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+ ™ Maximal Poisson-Disk Sampling

* What is MPS?
— Dart-throwing
— Insert random points into a domain, build set X

Empty disk:

Bias-free:

Maximal:

» With the “Poisson” process
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MPS a.k.a.

 Statistical processes

— Hard-core Strauss disc processes
* Non-overlap: inhibition distance r,
« cover domain: disc radius r,
* Nature

— Trees in a forest
* Variable disk diameter = tree size
* Points are tree trunks
» Disks are tree leaves or roots
— Given satellite pictures (non-maximal)
« How many trees are there?
* How much lumber? ... —

New Mexico | a
mountains/ " ) \ t\ .

« Random sphere packing

— Non-overlapping r/2 disks
— Atoms in a liquid, crystal
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g What is MPS good for?

« Graphics — sample points for texture synthesis
* Generate blue noise distributions for anti-aliasing
* Without Moire and other visible patterns

— Unbiased process leads to points with

* No visible patterns between distant points.

— pairwise distance spectrum close to truncated
blue noise powerlaw

* Our eyes sensitive to patterns

« Randomness hides imperfections

— stare at dry-wall in your house sometime,
try to find the seams
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= P Whatis MPS good for?

* Physics simulations — why SNL paid for my trip ©
* Voronoi mesh, cell = points closest to a sample

OO\

* Fractures occur on Voronoi cell boundaries /.
— Mesh variation C material strength variation o

— CVT, regular lattices give unrealistic cracks
*Unbiased sampling gives realistic cracks =

- Ensembles of simulations Fracture Simulations

. . ] _ . . Courtesy of
Domains: non-convex, internal boundaries Joe Bishop (SNL)
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- Algorithm for MPS
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Classic algorithm
— Throw a point, check if disk overlaps, keep/reject

— Fast at first, but slows due to smaII uncovered area left.
Can’t get maximal.

Classic Dart Throwing

100%

80%

60%

40%

20%

Pecentage of Throws that Hit

quadtree

0%
0 10000 20000 30000 40000 50000 60000 70000

Number of Darts Thrown advanCing front

« Speedup by targeting just the uncovered area

« Common issues =N

— Others use quadtrees to approximate the uncovered area
— Others use advancing front to sample locally

— Others use tiles to aid parallelism

— Not strictly “unbiased” process
* Outcome may be indistinguishable from

\\\\ ///,

an unbiased process’s outcome
— Not maximal: dependent on finite precision
— Memory or run-time complexity
— Ours is first provably bias-free, maximal, E(n log n) time O(n) space

\\\\

~ independent tiles
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Initial Pool C

End of Phase I: white cells with a point

Algorithm

« Background square grid
— Square diagonal = r

* Flood fill

— Build pool of cells C:
not-exterior to domain

* Phase I: quickly cover most of
the domain

— Pick a square from pool
— Pick point in square
— If point uncovered (likely)

» Keep point
* Remove square from pool
— Repeat a|C| times o
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Algorithm

Start of Phase II: dark cells not-covered

Target remaining uncovered area
Construct square \ disks

— Polygon easy surrogate for arc-gon

Replace pooi of squares by polygons

Phase II: repeat
— Pick polygon from pool

+ Weighted by its area (only log n step)

— Pick point in polygon
— If uncovered
» Keep point
 Remove polygon from pool
« Update nearby polygons
Works well because

— Voids are scattered

— Small arc-gons are well approximated

by polygons rh
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‘ <¢’Algorithm Nuance - Phase |l stages

» “Algorithm is simple,... in a good way” - Reviewer
* Lazy update of polygons’ areas and pool, in “stages”

— More simple datastructures

— No tree needed, flat array for pool, fewer pointers
— Run-time proof gets more complicated

Prior slide

Lazy update

Phase II: repeat
Pick polygon from pool
Weighted by its area (only log n step)
Pick point in polygon
If uncovered
Keep point
Remove polygon from pool
Update nearby polygons

Phase II: repeat
Repeat clPooll times
Pick polygon from pool
Weighted by its area (only log n step)
Pick point in polygon
If uncovered
Keep point

New stage - update all polygons
Rebuild pool and weights
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Complexity Proofs Sketch

« WTS constant time & space per point S(
— Everything is local, and constant size I~

» #squares = B(#points_in_sample)
» Sid Meier Civilization template

— 21 nearby squares, 0 or 1 disks per square
* By geometry, < 4 voids per cell
* By geometry, <9 (8?) disks bounding a void

» Constant time to check if point is uncovered
* Polygons are constant size, time to build

Four voids

L ‘
(o, ¢ O
o, 0 ¢ {3 £ O
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. /-v’ Complexity Proofs Sketch

» Constant work per generated point,
but what about the rejected (covered) points?

— Phase |, O(|C]) throws

— Phaselll
Area(arcgon) > ¢ Area(polygon) < P(x, : uncovered) > ¢

< #accepted > ¢, #rejected

— Via weighted Voronoi cell of a circle
» Constant curvature and number of edges

/

e covered fraction of polygon

\ [ uncovered arcgon
\ Sandia
\ r“‘ National
Laboratories
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Fewer Rejected Points Later

* Polygons =» arcgon as voids get smaller

— We get more efficient (contrast) ey
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- > Complexity

« Complexity — everything is local, all steps constant time

— except log(n) to select a polygon, weighted by area

— that is a relatively inexpensive step

— constructing geometric primitives is the expensive part
» Constant fraction of generated points are output points

Time=E(Cn+mnlogn)
Space=0(n)
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Runtime — Why we do Phase |

# Phase | Points or Voids

Number of Points and Voids in Phase | vs. Il

Phase | Points =
0.73 Total Points

* # Voids at Phase Il start
® # Points in Phase |

—Linear (# Voids at Phase |l start)
—Linear (# Points in Phase |)

Initial Voids =
0.73 Total Points

* Phasel
— 73% of points

OE+0 T T T T T T T T 1
o .
OE+0  1E+6  2E+6  3E+6  A4E+6  SE+6  6E+6  7E+6  8E+6 9or+6  — 26% of runtime
Number of Points Generated (Phase | + 1l)
100 . o
CPU Running Time *= slight uptick from log
— 80 ]
_‘6 ¢ Phase | _
S ® Phase | + Phase |l 93k p0|r.1ts/s
S 60 _ trendline
Q —Linear (Phase |)
‘g’ 40 | —Linear (Phase | + Phase II) 358K points/s
= trendline
20
O I I I I I I I I 1
0E+0 1E+6 2E+6 3E+6 4E+6 5E+6 6E+6 7E+6 8E+6 9E+6 'I,‘ ﬁaa?igi:al
Laboratories

Number of Points Generated




Serial Memory Use

Memory Use

2000 r : Geometric polygons are
1800 - relatively expensive
1600 - Phase | i Phasel

= 1400 - 73% points L 27% points

S 1200 - 22% memoryi 78% memory

1000 ~ 26%time | 74%time

£ 80 |

Z 0
00T ! Saw-tooth from lazy
200 update “stages”

’ 0 10 20 30 40 50 60 70 80

Time (seconds)
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- > GPU Algorithm

Points generated in parallel, conflicts resolved in an unbiased way
* Point buffers: candidate and final

 Phase |

— lterate: synchronize at start of iteration
» Generate |C|/5 candidate points

» Square states: empty, test, accepted, done
— Done = Point from prior iterations
— Test = Point doesn’t conflict with nearby “done” points, compute in parallel
— Accepted = Point is earlier (id) than conflicting “test” points, compute in parallel

» Migrate accepted points to done, otherwise remove

 Phase Il

— Construct polygons, compute in parallel
« Squares “rejected” if covered by prior disks, has no polygon, no work to do
» Split polygons into triangles

— Proceed as Phase |, with triangles playing role of squares
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GPU Performance

Time (seconds)

5 b L] L]
GPU Running Time
| |
4 1 e Pphasel
® Ph | + Ph 1
3 - _ asel+Fhase 224k points/s
—Linear (Phase |) trendline
> - —Linear (Phase | + Phase Il)
1,484k points/s
1 trendline
0 S e SRR ‘
OE+00 2E+05 4E+05 6E+05 8E+05 1E+06
Number of Points Generated

2.4x speedup over serial (6.7x memory bandwidth)
I million points in 1 GB RAM
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« Unbiased as a description of (serial) process
— insertion probability independent of location

“Unbiased” Opinion

P(x, €Q) x Area(Q2) KQ)

* Unbaised as a description of outcome O B %>
— pairwise distance spectra, blue noise ’

Radial Mean Power

0 Radial Anisotropy

P
Anisotropy (dB)
|

200 0 800 1000 200 400 600 800 1000
Frequency Frequency

* Unbiased process leads to unbiased outcome,
but so might other processes

— Opinion: need something beyond “viewgraph norm”
— Need metrics for “how unbiased is it”

» Define spectrum S that is the limit distribution of unbiased sampling, and
standard deviations.

Sandi
« Our process generated S’, and |S-S’| < 0.4 std dev (S) ﬂ'l [ialil?‘lgafcllries
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- Synopsis of Contribution

* Poisson-disk distributions
— Simple, efficient implementation
— Provable guarantees

« Maximal
 Unbiased
* O(n) space

« E(Cn+mnlogn) time
 Domains
- 2d
— Polygons with holes, non-convex
» Algorithmic innovations

— Two phases
|. fast to cover most of domain
Il. careful to cover remainder

— Approximate uncovered “voids”, square () circles,
with polygons. Careful weighting and selection
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: ’/ Future

 Extensions

— Could do away with polygonal approximation and weight and
sample directly — every dart is a hit! (w/ Thouis Ray Jones)

* Higher dimensions
— geometric primitives unappealing
— prefer just use hypercubes

* Thouis Ray Jones, jgt accepted paper
— model explicit time-of-arrival for each point
— synchronize locally as needed
— vs. unbiased by one dart at a time, inherently serial
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