
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Eurographics 2012

A Simple Algorithm for
Maximal Poisson-Disk Sampling

in High Dimensions
Mohamed S. Ebeida, Scott A. Mitchell, Anjul Patney,

Andrew A. Davidson, and John D. Owens

presenter = Scott

Overview
�• Classic Dart throwing +

�– Quadtree
�– Squares track remaining regions
�– Track misses for refinement decisions
�– Avoid refining too deep

[Wei08] Wei L.-Y.: Parallel Poisson disk sampling.
ACM Transactions on Graphics 27, 3 (Aug. 2008), 20:1�–20:9.

[BWWM10] Bowers J., Wang R., Wei L.-Y., Maletz D.:
Parallel Poisson disk sampling with spectrum analysis on surfaces.
ACM Transactions on Graphics 29 (Dec. 2010), 166:1�– 166:10.

�“Make everything as simple as possible, but not simpler.�” �– A. Einstein

�– Flat quadtree �– one level of squares active, pool of indices
�• Simpler Datastructure Less memory

�– Globally refine periodically, ignore local misses
�• Simpler Datastructure More parallel

�– Refine to machine precision,
on average it is so rare that memory is not an issue
�• More Maximal

�“This could be the current algorithm of choice for dart throwing.�” �–
Eurographics reviewer #2

Provable:
Ebeida M. S., Patney A., Mitchell S. A., Davidson A., Knupp P. M., Owens J. D.:
Efcient maximal Poisson-disk sampling.
ACM Transactions on Graphics 30, 4 (July 2011), 49:1�–49:12

�– Code works great but we can�’t
prove the spatial stats theory.

Why MPS?
 Maximal Poisson-disk Sampling

�• Properties
�• Random distribution

�–Without visible patterns, correlations
�–Blue noise spectrum

�• Separated-yet-dense
�–Efficient-yet-quality

interpolation

�• Graphics
�• texture synthesis

�• Mesh generation
�– Random cracks, quality

�• Design of computer exp.
�– high dimensions, 10-100

Fracture Simulations
Courtesy of
Joe Bishop (Sandia)

Maximal Poisson-Disk Sampling

�•What is MPS?
�– Dart-throwing
�– Insert random points into a domain, build set X

�• With the �“Poisson�” process

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)

Empty disk: ∀xi, xj ∈ X,xi $= xj : ||xi − xj || ≥ r
D

Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r

Algorithm for MPS
�• Classic algorithm
�– Throw a point, check if disk overlaps, keep/reject
�– Fast at first, but slows as uncovered area decreases

Can�’t get maximal.

�• Speedup by targeting just the uncovered area
�– Polygons Ebeida et al. SIGGAPH 2011
�– Quadtrees to approximate the uncovered area

�• Discard covered squares
�• Uncovered squares: a sample is always acceptable
�• Partially covered squares: may need to refine

Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)

polygonal outer
approximation

uncovered arcgon

rejected
sample

Our Algorithm - Basics

�•Datastructure:
�• Squares contain uncovered area

�• Throw darts
�– Pick square, pick point in square
�– If dart is outside nearby circles

�• Accept dart as sample
�• Delete square

�•Refine all squares
�– Discard subsquares covered by

single disks
�•Repeat

darts

rene

darts

rene

Datastructure: Quadtree Root

Top square diagonal =
sampling radius

�• Squares sized so

�– Can fit at most one sample

x
y

�– Nearby square template for
�“Point in disk?�” conflict check
�• Pointer from square to its sample

Unpublished extension: use kd-tree for proximity�…

Datastructure: Flat Quadtree Leaves

�• Pool of squares
�– Global level i
�– Squares that might accept a sample
�– Array of indices C

i=3
i.e. initial 2i
squares per side

0 1 2 3

0

1

2

3

Flat: Only one level i is
used at a time

�…

(0,0)
(0,2)
(0,3)
(1,1)
end

Ci

Flat Quadtree Refinement

0 1 2 3

0

1

2

3

Update in place.
i++

�…

(0,0)
(0,2)
(0,3)
end

Ci

subsquare in circle?

Ci+1

end

(x,y) {2x,2x+1}x{2y,2y+1}
(0,3) {(0,6) (0,7) (1,6) (1,7)}

pop

push x4

Level Limit?

�• Problem
�– Test if square in single circle
�– Small voids require infinite

refinement

�• Solution: [Wei08], [BWWM10
�– Stop early

to avoid memory blow-up
�• Solution: Us
�– Refine to finite-precision
�– Small voids happen

rarely on average so
�– Memory is fine in practice
�– Benefit: maximal

�…

one uncovered
point
(or is it covered?
let�’s look closer�…)

High d
new sphere
covers it

Algorithm �– outer loop parameters

Algorithm 1 Simple MPS algorithm, CPU.

initialize Go, i = 0, Ci = Go

while |Ci|> 0 do
{throw darts}
for all A|Ci| (constant) dart throws do

select an active cell Ci
c from Ci uniformly at random

if Ci
c’s parent base grid cell Go

c has a sample then
remove Ci

c from Ci

else
throw candidate dart c into Ci

c, uniform random
if c is disk-free then

{promote dart to sample}
add c to Go

c as an accepted sample p
remove Ci

c from Ci {additional cells might be
covered, but these are ignored for now}

end if
end if

end for
{iterate}
for all active cells Ci do

if i < b subdivide Ci
c into 2d subcells

retain uncovered (sub)cells as Ci+1

end for
increment i

end while

How many throws before rening?
Throws = A | Ci |

How big does array C need to be
to hold all the rened grid cells?
C = B | Co |

Tuning parameter choices: A, B
Co = number initial cells
Ci = number current squares

Big A more time, smaller memory B

A (time) and B (memory) parameters

�•Big A more time, smaller memory B
�– A 1, B dimension. (A increases for d>4)
�– Insensitive to value of A above a threshold

�• Intuition: as classical dart throwing,
most hits happen early, no benefit to more throws

Time and Memory
Experimental results

�•Memory and time peaks in early interations
�– Exponential convergence thereafter
�– Log y scale

#boxes time, memory,

Time and Memory

vs. true quadtrees (Gamito), polygons (Ebeida 2D)
 all linear in both, but constants matter

log-log scales

Memory savings from simpler datastructure
Time savings from that + simpler/fewer checks

Time Memory

Time and Memory Theory
�• Run-time
�– Practice: linear in #points, grows by dimension
�– Proof: not available

�• Spatial statistics, expected area fraction of cells? And where?

�• Memory
�– Linear in #points
�– No dynamic memory allocation

Time Memory

�•Rejection sampling is great on a GPU
�– Nothing to communicate for a dart miss!

�• 10x speedup on NVIDIA GTX 460
�– Memory-limited to 600k points 2d, 200k in 3d

Point Cloud Quality?
Provably correct bias-free, maximal up to precision

Experiments
confirm
(GPU)

Conclusions
�• MPS Maximal Poisson-disk sampling
�– Simpler, faster, less memory
�– Three simple ideas

�• Flat quadtree
�• Constant # throws / ignore misses
�• Global refinement

�– CPU and GPU
Reviewer #0: �“The paper is yet another one about faster Poisson-sampling,
but I see that it is significantly faster, uses less memory, is just simpler,
easier to implement, and works well for higher dimensions.�”

�• Future, dimensions > 4?
�– Not so great, quadtrees too big

�• Two bonus thoughts

darts

rene

darts

rene

Two bonus thoughts

�“Unbiased�” Opinion
�• Unbiased as a description of (serial) process
�– insertion probability independent of location

�• Unbaised as a description of outcome
�– pairwise distance spectra, blue noise

�• Unbiased process leads to unbiased outcome,
but so might other processes
�– Opinion: need something beyond �“viewgraph norm�”
�– Need metrics for �“how unbiased is it�”

�• Define spectrum S that is the limit distribution of unbiased sampling, and
standard deviations.

�• Our process generated S�’, and |S-S�’| < 0.4 std dev (S)

)Area()(ixP

0 200 400 600 800 1000

Frequency
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
e
a
n

 p
o
w

e
r

Radial Mean Power

A
n

is
o
tr

o
p

y
 (

d
B

)
200 400 600 800 1000

Frequency

15

10

5

0 Radial Anisotropy PSA code great
for standard
pictures

What is the real goal?
�•Classic MPS �– a lot of effort to get maximal

�• Two-radii MPS, submitted to CCCG coverage

exclusion
x

