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Overview 
�• Classic Dart throwing + 

�– Quadtree 
�– Squares track remaining regions 
�– Track misses for refinement decisions 
�– Avoid refining too deep 

[Wei08] Wei L.-Y.: Parallel Poisson disk sampling. 
ACM Transactions on Graphics 27, 3 (Aug. 2008), 20:1�–20:9.

[BWWM10] Bowers J., Wang R., Wei L.-Y., Maletz D.: 
Parallel Poisson disk sampling with spectrum analysis on surfaces. 
ACM Transactions on Graphics 29 (Dec. 2010), 166:1�– 166:10.

�“Make everything as simple as possible, but not simpler.�” �– A. Einstein 

�– Flat quadtree �– one level of squares active, pool of indices 
�• Simpler Datastructure  Less memory  

�– Globally refine periodically, ignore local misses 
�• Simpler Datastructure  More parallel  

�– Refine to machine precision, 
on average it is so rare that memory is not an issue 
�• More Maximal   

�“This could be the current algorithm of choice for dart throwing.�” �– 
Eurographics reviewer #2 
 

Provable:
Ebeida M. S., Patney A., Mitchell S. A., Davidson A., Knupp P. M., Owens J. D.: 
Efcient maximal Poisson-disk sampling. 
ACM Transactions on Graphics 30, 4 (July 2011), 49:1�–49:12

�– Code works great but we can�’t 
prove the spatial stats theory.  



Why MPS? 
 Maximal Poisson-disk Sampling 

�• Properties 
�• Random distribution 

�–Without visible patterns, correlations 
�–Blue noise spectrum 

�• Separated-yet-dense 
�–Efficient-yet-quality  

interpolation 

�• Graphics  
�• texture synthesis 

�• Mesh generation 
�– Random cracks, quality 

�• Design of computer exp. 
�– high dimensions, 10-100 

Fracture Simulations
Courtesy of 
Joe Bishop (Sandia)



Maximal Poisson-Disk Sampling 

�•What is MPS? 
�– Dart-throwing 
�– Insert random points into a domain, build set X 

�• With the �“Poisson�” process 

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)

Empty disk: ∀xi, xj ∈ X,xi $= xj : ||xi − xj || ≥ r
D

Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r



Algorithm for MPS 
�• Classic algorithm 
�– Throw a point, check if disk overlaps, keep/reject 
�– Fast at first, but slows as uncovered area decreases 

Can�’t get maximal. 

 
 

�• Speedup by targeting just the uncovered area 
�– Polygons Ebeida et al. SIGGAPH 2011 
�– Quadtrees to approximate the uncovered area 

�• Discard covered squares 
�• Uncovered squares: a sample is always acceptable 
�• Partially covered squares: may need to refine 

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)

polygonal outer
approximation

uncovered arcgon

rejected
sample



Our Algorithm - Basics 

�•Datastructure:  
�• Squares contain uncovered area 

�• Throw darts 
�– Pick square, pick point in square 
�– If dart is outside nearby circles 

�• Accept dart as sample 
�• Delete square 

�•Refine all squares 
�– Discard subsquares covered by 

single disks 
�•Repeat 

darts

rene

darts

rene



Datastructure: Quadtree Root 

Top square diagonal =
sampling radius

�• Squares sized so 

�– Can fit at most one sample 

x
y

�– Nearby square template for  
�“Point in disk?�” conflict check 
�• Pointer from square to its sample 

Unpublished extension: use kd-tree for proximity�…



Datastructure: Flat Quadtree Leaves 

�• Pool of squares 
�– Global level i  
�– Squares that might accept a sample  
�– Array of indices C 

i=3
i.e. initial  2i 
squares per side

0 1 2 3

0

1

2

3

Flat: Only one level i is  
used at a time 

�…

(0,0)
(0,2)
(0,3)
(1,1)
end

Ci



Flat Quadtree Refinement 

0 1 2 3

0

1

2

3

Update in place. 
i++ 

�…

(0,0)
(0,2)
(0,3)
end

Ci

subsquare in circle?

Ci+1

end

(x,y) {2x,2x+1}x{2y,2y+1}
(0,3) {(0,6) (0,7) (1,6) (1,7)}

pop

push x4



Level Limit? 

�• Problem 
�– Test if square in single circle 
�– Small voids require infinite 

refinement 

�• Solution: [Wei08], [BWWM10  
�– Stop early 

to avoid memory blow-up 
�• Solution: Us 
�– Refine to finite-precision 
�– Small voids happen  

rarely on average so 
�– Memory is fine in practice 
�– Benefit: maximal  

�…

one uncovered 
point
(or is it covered?
let�’s look closer�…)

High d
new sphere 
covers it



Algorithm �– outer loop parameters 

 
 

Algorithm 1 Simple MPS algorithm, CPU.

initialize Go, i = 0, Ci = Go

while |Ci|> 0 do
{throw darts}
for all A|Ci| (constant) dart throws do

select an active cell Ci
c from Ci uniformly at random

if Ci
c’s parent base grid cell Go

c has a sample then
remove Ci

c from Ci

else
throw candidate dart c into Ci

c, uniform random
if c is disk-free then

{promote dart to sample}
add c to Go

c as an accepted sample p
remove Ci

c from Ci {additional cells might be
covered, but these are ignored for now}

end if
end if

end for
{iterate}
for all active cells Ci do

if i < b subdivide Ci
c into 2d subcells

retain uncovered (sub)cells as Ci+1

end for
increment i

end while

How many throws before rening?
Throws = A | Ci |

How big does array C need to be
to hold all the rened grid cells?
C = B | Co |

Tuning parameter choices: A, B
Co = number initial cells
Ci = number current squares

Big A more time, smaller memory B



A (time) and B (memory) parameters 

�•Big A more time, smaller memory B 
�– A 1,  B dimension.  (A increases for d>4) 
�– Insensitive to value of A above a threshold 

�• Intuition: as classical dart throwing,  
most hits happen early, no benefit to more throws 



Time and Memory 
Experimental results 

�•Memory and time peaks in early interations 
�– Exponential convergence thereafter 
�– Log y scale 

#boxes  time, memory, 



Time and Memory 

vs. true quadtrees (Gamito), polygons (Ebeida 2D) 
 all linear in both, but constants matter 

log-log scales 

Memory savings from simpler datastructure 
Time savings from that + simpler/fewer checks 

Time Memory



Time and Memory Theory 
�• Run-time 
�– Practice: linear in #points, grows by dimension 
�– Proof: not available   

�• Spatial statistics, expected area fraction of cells? And where? 

�• Memory 
�– Linear in #points 
�– No dynamic memory allocation 

Time Memory



�•Rejection sampling is great on a GPU 
�– Nothing to communicate for a dart miss! 

�• 10x speedup on NVIDIA GTX 460 
�– Memory-limited to 600k points 2d, 200k in 3d 



Point Cloud Quality? 
Provably correct bias-free, maximal up to precision 

Experiments  
confirm 
(GPU) 



Conclusions 
�• MPS Maximal Poisson-disk sampling 
�– Simpler, faster, less memory 
�– Three simple ideas 

�• Flat quadtree 
�• Constant # throws / ignore misses  
�• Global refinement 

�– CPU and GPU 
Reviewer #0: �“The paper is yet another one about faster Poisson-sampling, 
but I see that it is significantly faster, uses less memory, is just simpler, 
easier to implement, and works well for higher dimensions.�” 

�• Future, dimensions > 4? 
�– Not so great, quadtrees too big 

�• Two bonus thoughts  

darts

rene

darts

rene



Two bonus thoughts 



�“Unbiased�” Opinion 
�• Unbiased as a description of (serial) process 
�– insertion probability independent of location 

�• Unbaised as a description of outcome 
�– pairwise distance spectra, blue noise 

 
 

�• Unbiased process leads to unbiased outcome,  
but so might other processes 
�– Opinion: need something beyond �“viewgraph norm�” 
�– Need metrics for �“how unbiased is it�” 

�• Define spectrum S that is the limit distribution of unbiased sampling, and 
standard deviations. 

�• Our process generated S�’, and |S-S�’| < 0.4 std dev (S) 
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What is the real goal? 
�•Classic MPS �– a lot of effort to get maximal 

�• Two-radii MPS, submitted to CCCG coverage

exclusion
x


