Y,

™
LL‘\‘;\}

ﬂ;

":m?...=\ qﬁ
a5 5@%5
{Jj‘@ﬁ?ﬁ@% http://d-maps.com/
¢ Rl UE &
\—’\{‘l ST Q\?‘g V\»SE
® : L\»?\;Q&T:”‘k‘;;}\
: (L7 e RS
LIRS /%1\%&
%“:.0.. ¢ .\‘/\f\; :. O L
%0 %e ®

R IUPSICL L §- ;‘.:}‘j‘%%y

Fah
75 ey

Efficient Maximal Poisson-Disk Sampling

Mohamed S. Ebeida, Anjul Patney, Scott A. Mitchell, Andrew A. Davidson,
Patrick M. Knupp, John D. Owens

Sandia National Laboratories, University of California, Davis

Scott - presenter
SIGGRAPH2011

7 Sandia
VAN Q!-i’; for the United States Department of Energy’s National Nuclear Security Administration @ Mational

PR Ty Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

istration

under contract DE-AC04-94AL85000. Lahoratories

'

-
+ ™ Maximal Poisson-Disk Sampling

* What is MPS?
— Dart-throwing
— Insert random points into a domain, build set X

Empty disk:

Bias-free:

Maximal:

» With the “Poisson” process

>~ S . ‘\‘\
X X N\
/ \ N
/ \ X N
[\ >
° Q |

Vai,x; € X,xy # x5 ||z —xj|| > 7

Ve, € X,VQ CD;_1 : T ‘* \ // AN
Area(2) -
(ZE <) Area(Di—l)) '7// '\\\v///\’/ \ A

Ve € D,3x; € X : ||z —xi|| < r

Sandia
r“‘ National
Laboratories

'

P

MPS a.k.a.

 Statistical processes

— Hard-core Strauss disc processes
* Non-overlap: inhibition distance r,
« cover domain: disc radius r,
* Nature

— Trees in a forest
* Variable disk diameter = tree size
* Points are tree trunks
» Disks are tree leaves or roots
— Given satellite pictures (non-maximal)
« How many trees are there?
* How much lumber? ... —

New Mexico | a
mountains/ ") \ t\ .

« Random sphere packing

— Non-overlapping r/2 disks
— Atoms in a liquid, crystal

N 0 L D
I |) \ AT
N 2 A
) VAN \
\\ ‘/ \‘ P n,\\\,,, /
\“ “‘\ /“‘ // \\
«) A \ ([
/// \\ \ \\ y {
- - / //) \\\ \\ o / \
\ AL
| |
N N / \\,,,,,, Y
_— N\
\ o]\ /
-) ya N\ ,,,,,,// N /‘
| .
_ VAN
\ — [
\ Ve N\ Ve
/J/ \\ (N
,///‘

Sandia
National
Laboratories

B

g What is MPS good for?

« Graphics — sample points for texture synthesis
* Generate blue noise distributions for anti-aliasing
* Without Moire and other visible patterns

— Unbiased process leads to points with

* No visible patterns between distant points.

— pairwise distance spectrum close to truncated
blue noise powerlaw

* Our eyes sensitive to patterns

« Randomness hides imperfections

— stare at dry-wall in your house sometime,
try to find the seams

Sandia
r“‘ National
Laboratories

\

= P Whatis MPS good for?

* Physics simulations — why SNL paid for my trip ©
* Voronoi mesh, cell = points closest to a sample

OO\

* Fractures occur on Voronoi cell boundaries /.
— Mesh variation C material strength variation o

— CVT, regular lattices give unrealistic cracks
*Unbiased sampling gives realistic cracks =

- Ensembles of simulations Fracture Simulations

. .] _ . . Courtesy of
Domains: non-convex, internal boundaries Joe Bishop (SNL)

VAVAVZAYAVAVAVAYAYN
¢

kg

NIRRT DK AN
U SR O I S
i e e R
NNA VA -IAVAY . s vave AN /N <A
S i e A (AL
R AN S S A O RIS S
I RSN ARE
AR ANV ARSI NS R

>y
NN AN/
KPR PR ARSI O

KO R R I SRR KIAS RN o

R R N ST e X W

NS SIS oS Gl SR i gsgz O, e
SO T 0 o .

Seismic Simulations
maximal helps A quality

Sandia
r“‘ National
Laboratories

'

S

- Algorithm for MPS

7000
6000
wv
£ 5000
I
6 4000
E 3000
£
22000
1000
0

Classic algorithm
— Throw a point, check if disk overlaps, keep/reject

— Fast at first, but slows due to smaII uncovered area left.
Can’t get maximal.

Classic Dart Throwing

100%

80%

60%

40%

20%

Pecentage of Throws that Hit

quadtree

0%
0 10000 20000 30000 40000 50000 60000 70000

Number of Darts Thrown advanCing front

« Speedup by targeting just the uncovered area

« Common issues =N

— Others use quadtrees to approximate the uncovered area
— Others use advancing front to sample locally

— Others use tiles to aid parallelism

— Not strictly “unbiased” process
* Outcome may be indistinguishable from

\\\\ ///,

an unbiased process’s outcome
— Not maximal: dependent on finite precision
— Memory or run-time complexity
— Ours is first provably bias-free, maximal, E(n log n) time O(n) space

\\\\

~ independent tiles

QL

Sandia
National
Laboratories

\

Initial Pool C

End of Phase I: white cells with a point

Algorithm

« Background square grid
— Square diagonal = r

* Flood fill

— Build pool of cells C:
not-exterior to domain

* Phase I: quickly cover most of
the domain

— Pick a square from pool
— Pick point in square
— If point uncovered (likely)

» Keep point
* Remove square from pool
— Repeat a|C| times o

r“‘ National
Laboratories

Algorithm

Start of Phase II: dark cells not-covered

Target remaining uncovered area
Construct square \ disks

— Polygon easy surrogate for arc-gon

Replace pooi of squares by polygons

Phase II: repeat
— Pick polygon from pool

+ Weighted by its area (only log n step)

— Pick point in polygon
— If uncovered
» Keep point
 Remove polygon from pool
« Update nearby polygons
Works well because

— Voids are scattered

— Small arc-gons are well approximated

by polygons rh

Sandia
National
Laboratories

'

‘ <¢’Algorithm Nuance - Phase |l stages

» “Algorithm is simple,... in a good way” - Reviewer
* Lazy update of polygons’ areas and pool, in “stages”

— More simple datastructures

— No tree needed, flat array for pool, fewer pointers
— Run-time proof gets more complicated

Prior slide

Lazy update

Phase II: repeat
Pick polygon from pool
Weighted by its area (only log n step)
Pick point in polygon
If uncovered
Keep point
Remove polygon from pool
Update nearby polygons

Phase II: repeat
Repeat clPooll times
Pick polygon from pool
Weighted by its area (only log n step)
Pick point in polygon
If uncovered
Keep point

New stage - update all polygons
Rebuild pool and weights

Sandia
r“‘ National
Laboratories

Complexity Proofs Sketch

« WTS constant time & space per point S(
— Everything is local, and constant size I~

» #squares = B(#points_in_sample)
» Sid Meier Civilization template

— 21 nearby squares, 0 or 1 disks per square
* By geometry, < 4 voids per cell
* By geometry, <9 (8?) disks bounding a void

» Constant time to check if point is uncovered
* Polygons are constant size, time to build

Four voids

L ‘
(o, ¢ O
o, 0 ¢ {3 £ O
Sandia
o L & ® National
rll' Laboratories

. /-v’ Complexity Proofs Sketch

» Constant work per generated point,
but what about the rejected (covered) points?

— Phase |, O(|C]) throws

— Phaselll
Area(arcgon) > ¢ Area(polygon) < P(x, : uncovered) > ¢

< #accepted > ¢, #rejected

— Via weighted Voronoi cell of a circle
» Constant curvature and number of edges

/

e covered fraction of polygon

\ [uncovered arcgon
\ Sandia
\ r“‘ National
Laboratories

o

Fewer Rejected Points Later

* Polygons =» arcgon as voids get smaller

— We get more efficient (contrast) ey
Polygon & Arc-gon Void Area —
g @
< 2 0.98 ¢ £ \ 2>
3 < =
S, 096 4 B 0Q
T © S g // O
S8 -6 094 2 ¢ =,
- S 2 =
> = a
3 10 09 5% —_— =
o E £ go)
¢ 12 088 § 3
< 0 5 10 15 20 @ el 5
Phase Il Stage 03
A\ o
7 Voids Covered per Stage M1 - %
" 6 Ml |nvalidation Ratio - 0.8 g //
R} 5 -*Number of Voids 2 &
Se - 06 9 &
“— g © | ——m—
5 & S E
330 043 £ —_— ¢'
= c
z 0.2 g -
0 . 0 &
0 5

10 15 20 25 Sandia
Phase Il Stage m National
Laboratories

- > Complexity

« Complexity — everything is local, all steps constant time

— except log(n) to select a polygon, weighted by area

— that is a relatively inexpensive step

— constructing geometric primitives is the expensive part
» Constant fraction of generated points are output points

Time=E(Cn+mnlogn)
Space=0(n)

Sandia
r“‘ National
Laboratories

Runtime — Why we do Phase |

Phase | Points or Voids

Number of Points and Voids in Phase | vs. Il

Phase | Points =
0.73 Total Points

* # Voids at Phase Il start
® # Points in Phase |

—Linear (# Voids at Phase |l start)
—Linear (# Points in Phase |)

Initial Voids =
0.73 Total Points

* Phasel
— 73% of points

OE+0 T T T T T T T T 1
o .
OE+0 1E+6 2E+6 3E+6 A4E+6 SE+6 6E+6 7E+6 8E+6 9or+6 — 26% of runtime
Number of Points Generated (Phase | + 1l)
100 . o
CPU Running Time *= slight uptick from log
— 80]
_‘6 ¢ Phase | _
S ® Phase | + Phase |l 93k p0|r.1ts/s
S 60 _ trendline
Q —Linear (Phase |)
‘g’ 40 | —Linear (Phase | + Phase II) 358K points/s
= trendline
20
O I I I I I I I I 1
0E+0 1E+6 2E+6 3E+6 4E+6 5E+6 6E+6 7E+6 8E+6 9E+6 'I,‘ ﬁaa?igi:al
Laboratories

Number of Points Generated

Serial Memory Use

Memory Use

2000 r : Geometric polygons are
1800 - relatively expensive
1600 - Phase | i Phasel

= 1400 - 73% points L 27% points

S 1200 - 22% memoryi 78% memory

1000 ~ 26%time | 74%time

£ 80 |

Z 0
00T ! Saw-tooth from lazy
200 update “stages”

’ 0 10 20 30 40 50 60 70 80

Time (seconds)

Sandia
r“‘ National
Laboratories

- > GPU Algorithm

Points generated in parallel, conflicts resolved in an unbiased way
* Point buffers: candidate and final

 Phase |

— lterate: synchronize at start of iteration
» Generate |C|/5 candidate points

» Square states: empty, test, accepted, done
— Done = Point from prior iterations
— Test = Point doesn’t conflict with nearby “done” points, compute in parallel
— Accepted = Point is earlier (id) than conflicting “test” points, compute in parallel

» Migrate accepted points to done, otherwise remove

 Phase Il

— Construct polygons, compute in parallel
« Squares “rejected” if covered by prior disks, has no polygon, no work to do
» Split polygons into triangles

— Proceed as Phase |, with triangles playing role of squares

Sandia
r“‘ National
Laboratories

GPU Performance

Time (seconds)

5 b L] L]
GPU Running Time
| |
4 1 e Pphasel
® Ph | + Ph 1
3 - _ asel+Fhase 224k points/s
—Linear (Phase |) trendline
> - —Linear (Phase | + Phase Il)
1,484k points/s
1 trendline
0 S e SRR ‘
OE+00 2E+05 4E+05 6E+05 8E+05 1E+06
Number of Points Generated

2.4x speedup over serial (6.7x memory bandwidth)
I million points in 1 GB RAM

Sandia
r“‘ National
Laboratories

Rings from
inhibition
radius

o
T

Anisotropy (dB)

meMWMMmew
_15 L L L

Radial Anisotropy

0.016

0.014

L 0.012}

[}
=

o 0.010f

o

€ 0.008}
©

[}

= 0.006f
0.004}

0.002f

200 400 660 800 1600
Frequency

Radi‘al Mean Power

0 200 400 600 800 1000

Frequency

A

« Unbiased as a description of (serial) process
— insertion probability independent of location

“Unbiased” Opinion

P(x, €Q) x Area(Q2) KQ)

* Unbaised as a description of outcome O B %>
— pairwise distance spectra, blue noise ’

Radial Mean Power

0 Radial Anisotropy

P
Anisotropy (dB)
|

200 0 800 1000 200 400 600 800 1000
Frequency Frequency

* Unbiased process leads to unbiased outcome,
but so might other processes

— Opinion: need something beyond “viewgraph norm”
— Need metrics for “how unbiased is it”

» Define spectrum S that is the limit distribution of unbiased sampling, and
standard deviations.

Sandi
« Our process generated S’, and |S-S’| < 0.4 std dev (S) ﬂ'l [ialil?‘lgafcllries

'

.

- Synopsis of Contribution

* Poisson-disk distributions
— Simple, efficient implementation
— Provable guarantees

« Maximal
 Unbiased
* O(n) space

« E(Cn+mnlogn) time
 Domains
- 2d
— Polygons with holes, non-convex
» Algorithmic innovations

— Two phases
|. fast to cover most of domain
Il. careful to cover remainder

— Approximate uncovered “voids”, square () circles,
with polygons. Careful weighting and selection

Sandia
National
Laboratories

B

é
: ’/ Future

 Extensions

— Could do away with polygonal approximation and weight and
sample directly — every dart is a hit! (w/ Thouis Ray Jones)

* Higher dimensions
— geometric primitives unappealing
— prefer just use hypercubes

* Thouis Ray Jones, jgt accepted paper
— model explicit time-of-arrival for each point
— synchronize locally as needed
— vs. unbiased by one dart at a time, inherently serial

Sandia
r“‘ National
Laboratories

