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Text Document Clustering at Sandia

Problem: given a pile of documents, categorize them
- S0 you only have to read one category
- to identify outliers not in any category

Term \

Dataflow Tokenization

Example Software:

Prototype-2 from Network Grand Challenge LDRD

T II |:||||I| IR
- gt

1 'llllll
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Document
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Document
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Example: How strange is my technical paper, the one I’'m giving this talk on?

» Google Scholar search “mixture model geometry”, get 529,000 hits, save them all to local disk

* Throw out “the”, “and”, “however” to de-noise. Stem “geometrical’, “geometry”, to “geometry”.
* Identify grammar, to help answer “expository or framing?”

« Identify authors, institutions, to help identify relationships.

”» 13 ”» 1]

» Each document is a bag of “words”, unordered

Source Credit: Danny Dunlavy



Reduce word-space to feature-space
e.g. 20,000 dimensions to 50

concepts
documents concepts documents
L 2
Latent 8 C - | & D & T /EI
. e ree— o el ¥
Semantic £ = [ ] 5 5 V
. (9] w
Analysis e /IE
topics e
I documents wis an observed T
Probabilistic documenits rv. conditioned _ | //
onzo,f0 ~
Latent 2 C » " ~.
; 5 = 9
Semantic g ') S (1) o e y
. = o N repetitions over
AnaIySIs | ~# variables in box,
M e,
-g. W, , or 8,

observed random variables

unobserved (latent) rv’s

Source Credit: David G. Robinson unknown parameters

000



Cluster points
* Pick distance function
* Pick distance threshold
* Build a graph,

with an edge between documents x,y if
distance(x,y) < threshold
* Look at the graph

CEX

What happens if | tweak one of the 50+ knobs on this Frankenstein? Why? Predictable changes?

What does it all mean? _ _
Need coherent research program. Distances are one puzzle piece.



Which Distance?

Criteria

Reproduce ground truth?
*  What ground truth? Journal | sent my paper to? Expert opinion?
Stability of outcome?
» stability # accuracy
Use the one this application area always uses?
+ Maybe not such a bad idea: leverage insight, one knob at a time comparisons
Information theory?
+ ‘I think entropy is relevant and this distance measures it”

Let’s try something else

Does it even matter? When do two distance functions give a different ordering to points?
Geometry and algebra



Generality

“Documents” could be any pile of data
“Words” could be any discrete categorical features you care about

“Graphs” could have more structure: filtered simplicial complexes;
or less: proximity to cluster center

Any dimension K — typically > 50
e.g. documents in 50-d concept space, or concepts in 20,000-d wordspace

Applications
— Cluster cyber-traffic based on header features, content analysis.

Specialization
Bivariate distances

* Not convoluting document-in-conceptspace with concept-in-wordspace.

* Not univariate measure of points.

* Not univariate measure of partition as Graph Entropy (Berry, Phillips)
Distances between points which are mixture models

sometimes distances project to positive part of sphere S,

K
' Z:ck:L and 1> 71, > 0. Jx
k=1 M

contrastto LSAon S
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Distance Properties

100’s of distances to choose from.

Bivariate: D(x,y). Not D(x). Not D(partition).

Where variants exist, pick the ones with

0. Unique Zero: D(z,y) =0ifandonly if z =y .

1. Max 1: D <1 and D(z,y) =1 for some z,y € T".
2. Symmetry: D(z,y) = D(y,x) .

3. Triangle Inequality: D(z,z) < D(z,y) + D(y, 2) .
4. Orthogonal Max: D(z,y) =1ifz-y = 0.

Most won't satisfy 3.



lter-Distance Properties

What matters is ordering of points, level-set shape
same level sets — same clusterings

Two distances D and F' have (are)

stronger

Bounded Difference: if ¢; > F(x,y) — D(x,y) = 0 for some positive constant c¢; < 1.

Bounded Ratio: it F'(x,y) > D(x,y) > coF'(2x,y) for some positive constant cs.

Order Preserving: if D(xz,y) < D(x,2) < F(x.,y) < F(x, z).

Global Order Preserving: it D(z,y) < D(w,z) <— Fl(x,y) < F(w,z).

Stronger properties don’t hold, but we’'ll see how they don't.

— Max 1, Bounded Ratio ¢, — Bounded Difference ¢, = 1-c,

but we'll show smaller c,
. y
X

y
AZ w——

Global order preserving:
Local order preserving: D, D, agree which of (x,y) and (w,z) is smaller

D, D, agree which of {y,z} is closer to x

X
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Chi-Squared 2

0. Unique Zero: D(z,y) = 0 if and only if x =

e Base 1. Max 1: D <1 and D(z,y) =1 for some z,y € T" .
X2 (x,y) = i (x,—v,)° _ ‘(x ~y)? 2. Symmetry: D(z,y) = D(y,x) .
=1 Yk ‘ Yool 3. Triangle Inequality: D(z,z2) < D(z,y) + D(y, 2) .
* Problems
4. Orthogonal Max: D(z,y) =1ifz-y =0.
— unbounded as y—0, no Max 1
— unsymmetric

« Fix (a.k.a Trianglar Discrimination)

x” (observed, expected) expected = midpoint if same distribution

)

)
K <'1.‘_ 1A+UA) 1 K 1
> 3 '1 — ’/l
(2, y) = X5 E —E =3
< u-i-l/;\ 2 — Tk + Y 2

4

* View: f(x,0) = x, const x+y, X, head-on, iso-curves
— fig1,2,3



Chi-Squared 2

Componentwise » _1(x-y)
Algebraic Properties 2 (x+y)
Q
p=x+y;d=x-y;q=d/p 2 _ P _D >
pin[0,2]: d,qin [0,1] X =, =5
Z
u= m.ax(x,y); v =min(x,y); z = u/v .U, y (1_2)2 ul, 47
u,v,z in [0,1] X =5 (Z)=§(1+Z) =§( +Z_1+z)

revisit figures 1,2,3

Further study: f-divergence, Csiszar(1967), Dragomir(1980+) RGMIA

2

D, (a,b) =

1



Chi-Squared ¥

« Componentwise Geometric Interpretation

labels are lengths of segments, except points o, o', 0"
geometrically: D(e) = (r/ r’) D(0) = (p/1) D(0) = p Q(q)/2
also works for p > 1

e o
g Iﬁ ﬁ
7 2
— f

geometrically: D(e) = (s/s’) D(o) = (u/ 1) D(0o) = u/2 Z(z)
70




Chi-Squared ¥

¢ CcCurves zsame

Chi-Squared
iso-p lines, plus y=0, x=1
d<p

0.9

08 p=3/4

T

0.7

=
D
T

=
E=N
T

T

0.3

0.2

0.1

d=x-y

Compare to Euclidean, function of d only,

E, surface, contour lines, and

no p dependence

x+y=c lines



Jenson-Shannon (same form as ¥?)

0. Unique Zero: D(z,y) =0 if and only if x =y .
Kullback-Leibler 1. Max 1: D <1 and D(z,y) =1 for some z,y € T .

A< g é\
— measures entropy, information theoretic
— non-symmetric

Symmetry: D(z,y) = D(y,x) .
Triangle Inequality: D(z,z2) < D(z,y) + D(y, 2) .

> W N

Orthogonal Max: D(z,y) =1ifz-y =0.

— unbounded
Jenson-Shannon Fix
K ) ) Figure 4
JS(x,y)=E xklogz( al )+yklog2( Y )]
e Yt X Yt X
— x=0...
— X=Y...
— One of the terms can be negative, but JS = 0, Unique Zero holds
T - S~ u % d
» stronger, factor as Chi-Squared JSS(X,)’)= —ZJS — || = £QJS —
2 ulll, |2 Pl




Hellinger

0. Unique Zero: D(z,y) =0 if and only if x =y .
1. Max 1: D <1 and D(z,y) =1 for some z,y € T .

* Hellinger

K
=1

= S ) =)’

Symmetry: D(z,y) = D(y,x) .
Triangle Inequality: D(z,z2) < D(z,y) + D(y, 2) .

1

> W N

Orthogonal Max: D(z,y) =1ifz-y =0.

— H satisfies Triangle Inequality, H? doesn’t
— x=0...
— X=Y...
— H*(ax,ay) = aH’ (x,)
« Factor as Chi-Squared, JS

u, (VY _|Ppy (£
2ZH(u) 2QH(p)

» Performs well for certain applications (Kegelmeyer, Robinson favorites)

Hf(x,y) =

1 1



H, surface, contour lines, and x+y=c lines

Figure 5

=\

i
e
it stinttis
i
i

i
h

i
i

Hand JS

H, (blue) and JS(red) vs. (x-y) for (x+y)=c, x=1 or y=0




1D Q plots, x4, JS, H?

Chi?, (green) = JS (red) = H? (blue) vs. (x-y)
09 for (x+y)=c, x=1, or y=0
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0.6

05

04
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Hellinger and Cosine
Euclidean and Cosine

Add animation fig

« Hellinger projects to sphere using square-root, AN
then takes Euclidean distance | w N 1# J EH
2 _ o / . x\ ’\.\J "’u 'LJ i ].‘. | -"j'ul
E K = I E '\/;k =1 H = H\/; - \/;Hz 08 .o \"v_\;\‘} \\\g\f&, [‘*. fb 'I‘J.«":"/ 1/};
07 -t A ““\\I‘ e /"‘/ /,/; * .

C\f =1—COSL\/;\/;

cos L\/;\/;

ISE

and Euclidean projections to
3-sphere, and difference between them.

X

[+,



Geodesic Distance?

C X
« Suggest Geodesic distance on sphere G over Wand\/;
X
2
— More convex than H (or E), barely satisfies triangle inequality
—  G(x,2)=G(x,y)+G(y,z) for y=Ax+(1-A)z
strict inequality for other y X
C, E, G are global order preserving, over both —— gnd \/;

X
= I,

Jy
G

Vz



Euclidean and Geodesic (norm

E,s surface, contour lines, and x+y=c lines

s (blue) and G (red) vs. (x-y)

(x-y)



Hellinger and Geodesic (root

left is visually indistinguishable from Hs, so skip it

. (x-y) for (x+y)=c, x=1 or y=0

G, surface, contourllnes and x+y=c lines H, (blue) and G (red) vs

0 01 02 03 04 05 0.6 0.7 08 0.9 1
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3d plots for selected x points

3
0,0,1

x=[1,0,0]

— fig 6: H?, JS, Chi?

— fig 7: H, H2, E shortcomings

No ortho-max for E

— fig 8: H, H?, E, -
X=[1,1,0]/2

— fig 9: H?, JS, Chi?

— fig 10: H, H?, E, 1,0,0 0,1,0
X=[1,1,1]/3 1

— fig 11: H?, JS, Chi?

— fig12: H, H% E,
X=[0.2 0.3 0.5]

— fig 13: H?, JS, Chi?

— fig 14: H, H?, E,
X=[0.89, 0.1 0.01] - sharp upturns

— fig 15: H?, JS, Chi?

— fig16: H, H% E,
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Algebraic Forms, Q, Z

for X, JS, H2

[ Q fn \/; quz
o . max(x, y) .( min(x,y) C C
Q series o e | S G
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2 xX+y H ES

arcsin$vu




Q functions

) l(x—y)2 5 05
* Reca” X = 5(x+y) 04}
! 0.3F
JS = xlogz( 2 )+ylog2( 2y ) ol
X+y X+y)| o
0
T
Q fn 1
d
Df(x,y)= BQf —
2 Pl

* p=x+y d=|x-y| g=d/p

QX(Q) = q2
((1 + q)logy(1+q) + (1 — g) logy(1 — q))

Qu(q)=1-v1-¢?

Qus(q) =

BN | =



Q functions

0.9}

08

Q fn series

o

Vi
0.6F
0.5}F

rq’ 0sl

° 0.3F

Q(a)

0.2}

0. @)
o 2n—1)21n2

0 1 1 1 1 I
0 0.2 04 0.6 0.8 1

(s ) pe? (s ) pat o+ (as ) paO+ (oos ) pa® 4 (s ) P2 -
4In2 241n 2 60 In 2 1121n 2 1801n 2

~ 0.361pg” + 0.060pg” + 0.024pq°® + 0.013pg® + 0.008pg'® + - - -

I (S

JSk(x,y) =

. (2 pat+ (o) pe+ (= Ty 0 4.
4 Pq’ 16) P9 T\ 32 )P4 T\ 256 Pq 512 pe’

~ 0.2500pq> + 0.0625pg* + 0.0312pg® + 0.0195pg® + 0.0137pg* + - --



h Z functions

X2= l(x_y)z N 05
* Recall 2(x+y) | 04r
0.3
JS = xlogz( i )+y10 ( 2y ) e
X+ X+y Lo
0
)
1
Zfn
u 1%
D.(x,y)=|—Z,—
(x,y) 5 f(u)l

u=max(x,y) v=min(x,y) z=v/u

C(1-2)* 4z
Zy(2) = T2 =1+2— 2
Zys5(2) =14z —logy(1+2) — zloge(14+ 271 =1+ 2z — (1 + 2) logy(1 + 2) + zlog, 2

Zu(z) =1+2—2vz




W—Chi2 green, W-J3 red, W—H2 blue, vs.z
W fII
14+

o Z =1+z+. . forall f =
u(1+z) = u+v and [|lu+v||, = 2 ot /)
U 4 041 //

W functions

°
02H/
1+ 2 1 '

U U —
IS = 1= | 5Was()lly = 1 = |5 (loga(1 + ) + logs(1 + =)

1

| Z functions

Uu u
H2 =1 | SWa(e)l =1 |5 (2v3)]l

08 |

Not componentwise equality
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Q,/Q,
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JS / H?2 (black)
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04r
Relative difference in Q functions
035}
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025}
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015f
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Z,1Z,

0.9
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\ Z functions

\ X? .
\ \ (green)
.'.l. ““ .

\

Ratio of Z functions

___ X%/JS (red)

—

JS / H? (black)
X2/ H2 (blue)

04 0.6 0.8 1

0.35

0351

005§

T

Difference in Z functions

I X2 - H52
(blue)

Relative difference in Z functions

x? and H.2 (blue)

JS and H2 (black)

x2 and JS (red)

Z plots

related by
q = (1-2)/(1+2)
p=(u/2)(1+2)



Selected theorems

Z-increasing <=> QQ-decreasing

Z, Q monotonic

Z,/Z,, Q,/Q, ratios monotonic

Z, Q differences 1 unique max, 1 inflection pt



Z-Q Equivalence

Theorem 8 (Z-Q-same).

Z2() = (1+2)Q (i;)

Qg) = 1;(12(113)

Corollary 9. Z decreasing = @Q increasing; also Z decreasing < Q'(q) > ﬁ@(q) > 0.

« Z;actually are decreasing (lots of algebra, derivates, L'Hopital’s rule)



Q,/Q,

Z-Q Ratios

Thm: édecreasing©gincreasing max%zmaxg min%:min%
Proof froril componentwizse 2 2 2 2
%=§—;(Z)=%(Q) q=:—iandz=:—(q]
Q* q* 7* P
R, /u 1/2= 500 | 0 1/2= .500 | 1
R,js | 1/2log2> .721 |0 | 1/2log2> .721 |1
Rjys/u log2> .693 | 0 log2> .693 | 1
maxislatg=1and z=0

0.9F

0.8f

0.7k

0.6F

05

04}

03f

0.2F

01}

Ratio of Q functions /’

X21JS (red) —
JS / H_2 (black)

X2/ H2 (blue) g |

1
\
\
0.9 \,
0.8

0.7F

Proof from leading term of
series, or

directly from functional forms

Ratio of Z functions

S x21JS (red)

JS / H? (black)

X%/ H2 (blue)

Key feature is large flat section.
This appears new.

N

0.2 04 0.6 0.8 1



—~

Q- Q,

/-Q leferences

Q* z* R bound
M, g | 1/4= f 3/2 ~ .270 087 5
250 .866
M, _js | .110 807 122 | 127 279
Mjs_ g | 150 | .912 158 | .055 307
minisO0atg=0,g=1,z2=0,and z2=1
05% 0.35 : : : : No closed form except upper left
Difference in Q functions Difference in Z functions
03} X? - Hg?
02} (blue)

0.15}F

01F

0 01 02 03 04 05 06 07 08 09 1

q
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Contours

« The contours looked similar?

* Not local-order preserving

— EXxploits different ratios for
small z vs. moderate z

_ x=[0.89, 0.1, 0.01]
— y=[0.9, 0, 0.01]
— 2=[0.65, 0.35, 0]
— w=[0.6, 0.4, O]

0.6

x(x,y) < x*(x,z) but JS(x,y) > JS(x,z) and H:(x,y)>H(x,2)
JS(x,y) < JS(x,w) but Hsz(x,y) > Hsz(x,w)



Worst-Case Construction

« Find points x,y,z, such that D,(x,y)=D,(x,z) but D, gives the most
different answer

x=(a,a,...,a,b,b....nb,0)

y = (b,b,...,b,a,a,...,a,O) D
k — 0, e —0 gives &(x,y) — min, —=(x,z) — 1
Z= (xl,xz,..xj,c,0,0,...O,d) D, D,

Wherea=i+6,b=i—8,
k-1 k-1

d,c,j:D/(x,y)=D,(x,z)

* Relies on
— Large K dimension
— Zero component to get small z ratios

— Moderately similar components to get moderate z ratios
* Implies Distance is small



 Doesn’t have to be very extreme

Near worst-case

2

Bl e a | b | 2 | Bey|Be | By w2 ]| IS67) | 567 | T5k7)
©|—=0|—=0]|—-0] —0 721 1 D 1 — 0 .693 1
5 | .01 | .26 | .24 | .00160 7215 998 .0002 997 .00115 .6932 9989
5 | .08 | 33 | .17 102 73 91 0l .83 075 .70 .92
5 | .16 | .41 | .09 41 78 .95 D7 91 320 72 97
9 | .08 | .205 | .045 41 78 998 Y 996 320 72 957

« Still relies on a zero component, but small dim k, large epsilon

x =(a,a,...,a,b,b...,b,0)
y =(b.b,....b,a.a,...,a,0)

z=(x,.2-.%,;,¢.00,..0.d)

1

1

wherea=—+¢,b=——-¢,
k-1

d,C,j . Dl(x’y) = DI(X,Z)




Main Observations
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X138 (red)
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04r
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Conclusion

 Insight into what distances do differently

 What's new / novel?
— Geometric analysis, pictures!

— Ratio monotonicity, difference analysis
— Algebraic limits probably known, but references hard to chase

« Future
— Clustering case study on real data
— Hellinger square-root projection study

— Other families of distances
« Compound distances, Earth Mover’'s
e Partition/cluster metrics

— Affect of norms other than 1-norm (triangle inequality)?

— SNL needs program in understanding effects of text-analysis
pipeline knobs.
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=0

¢, x=1ory

H, (blue) and JS (red) vs. (x-y) for (x+y)
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CJ=HS?_surface, contour lines, and x+y=c lines

Chi?, (green) =2 JS (red) = H%, (blue) vs. (x-y)

08t for (x+y)=c, x=1, or y=0
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for late-start summary quad chart

0
Q
o
c
©

-

2

o

1

0.9

0.8

0.7

0.6

05~

0.4

02

JS

emphasize high ratios of point coordinates.

Sharp upturn on lower right shows




Two-dimensional mixture models T, unit sphere S, and positive part of unit sphere S,. Coordinate axis 1 and 2.

Point x on T projected to S, under normalization and square-root.
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1 labels are lengths of segments, except points o, 0’
geometrically: D(®) = (r/r’) D(o) = (p/1) D(o) = p Q(q)/2
also works for p > 1

2
V2

labels are lengths of segments, except points o, 0’
geometrically: D(®) = (s /s’) D(o) = (u/ 1) D(o) = u/2 Z(z)




