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- Major Points of Presentation

« Connection to techniques, and applications, from fields besides UQ

» Concepts
— Hyperplane sampling

* motivation, capture small thin regions
— Formula for changing point sampling to flat sampling

— Unbiased - provable

— Variance — experiments, efficiency
* hyperplane intersection with the object needs to be computable, efficient
* volume estimation experiments

— efficiency
— dart type
— Framework

« function averaging, integration
 finding a point with a function value (e.g. outside disks)

— Three applications

* Volume estimation
— function integration

* Generate a well-spaced point sampling a.k.a. Relaxed MPS
— find domain points with function values

» Depth of field with antialiasing

— function integration
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Motivation
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4 \/;if Recall Problem Motivation
A/" POF-Darts prior talk

 Reliability calculations
— Identify and measure tiny failure
subspaces in a vast parametric space
* 10+ dimensions (parameters)
« <106 PoF (small volume region)
- Expensive simulations — faster surrogate

— POF-Darts was adaptive sampling
(to find small regions with particular properties)

— This talk is mainly about uniform sampling of regions
(to measure them)

« Approach
— Other sampling methods based on statistics and analysis

— We borrow Computational Geometry, Graphics concepts:
. line searches
. sample-neighborhoods, geometric balls
. functional integration
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V
P ' Intuition
o’s going to hit the target (orange.)?

‘ point sampling

\\

line sampling
Q

line sampling

coin-shaped target
same volume, more surface

public domain clip art 'I,‘ Sandia

National
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‘ More precisely

d=20, PoF = 106 (uniform distributions throughout talk)

16 parameters don’t matter ditto and tilted &
4 parameters matter \\rD

\!

all parameters equal

domain
(V2)°

WP failure

1/2*° =10°

((%)5)4 ~1/2% =107

1 in 108 points 1 in 10° points 1 in 10° points
2 in 10° axis lines 7 in 106 axis lines 30 in 106 axis lines
hit failure region hit failure region hit failure region

— Lines are more likely to hit than points
» better if coin-like (bigger surface area)
* better if tilted (surface area subtended by each line)

— Intersection length is more information than binary point inside/outside
* Planes are even better, hyperplanes...
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yperplane sampling to hit regions

99 points 6 line darts 1 plane dart

Lines, hyperplanes, are more likely to intersect these regions,
and they give more information

But they are more expensive.

Is it worth it?

The point of our paper is to answer ‘‘yes.”
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Approach, definitions
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# k-d Dart

» k-dimensional hyperplanes (flats)
k free coordinates
d-k fixed coordinates

- dart = (d choose k) flats, one for every possible axis-aligned
orientation

— free coordinates (orientations) deterministically uniform

— fixed coordinates (positions) uniform random,
identically and independently distributed

one 1-d dart in a 2-d domain
= two 1-d lines: x-aligned, y-aligned ) e

National
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... probably obvious to UQ14 audience

'
\‘,"//
;/f\,' k-d darts are unbiased

 |.e. the mean estimate is the true mean

- Because each flat is unbiased
— because uniform point sampling of a height function is unbiased

ﬁ/lz/fz/ / f= JDfixed-
D D Dfixed J Dfree Dfixed

height f Dfixed T

Dfixed

Dfree

E WeightedVolume( flat) E Length(Line inside grey)
estimate E Volume( flat) - E Length(Line) )

National
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- 4} Variance? Efficiency?

 We have no formal proof for the variance

* Test problem:
— estimating the volume of an ellipsoid
— known analytic volume.

 Results: variance is well behaved C

— dropping as 1/number_of_samples”2
— dropping by k
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'
“error reduction by 1/ # samples”2

10-d domain aspect ratio, orientation; k-dart-dimension. '
lower error for higher-k darts

coin-like < ; : . > needle-like
o error needle = coin > ball with bigger volume, small efffect
T \\\\Hw T \\\\HW T \\HHW T T T 11T T \\\\Hw T \\\\HW T \\\\HW T T T 11T T \\\\Hw T \\\\Hw T \\\\Hw T T T 11T
F 1 3 E _ —_ 3 E — k=
i — 1 . - S—]., -_ ].O B F S:g 10, r = ].O o t=(1)
o 107 E = 10%g 5 10° =
(@) E 4 E £ E k=2
gt i \ 1| — k=3
107 = 3 10'1\ 107 £ 3| — k=4
g — < = k=5
D102k T~ —= = 102 3 0?2 & & k=6
- — ’ Kk ¢ | — k=7
10° ¢ . 1 wp 3|, 100k J| o k=8
c Il Il \Hl HH] \\H\Hl Il \\\\H: c Il \\S\]\HOPQ\H]‘/\Z\\HH} Il \\\\H: c Il Il \Hl Il \\\\\Hl Il \\\\H\l Il \\\\H: - k=9
102 10° 10* 10° 10° 102 10° 10* 10° 10° 102 10° 10* 10° 10°
101 T T T TTTTT
g — k=0
¢, 10° — k=l
o — k=2
g — k=3
F10™ £ — k=4
=R — k=5
Q102 E — k=6
= 3 — k=7
10% = - k=8
E 3 — k=9
L l L Lol l Il Lol l L [
102

Il L.l LLLL LLLL L1l
102 10° 10* 10° 10°

Number of Flats Number of Flats Number of Flats

Sandia
object orientation unaligned with axes helps a little, but not much h prociea




%altrue volume histograms for 1 million darts

ry 10-d domain aspect ratio, orientation; k-dart-dimension
normal-like, sharper peaks for higher-k darts

@

coin-like < > needle-like
I ' 1 ' — I 1 e I : ' — k=
1.0 8—1—0, r=10 1.0 s=1, =10 1.0 8:9/10, r=10 — k=(1)
550.8» . 0.8 ‘ 0.8 ‘ — k=2
o — k=3
%3_'0'6' k 0.6f 0.6} - 11::
D 0.4} 0.4} 0.4} — k=6
- — k=7
0.2 \ 0.2 <& 0.2 A\ e k=8
o I — < // N k=9
00596 1.00 1.04 007556 1.00 1.04 007596 1.00 1.04
Squish matters a little bit, but volume matters much more.
We did 1-axis short, 1-axis long. Squish farther?
axis-aligned object < > randomly oriented object
1.0 1= 1.0 1. =5 1.0 =1 r=20 — k=0
s=z,1=0 S=z,T s=sz,
2 2 2 — k=1
P 0.8 0.8t 0.8 — k=2
= — k=3
30.6» 0.6f 0.6/ —— k=4
& — k=5
D 0.4 0.4} 0.4} — k=6
53 . — k=7
0.2 . \“ 0.2} y 0.2} - k=8
— k=9
007596 1.00 1.04 0.0 55 1.00 1.04 0.0 556 1.00 1.04
Relative Estimated Volume Relative Estimated Volume Relative Estimated Volume
Sandia
: : : ’ National
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;;" Trends by k

Conclusion

* Higher k darts = less error, less variance
— Because each dart gives more information

* Use a higher k if
— You can compute its intersection with the object
— And that computation is not too much slower
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Sample-Orientation Effects?
Axis-aligned flats just as accurate as
randomly oriented darts...

Mean error by #samples
Histogram of estimate, 1 million samples>

S s=1,r=10

N E

...and faster and simpler.

like

k=0

k=1a
k=1r
k=10

s=10, r=10

k=0

k=1a
k=1r
k=10

randomly
"1 oriented object  independent

LT

k=0

k=1a
k=1r
k=10

k=0

k=1a
k=1r
k=1o

eedle- Axis-aligned best.

black=point samples

red=axis-aligned,
one per direction

blue=random orientation,

—<

green=random orientation,
one per orthogonal
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Dart orientation effects

Conclusion

* (d choose k) orthogonal flats
deterministically = randomly

— perhaps because we used so many samples.
— random simpler?
« axis-aligned provides
— good quality answers
— simple, fast, through parameter substitution

Use random-axis orientations, of independent flats

2% p=1/2
deterministic random

1# = p=1/2

Sandia
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Application 1 of 3
Volume Estimation
LHS patterns
More interesting functions
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Volume Estimation Speedup
3-d ball, simple analytic

CPU time (seconds)

RMS of Relative Error

convergence rate from O (

1E-1
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8
1E-9

MS of Relative Error

R
.
m
AN
o

1E-11
1E-12
1E-13

1E-2

Algorithm: average lengths of lines (area of planes) inside sphere.
Why did this work so well?

—Evaluating f along k-d flats is cheap; in this case we exploited
the analytic function of the ball.

—A k-d flat gives more information as k increases.

—A flat is cheap to generate. Each k-d flat requires d — k random
numbers; here d = 3.

—(d — 1)-dimensional flats distributed in LHS fashion boosted the

oo

CPU time (seconds)

II\.




Volume Estimation Speedup
Circular Parabola

5

Circ Parab Point/Line Run Time Ratio

10
i.e.2d domain
106 I 1E-5 analytic value |
y1 E-5
10°} -
QA
) 4
. E .
D
L 3
o10 ¢
)]
10°}
1 —6d, 1E-7
10 | -
. 15d, 1E-7 6d, 1E-5
10 ' ' '
107° 107° 107 107° 107°
RMS error

Sandia
r“‘ National
Laboratories




&

Volume Estimation Speedup

Planar Cross

y(x) = [

||::]a~

1+ cos(2nxl

1/d

Fglanar Cross Point/Line Run Time Ratic
10 - - -
1.e. 2d domain
1E-5 analytic value
o 102} 2d, 1E-5
©
()]
S
(-
2 10'}
6d, 1E-7
15d, 1E—7\ 6d, 1E-5
100 9 I 8 I 7 I 6 5
10 10 10 10 10
RMS error

0 < x; < 1. Estimate volume of y(x) <0
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Application 2 of 3
Well-spaced points

Use line sampling to generate a point sampling,
of a type popular in Graphics texture mapping
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<™ Maximal Poisson-Disk Sampling

* Defined as the limit distribution of a statistical
“dart-throwing” process

— Random disks arive with Poisson-distributed arrival
times, equivalent to random arrival order:

Empty disk:  Vz;,x; € X,x; £ xj: ||lxi —xj|| > N \ /’ /:\ R \

Bias-free: Vo, € X,VQ C D1 : P s VA /)

Area, ( Q) : = ’7/ g ° \\,\,T,,,,/"/A?’/ \\\\\h ///
P(z; € Q) = a | \ g S | o
@ €= Krea(D ) NS <o

Maximal: VereD,3x, € X i ||z —xil| <r \ 7 ) SN AT

\;\\
\L
/®
N /o)
L = Y4
v - e N
. /
\
¢ -
[ . ° \
| |
\\\ — /
/
—

— o Sandia
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V
. ' k-d Dart based
* Relaxed Poisson-Disk Sampling

 Dart-based

— search space using lines, planes, ...
* Relaxed

— stop after many successive dart fails
— expected uncovered volume is small

Empty disk:  Vz;,x; € X,x; £ xj: ||lxi —xj|| >

Bias-free:

Maximal: VI ePSreX—T— z;|| <7
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 White noise

360
frequency

 Maximal
Poisson

power

3(%0
frequency

 Maximal
Correlated

power

360
frequency




PS vs. line-dart vs. point-dart

Can you tell them apart?

rmity

unifo

angular non

P R B s

1
o n o (sl

Adoujosiue

—

|
o
i

distance non-uniformity

720

40

6
frequency

80

720

frequency

SuIep oul|

1 1

1 1
o n o wn o
= =

Adosjosiue

720

40

6
frequency

80

720

syrep jurod

frequency

1 1

1
540

3éO
frequency

|
o
—

n o n

Adoujosiue

-10+

720

SAIN onn
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k-d Dart Relaxed MPS Properties

1E+5 1 r 160
1E+6 :
1845 | d=4 140
1E+4 -
1E+4 r_f =0.05 [ - 120 &
1E+3 : / / 21643 - 100 8
Point |~ / g R P
1E+2 tine 2 r80 &
dart/s/ / o £ 1642 1 L0 2
1E+1 - darts = g
1E+0 ee1 3 - 40
80,000 120,000 160,000 - 20
Number of inserted points 1E+0 , , , , 0
line darts add disks faster 10 11 12 13 14 15
than OiIl t dar tS Distribution Aspect Ratio
p line darts are faster or slower than MPS in d=4,
18 | L e boint Darts - depending on relaxed maximality
17 Maximality Simple MPS requires 2¢ memory, intractable in d>6

r=0.1

=
[s))
|

ave but line-darts are linear memory

=
4]
|

=
w
|

ave better quality

e

2 » line darts produce fewer large gaps
v //—\/ than point darts

Distribution Aspect Ratio
[
o

[uny
N

1E-6 1E-5 1E-4 1E-3 1E-2
Acceptable Remaining Void (V) Sandia
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Application 3 of 3
Graphics, depth of field blur
Integration
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Graphics Application
Depth of Field Sampling

0y Story 3

blurred
far from lens
focal plane

Depth-of-Field blur movie frame rendering is overnight,
requires many point samples notrealtime,

Sandia
National
Laboratories
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Line-sampling for
Depth of Field Blur

 Solution: point sampling
For every (a,b) pixel

4-d: (u,v) lens plane, (x,y) scene space

z scene space is dependent

R

(u,v) lens (a,b) pixel

(X,y,2) scene

 Solution: our algorithm
lines sample and compute

occlusion depth (decision)
color contribution (integration)

A

fixed yi and vi

axis-aligned sample
lines in (u,v,x,y)

e.g. pick x, y, v, let u vary

e.g. pick y, u, v, let x vary

)/

[
v
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& Blur, line-darts vs. point samples

64 pm& 256 PO&W

4 lines




Performance of Our Point vs. Line Darts

16 lines / P ixel Rendering Time (s)
Sample Type = Sample Count  Cessna Teapot

29.6 52.1

116.7 198.

453.0 792.1

14.9 24.5
56.8

105.1 169.4

256 points /pixel 1024 points /pixel

2X runtime 8X runtime



Summary

* Any point-sampling algorithm depending on function averages can be
converted to a line-sampling algorithm

— Including indicator functions e.g. volume estimation =0
EWeightedVolume( flat) ELength(Line inside grey) ‘a
l/l ; = =

emate EVolume( flat) ELength(Line)

— Need to evaluate function along a flat (line) height

— Efficiency depends on evaluation speed Ipfixed
» This is the challenge for practical k-dimensional flats

— Axis-aligned flats (lines)
« efficient and random-enough

 Application variants

— Generate a well-spaced disk packing — Depth of Field blur

 Although line samples are not uniform by area, * Intrusive line-sampling
effect on output distribution is unoticable. « Efficient function integration without artifacts

Dfixed
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Extra stuff
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~
j.\/-\,' Heilmeier’s Catechism

1. What is the problem, why is it hard?

— Uncertainty quantification, small failure regions in vast
spaces, expensive functions

2. How s it solved today?
— Many sampling methods based on statistics and analysis
3. What is the new technical idea; why can we succeed now?

— Borrowing Computational Geometry, Graphics concepts:
. line searches
. sample-neighborhoods, geometric balls
. functional integration

4. What is the impact if successful?
— Increased convergence rates, fewer parallel simulations

Sandia
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V
2 computational geometer’s view
| Space for All Point Sampling Methods

Process randomness is a hidden axis,
merely a means to obtain spatial randomness.

Spatial

Fourier Spectrum, Power and Anisotropy

Pairwise Distances, Edge Orientations

Randomness Biue Noise

A

uniform-random coordinates
MPS
jittering

two-radii MPS

in jecty

optimization

CVT\
Discrete Density

n number of samples

kissing number

number of neighbors, edges, cells,

Dimension d

/

\Opt—ﬁ, spatially-varying MPS

bubble mesh Geometric
joint position and sample optimization D ens lty

r, free radius, nearest-neighbor distance; Delaunay edge lengths

sifting
off-centers

Delaunay refinement
maximal Poisson-disk sampling

r. coverage radius, Vornoi vertex distance
p=r. / r; Distribution Aspect Ratio; DT angles,Vor cell aspect ratio
Lipschitz Conditions

Unique Coverage

Sandia
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Challenge of Solving MPS in Higher
Dimensions (Curse-Of-Dimensionality)

* Curse of dimensionality

— Natural: Kissing Number grows
exponentially with dimension

— Artificial: Grid based methods
(state of the art) to retrieve
neighbors, and track remalnmg
voids B

Six Line Darts

* Generalization of Sampling Entities
— k-d darts: Random sampling using hyperplanes
-> void capturing, integration and UQ
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k-d Darts for Solving MPS

1E+6 ’
Ziees | d=2 fT
c -
S 1E+4 r_ f=0.002 /
Q
L 1E+3
Q Point /: s
g 1E+2 // ,J Lihe
5 1E+1 darts darts
a. /
O 1E+0

140,000 160,000 180,000

Number of inserted points

1E+6
1e+5 | d=10 /L s
1644 {r_f=0.5 /////
1E+3 7 point /  line
1E+2 darts’.” | darts
1E+1
1E4+0
0 20,000 40,000

Number of inserted points

1E+6

1E+5
1E+4

1E+3
1E+2
1E+1
1E+0

80,000

d=4 | /

Point

// I
dart/s/ ././ Line

- darts

120,000

160,000
Number of inserted points

1E+6

Point

=

1E+4

daty

Line

1E+2

/o rass

1E+0

/

r f=2.0

1E-2

0

3,000

6,000
Number of inserted points
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