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Maximal Poisson-Disk Sampling 
• What is MPS? 
– Dart-throwing 
–  Insert random points into a domain, build set X 

• With the “Poisson” process 

Ω
x4?	



Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.
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MPS a.k.a. 

• Statistical processes 
– Hard-core Strauss disc processes   

•  Non-overlap: inhibition distance r1  
•  cover domain: disc radius r2 

• Nature 
–  Trees in a forest  

•  Variable disk diameter = tree size  
•  Points are tree trunks 
•  Disks are tree leaves or roots 

– Given satellite pictures (non-maximal) 
• How many trees are there? 
• How much lumber? 

• Random sphere packing 
– Non-overlapping r/2 disks 
– Atoms in a liquid, crystal 

New Mexico	


mountains	



British Columbia	





What is MPS good for? 

• Graphics – sample points for texture synthesis 
• Generate blue noise distributions for anti-aliasing 
• Without Moire and other visible patterns 

– Unbiased process leads to points with  
• No visible patterns between distant points. 

– pairwise distance spectrum close to truncated  
blue noise powerlaw 

• Our eyes sensitive to patterns 
• Randomness hides imperfections 

– stare at dry-wall in your house sometime,  
try to find the seams 



What is MPS good for? 

• Physics simulations – why SNL paid for my trip J 
• Voronoi mesh, cell = points closest to a sample 
•  Fractures occur on Voronoi cell boundaries 

– Mesh variation     material strength variation 
– CVT, regular lattices give unrealistic cracks 

• Unbiased sampling gives realistic cracks 
• Ensembles of simulations 
• Domains: non-convex, internal boundaries 

Fig. 2. Top, a non-convex fracture domain with a hole. Bottom,
a seismic domain; our implementation succeeded despite the user
selecting a coarser mesh size than the theory requires.

triangle’s circumcircle contains no point visible to the tri-

angle’s vertices. Covering triangulations [28] add interior

points to improve triangle angles, but constraint edges and

vertices limit the improvement. In a Conforming Delau-

nay Triangulation (CDT), constraint edges are subdivided

as well, greatly improving mesh quality. Each constraint

edge is a union of triangle edges, and triangles are con-

strained Delaunay. CDT is important in many fields such

as interpolation, rendering, and mesh generation. Well-

shapedmeshes of well-spaced points havemany useful prop-

erties [27].

A very effective family of CDT algorithms is based on De-

launay refinement: start with a coarse mesh, and insert a

point at the center of large Delaunay circumcircles. We con-

trast and bridge our method to the root of this family’s

tree, Chew [8]. Since Chew’s seminal paper, Delaunay re-

finement has been generalized in many ways. The most rel-

evant generalization for us is that new points do not need

to be at the exact center of a Delaunay circle; indeed our

work shows they can be placed randomly, as long as they

are far enough away from prior points. Off-centers [37] in-

serts a point between the center and a short edge; it re-

duces the total number of inserted points by implicitly grad-

ing the mesh size. It also improves numerical stability. In

three-dimensions, nearly-planar tetrahedra can be avoided

by perturbing points. This can be done randomly [9] or de-

terministically [14]. This can be done symbolically or with

actual coordinates or the Voronoi weights [6]. Randomly in-

serting a point, say within a smaller circle concentric with

the Delaunay circle, reduces the bias.

Parallel Delaunay refinement is possible. The points used

to fix different simplices will interfere with one another, but

this can be resolved by only inserting the non-conflicting

points, and taking multiple passes [34].

In any event, Delaunay refinement inserts biased points; an

unbiased process selects a new point outside the (constant)

radius r disk of any other point, but is otherwise chosen

uniformly at random from the remaining disk-free area of

the domain. This is also known in spatial statistics [4] as the

hard-core Strauss disc processes with inhibition distance

r1 and disc radius r2, where for us r1 = r2. The limiting

distribution is called amaximal Poisson-disk sample (MPS)

in graphics.

The probability of inserting a point at a given location is

independent of the location. For Delaunay refinement the

insertion probability depends on intermediate properties of

the algorithms, such as the order in which bad-angle tri-

angles are addressed and the DT angles and circle centers.

The bias may be difficult to understand, describe, or pre-

dict, although spectrum analysis of pairwise distances can

measure bias. Unbiased points have spectra with the “blue

noise” property. Unbiased sampling algorithms have a long

history in computer graphics relating to image synthesis,

including applications in anti-aliasing [22] andMonte Carlo

methods for ray tracing, path tracing, and radiosity [38].

Random meshes are useful in several contexts. The effects

of mesh structure on modeling fracture in solid mechan-

ics was studied in detail in the 1990’s; see Bolander and

Saito [3] for a thorough discussion. For some finite element

methods, crack propagation is limited to triangle edges,

or dual Voronoi cell edges. Structure also plays a role for

spring networks, e.g. crack formation may depend on the

orientation of the mesh with respect to the stress field. In

either method, the locations of fractures are suspect if the

locations of mesh points are biased. Lattice meshes are par-

ticularly troublesome [20], as is geometric regularity aris-

ing from some adjustment procedures such as point repul-

sion [36] and centroidal Voronoi tesselation [24]. Strain and

stress rates are independent of rotations, i.e., the physics

are isotropic. For spring networks, mesh structure may af-

fect the ability to model this isotropy and reproduce uni-

form elasticity, independent of fracture.

For computational science validation it may help to have

multiple meshes with nearly identical global properties,

but with local differences. Simulations results over all the

meshes can be compared, to see if the results are dependent

on mesh artifacts. Fracture simulations are dependent, but

point location variablity is considered a subset of material

property variability. Simulations over an esemble of meshes

are collected to generate the range of possible experimen-

tal outcomes. Unbiased Poisson-disk sampling is ideal for

these applications; amaximal distribution helps with angle

bounds (Section 3.1) and performance [2].

The meshing literature abounds with methods for handling

sharp features of the domain: small input angles, and edges
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deformed configuration, the position of a material point is
denoted by x, and the displacement u = x−X. In the numer-
ical solution to follow, interpolation functions will be con-
structed directly on the reference configuration. Therefore,
a total Lagrangian formulation of the governing equations
is appropriate [8]. The conservation of linear momentum is
given by [7]

∂P
∂X

: I + ρof = ρoü, (1)

where P is the first Piola-Kirchhoff stress tensor, f is the body
force vector per unit mass, ρo is the reference density, and I
is the identity tensor. The weak form of Eq. 1 is given by
∫

#o

ρoü · δu d#o =
∫

%o

to · δu d%o +
∫

#o

ρof · δu d#o

−
∫

#o

ρoP : (∂(δu)/∂X) d#o (2)

where δu is a virtual displacement vector, and to is the trac-
tion vector per unit reference area. The displacement u and
virtual displacement δu are members of the Sobolev function
space of degree one [8].

In the next section, a randomly close-packed Voronoi tes-
sellation is used to mesh the reference domain #o. The face
network of the Voronoi mesh will be used as a random basis
for representing new fracture surfaces in the deformed con-
figuration. In Sect. 4, Eq. 2 will be solved using a Galerkin
finite element approach where each Voronoi cell is formu-
lated as a finite element directly on the reference
configuration.

3 Randomly close-packed Voronoi tessellations

Voronoi tessellations have a rich history in mathematics and
science and have a number of advantageous properties [43].
Given a finite set of points Xi or nuclei, the Voronoi
tessellation is defined as the collection of regions or cells
Vi where

Vi =
⋂

i "= j

{X|d(Xi , X) < d(X j , X)}. (3)

Here, X represents an arbitrary point in the domain, and the
function d is the Euclidean distance between two points.
Each spatial point belonging to the Voronoi cell i is closer to
nucleus i than all other nuclei. Note that each Voronoi cell is
defined as the intersection of half-spaces and is thus convex.
An example of a two dimensional Voronoi cell is shown in
Fig. 1. While the Voronoi tessellation can be formed from
any finite set of points or seeds, a special structure arises
from the study of close packing of equi-sized hard spheres
[1]. A classic experiment of dropping hard spheres into a rel-
atively large container produces a structure known as random

Fig. 1 A collection of points and their associated Voronoi diagram
defined by Eq. 3

(a) (b)

Fig. 2 The associated Voronoi diagram for both (a) an hexagonal close
packed array of points, and (b) a randomly close packed array

close-packed (RCP) [64]. Unlike the well known hexagonal
close-packed (HCP) structure with a packing factor of 0.740,
the RCP structure exhibits a maximum packing factor of only
0.637. An example of the associated Voronoi tessellation for
both the HCP and RCP structures in two dimensions is shown
in Fig. 2. The RCP structure arises in a number of scientific
fields and has been extensively studied. The RCP structure
provides a foundation for the study of amorphous solids as
described by Zallen [64]. The statistical geometry aspects of
RCP structures and their associated Voronoi diagrams have
been studied by Finney [20]. In three dimensions the aver-
age number of nearest neighbors is 14.3. For comparison, the
number of nearest neighbors of the hexagonal close-packed
structure is exactly 14. For the RCP structure the average
aspect ratio of each Voronoi cell is approximately one. The
median number of cell faces is 14 with a large majority of
the face distribution in the range of 13 to 16. The median
number of edges of each cell face is 5 with a large majority
of the distribution in the 4 to 6 range. Most importantly each
junction or node of the RCP Voronoi structure is randomly
oriented with only a short range correlation to neighboring
nodes. In two dimensions the RCP Voronoi structure results
in cells with an average number of edges of exactly 6 and
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Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the
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Algorithm for MPS 
•  Classic algorithm 
–  Throw a point, check if disk overlaps, keep/reject 
–  Fast at first, but slows due to small uncovered area left.  

Can’t get maximal. 

 
 

latter area buffer then undergoes a parallel exclusive prefix-sum op-
eration [Sengupta et al. 2007] to obtain the cumulative area for each
triangle. At the end of this step we also know the total area of all
void polygons.

In the second step, we generate test points in some of the void tri-
angles. This is similar to generating candidates in Phase I, but now
we must pick triangles with a probability proportional to their ar-
eas. We run several threads in parallel for this purpose. Each thread
picks a random number between 0 and 1, and performs a binary
search over the area and cumulative area buffers to identify the tri-
angle whose area fraction covers this number. The thread then tries
to insert a test sample uniformly in this triangle, but backs off if an-
other thread has already picked the associated grid cell. Each thread
performs several tries for different random numbers before giving
up.

The third and fourth steps are identical to Phase I’s second and
third steps, checking each test point against nearby ones. We iter-
ate Phase II until all polygons are consumed. Very small polygons
last many iterations because their areas are a small fraction of the
overall polygon area, but as larger polygons are removed, their area
fractions rise and they will all be visited before completion.

4 Implementation Performance

In this section we show the performance of our serial and paral-
lel implementations of the algorithm. The serial implementation
is tested using a Intel Core i7 CPU M620 with 4 GB of DRAM
running a 64-bit Windows 7 operating system. We start by show-
ing the significance of Phase II in achieving a maximal distribution
with reasonable performance. In our algorithm, Phase I mimics
an improved version of the classical dart throwing algorithm. This
provides a useful method to distribute an initial set of bias-free ran-
dom points covering most of the domain. However, the capability
of this phase to insert new points deteriorates as more points are
inserted. Hence such an approach cannot by itself achieve maximal
distributions. This fact is demonstrated in Figure 13, where 70,000
darts were thrown into a unit square domain during Phase I. At the
beginning of Phase I, the percentage of successful darts is close to
100%, and as more points are inserted, this percentage decreases
significantly. After Phase I ends, only 5940 points were distributed
in the domain, consuming about 30 ms and covering about 98% of
the total area of the domain. Phase II was able to reach a maximal
distribution by inserting an additional 2175 points in the remaining
2% of the area. Limiting the number of the darts thrown in Phase
I in a typical implementation of our algorithm achieves a similar
result in less than 10 ms.

We compare our times for maximal sampling to White’s [2007] and
Gamito and Mattock’s [2009] times for nearly-maximal sampling,
with truncated tree depth. Our sequential implementation samples
100k points/second, on par with White’s low-memory algorithm,
and our method does not slow down as much when the number of
points increases. Gamito reports 100k points in 1.9 seconds.

Figure 14 shows the memory consumption over the two phases
of the algorithm. The domain was a unit square. We generated
8,269,890 points. The memory required was 1.970 GB, of which
about 660 MB was for the output point cloud. The peak memory
was when we built the polygonal voids at the beginning of Phase II.
This suggests that memory could be reduced, at the cost of slower
performance, by forcing Phase I to throw more darts. The saw-tooth
in the figure arises because the memory jumps at the beginning of
a stage when we compute the void polygons, is mostly flat during
sampling, then drops at the end of a stage when we discard voids.
Voids are recomputed from scratch at the beginning of each stage.
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Figure 13: The capability of classic dart-throwing to insert a new
point deteriorates as the number of prior darts increases. At 70,000
darts thrown, 90% are rejected. 80% of the accepted darts were
thrown during the first 20,000 throws.
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Figure 14: Serial memory use while sampling 8 million points in a
square. The memory ramps up at the start of each Phase II stage
when the geometry of polygonal voids is calculated. Later stages
have fewer voids. In this example three teeth corresponding to the
first three Phase II stages are visible. The roughly-flat region after
the third tooth is actually comprised of about 10 stages that con-
sume little memory. This figure also illustrates that geometric void
calculations are a large part of the running time.

This avoids the cost of updating voids, many of which no longer
exist.

Compared to White [2007], we consume more memory. Polygo-
nal voids appear more expensive to represent than truncated-depth
quadtrees. Asymptotically, Gamito and Mattock [2009] require
O(n log n) space vs. our O(n).

Figure 15 shows the runtime of the algorithm. Note the binary
search in Phase II has a negligible effect on performance in practice.
The memory consumption in Phase II is proportional to the number
of the remaining voids after Phase I. As illustrated in this figure, the
relation between the number of voids and the number of points in
the final distribution is almost linear. Moreover, more than 70% of
the points are inserted during Phase I. Note that these results may
vary according to the input geometry as well as the termination cri-
terion of Phase I. Here we are using a unit square problem with no
holes, where Phase I terminates after 400 successive misses.

GPU Implementation. Our GPU implementation was built on
the NVIDIA CUDA platform and runs on an NVIDIA GeForce
GTX 460 with 1 GB of on-chip memory. The algorithms used

quadtree	


advancing front	



independent tiles	



•  Speedup by targeting just the uncovered area 
–  Others use quadtrees to approximate the uncovered area 
–  Others use advancing front to sample locally  
–  Others use tiles to aid parallelism 

•  Common issues 
–  Not strictly “unbiased” process 

•  Outcome may be indistinguishable from  
an unbiased process’s outcome 

–  Not maximal: dependent on finite precision 
–  Memory or run-time complexity 
–  Ours is first provably bias-free, maximal, E(n log n) time O(n) space 



Algorithm 
• Background square grid 
–  Square diagonal = r 
 

•  Flood fill  
– Build pool of cells C :  

not-exterior to domain 
• Phase I: quickly cover most of 

the domain 
–  Pick a square from pool 
–  Pick point in square 
–  If point uncovered (likely) 

•  Keep point 
•  Remove square from pool 

– Repeat a|C| times 

(a) Find the boundary cells (dark)

(b) Flood-fill to find valid cells (dark)

(c) Phase I darts (dots) land in many of the cells (light)

(d) Only the uncovered cells (dark) are passed to Phase II

Figure 2: Our algorithm through Phase I.

2.3 Polygonal approximations to arc-voids

After Phase I, for each valid cell we gather the connected compo-

nents of its disk-free region inside the domain. In Phase II these

components take the place of cells in Phase I. Each component is

a void, V . It is an arc-gon, Vr , a closed 2D region bounded by

straight segments and arcs of circles. We construct a polygonal

outer approximation to it, Vp, representing arcs by chords. We shall

prove in Section 2.5.2 that Vp is convex. A corner of Vp is a ver-

tex with interior angle < 180
◦
. We represent the polygon by an

ordered list of its corners. The following construction algorithm is

illustrated in Figure 3:

1. Initialize Vp to the cell’s square, then intersect it with any

boundary edges to retain just the domain interior.

2. For every disk d in a nearby cell, subtract it from Vp: for every

corner c of Vp it contains,

(a) Start from c and traverse the edges of Vp in both direc-

tions, to find the first two edges intersecting the disk’s

circle.

(b) If no edges intersect the circle, then Vr is completely

covered and the void is deleted.

(c) If the chord between the points of intersection separates

c from the center of d, then the disk cuts Vp into mul-

tiple connected components. Find the additional circle-

edge intersections and split Vp.

(d) Otherwise, insert two corners at the points of intersec-

tion, and remove all the intervening corners and edges

from Vp, since they are covered by the disk.

(e) Adjust the location of the new corners to be at the inter-

section of the arc-gon Vr and the circle.

3. If arcs of Vr intersect at any point other than a polygon corner,

split the polygon into connected components, as illustrated in

Figure 4.

We shall show in Section 2.5.2 that for each cell, the number of

nearby disks, corners and connected components are bounded by

constants. The running time of constructing each void is constant,

and the running time of constructing all voids is O(|V|). Because

of the geometric operations, the running time of this step is a sig-

nificant portion of the whole.

Figure 3: Generation of the polygonal void (dark) bounded by

three circles, from left to right. The polygon is initialized to the cell

boundary. The red, blue, then green disks are intersected with the

polygon. We get a polygon by using the chords instead of the arcs,

but we update vertices at circle-polygon intersections with circle-

circle intersections.

2.4 Phase II. Throwing darts into polygonal cells

Phase II is similar to Phase I, with polygonal voids taking the place

of square cells. When selecting a void we must take into account

the relative areas of voids to maintain the bias-free property. After

selecting a void, we choose a uniform random point inside it; see

Section 2.5.3 and Graphics Gems [Turk 1993]. We use the arc-gon

to determine if the selected point satisfies the empty-disk condition.
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Algorithm 
•  Target remaining uncovered area 
•  Construct square \ disks 
–  Polygon easy surrogate for arc-gon 

 
•  Replace pool of squares by polygons 
•  Phase II: repeat 
–  Pick polygon from pool  

•  Weighted by its area (only log n step) 
–  Pick point in polygon 
–  If uncovered 

•  Keep point 
•  Remove polygon from pool 
•  Update nearby polygons 

•  Works well because  
–  Voids are scattered 
–  Small arc-gons are well approximated 

by polygons 
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(c) Phase I darts (dots) land in many of the cells (light)

(d) Only the uncovered cells (dark) are passed to Phase II

Figure 2: Our algorithm through Phase I.
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three circles, from left to right. The polygon is initialized to the cell

boundary. The red, blue, then green disks are intersected with the

polygon. We get a polygon by using the chords instead of the arcs,

but we update vertices at circle-polygon intersections with circle-

circle intersections.

2.4 Phase II. Throwing darts into polygonal cells

Phase II is similar to Phase I, with polygonal voids taking the place

of square cells. When selecting a void we must take into account

the relative areas of voids to maintain the bias-free property. After

selecting a void, we choose a uniform random point inside it; see

Section 2.5.3 and Graphics Gems [Turk 1993]. We use the arc-gon

to determine if the selected point satisfies the empty-disk condition.

End of Phase I: white cells with a point	



(a) Find the boundary cells (dark)

(b) Flood-fill to find valid cells (dark)

(c) Phase I darts (dots) land in many of the cells (light)

(d) Only the uncovered cells (dark) are passed to Phase II

Figure 2: Our algorithm through Phase I.

2.3 Polygonal approximations to arc-voids

After Phase I, for each valid cell we gather the connected compo-

nents of its disk-free region inside the domain. In Phase II these

components take the place of cells in Phase I. Each component is

a void, V . It is an arc-gon, Vr , a closed 2D region bounded by

straight segments and arcs of circles. We construct a polygonal

outer approximation to it, Vp, representing arcs by chords. We shall

prove in Section 2.5.2 that Vp is convex. A corner of Vp is a ver-

tex with interior angle < 180
◦
. We represent the polygon by an

ordered list of its corners. The following construction algorithm is

illustrated in Figure 3:

1. Initialize Vp to the cell’s square, then intersect it with any

boundary edges to retain just the domain interior.

2. For every disk d in a nearby cell, subtract it from Vp: for every

corner c of Vp it contains,

(a) Start from c and traverse the edges of Vp in both direc-

tions, to find the first two edges intersecting the disk’s

circle.

(b) If no edges intersect the circle, then Vr is completely

covered and the void is deleted.

(c) If the chord between the points of intersection separates

c from the center of d, then the disk cuts Vp into mul-

tiple connected components. Find the additional circle-

edge intersections and split Vp.

(d) Otherwise, insert two corners at the points of intersec-

tion, and remove all the intervening corners and edges

from Vp, since they are covered by the disk.

(e) Adjust the location of the new corners to be at the inter-

section of the arc-gon Vr and the circle.

3. If arcs of Vr intersect at any point other than a polygon corner,

split the polygon into connected components, as illustrated in

Figure 4.

We shall show in Section 2.5.2 that for each cell, the number of

nearby disks, corners and connected components are bounded by

constants. The running time of constructing each void is constant,

and the running time of constructing all voids is O(|V|). Because

of the geometric operations, the running time of this step is a sig-

nificant portion of the whole.

Figure 3: Generation of the polygonal void (dark) bounded by

three circles, from left to right. The polygon is initialized to the cell

boundary. The red, blue, then green disks are intersected with the

polygon. We get a polygon by using the chords instead of the arcs,

but we update vertices at circle-polygon intersections with circle-

circle intersections.

2.4 Phase II. Throwing darts into polygonal cells

Phase II is similar to Phase I, with polygonal voids taking the place

of square cells. When selecting a void we must take into account

the relative areas of voids to maintain the bias-free property. After

selecting a void, we choose a uniform random point inside it; see

Section 2.5.3 and Graphics Gems [Turk 1993]. We use the arc-gon

to determine if the selected point satisfies the empty-disk condition.

Start of Phase II: dark cells not-covered	



(a) Find the boundary cells (dark)

(b) Flood-fill to find valid cells (dark)

(c) Phase I darts (dots) land in many of the cells (light)

(d) Only the uncovered cells (dark) are passed to Phase II

Figure 2: Our algorithm through Phase I.

2.3 Polygonal approximations to arc-voids

After Phase I, for each valid cell we gather the connected compo-

nents of its disk-free region inside the domain. In Phase II these

components take the place of cells in Phase I. Each component is

a void, V . It is an arc-gon, Vr , a closed 2D region bounded by

straight segments and arcs of circles. We construct a polygonal

outer approximation to it, Vp, representing arcs by chords. We shall

prove in Section 2.5.2 that Vp is convex. A corner of Vp is a ver-

tex with interior angle < 180
◦
. We represent the polygon by an

ordered list of its corners. The following construction algorithm is

illustrated in Figure 3:

1. Initialize Vp to the cell’s square, then intersect it with any

boundary edges to retain just the domain interior.

2. For every disk d in a nearby cell, subtract it from Vp: for every

corner c of Vp it contains,

(a) Start from c and traverse the edges of Vp in both direc-

tions, to find the first two edges intersecting the disk’s

circle.

(b) If no edges intersect the circle, then Vr is completely

covered and the void is deleted.

(c) If the chord between the points of intersection separates

c from the center of d, then the disk cuts Vp into mul-

tiple connected components. Find the additional circle-

edge intersections and split Vp.

(d) Otherwise, insert two corners at the points of intersec-

tion, and remove all the intervening corners and edges

from Vp, since they are covered by the disk.

(e) Adjust the location of the new corners to be at the inter-

section of the arc-gon Vr and the circle.

3. If arcs of Vr intersect at any point other than a polygon corner,

split the polygon into connected components, as illustrated in

Figure 4.

We shall show in Section 2.5.2 that for each cell, the number of

nearby disks, corners and connected components are bounded by

constants. The running time of constructing each void is constant,

and the running time of constructing all voids is O(|V|). Because

of the geometric operations, the running time of this step is a sig-

nificant portion of the whole.

Figure 3: Generation of the polygonal void (dark) bounded by

three circles, from left to right. The polygon is initialized to the cell

boundary. The red, blue, then green disks are intersected with the

polygon. We get a polygon by using the chords instead of the arcs,

but we update vertices at circle-polygon intersections with circle-

circle intersections.

2.4 Phase II. Throwing darts into polygonal cells

Phase II is similar to Phase I, with polygonal voids taking the place

of square cells. When selecting a void we must take into account

the relative areas of voids to maintain the bias-free property. After

selecting a void, we choose a uniform random point inside it; see

Section 2.5.3 and Graphics Gems [Turk 1993]. We use the arc-gon

to determine if the selected point satisfies the empty-disk condition.

Figure 4: Generation of two voids (dark) entrapped between two
circles and a boundary edge. First the square is updated to respect
the boundary edge. Next it is intersected with the circles. We detect
overlapping circles containing no other polygon vertices and split
the polygon in Step 3.

If so, the process was a success, and we retain that sample. Updat-

ing the relative probabilities can be expensive, so we do that in a

lazy fashion. Let V0 be the initial set of voids, and Vi the set at

stage i. Similar to phase I, we throw at least |Vi|/16 darts. We

throw at most 3|Vi| darts, quitting earlier if 100 consecutive misses

occur. The expected number of hits will be a constant fraction of

|Vi|. We then update all the polygonal voids that the inserted disks

overlap, using the algorithm of Section 2.3. We then compress the

list of remaining voids by removing the covered ones, recomputing

the relative probabilities, and continuing with pool Vi+1. This con-

tinues until we have an empty pool, i.e. all voids are filled, and the

distribution is maximal.

We shall prove in Section 2.5.3 that, at each throw, the probability

of success is bounded below by a constant. At each stage we will

fill in a constant fraction of the remaining voids. This recursion

gives the total amount of work as a constant times the total amount

of work in the first stage, for |V0|. Placing a dart and checking if

it is disk-free is a constant-time operation. Updating the polygonal

voids is a linear amount of work in going from stage i to i + 1, so

this is an amortized constant. The only non-constant operation is

selecting which void to throw the dart in, which we next show is

O(logVi). Thus the total time is O(V logV) and the total space is

O(V).

Using a tree to keep track of the remaining uncovered regions as in

Dunbar and Humphreys [2006] and Jones [2006] is a good approach

if the areas are constantly updated. However, we use a simple array

with half the size of a tree, and that works well for our lazy updating

scheme. In practice, it appears that many cells and voids are com-

pletely covered over in the course of selecting new samples, so we

do not think it is worth the computational time to constantly update

voids.

Let ai be the area of the ith polygonal void, so pi = ai/A is the

probability we should select void i. Array entry i points to the ith

void, and stores fi =
�i

j=1 pi, the sum of the probabilities of the

prior voids. At each iteration we select u ∈ [0, 1] uniformly. Using

binary search on the array, we find the cell with the ith percentile

relative area, i.e. the i such that fi ≥ u > fi−1. This binary

search takes O(logVi) time. If the dart throw is successful, we

mark the void as filled to avoid further geometric computations,

but leave it in the array to avoid bias. A practical heuristic is to

decide when to update the array dynamically, based on the hit rate.

Updating the array after 100 consecutive misses, or when the area

of the invalidated polygons exceeds 0.7A, seems to work well.

2.5 Correctness and complexity analysis

The uninterested reader may skip ahead to Section 3. We provide

some explicit values for the constants affecting the size of the data

structures. Knowing the worst case allowed us to use small, fixed-

size arrays in our implementation. For the constants affecting the

expected running time of the algorithm, we did not try to find ex-

plicit values because they are not very useful. Instead we tuned the

Figure 5: Maximal Poisson samples of a unit square at four densi-
ties: r = 0.1, 0.05, 0.01, 0.005. For the two coarsest densities we
also show their disks.

algorithm empirically.

Let n be the number of darts in the domain after the algorithm ter-

minates. We first show that we do not have too many cells.

Theorem 1 The total number of cells |C| intersecting the interior
of the domain is Θ(n) in any maximal Poisson sampling.

Proof |C| = Ω(n) because each cell contains at most one dart.
For the other direction, an empty cell can only be touched by a
constant number of disks, because the disks have constant radius.

2.5.1 Bias Free

In either phase, let Ck for k ∈ J denote a particular cell or polyg-

onal void. Let Ω be any domain subregion Ω ⊂ Di−1. Assume for

now Ω ⊂ Ck. The probability that the next point xi will be taken

from Ω is the probability of selecting Ck times the probability of

selecting Ω within Ck, compounded by re-throws if the dart misses

the remaining domain Di−1 entirely. Let A(·) denote area, so

P (xi ∈ Ω) =
A(Ck)�
J A(Cj)

A(Ω)
A(Ck)

(1+P (miss)+P
2(miss)+. . .).

Since the miss probability is 1 − A(Di−1)/
�

A(Cj), we have�∞
m=0 P

m(miss) =
��

A(Cj)
�
/A(Di−1). Simplifying yields

P (xi ∈ Ω) =
A(Ω)

A(Di−1)
,



Algorithm Nuance - Phase II stages 

•  “Algorithm is simple,… in a good way” - Reviewer 
• Lazy update of polygons’ areas and pool, in “stages” 
– More simple datastructures 
– No tree needed, flat array for pool, fewer pointers 
– Run-time proof gets more complicated 

Phase II: repeat	


Pick polygon from pool 	



Weighted by its area (only log n step)	


Pick point in polygon	


If uncovered	



Keep point	


Remove polygon from pool	


Update nearby polygons	



Phase II: repeat 	


    Repeat c|Pool| times	



Pick polygon from pool 	


Weighted by its area (only log n step)	



Pick point in polygon	


If uncovered	



Keep point	


 New stage - update all polygons	


 Rebuild pool and weights	



	



Lazy update	

Prior slide	





Complexity Proofs Sketch 
 
•  WTS constant time & space per point 

–  Everything is local, and constant size 
•  #squares = θ(#points_in_sample) 
•  Sid Meier Civilization template 
–  21 nearby squares, 0 or 1 disks per square 

•  By geometry, ≤ 4 voids per cell 
•  By geometry,  ≤ 9 (8?) disks bounding a void 

•  Constant time to check if point is uncovered  
•  Polygons are constant size, time to build 
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Figure 10: The fraction of voids filled in each stage is usually large.

Theorem 14 Phase II running time is O(n log n).

Uniform sampling from polygons. Recall that we needed to sam-

ple uniformly from the polygonal voids. We recap the method we

use, adapted from Graphics Gems [Turk 1993]. We triangulate the

polygon. Since it is convex, we could simply pick any one vertex

and connect it to all the others. But for numerical reasons, it is bet-

ter to keep angles away from 180
◦
. We instead introduce a new

vertex inside the polygon, located at the average of all the other

vertices, and connect it to all the polygon vertices. We select one

of these triangles with probability proportional to its area relative

to the polygon area. Within �abc, we sample uniformly from it by

picking uniformly from a right triangle and linearly transforming

to our triangle. Pick u, v ∈ [0, 1] uniformly. This picks a point

from the square; if u+ v > 1, then reflect back into the triangle by

assigning u := 1 − u and v := 1 − v. The resulting sample point

p = u
−→
ab + v−→ac is uniform from �abc.

2.5.4 Constant number of voids per cell

Since at most a constant number of circles intersect a square, com-

binatorics implies the number of voids in a given cell is constant.

Improving it is interesting and allows some implementation effi-

ciencies, but is not essential. These observations also hint at the

observed separation distances between voids as the stage increases.

We first consider voids bounded entirely by circle arcs, then we

shall see that allowing voids to be bounded by the sides of the

square increases the number of voids per square by at most one.

Two voids are adjacent if they are bounded by the same pair of

circles Cx and Cy . The vertices of circle intersection are labeled

vertex axy and bxy , where b lies inside the reference void. Over-

lapping circles bounding a void are consecutive. We first consider

three-sided remainder regions, and label their features as in Fig-

ure 11. Consecutive adjacent voids are two voids in the same cell

adjacent to the third reference void through its adjacent consecutive

circles CxCy and CxCz: e.g. two voids inside regions Axy and

Axz in Figure 11, provided they and some part of V are in the same

square cell.

Lemma 15 For consecutive adjacent voids Vxy and Vxz to V , their

closest pair of points are no closer than the circle intersection

points, axy and axz.

Proof See Figure 11. Pick some point q of V in the cell. Since

q is in a void, its distance to cx is at least r. In particular, all of

Vxy and Vxz must be on the same side as q of the line through cx
perpendicular to qcx. All of Vxy and Vxz must be within r of q,

inside the red circle. The closest pair of points inside the red circle

are axy and axz.

Consider moving one of three pair-wise overlapping circles. We

observe the following inverse relationships about the distances be-

tween pairs of circle centers and pairs of void vertices.

txy 

axy 

cx 

Cx 

cy 
Cy 

cz 

Cz 

Axy 

V 

bxy 

axz = txz !xy 

" 

ayz 

Axz 

Ayz 

axy 

cx 

Cx 

cy 
Cy 

cz 

Cz 

Vxy 

axz  

r 

Vxz 

!!

Figure 11: Top left, labeling of a three-sided void. If Cx and Cz

are tangent, then txz = axz = bxz coincide. Top right, the clos-

est points of consecutive adjacent voids sharing circle Cx are not

closer than |axyaxz|. Bottom left, the 3-sided void with smallest

distance between an adjacent pair of voids. Bottom center, the 3-

sided void with the smallest distance between the second-closest

pair of adjacent voids. Bottom left, four voids in a square.

Lemma 16 (circle void distances) If axy, ayz and axz are in the

same cell, then

|cycz| ↑ =⇒ |axyaxz| ↑, |axyayz| ↓, |axzayz| ↓

|cxcy| ↑ =⇒ |axzayz| ↑, |axzaxy| ↓, |ayzaxy| ↓

|cxcz| ↑ =⇒ |axyayz| ↑, |axyaxz| ↓, |ayzaxz| ↓

We omit the proof because of space limitations. The proof is based

on Lemma 4, Lemma 8, and bounding distances by r. Lemma 16

can now be used to prove the extreme cases in Figure 11 and the

following lemma.

Lemma 17 For three-sided voids, the distance between consecu-

tive adjacent voids is at least r/2. For other voids, the distance

between consecutive adjacent voids is at least r.

Corollary 18 For a void with four or more sides, only two adja-

cent voids can be in the same cell as the void, and only one strictly

inside.

Proof The square diagonal is r, so for three consecutive adjacent

voids, only one pair of consecutive adjacent voids can be placed

inside the square. For non-consecutive voids V12 and V34 adjacent

to the void V , consider the two pairs of circles separating them

from V, C1, C2 and C3, C4. If the length c1c2 and c3c4 are both

2r, and c1c4 and c2c3 are both r, then we have a parallelogram

and the distance between the circle-center midpoints t12 and t34 is

r. This is a slight variation of Figure 12 where the parallelogram

diagonals must be strictly greater than 2r.

We next argue that this parallelogram is the worst case. If |c1c3|
or |c2c4| is greater than r, this merely makes V12 and V34 further

apart. A variation of Lemma 16 and Lemma 17 shows that this is

the worst case. If t12 is close enough to t34 to be of interest, then

since the lengths |c1c2| and |c3c4| are bounded between r and 2r,

Four voids	





Complexity Proofs Sketch 
•  Constant work per generated point,  

but what about the rejected (covered) points? 
–  Phase I, O(|C|) throws 
–  Phase II 

–  Via weighted Voronoi cell of a circle 
•  Constant curvature and number of edges  

Area(arcgon)> cArea(polygon)! P(x
i
: uncovered)> c

uncovered arcgon	



covered fraction of polygon	



! # accepted > c2 # rejected



Fewer Rejected Points Later 

•  Polygons è arcgon as voids get smaller 
–  We get more efficient (contrast) 

Putting the prior lemmas together we have the following theorem.

Theorem 11 (few arc-gon sides) The number of sides of Vr is at
most 17, and at most 13 if flat sides are removed. Figure 8 realizes
a void with 16 sides, and Figure 8 shows a void with 12 non-flat
sides.

Figure 8 shows that 8 circles is possible.

Lemma 6 (8 square sides) The square contributes at most 8 sides
to Vr , and only 4 if flat sides are ignored.

Proof Any circle intersecting a side exactly once (and non-tangent)
contains one of the corners of the square, and so does not increase
the number of subsegments of the side bounding Vr . There can only
be one circle that intersects one of the four square sides twice, or is
tangent to it; see Figure 7 right.

Putting the prior lemmas together we have the following theorem.

Theorem 3 (few arc-gon sides) The number of sides of Vr is at
most 17, and at most 13 if flat sides are removed. Figure 8 realizes
a void with 16 sides, and Figure 8 shows a void with 12 non-flat
sides.

Figure 8: Voids with 16 sides (left) and a closeup (top-left). A slight
tweak yeilds a void with 12 nonflat sides (bottom-left). (todo: put
the two close-ups into one pdf to get the layout I want)

The preceding considers only squares that did not contain the

boundary of the input domain, but most of the proofs only rely

on squares being contained in a circle of radius r/2. For bound-

ary squares, we note that they may have at most two edges of the

input domain (sharing a common vertex), and their segments on

the boundary of Vr are of length < r, so that the number of sides

increases by at most 2.

2.5.3 Phase II geometry and complexity

Area ratio of polygonal void to arc-gon void. We now consider

the ratio of the area of Vr to Vp, since that determines the expected

number of dart-misses in Phase II.

Theorem 4 A(Vr)/A(Vp) is at least a constant.

Proof Consider the circles bounding a void, including circles in-
tersecting a square side twice. Consider the weighted Voronoi re-
gion of the circles [Edelsbrunner and Shah 1992]. Assume for now
that the remainder region is bounded entirely by r-circles, and trun-
cate the Voronoi cells at the polygonal void Vp.

For any circle C, its Voronoi cell will contain the circle chord on the
polygon boundary χ, the arc-boundary s, and a part of the interior
of Vr . The reasons are as follows. Let VC be the circle’s truncated
Voronoi cell, and VSext its partition outside C, and VSint its part
inside C. Recall from Lemma 4 the circle centers are in convex
position and can be considered in order around the boundary of
the void. Since only the consecutive circles around the void may
overlap with C (else the void would not be connected), the chord
is not inside any other circle, so it is in VC. Also, the Voronoi
line of equal distances between C and a non-consecutive circle lies
strictly outside C. Since by Lemma 5 there are at most a constant
number of circles (< 10), there are a constant number of straight
sides bounding VC. All of these bounding sides lie outside VSext as
well. At worst these sides approach tangency with C, and form a 9-
sided polygonal outer approximation to the arc. Since the arc s has
constant curvature, the area of VSext is at least a constant fraction
of VSint. We do not work out the exact constant because this bound
is not very tight; for example, many fewer than 9 circles can be
packed close enough to be nearly tangent with C.

Now relax the assumption that the remainder region is bounded
entirely by circles. Treat the lines supporting the square sides or
domain boundary as infinite-radius circles centered at infinity, and
all the arguments of the prior paragraph still hold. The area ratio
bound constant can be reproduced by assigning the Voronoi regions
of the infinite-radius circles to the closest r-circle, since for the
infinite-radius circles the arc-gon and polygon are identical.

Constant fraction progress per stage. Theorem 4 proves that the

first dart thrown in a stage i has a constant probability of being a hit.

However, there is a technical difficulty for subsequent darts. The

first disk may cover other polygonal voids, perhaps completely. We

update the polygons lazily, so those voids reduce the probability of

a successful hit. This is resolved by recalling that any inserted disk

can affect only a constant number of other voids. After c1|Vi| hits,

c2|Vi| voids remain unchanged, so the probability of a dart being a

success is at least c2 times what it was at the start of stage i. Here

c1 is something smaller than 1/60, and c2 = (1 − 60c1). The 60

arises from Lemma 2 where each placed disk intersects at most 15

other cells, and by Theorem 9 each cell has at most 4 voids. Thus

a lower bound on the expected number of hits in stage i is c2 times

the constant from Theorem 4 times the number of throws c1|Vi|:
the point is this is O(|Vi|). In practice, many more voids are filled

than these constants suggest, but the above is sufficient to prove the

following theorem.

Figure 8: A void with 16 sides (left) and a closeup (top-right). A
slight tweak yields a void with 12 nonflat sides (bottom-right).

The preceding considers only squares that did not contain the
boundary of the input domain, but most of the proofs only rely
on squares being contained in a circle of radius r/2. For bound-
ary squares, we note that they may have at most two edges of the
input domain (sharing a common vertex), and their segments on
the boundary of Vr are of length < r, so that the number of sides
increases by at most 2.

2.5.3 Phase II geometry and complexity

Area ratio of polygonal void to arc-gon void. We now consider
the ratio of the area of Vr to Vp, since that determines the expected
number of dart-misses in Phase II.

Theorem 12 A(Vr)/A(Vp) is at least a constant.

Proof Consider the circles bounding a void, including circles in-
tersecting a square side twice. Consider the weighted Voronoi re-
gion of the circles [Edelsbrunner and Shah 1992]. Assume for now
that the remainder region is bounded entirely by r-circles, and trun-
cate the Voronoi cells at the polygonal void Vp.

For any circle C, its Voronoi cell will contain the circle chord on the
polygon boundary χ, the arc-boundary s, and a part of the interior
of Vr . The reasons are as follows. Let VC be the circle’s truncated
Voronoi cell, and VSext its partition outside C, and VSint its part
inside C. Recall from Lemma 8 the circle centers are in convex
position and can be considered in order around the boundary of
the void. Since only the consecutive circles around the void may
overlap with C (else the void would not be connected), the chord
is not inside any other circle, so it is in VC. Also, the Voronoi
line of equal distances between C and a non-consecutive circle lies
strictly outside C. Since by Lemma 9 there are at most a constant
number of circles (< 10), there are a constant number of straight
sides bounding VC. All of these bounding sides lie outside VSext as
well. At worst these sides approach tangency with C, and form a 9-
sided polygonal outer approximation to the arc. Since the arc s has
constant curvature, the area of VSext is at least a constant fraction
of VSint. We do not work out the exact constant because this bound
is not very tight; for example, many fewer than 9 circles can be
packed close enough to be nearly tangent with C.

Now relax the assumption that the remainder region is bounded
entirely by circles. Treat the lines supporting the square sides or
domain boundary as infinite-radius circles centered at infinity, and
all the arguments of the prior paragraph still hold. The area ratio
bound constant can be reproduced by assigning the Voronoi regions
of the infinite-radius circles to the closest r-circle, since for the
infinite-radius circles the arc-gon and polygon are identical.

Constant fraction progress per stage. Theorem 12 proves that the
first dart thrown in a stage i has a constant probability of being a hit.
However, there is a technical difficulty for subsequent darts. The
first disk may cover other polygonal voids, perhaps completely. We
update the polygons lazily, so those voids reduce the probability of
a successful hit. This is resolved by recalling that any inserted disk
can affect only a constant number of other voids. After c1|Vi| hits,
c2|Vi| voids remain unchanged, so the probability of a dart being a
success is at least c2 times what it was at the start of stage i. Here
c1 is something smaller than 1/60, and c2 = (1 − 60c1). The 60
arises from Lemma 3 where each placed disk intersects at most 15
other cells, and by Theorem 21 each cell has at most 4 voids. Thus
a lower bound on the expected number of hits in stage i is c2 times
the constant from Theorem 12 times the number of throws c1|Vi|:
the point is this is O(|Vi|). In practice, many more voids are filled
than these constants suggest, but the above is sufficient to prove the
following theorem.

Theorem 13 In each Phase II stage i, a constant fraction of the Vi

voids are filled with darts.

Success rate in practice. The constants given from the proofs of
Theorem 12 and Theorem 13 are not tight. These constants do not
affect any data structures in our algorithm, only the miss rate. Their
importance is in the tuning of the algorithm parameters for when to
move to the next stage. Our implementation shows the area ratio
as in Theorem 12 is usually large, about 1. It is about 0.93 in the
beginning stages of Phase II, and reaches about 0.999 in the last
stage. It tends to increase but is not monotonic. See Figure 9. Also,
the fraction of voids filled per stage is much better than the weak
constants from Theorem 13 might suggest, as many fewer than 60
voids are touched by a new disk on average. Also the fraction goes
up as the domain gets filled, as the voids become more isolated. See
Figure 10.
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Figure 9: The ratio of the polygon to arc-gon area is always large,
almost 1. The average ratio tends to increase by stage as voids
become smaller in area.

Running time. We now consider the running time R(|Vi|) of Phase
II for stage i and all subsequent stages. We showed in Section 2.4
that R(|Vi|) = |Vi| log |Vi| + R(|Vi+1|). Since |Vi+1| < c|Vi| for
some constant c < 1, we have R(|V0|) <

�∞
i=0 c

i|V0| log
�
c
i|V0|

�

<
�
|V0| log |V0|

��∞
i=0 c

i = 1
1−c |V0| log |V0|. Combining this

with Theorem 1 we have
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Figure 10: The fraction of voids filled in each stage is usually large.

Theorem 14 Phase II running time is O(n log n).

Uniform sampling from polygons. Recall that we needed to sam-

ple uniformly from the polygonal voids. We recap the method we

use, adapted from Graphics Gems [Turk 1993]. We triangulate the

polygon. Since it is convex, we could simply pick any one vertex

and connect it to all the others. But for numerical reasons, it is bet-

ter to keep angles away from 180
◦
. We instead introduce a new

vertex inside the polygon, located at the average of all the other

vertices, and connect it to all the polygon vertices. We select one

of these triangles with probability proportional to its area relative

to the polygon area. Within �abc, we sample uniformly from it by

picking uniformly from a right triangle and linearly transforming

to our triangle. Pick u, v ∈ [0, 1] uniformly. This picks a point

from the square; if u+ v > 1, then reflect back into the triangle by

assigning u := 1 − u and v := 1 − v. The resulting sample point

p = u
−→
ab + v−→ac is uniform from �abc.

2.5.4 Constant number of voids per cell

Since at most a constant number of circles intersect a square, com-

binatorics implies the number of voids in a given cell is constant.

Improving it is interesting and allows some implementation effi-

ciencies, but is not essential. These observations also hint at the

observed separation distances between voids as the stage increases.

We first consider voids bounded entirely by circle arcs, then we

shall see that allowing voids to be bounded by the sides of the

square increases the number of voids per square by at most one.

Two voids are adjacent if they are bounded by the same pair of

circles Cx and Cy . The vertices of circle intersection are labeled

vertex axy and bxy , where b lies inside the reference void. Over-

lapping circles bounding a void are consecutive. We first consider

three-sided remainder regions, and label their features as in Fig-

ure 11. Consecutive adjacent voids are two voids in the same cell

adjacent to the third reference void through its adjacent consecutive

circles CxCy and CxCz: e.g. two voids inside regions Axy and

Axz in Figure 11, provided they and some part of V are in the same

square cell.

Lemma 15 For consecutive adjacent voids Vxy and Vxz to V , their

closest pair of points are no closer than the circle intersection

points, axy and axz.

Proof See Figure 11. Pick some point q of V in the cell. Since

q is in a void, its distance to cx is at least r. In particular, all of

Vxy and Vxz must be on the same side as q of the line through cx
perpendicular to qcx. All of Vxy and Vxz must be within r of q,

inside the red circle. The closest pair of points inside the red circle

are axy and axz.

Consider moving one of three pair-wise overlapping circles. We

observe the following inverse relationships about the distances be-

tween pairs of circle centers and pairs of void vertices.

txy 

axy 

cx 

Cx 

cy 
Cy 

cz 

Cz 

Axy 

V 

bxy 

axz = txz !xy 

" 

ayz 

Axz 

Ayz 

axy 

cx 

Cx 

cy 
Cy 

cz 

Cz 

Vxy 

axz  

r 

Vxz 

!!

Figure 11: Top left, labeling of a three-sided void. If Cx and Cz

are tangent, then txz = axz = bxz coincide. Top right, the clos-

est points of consecutive adjacent voids sharing circle Cx are not

closer than |axyaxz|. Bottom left, the 3-sided void with smallest

distance between an adjacent pair of voids. Bottom center, the 3-

sided void with the smallest distance between the second-closest

pair of adjacent voids. Bottom left, four voids in a square.

Lemma 16 (circle void distances) If axy, ayz and axz are in the

same cell, then

|cycz| ↑ =⇒ |axyaxz| ↑, |axyayz| ↓, |axzayz| ↓

|cxcy| ↑ =⇒ |axzayz| ↑, |axzaxy| ↓, |ayzaxy| ↓

|cxcz| ↑ =⇒ |axyayz| ↑, |axyaxz| ↓, |ayzaxz| ↓

We omit the proof because of space limitations. The proof is based

on Lemma 4, Lemma 8, and bounding distances by r. Lemma 16

can now be used to prove the extreme cases in Figure 11 and the

following lemma.

Lemma 17 For three-sided voids, the distance between consecu-

tive adjacent voids is at least r/2. For other voids, the distance

between consecutive adjacent voids is at least r.

Corollary 18 For a void with four or more sides, only two adja-

cent voids can be in the same cell as the void, and only one strictly

inside.

Proof The square diagonal is r, so for three consecutive adjacent

voids, only one pair of consecutive adjacent voids can be placed

inside the square. For non-consecutive voids V12 and V34 adjacent

to the void V , consider the two pairs of circles separating them

from V, C1, C2 and C3, C4. If the length c1c2 and c3c4 are both

2r, and c1c4 and c2c3 are both r, then we have a parallelogram

and the distance between the circle-center midpoints t12 and t34 is

r. This is a slight variation of Figure 12 where the parallelogram

diagonals must be strictly greater than 2r.

We next argue that this parallelogram is the worst case. If |c1c3|
or |c2c4| is greater than r, this merely makes V12 and V34 further

apart. A variation of Lemma 16 and Lemma 17 shows that this is

the worst case. If t12 is close enough to t34 to be of interest, then

since the lengths |c1c2| and |c3c4| are bounded between r and 2r,
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Complexity 

•  Complexity – everything is local, all steps constant time  
–  except log(n) to select a polygon, weighted by area 
–  that is a relatively inexpensive step 
–  constructing geometric primitives is the expensive part 

•  Constant fraction of generated points are output points 

 Time=E(Cn+ cnlogn)

Space=O(n)



Runtime – Why we do Phase I 
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•  Phase I 
–  73% of points  
–  26% of runtime 

slight uptick from log	





Serial Memory Use 
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Geometric polygons are 
relatively expensive 

73% points 
22% memory 
26% time 

27% points 
78% memory 
74% time 

Saw-tooth from lazy 
update “stages” 



GPU Algorithm 

Points generated in parallel, conflicts resolved in an unbiased way 
•  Point buffers: candidate and final 
•  Phase I 
–  Iterate: synchronize at start of iteration 

•  Generate |C|/5 candidate points 
•  Square states: empty, test, accepted, done 

–  Done = Point from prior iterations 
–  Test = Point doesn’t conflict with nearby “done” points, compute in parallel 
–  Accepted = Point is earlier (id) than conflicting “test” points, compute in parallel 

•  Migrate accepted points to done, otherwise remove 

•  Phase II 
–  Construct polygons, compute in parallel 

•  Squares “rejected” if covered by prior disks, has no polygon, no work to do 
•  Split polygons into triangles 

–  Proceed as Phase I, with triangles playing role of squares 



GPU Performance 
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NVIDIA GTX 460	


2.4x speedup over serial (6.7x memory bandwidth)	


1 million points in 1 GB RAM	





Unbiased Parallel Sample     

Rings from	


inhibition	


radius	



10k pts	



Fourier spectrum	
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“Unbiased” Opinion 
•  Unbiased as a description of (serial) process 
–  insertion probability independent of location 

•  Unbaised as a description of outcome 
–  pairwise distance spectra, blue noise 

 
 

•  Unbiased process leads to unbiased outcome,  
but so might other processes 
–  Opinion: need something beyond “viewgraph norm” 
–  Need metrics for “how unbiased is it” 

•  Define spectrum S that is the limit distribution of unbiased sampling, and 
standard deviations. 

•  Our process generated S’, and |S-S’| < 0.4 std dev (S) 

)Area()( Ω∝Ω∈ixP Ω	
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Synopsis of Contribution 

• Poisson-disk distributions 
–  Simple, efficient implementation 
–  Provable guarantees 

•  Maximal  
•  Unbiased  
•  O(n) space 
•                 time  

• Domains 
–  2d 
–  Polygons with holes, non-convex 

• Algorithmic innovations 
–  Two phases 

I. fast to cover most of domain 
II. careful to cover remainder 

– Approximate uncovered “voids”, square     circles, 
with polygons. Careful weighting and selection 

∩

)logE( nnCn c+



Future 

•  Extensions 
–  Could do away with polygonal approximation and weight and 

sample directly – every dart is a hit! (w/ Thouis Ray Jones) 
•  Higher dimensions  
–  geometric primitives unappealing 
–  prefer just use hypercubes 

•  Thouis Ray Jones, jgt accepted paper  
–  model explicit time-of-arrival for each point 
–  synchronize locally as needed 
–  vs. unbiased by one dart at a time, inherently serial  


