2 

•  Componentwise Geometric Interpretation 
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geometrically: D(  ) = (r / r’) D(o) = (p/1) D(o) = p Q(q)/2 
also works for p > 1 
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Chi-Squared χ2 

•  Q curves 
Chi-Squared 
iso-p lines, plus y=0, x=1 
d ≤ p 

p=3/4 

p=1 

d=x-y 

D
(x

,y
) 

Z same 

Eus surface, contour lines, and x+y=c lines 

y 

x 

Compare to Euclidean, function of d only, no p dependence 



Jenson-Shannon (same form as χ2) 

•  Kullback-Leibler 

–  measures entropy, information theoretic 
–  non-symmetric 
–  unbounded 

•  Jenson-Shannon Fix 

 
–  x=0… 
–  x=y… 
–  One of the terms can be negative, but JS ≥ 0, Unique Zero holds 
–       

•  stronger, factor as Chi-Squared 
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Hellinger 

•  Hellinger 

–  H satisfies Triangle Inequality, H2 doesn’t 
–  x=0… 
–  x=y… 
–       

•  Factor as Chi-Squared, JS 

•  Performs well for certain applications (Kegelmeyer, Robinson favorites) 
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H 

Hs
 (blue) and JSs(red) vs. (x-y) for (x+y)=c, x=1 or y=0 

(x-y) 

Hs surface, contour lines, and x+y=c lines 

y 

x 

C√=Hs
2 surface, contour lines, and x+y=c lines 

y 

x 

H2 

x 

H and JS 

Figure 5 



1D Q plots, χ2, JS, H2 

Chi2s
 (green) ≥ JSs(red) ≥ H2

s (blue) vs. (x-y)  
for (x+y)=c, x=1, or y=0 

(x-y) 



Hellinger and Cosine 
Euclidean and Cosine 

•  Hellinger projects to sphere using square-root, 
then takes Euclidean distance 

 
 

yxC ∠−= cos1
x

2
H

y

G
θ
2
θ

0

S1

yx∠cos

H

C

Hellinger and Euclidean projections to  
3-sphere, and difference between them. 

Add animation fig 

! 

cos" =1# 2sin2 "
2
$ C =

H 2

2
= Hs

2

! 

xk =1" xk##
2

=1

! 

H = x " y
2

x 
2

x
x

! 

x



Geodesic Distance? 
•  Suggest Geodesic distance on sphere G over 

–  More convex than H (or E), barely satisfies triangle inequality 
–  G(x,z)=G(x,y)+G(y,z) for y=λx+(1-λ)z 

strict inequality for other y 
•  C, E, G are global order preserving, over both  
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Eus
 (blue) and Gus(red) vs. (x-y) 

(x-y) 

Eus surface, contour lines, and x+y=c lines 

y 

x 

Euclidean and Geodesic (norm) 



Hs
 (blue) and G√s(red) vs. (x-y) for (x+y)=c, x=1 or y=0 G√s surface, contour lines, and x+y=c lines 

left is visually indistinguishable from Hs, so skip it 

(x-y) 

y 

x 

Hellinger and Geodesic (root) 



Outline 

•  Application context 
•  Distances 
•  3d plots 
•  Algebraic reformulation as Z, Q 
•  Ratios 
•  Worst-case difference construction 



3d plots for selected x points 
•  x=[1,0,0]  

–  fig 6: H2, JS, Chi2 
–  fig 7: H, H2, E shortcomings 

•  No ortho-max for E 
–  fig 8: H, H2, Eu 

•  X=[1,1,0]/2 
–  fig 9: H2, JS, Chi2 
–  fig 10: H, H2, Eu 

•  X=[1,1,1]/3 
–  fig 11: H2, JS, Chi2 
–  fig 12: H, H2, Eu 

•  X=[0.2 0.3 0.5] 
–  fig 13: H2, JS, Chi2 
–  fig 14: H, H2, Eu 

•  X=[0.89, 0.1 0.01]  -  sharp upturns 
–  fig 15: H2, JS, Chi2 
–  fig 16: H, H2, Eu 
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(1,0,0) 
(0,1,0) 

(0,0,1) 

3-dimensional distances using Euclideanu(yellow, contours black) Hellinger(blue) and JS(orange) 
Illustrate qualitative difference between Euclidean and the other two 

(0,0,1) 

Distances  
from (1,0,0) 

(0,1,0) 

(0,0,1) 

(1,0,0) 

Distances  
from (.5,.5,0) 

curved contours are from Euclidean least-curved contours are from Euclidean 

Distances  
from (.2,.3,.5) 

(0,0,1) 

(0,1,0) 

(1,0,0) 

(1,0,0) (0,1,0) 

(0,1,0) 

(0,0,1) 

(1,0,0) 

(0,0,1) (1,0,0) 

rounded contours are Euclidean 

3-dimensional mixture model distances using Euclideanu(yellow + black contours), Hellingers(blue) and JSs(red) 

(0,0,1) 

(0,1,0) 

(1,0,0) 

Distances  
from (.89,.1,.01) 

Static backup 



Outline 

•  Application context 
•  Distances 
•  3d plots 
•  Algebraic reformulation as Z, Q, W 
•  Ratios 
•  Worst-case difference construction 



Algebraic Forms, Q, Z 
for X, JS, H2 

•  Q fn 
•  Q series 
•  Z fn 22
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Q fn 
•  Recall 

•  Q fn 
 

  
•  p=x+y   d=|x-y|   q=d/p  
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Q fn series      
•    
•    

•    

! 

" 2 =
1
2
pq2

Q functions 

Q
(q

) 

Hs
2 

(blue) 

JS 
(red) 

χ2  
(green) 

q 



Z fn 
•  Recall 

•  Z fn 

u=max(x,y)   v=min(x,y)   z=v/u  
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W fn 
•  Zf =1+z+… for all f 

u(1+z) = u+v and ||u+v||1 = 2 
 
 
 
 
 
 
Not componentwise equality  
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Outline 

•  Application context 
•  Distances 
•  3d plots 
•  Algebraic reformulation as Z, Q, W 
•  Ratios 
•  Worst-case difference construction 
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Relative difference in Z functions  

χ2 and JS (red)  

related by 
q = (1-z)/(1+z) 
p=(u/2)(1+z) 
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(red)  

Difference in Z functions  
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Selected theorems 

•  Z-increasing <≈> Q-decreasing 
•  Z, Q monotonic 
•  Z1/Z2, Q1/Q2 ratios monotonic 
•  Z, Q differences 1 unique max, 1 inflection pt 



Z-Q Equivalence 
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Z-Q Ratios 
Thm:  
Proof from componentwise 
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Proof from leading term of 
series, or  

directly from functional forms 
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Z-Q Differences             
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•  Distances 
•  3d plots 
•  Algebraic reformulation as Z, Q, W 
•  Ratios 
•  Worst-case difference construction 



Contours 
•  The contours looked similar? 
•  Not local-order preserving 

–  Exploits different ratios for  
small z vs. moderate z 

–  x=[0.89, 0.1, 0.01] 
–  y=[0.9,      0, 0.01] 
–  z=[0.65, 0.35,     0] 
–  w=[0.6,  0.4,     0] 
 

! 

" 2 x,y( ) < " 2 x,z( ) but JS x,y( ) > JS x,z( ) and Hs
2 x,y( ) > Hs

2 x,z( )

! 

JS x,y( ) < JS x,w( ) but Hs
2 x,y( ) > Hs

2 x,w( )

y 

z w 
x 



Worst-Case Construction 

•  Relies on 
–  Large K dimension 
–  Zero component to get small z ratios 
–  Moderately similar components to get moderate z ratios 

•  Implies Distance is small 

! 

x = (a,a,...,a,b,b...,b,0)
y = b,b,...,b,a,a,...,a,0( )
z = x1,x2,...x j ,c,0,0,...0,d( )
where a = 1

k -1
+ ", b = 1

k -1
#",

d,c, j :D1(x,y) = D1(x,z)
! 

k"#,$ " 0 gives D2

D1
(x,y)"min, D2

D1
(x,z)"1

•  Find points x,y,z, such that D1(x,y)=D1(x,z) but D2 gives the most 
different answer 



Near worst-case 
•  Doesn’t have to be very extreme 

•  Still relies on a zero component, but small dim k, large epsilon 

! 

x = (a,a,...,a,b,b...,b,0)
y = b,b,...,b,a,a,...,a,0( )
z = x1,x2,...x j ,c,0,0,...0,d( )
where a = 1

k -1
+ ", b = 1

k -1
#",

d,c, j :D1(x,y) = D1(x,z)



Main Observations 
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Conclusion 
•  Insight into what distances do differently 
•  What’s new / novel? 

–  Geometric analysis, pictures! 
–  Ratio monotonicity, difference analysis 
–  Algebraic limits probably known, but references hard to chase 

•  Future 
–  Clustering case study on real data 
–  Hellinger square-root projection study 
–  Other families of distances 

•  Compound distances, Earth Mover’s 
•  Partition/cluster metrics 

–  Affect of norms other than 1-norm (triangle inequality)? 
–  SNL needs program in understanding effects of text-analysis 

pipeline knobs.  
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for late-start summary quad chart 

(0,0,1) 
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(1,0,0) 

Sharp upturn on lower right shows H & JS  
emphasize high ratios of point coordinates.  

Euclidean  
Hellinger  
Jensen-Shannon 
distances 
from (.89,.1,.01) 
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Two-dimensional mixture models T, unit sphere S, and positive part of unit sphere S+. Coordinate axis 1 and 2. 

Point x on T projected to S+ under normalization and square-root.  
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labels are lengths of segments, except points o, o’ 
geometrically: D(  ) = (r / r’) D(o) = (p/1) D(o) = p Q(q)/2 
also works for p > 1 
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