Tetrahedral Mesh Generation with Good Dihedral Angles
Using Point Lattices

by
Francois Labelle
B.Sc. (McGill University) 1997
M.Sc. (McGill University) 2000
A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Jonathan Shewchuk, Chair
Professor James F. O'Brien
Professor Panayiotis Papadopoulos

Fall 2007

The dissertation of Francois Labelle is approved:

Chair

Date

Date

Date

University of California, Berkeley

Fall 2007

Abstract

Tetrahedral Mesh Generation with Good Dihedral Angles

Using Point Lattices

by
Francois Labelle

Doctor of Philosophy

in
Computer Science
University of California, Berkeley
Professor Jonathan Shewchuk, Chair

Three-dimensional meshes are frequently used to perfoysigdi simulations in sci-
ence and engineering. This involves decomposing a dom#naimesh of small ele-
ments, usually tetrahedra or hexahedra. The elements mudtdgnod quality; in partic-
ular there should be no plane or dihedral angle close to 0 @d&grees. Automatically
creating such meshes for complicated domains is a chatigimgbblem, especially guar-
anteeing good dihedral angles, a goal that has eluded chsesifor nearly two decades.
By using point lattices, notably the body centered cubitdat we develop two tetrahe-
dral mesh generation algorithms that, for the first time, eavith meaningful guarantees
on the quality of the elements.

For domains bounded by an isosurface, we generate a tetehhezsh whose dihedral
angles are bounded between 10.7 and 164.8 degrees, or (@i#nge in parameters) be-
tween 8.9 and 158.8 degrees. The algorithm is numericdiysioand easy to implement
because it generates tetrahedra from a small set of pred¢ethptencils. The algorithm
is so fast that it can be invoked at each time step of a sinmnagpiossibly in real time for
small meshes. The tetrahedra are uniformly sized on thedasynbut in the interior it is
possible to make them progressively larger. This comlbnaif features makes the algo-
rithm well suited for dynamic fluid simulation. If the isosace is a smooth 2-manifold
with bounded curvature, and the tetrahedra are sufficiemtigll, then the boundary of
the mesh is guaranteed to be a geometrically and topolbgaaturate approximation of
the isosurface.

For polyhedral domains, Delaunay refinement is a common rgeskration tech-
nique that produces guaranteed-quality tetrahedra witregneption: sliver-shaped tetra-
hedra that can have dihedral angles arbitrarily close tod0l&9 degrees. We show how
slivers away from the boundary can be avoided by insertittigéapoints while maintain-
ing the Delaunay property of the mesh. It is possible to abtitre size of tetrahedra, this
time both in the interior and on the boundary, and a user m@aytia set of points which

must be vertices of the output mesh. The resulting dihedhgles are guaranteed to be
between 30 and 135 degrees, except near the boundary.

Most angle bounds are obtained by recursive bisection cffihee of possible tetrahe-
dron configurations together with interval arithmetic. Jla@e guaranteed by computer-
assisted proofs.

Chair Date

Acknowledgments

| would like to thank my advisor Jonathan Shewchuk for hisdgace and support,
and the Berkeley Graphics group for feedback. | also thantddang Chentanez for
providing isosurface code and geometric models, and Cé&doiig for thewhirled White
Webmodel.

This work was supported in part by the National Science Fatiod under Awards
CCR-0204377, CCF-0430065 and CCF-0635381, and in part #®\lfeed P. Sloan Re-
search Fellowship.

Contents

1 Introduction 1
1.1 The Mesh Generation Problem 2
1.1.1 Domain Representation. 2
1.2 MeshQuality 4
1.2.1 QualityMeasures e 7
1.2.2 Size-Optimality 7
1.3 PointLattices 8
1.4 SummaryofResults., 9
2 Previous Work 11
2.1 Background Grids 11
211 SurfaceMeshes 11
212 VWolumeMeshes. 12
2.2 QuadtreeandOctree e 13
23 Delaunay 14
2.4 Other Mesh Generation Techniques 18
3 Tetrahedral Meshing Inside an Isosurface 20
3.1 UniformTetrahedra 21
3.1.1 Creating the Background Grid 24
3.1.2 ComputingCutPoints 25
3.1.3 Warping the Background Grid 25
3.1.4 Triangulating the Background Grid 28
3.2 MeshExamples 31
3.3 Computer-Assisted Proofs of AngleBounds 32
3.3.1 Extrema of a Function efVariables 34
3.3.2 Extrema of Elementary Geometric Computations 35
3.3.3 DihedralAngles 36
3.34 PlaneAngles 37

3.4 Approximation Guarantees 0 39

3.4.1 Arbitrarylsosurfaces Lo 39
3.4.2 Isosurfaces with Bounded Curvature 42

3.5 Graded Interior Tetrahedra a7
3.5.1 FourKindsofTetrahedra 48
3.5.2 Non-StandardOctree 49
3.5.3 Conditions Close to the Isosurface 51
3.54 InteriorGrading 53
3.5.5 MeshGeneration 53

3.6 DISCUSSION e 53

4 Delaunay Refinement Without Slivers 57

4.1 Delaunay Refinement 58
4.1.1 Delaunay Triangulation Algorithms 59
4.1.2 DataStructures 60

4.2 Simplified Mesh Generation 16
4.2.1 Sizing Function and Local Feature Size 61

4.3 UniformTetrahedra 63

4.4 Graded Tetrahedra 63
441 Algorithm 66
442 Analysis 69

4.5 Adding Vertex Constraints, 72
45.1 Algorithm 75
452 Analysis 78

4.6 DISCUSSION e 84

Bibliography 85

Chapter 1

Introduction

Meshes of small elements are often used to simulate physiealomena numerically
on a computer. In engineering, numerical simulations cdp design and test planes,
bridges or components before they are built. This can dsereasts and increase de-
velopment speed where prototypes were once needed. Ircecidie same techniques
can be used for a wide range of problems like modeling tidestairinteriors. Due to
the success of these methods, more difficult problems akéethdor example in biology
where geometry tends to be complicated and curved, hendehtar mesh. Figure 1.1
shows example applications.

In computer graphics, the traditional thinking is that otflg surface of an object is
visible so only surface meshes are necessary. Howevemeateshes are used increas-
ingly as researchers incorporate physical simulationsaplgcs to automatically animate
liquids and gasses, or objects that bend, crack or break ofputing performance im-
proves, some of these simulations are starting to appeamnpater games to make the
virtual environment more realistic.

Thefinite element methofFEM) is the most common way of solving a partial dif-
ferential equation (PDE) over a meshed domain. The thearglliptic problems is well
understood and enjoys some nice results; for example awpieeénear approximation is
sufficient to solve an elliptic PDE of order 2 (such as hedudibn or elasticity), and in
general a piecewise approximation of degree m is sufficeesblve an elliptic PDE of or-
der 2m. See the book by Johnson [48] for an introduction té-Elé and the mathematics
behind it.

The mesh can follow the material as it moves (Lagrangian @ideition), or stay fixed
in space as the material flows through it (Eulerian formalgti Those two possibilities
are normally used for solids and fluids, respectively, beirtverse is technically possible.
There is a third possibility: the mesh is allowed to move mgsh't necessarily have to
track the material. This extremely flexible formulation &lled Arbitrary Lagrangian

Chapter 1. Introduction

NUVAY:
VAV
S WANAVTA
NSSSEE

>
ng
X

L0

7N
o

\
N
s

K
A
b

N2
Vs |

‘4)
\ >
VA%

v

Figure 1.1: Part of an exterior mesh used for computational fluid dynamics and
part of a mesh of a femur used for stress analysis.

Eulerian(ALE); see for example the survey of Donea et al. [30].

In very difficult applications, some people have developethods that do not require
a mesh, called “meshfree methods”. One commonly cited eadynple ismoothed par-
ticle hydrodynamicsintroduced in 1977 by Lucy [60] and Gingold and Monaghan.[44
Meshfree methods have some drawbacks: they are compuifyierpensive and bound-
ary conditions are harder to impose. Ironically, a mesh terotised at one step of the
method, for example to perform the numerical integratiothefspecial basis functions.

1.1 The Mesh Generation Problem

Given a description of the domain geometry, the goal is tdpce a mesh of elements that
fill the domain. Sometimes we are also givesiang functiordefined over the domain to
control element sizes.

The mesher doesn’t usually depend on other details of thicapipn (for example
which differential equation is going to be solved with thesme This means that the
same mesh generation code can be used for many differemtatppts.

For more background on mesh generation, see the survey hyaBdiPlassmann [10].

1.1.1 Domain Representation

Domain geometry can be represented in many different wayshwie classify as explicit
or implicit.

Chapter 1. Introduction

Figure 1.2: A piecewise linear complex can be the input to a mesh generator
(J. Shewchuk).

Explicit Representation

In anexplicitrepresentation, we are given a list of vertices, segmert$amets bounding
the domain. A common example ispgecewise linear comple62] which can be used
to represent polyhedral domains (internal vertices, segsrend facets are also allowed).
Self-intersection is not allowed unless the intersectsoexplicitly resolved with vertices,
segments and facets. See Figure 1.2.

When meshing such a domain, input vertices must be part afutpgut mesh. Input
segments and facets must appear unchanged or as a uniorsefsdnts or subfacets.

Extension to curved segments and facets is possible [72,Slrp features are ex-
plicitly listed and must be accurately represented by thelmehis is similar to boundary
representation (B-rep) in computer-aided design.

Implicit Representation

In animplicit representation, the domain is defined as the volume boungeddgien
isosurface. Anisosurface is a surface of constant vgluef (p) = c} wheref : R?> — R
is a scalar field called aut functionthat the mesher can interrogate. See Figure 1.3.
Minimally, the domain can be defined implicitly by a black btivat tells if a point is
“inside” or “outside” without returning any numerical vau
This is a convenient representation in many cases. For drawipen simulating
a moving liquid, an inside/outside query at a pagintor the current time step can be
answered by moving backward in time using the estimated velocity field and guery
the previous time step—a method calleeimi-Lagrangian advectiofY]. By contrast,
maintaining an explicit representation of a liquid surfaaaild be considerably harder.
Isosurfaces are produced by several algorithms for surémnstruction [88, 67, 77].
Even for geometric models that do not use isosurfaces, guslly possible to compute

3

Chapter 1. Introduction

f(x,))=0

f(x,y=-0.1
f(x,y = - 0.
f(x,y = - 0.3~

Figure 1.3: A two-dimensional example showing 7 isosurfaces. The zero-surface
is the isosurface where the function f is zero. The inside and outside regions
correspond to positive and negative values of f, respectively.

a suitable cut functiorf by approximating theigned distance functiomvhich is the dis-
tance from a poinp to the boundary of the domain, using a negative distancedmnt®
outside the domain. Signed distance functions can be appabed from geometric mod-
els or voxel data by fast marching level set methods [76, AB8Jalgorithm of Beerentzen
and Aanees [5] for watertight triangular surface meshes coespjust the sign, which
suffices for our algorithm.

It is theoretically possible to represent sharp featurels am implicit representation,
but if the mesher is unaware of this, corners and edges ofdgh®anh could be rounded
off. There has been some work in detecting sharp featureaplidit surfaces [49], but
we feel that this is an exercise in recovering informaticat 8hould not have been lost. If
there are important sharp features then it is better to septehem explicitly.

1.2 Mesh Quality

The quality of a mesh depends on the quality of its elemertigiwin turn depends on the
application. In most applications, tetrahedra that areecko regular are favored, while
tetrahedra that are close to degenerate should be avoiie8gR see Figure 1.4. In this
section we explain the main reasons for this.

Chapter 1. Introduction

b 1 =

ideal good

Figure 1.4: The shape of a tetrahedron is important for numerical methods.

Often, a mesh is used to approximate a function over a donk@nexample, given
a tetrahedral mesh and values at its vertices (or a triangudah in two dimensions), we
can linearly interpolate the vertex values over each inldial tetrahedron (or triangle).
This creates a piecewise linear approximation over the etedbmain.

In what follows, f : R* — R is a function with a bound on curvature 2f, inside a
tetrahedrort (i.e. a bound of¢,; on the second derivative at a pointtah any direction).
Given the value off at the 4 vertices of, let g be the approximation obtained by linear
interpolation.

Interpolation Error

A bound on the piecewise interpolation error in the tetrabed can be given in terms
of lax, the maximum edge length of A tighter bound is possible in terms gf,., the
radius of theminimum containmergphere oft, i.e. the smallest sphere that encloses
The bounds [80] are

3
‘f g| < ctrmc < Grg l2

8 max*

In short, the shape of an element doesn't affect the intatjomi error, only its size
does.

Gradient Error

In many applications, including the finite element methbe,dpproximatioy must also
give accurate derivatives. Bounds on the gradient ¢i¥of — V g||, are more complicated
and given by Shewchuk [80]. The conclusion is that plane ahddial angles near
don’t cause an error in gradient, but plane and dihedrabsnggai 80° do. See Figure 1.5
for an example with two large dihedral angles.

Chapter 1. Introduction

Vg arbitrarily large gradient

6 values of f

Figure 1.5: Although the function f is close to constant, linear interpolation of f
over this tetrahedron gives a function g with a large gradient.

10

f lltan(x)f

edge length 0 1 2 3

Figure 1.6: If a dihedral angle is close to 0° or 180°, a stiffness matrix entry of the
form ié cot 6 can be arbitrarily large because of the cotangent.

Stiffness Matrix Conditioning

In the finite element method, a partial differential equatgconverted into a large, sparse
linear system to be solved. For example, when solving Poisgguation with linear ele-
ments, each edge of each tetrahedron contributes founneairies of the formté cot 6
wherel is the edge length andlis the dihedral angle at that edge (see Figure 1.6). Be-
cause the expression contains a cotangent, dihedral arege® or nearl80° can cause
large matrix entries which lead to poor matrix conditioning

Anisotropy

The considerations so far assumed that the phenomenon todeled isisotropig i.e.
the same in all directions. In some applications, a PDE @alstion can benisotropig
the opposite. An example is fluid flow close to a boundary, Whends to be uniform
along the boundary but varies dramatically in the orthogdivaction. In such cases,
skinny elements that are correctly aligned are desiralde We do not attempt to create
anisotropic meshes in this thesis.

Chapter 1. Introduction

L
(4

Figure 1.7: A tetrahedron has 6 dihedral angles (one per edge of the tetrahedron)
and 12 plane angles (3 on each of its 4 triangular faces). One angle of each
type is illustrated. The dihedral angle at an edge is the angle between the two
triangular faces incident on it.

1.2.1 Quality Measures

Many measures of tetrahedron quality have been proposexptess the requirements
imposed by numerical methods. A possible quality measteetadius ratio, is given
by the inscribed sphere radius divided by the circumscrdgtere radius. Most of the
proposed measures are asymptotically equivalent in theegbat a bound on one implies
a bound on the others [57]. In this thesis, we focus on diledrgles and plane angles
(see Figure 1.7) because they directly appear in error benpcessions for tetrahedra
and triangles, and they are easy to interpret. Since a sbhagleelement can potentially
ruin a whole simulation, it is desirable to guarantee thdityuaf every element of the
mesh.

Covering Efficiency

Good quality elements with a large volume are preferable thase with a small volume
because fewer of them will be needed to cover the mesh.

Given a fixed element budget for the mesh and a quality medkatdavors small
elements, a good mesh optimizer will tend to create “fatfredats even if the volume
of the element is not explicitly part of the quality measuhe.some cases, it might be
necessary to include the volume of the element in the qualkigsure to obtain reasonable
covering efficiency.

1.2.2 Size-Optimality

It is normally much easier to refine a mesh (add vertices) thamplify a mesh (remove
vertices) while maintaining mesh quality. For this reasomesh generators are often
compared based on their ability to create a good quality meghas few elements as

Chapter 1. Introduction

Figure 1.8: The point sets SC, and BCCy, for k£ € Z form an infinite sequence of
nested lattices.

possible, knowing that if more elements are needed themibiét be a problem. In the
following definition we compare a mesh with the “optimal” rhes

Definition 1 (Size-Optimality) A mesh that satisfies some quality bound is said to be
size optimaif its number of elements is at most a constant factor largantthe number

of elements in any other mesh of the same domain that satiséiesme quality bound.
The constant may be a function of the quality bound, but catseoend on the mesh.

1.3 Point Lattices

Point lattices are common in mineralogy where they reptaberstructure of many crys-
tals. These regular point sets lead to simple grids that earsed directly in some numeri-
cal methods, but more interestingly they can be used as dbaekor more sophisticated
meshing algorithms. They are the special ingredient ofttiesis.

Below we define two families of lattices that are used in thissts. The first one
simply corresponds to the vertices of a regular grid of cubes conciseness, we define
addition and scalar multiplication of point sets as follows

A+B = {a+b:a€ Aandb € B},
cA = {ca:a€ A}

Definition 2 (Simple Cubic Lattice) The simple cubic lattic€C, and its scalingSCy,
by powers of two are defined as

SCy = 73,
SC, = 2FSC, fork € Z.

Chapter 1. Introduction

The next lattice can be obtained from the simple cubic katbig adding new vertices
at the center of each cube.

Definition 3 (Body-Centered Cubic Lattice) The body-centered cubic latti&&"C, and
its scalingBCC;, by powers of two are defined as
BCCO = {(07 07 0)7 (%7 %7 %)} + Z37

BCC, = 2FBCC, fork € Z.

The following lattice is mentioned for comparison only. $tknown to describe a
sphere packing of maximum density, but is not used in thisishe

Definition 4 (Face-Centered Cubic Lattice) The face-centered cubic lattid&C, and
its scalingkCC,, by powers of two are defined as
FCCO = {(07 07 0)7 (%7 %7 0)7 (%7 07 %)7 (07 %7 %)} + Z37

FCC, = 2FFCC, fork € Z.

The sets above are callgint latticesbecause they are discrete subgroups of Eu-
clidean space under vector addition of point coordinatetheOregular point patterns,
such as the centers of spheres in a hexagonal close packimptdhare this property.
None of our results depend on this subgroup property, solattinoe point sets can be
used in future work if the lattices that we have chosen tutrt@bave limitations.

Proposition 1 (Nesting of Lattices)
BCCk_H C SCk C BCCk fork ¢ Z.

The nesting of lattices is illustrated in Figure 1.8. A ledti; is said to bdiner than
a latticeL, if L1 D L. L is said to becoarserthan L, if L; C Ls.

1.4 Summary of Results

In Chapter 3, we show how a background grid of lattice poiats loe used to generate
a high-quality mesh for bodies whose boundaries are smaothces. The method is
surprisingly quick and easy, and it offers numerical robass and tetrahedron quality,
which is particularly reassuring for simulations that neéedyenerate new meshes fre-
guently, perhaps even at frame rates.

The algorithm is not heuristic; it absolutely guaranteed #il the dihedral angles of
all the tetrahedra it generates are betwHef8° and164.74°. To our knowledge, it is the

9

Chapter 1. Introduction

first tetrahedral mesh generation algorithm of any sortlib#t offers meaningful bounds
on dihedral angles and conforms to the boundaries of gearEimains with compli-
cated shapes. Significant provable bounds on dihedral su(igler over) are virtually
unheard of outside of space-filling or slab-filling tetraradizations.

Besides high-quality tetrahedra, the algorithm offers¢twther guarantees, described
in Section 3.4. First, every vertex on the boundary of themies on thezero-surface
{p : f(p) = 0}, presuming that the client can answer a query requestingoaszeface
point that intersects a specified line segment. Second,@nypsufficiently far from the
zero-surface is correctly classified, in the sense thairisisle the mesh if (p) is positive,
and outside the mesh ff(p) is negative. (Our notion of “sufficiently far” scales witheth
tetrahedron size. See Corollary 5.) The only preconditmntliese two guarantees to
hold is thatf be continuous. The third guarantee is that if the zero-sarfa a smooth
2-manifold with bounded curvature, and if the tetrahedeasaufficiently small, then the
boundary of the mesh is homeomorphic to the zero-surface.a$6 guarantee ambient
isotopy. See Theorem 8.)

These guarantees imply that the triangles on the boundattyeofnesh collectively
form an accurate approximation of the boundary of the donihis is important because
the boundary is often where the most interesting physicsrsc@nd is the part of the
domain that is most frequently rendered.

In Chapter 4, we show how point lattices can be used in a difitelype of mesh gen-
eration algorithm where a mesh is iteratively constructeshberting one vertex at a time,
and the domain to be meshed can have sharp features. Th#hatgoan create a mesh
from scratch, or fix a pre-existing mesh by adding more vestidt guarantees dihedral
angles betweeB(0° and135° away from the boundary. In comparison, previous bounds
on dihedral angles were microscopic. Unfortunately, tlyp@hm offers no guarantee
close to be boundary, where sliver-shaped tetrahedra ¢sin ex

The algorithm accommodates two kinds of constraints: a ossy input a set of
points which must be vertices of the output mesh, and thattetiron sizes cannot exceed
a user-specified “sizing function”. The algorithm comedwéatbound on the sizes of the
features it creates, and can provably grade from small ¢ lstrahedra.

The method is an extension of Delaunay refinement, a commesh generation tech-
nique. This is appealing because the changes can be eaddg tala pre-existing Delau-
nay refinement mesher.

10

Chapter 2

Previous Work

Tetrahedral mesh generation has an extensive history mdraineering and computer
science, so we review here mainly methods that share siti@gawith ours or have theo-
retical guarantees. For more information on mesh generatiethods, see the survey by
Bern and Plassmann [10], Bern and Eppstein [8], or Owen [70].

2.1 Background Grids

A background grids an invisible, structured grid that is used to guide mestegaion.
In this section we also review algorithms that produce nyesekface meshes three
dimensions, because they contain ideas that we borrowenéxo generate a full interior
mesh in Chapter 3.

2.1.1 Surface Meshes
Marching Cubes

TheMarching Cubeslgorithm of Lorensen and Cline [59] triangulates an istasie (but
not its interior). It computes the cut functighat the vertices of the simple cubic lattice,
and processes the domain cube by cube. When Marching Cubesspes a cube, it
outputs triangles that approximate the intersection ofighsurface with that cube. The
cubes themselves are not part of the output; they form asibieibackground grid. The
output triangles are generated from a small table of 15 pnecedstencils The vertices
of the output triangles depend solely on the valueg af the eight vertices of the cube,
and the choice of stencil depends solely on the signsaifthose eight vertices.
Chernyaev [22] proposed an improved version with 33 stetiedt are selected based
on the topology of the isosurface defined by the trilineagripblation of values at cube

11

Chapter 2. Previous Work

Figure 2.1: In Marching Tetrahedra, there are only 3 stencils up to symmetry,
including the case where no surface triangle is produced.

vertices. However, surface mesh quality remains poor. d488] sketched a strategy
to improve the quality of output triangles, but the desaoiptgiven is not precise and
the analysis not rigorous. Attali et al. [4] combine Marahi@ubes with a surface sim-
plification heuristic to improve mesh quality without hagito store the intermediate
poor-quality surface mesh.

Marching Tetrahedra

Marching Tetrahedras an obvious extension (or simplification) of Marching Csiladere
the background grid is composed of tetrahedra. The tetrahbdckground grid can be
obtained by decomposing each cube of a cubic grid into tethat) as done by Bloomen-
thal [13] in his implementation. The tetrahedral backgebgnid can have a different
structure, or could even be totally unstructured. Carr efl@] compare the results of
Marching Tetrahedra (on several background grids) withdWisng Cubes. The main ad-
vantage of Marching Tetrahedra is that there are only 3 gsatwcconsider, illustrated in
Figure 2.1. Treece et al. [82] use the body-centered cutiticdaand propose a method to
improve the quality of output triangles, but the worst casedt analyzed.

2.1.2 \Volume Meshes
Sharp Domains

Field and Smith [39] propose a method to obtgnaded meshes based on the body-
centered cubic lattice; however their algorithm desaripis informal and no bounds on
the dihedral angles are provided. Fuchs [43] uses the BQiCddb create a Delaunay
mesh that is mostly regular.

In two dimensions, the early grid-based algorithm of Bal&nsse, and Rafferty [6]
is notable, guaranteeing that the angles of the triangléseofmesh are betwed3° and
90° (excepted input angles, which could be less thithand can't be eliminated).

12

Chapter 2. Previous Work

Figure 2.2: In an octree, an initial axis-aligned cube is recursively cut into eight
smaller cubes as needed. The octree is said to be balanced if the the sizes of
adjacent cubes differ by a factor of at most two.

Smooth Domains

There are several prior algorithms for filling smooth suefawith tetrahedra. Molino et
al. [65] begin with a BCC grid, then grade the mesh by usingédegreen mesh refine-
ment of Bey [11] to locally adapt tetrahedron sizes as ddsixext, they use an iterative
optimization procedure to deform the tetrahedra so that tdoamform to the boundary.
This iterative method is necessarily more expensive thaneapass stencil-based ap-
proach. Molino et al. obtain dihedral angles betwéghand 156° for the meshes they
use to illustrate their algorithm, but they offer no guaesst

2.2 Quadtree and Octree

Quadtrees and octrees are ways of adaptively refining spdesmiand three dimensions
(respectively); see Figure 2.2. In the context of mesh gsiwar, their advantage over
a simple uniform grid is to provide a way to control and addyat sizes of elements.
Quadtrees and octrees were used for meshing in the piogeeoirk of Yerry and Shep-

hard [86, 87].

Guarantees

In two dimensions, the quadtree-based triangular mesHgagithm of Bern, Eppstein,

and Gilbert [9] comes with a small guarantee on angles. Theadlois first enclosed in

an axis-aligned square which is recursively subdivided quadtree fashion until each
leaf square intersects the domain in a simple way. The gemdirfurther refined so that
it is balanced, and is warped to conform to input segments. gularantee is derived by
looking at the worst possible angle that can be created byrteess.

13

Chapter 2. Previous Work

Figure 2.3: The Delaunay triangulation of 100 points randomly chosen inside a
rectangle.

The idea is extended to three dimensions by Mitchell and &iaj&3], who give an
octree-based algorithm that creates meshes with a very goabntee on radius ratios.
Unlike the two-dimensional version, the meshes obtainednat very satisfactory be-
cause they contain many elements and many small angles.|Jdrétam is extended to
higher dimensions by the same authors [64].

2.3 Delaunay

TheDelaunay triangulatiorof a point set has the property that the circumcircle of every
triangle is empty; or in three dimensions, the circumspbéeyery tetrahedron is empty.

It is named after Boris Delaunay [29] who introduced it. Irotdimensions, Lawson [51]
proves that the Delaunay triangulation maximizes the mimmangle over all possible
triangulation of the point set, a property highly relevantrtesh quality. Figure 2.3 shows
a Delaunay triangulation.

In mesh generation by Delaunay refinement, a Delaunay wlatign is maintained
at all times during the meshing process, and is used to ghelénsertion of new ver-
tices. The Delaunay triangulation and Delaunay refinementiascribed in more details
in Section 4.1. Delaunay refinement algorithms are intitgdieked to the following
geometric ratio.

Definition 5 (Radius-Edge Ratio) Theradius-edge ratiof a simplex (triangle, tetrahe-

dron, or higher dimensional analogues) is the ratio of theliex’s circumradius to the
length of its shortest edge [61].

14

Chapter 2. Previous Work

Figure 2.4: Meshes obtained by three-dimensional Delaunay refinement. The
mesh on the right is a cutaway view of a graded mesh. (J. Shewchuk)

Sharp Domains

In two dimensions, Frey [42] suggests eliminating poor iydtiangles by inserting
their circumcenters. Based on this idea, the Delaunay raénéalgorithm of Chew [24]
produces uniform meshes with a radius-edge ratio of at moshich implies triangle
angles betweeB0° and120° (Chew assumes some conditions on the domain boundary).
Given a domain with no acute angle, Ruppert’s algorithm ptéduceggradedmeshes
with a radius-edge ratio of at mog®, which translates into triangle angles betweerr°
and138.6°.

Shewchuk [78] extends Delaunay refinement to three dimeaggee Figure 2.4 for
example results). For domains with no acute angles, higiglgo can guarantee radius-
edge ratios of at mo&t Unfortunately, this guarantee does not rule outdlineer tetrahe-
dron, which can have dihedral angles arbitrarily clos®t@nd 180°; see Figure 2.5(a).
In a mesh wherein all the tetrahedra have good (small) raetige ratios, the problem of
obtaining well-shaped tetrahedra is reduced to elimigeaglivers, and an algorithm with
a guarantee on radius-edge ratios should be complemernted guarantee on the small-
est dihedral angle. See Figure 2.5(b,c,d) for exampledm@ittedra that demonstrate that
bounds on dihedral angles alone may not be sufficient to ntlsame types of degenerate
tetrahedra.

Since three-dimensional Delaunay refinement apparenthesso close to providing
well-shaped elements, it is natural to ask whether slivarslie eliminated with a small
modification or in a post-processing step. Chew [25] prevené creation of slivers
by doing a random search for a suitable new vertex in a ballratdhe circumcenter

15

Chapter 2. Previous Work

@ (b) (©) (d)

Figure 2.5: (a) Sliver tetrahedron: a good radius-edge ratio does not rule out poor
dihedral angles (the four vertices are nearly coplanar). (b) Spear tetrahedron: a
lower bound (60°) on dihedral angles does not rule out a very large dihedral angle.
(c) Splinter tetrahedron: an upper bound (90°) on dihedral angles does not rule
out very small dihedral angles. (d) Needle tetrahedron: bounds on both small
(60°) and large (90°) dihedral angles do not rule out an arbitrary large radius-edge
ratio.

of each bad quality tetrahedron. Cheng et al. [21] show thttel radius-edge ratios
of the tetrahedra are bounded, then slivers can be elintifgteswitching to aveighted
Delaunay tetrahedralization and selecting the weightsefertices in such a way that all
slivers disappear, a process they adilfer exudation Edelsbrunner et al. [33] show that
smoothing (moving the vertices) can be used instead of uidlor these last two results,
the authors meshed a periodic space to avoid having to déatké domain boundary.
This is a reasonable simplification in order to make progoess very hard problem,
which we take advantage of in Chapter 4. Nevertheless, mandf the boundary is
important for applications, and has been accomplished lapdiTeng [53] by improving
upon the algorithm sketched by Chew [25], and by Cheng and[P@&ywho extended
the work of Cheng et al. [21]. The relationships betweendhesults are illustrated in
Figure 2.6.

The weakness of all these results is that the actual dihadgié bounds, while pos-
itive, are too minuscule to be worth computing explicitlytey are probably less than
10~% degrees. However, experiments by Edelsbrunner and Gupgligv that the sliver
exudation algorithm of Cheng et al. [21] can eliminate mdsess with dihedral angles
below5° in practice.

16

Chapter 2. Previous Work

input domain
circumcenter random point close
insertion to the circumcenter,

Chew (1997)

Delaunay mesh Delaunay mesh,
(with slivers) no ¢ slivers in interior
. . Li and Ten
weight pumping, mild perturbation of \(2001) ’
Cheng et al. (1999) vertex positions,
Edelsbrunner et al. (2000) ‘ and no ¢ slivers on boundary
weighted Delaunay mesh, Delaunay mesh,
no ¢ slivers in interior no g slivers in interior

Cheng and Dey
(2003)

and no ¢ slivers on boundary ‘

Figure 2.6: Previous theoretical work on sliver removal. The guarantees rule out
microscopic angles only (e slivers).

Smooth Domains

The Delaunay refinement algorithm of Oudot, Rineau, and &wv[69] guarantees radius-
edge ratios of at modt+ ¢ for arbitrarye > 0. It relies on sliver exudation [21] to remove
poor tetrahedra from meshes. The algorithm is an extendidineoearlier of work of
Boissonnat and Oudot [14] which produced a surface mesh bmbpth versions, surface
sampling is adapted to the distance to the medial dxjis which leads to theoretical
guarantees on topological equivalence, Hausdorff distanormal approximation, and
size-optimality. Quantitatively, points with inter-diéstce as small a03d,, might need
to appear in the mesh in order to guarantee topology.

Variational tetrahedral meshing, by Alliez, Cohen-SteiMainec, and Desbrun [1],
is at the core a mesh improvement procedure where conrgeail vertex positions are
optimized to minimize an energy function. The energy fumciiself has nice theoretical
properties, but there is no theoretical result on the quafita mesh that minimizes this
energy. To obtain graded meshes, the energy must be modifieddrporate a sizing
field. The authors turn the mesh improvement procedure inteeshing algorithm by
presenting a way to create the initial mesh needed to stdptimization procedure.

17

Chapter 2. Previous Work

Figure 2.7: The advancing front method generates elements starting from the
boundary. In this example, the second layer of elements is progressing, and we
can foresee the complications that will occur later when fronts collide.

2.4 Other Mesh Generation Techniques

This section briefly covers other techniques which are papai practical, although un-
related to this thesis.

Advancing Front

In the advancing front metho@b8], the domain boundary is first segmented (or trian-
gulated if the domain is three dimensional). Elements aregged starting from the
boundary, usually layer by layer, until the whole domain estmed (See Figure 2.7). This
method tends to create good quality elements close to thedaoy where new vertices
can be created at near optimal positions. The situation hrmore difficult toward the
end of the process where many fronts collide at the same fiossibly with a mismatch

in element sizes. The method is popular in aerodynamicseniesh quality close to the
boundary is important. There are no mathematical guarameenesh quality.

Biting

Thebiting methodntroduced by Li et al. [56] is a method related to advanciogf and
circle packing. The domain is iteratively “eaten” by diskgilit is completely consumed.
The mesh is obtained from a Delaunay triangulation of th& denters. An advantage
of the biting method is that it provides guarantees on tilangality and size-optimality

of the mesh (Section 1.2.2). The method has been extendedsmtrapic meshes with
biting ellipses [54], and to three dimensions with bitingnepes [55]. The biting sphere

18

Chapter 2. Previous Work

algorithm suffers from the presence of slivers, just likeethdimensional Delaunay re-
finement.

Mesh Improvement

Mesh improvement is technically not a mesh generation igalen but it can be used to
improve meshes that were obtained by other methods, pallgrttirning a bad quality
mesh into a good one.

Two aspects of a mesh can be improved: its geometry and itdogypy Geometri-
cal improvement, often simply callesmoothing consists in optimizing the position of
mesh vertices without changing the mesh connectivity. Afyead simple example is
Laplacian smoothing46], where a vertex is moved to the center of mass of its rmgh
(unless doing this would create an inverted element). Bflyica few passes of Laplacian
smoothing can be performed. Superior methods include noonoptimization [41] and
variational approaches [19].

Topological improvement consists in making local operagithat change the connec-
tivity of the mesh. One strategy is to consider a large sebpblogical transformations
and perform those that improve the degree of vertices [17dnyr other quality mea-
sure. The best results are obtained by combining smootmddapological transforma-
tions. Freitag and Ollivier-Gooch [41] achieve better fssthrough optimization-based
smoothing and topological transformations than Edelsteuand Guoy with sliver exu-
dation, but dihedral angles less th&rsometimes survive, and in many examples dihedral
angles undeit0° survive. Alliez et al. [1] claim good results by combiningrigional
smoothing and Delaunay tetrahedralization, but it is neacthat they can consistently
avoid boundary slivers.

19

Chapter 3

Tetrahedral Meshing Inside an
Isosurface

In this chapter, we describe an algorithm that we isalsurface stuffinghat can create a
tetrahedral mesh inside an isosurface.

We assume that the input is a continuaus functionf : R* — R that implicitly
represents the geometric domain to be stuffed with tetrahedmely the point s€ip :
f(p) > 0}. Points wheref is negative are outside the domain, and usually should not
be meshed—though our algorithm offers the option to creaepatible meshes on both
sides of the boundary, with a somewhat weaker angle gua.ante

Because our algorithm uses stencils to generate tetrghietgdlazingly fast com-
pared to traditional mesh generation algorithms based dawiDay triangulations or ad-
vancing front methods. It is also much easier to implemene-eaded our prototype
mesher for uniformly sized tetrahedra in two days. Furtleeenour algorithm is nu-
merically bulletproof, as its correctness does not rely omerically sensitive geometric
predicates or any numerical procedure more delicate thiag itsrated bisection to find
a zero of a function of one variable. gireamingmplementation is possible, i.e. one that
accepts the values g¢fin any order and outputs tetrahedra as they are ready. Ihfhe i
order is reasonable then huge models can be processedtilétmiemory [47].

A second version of isosurface stuffing (Section 3.5) ceeateshes whose interior
tetrahedra argraded—they grade from largest at the core to smallest at the seirfas
Figure 3.1 illustrates. This option reduces the amount aiatation the finite element
method expends on the domain interior while maintainind)higsolution near the sur-
face, where modeling errors are most visible. Our algoritises a nonstandard octree to
create a tetrahedral background grid.

Although our technique can also be used to generate fullgegraneshes (whose
surface tetrahedra vary in size too), most of whose tetraheave excellent quality, we

20

Chapter 3. Tetrahedral Meshing Inside an Isosurface

ANANGNT

>y

158.2

PAN

7
7
>
N

(A A
\4
N
=}
ey
s}
o}
o
[
=}
=
o
)
P
N}
o
N
ey
S}
=
o
o
=
©

Figure 3.1: A 134,400-tetrahedron mesh produced by isosurface stuffing, with
a cutaway view. At the right is a histogram of tetrahedron dihedral angles in 2°
intervals; multiply the heights of the red bars by 20. (Angles of 45°, 60°, and 90°
occur with high frequency.) The extreme dihedral angles are 15.2° and 158.2°.
This mesh took 55 seconds to generate on a Mac Pro with a 2.66 GHz Intel Xeon
processor, but the mesh generation time was only 642 milliseconds; nearly all the
time was spent in the isosurface evaluation code.

are unable to guarantee dihedral angles better tlt#A degrees for the worst tetrahedra,
so we do not report details. (But see Section 3.6 for an exanpl

A drawback of our approach is that it does not preserve shdgeseor corners.
Guaranteed-quality mesh generation that tightly fits sHagbures (without rounding
them off) has challenged researchers for over two decadeswal continue to do so,
because these constraints impose fundamental difficti@srguably could never be ac-
commodated by any approach as simple as the method we dekerd. For our smooth
target domains, however, we make guaranteed-quality mgsasy.

3.1 Uniform Tetrahedra

The isosurface stuffing algorithm uses iy centered cubic (BCC) latti@es a space-
tiling background grid to guide the creation of a mesh.
The Delaunay triangulation of these points, illustratedrigure 3.2, is a tetrahedral

21

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.2: The body centered cubic (BCC) lattice is composed of two staggered
cubical grids of vertices. The three tetrahedra illustrated here (which are identical)
and copies of them tile space.

mesh that we call thBCC grid The BCC grid is composed of identical tetrahedra that
are of excellent quality, having edge lengthand+/3 /2, and dihedral angle&)° and90°.
This space-filling tetrahedron was noted by Sommervillg.[he fact that all the BCC
grid tetrahedra are identical simplifies both implementing algorithm and proving its
correctness.

We fill a zero-surface with uniformly sized tetrahedra inrfeteps. All but the third
step are borrowed (with changes) from Marching Cubes.

1. Choose a subsét of the BCC lattice.P should include every lattice point where
the cut functionf is nonnegative, and every lattice point connected by an efige
the BCC grid to a lattice point whergis positive. Compute and store the value of
f at each lattice point i®.

2. For each edge of the BCC grid with both endpointg’inf one endpoint is posi-
tive (meaning “inside”) and one is negative (meaning “ala¥), then compute or
approximate &ut pointwhere the edge crosses the zero-surface.

3. For each lattice point € P, check for the presence of cut points on the fourteen
grid edges that adjoiq. If one of these cut pointsis too close ta;, we say that
violatesq. If any cut point violateg, warp the grid by moving; to a cut point that
violatesq. (We usually choose the nearest violating cut point, bugoarantees do
not depend on it. Technically,is no longer a lattice point, but we still call it one.)
The effect is to snag onto the zero-surface. Changes value to zero. Discard
all cut points on the edges adjoiniggbecause those edges no longer have both a
positive endpoint and a negative endpoint. Because we ggaoeery lattice point
in P sequentiallyin this manner, no cut point adjoiningcan subsequently cause
another lattice point to move.

4. For each BCC grid tetrahedron that has at least one veitexawpositive value,

22

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.3: Stencils for isosurface stuffing. Vertices of the BCC grid tetrahedra
are labeled with their signs (+, —, 0). Cut points are white, and output tetrahedra
are yellow. The seven stencils in the top row apply in all rotations and reflections,
and their edges can be matched arbitrarily with the long and short edges of the
BCC grid. For the remaining five stencils, the long edges of the BCC grid are
depicted as thick and black; the short edges are red. For the three stencils in the
bottom row (wherein the bottom long edge has both endpoints positive), the Parity
Rule applies and may require a stencil to be reflected. The bottom five stencils
apply in all rotations and reflections (left to right or front to back) that observe the
Parity Rule and correctly match the edge colors.

fill the tetrahedron (which might be warped) with a stencillef3 precomputed
tetrahedra. Output these tetrahedra. Figure 3.3 depietstémcils. The choice of
stencil depends on the signs of the four vertices of the BGdCtgtrahedron.

These steps are illustrated in Figure 3.4 and are descnibetbie details in the fol-
lowing sections.

We distinguish between three kinds of points and two kindewéhedraCut points
(where BCC grid edges cross the zero-surface)lattide pointsmay or may not become
output verticesLikewise, some of theutput tetrahedrahat comprise the final mesh are
distinct from theBCC tetrahedraof the background grid.

23

Chapter 3. Tetrahedral Meshing Inside an Isosurface

TR K K]

OISO NSO
SIZOZOZAZIZ0 O O O
WO O

5

KKK DKDE IR K] ST DKDELK DK DK

OGN

. U 2 B
7 X - b PN
- - R
e
O { ZOZOOZ00:
DX X D SRS’

Figure 3.4: A two-dimensional illustration of the steps of isosurface stuffing: (1)
Choose a subset of the BCC lattice and store the value of the cut function at each
lattice vertex. (2) Compute cut points where edges cross the isosurface. (3) Warp
the lattice points that are violated, shown as hollow vertices. (4) Triangulate the
warped background mesh using stencils.

3.1.1 Creating the Background Grid

For a general continuous cut functignthe first step is technically impossible, because
there is an infinite number of lattice points to test. Eveogsigface-processing algorithm
faces the problem that it is difficult to find all the comporeenf f(p) = 0—and it is
generally impossible if is a black box that can only be evaluated at individual poiAts
practical way to find the points i is to begin with several “seed” points known to be
in the domain, then find the rest by depth-first search on tgesdf the BCC grid. This
method may fail to find the entire domain if the lattice is naefenough to resolve the
narrower portions of the domain, or if the domain has a cotetecomponent that does

24

Chapter 3. Tetrahedral Meshing Inside an Isosurface

\ \ F O short = 0.39882
\

a|0ng =0.28511
— Does not cause
a warping

[[
0 a 1 1

Figure 3.5: On the left: three parts of an edge where a cut point can fall. The
first two cases trigger a lattice point to warp, while the third does not. The lengths
of the parts are determined by a parameter «, which can vary depending on
the edge. On the right: the o parameters from the second line of Table 3.1 are
illustrated.

not contain a seed point. For ease of programming, our y@atnesher evaluatgsat
every lattice point in a user-specified bounding box, b hcostly when the volume of
the bounding box is much greater than the domain volume. {(i@imgs reflect that.)

3.1.2 Computing Cut Points

For the second step, we assume that the geometric moddletetiraes the cut function
f can answer a query asking for a point where a line segmemséatts the zero-surface.
Our prototype implementation does this by iterative bisectwhich can approximate
the cut point to arbitrary accuracy, even for a black box fiomcf. If f is expensive to
evaluate, one could estimate the cut point by linear infatfpn along the edge, at the
cost of losing all the guarantees about geometric and tgpeabfidelity, and retaining
only the angle guarantee.

3.1.3 Warping the Background Grid

The third step uses a simple rule to decide if a lattice painiolated. If a cut point
lies on a grid edge, and the distance betweerand an endpoint of e is less thany
times the length o#, thenc violatesv; sov must be snapped to the isosurface, assigned
a value of zero, and purged of adjoining cut pointgalessthe other endpoint of gets
snapped first, eliminating The warping criterion is illustrated in Figure 3.5 (lefénd

25

Chapter 3. Tetrahedral Meshing Inside an Isosurface

=

(@) @
" 4

@

Figure 3.6: Warping lattice points: (a) The lattice point at the center is violated

because a cut point lies too close to it. (b) The lattice point is snapped to the

position of the cut point. (c) Because the new position lies on the isosurface, the

lattice point is reassigned a value of zero. (d) The cut points that were adjoining
are removed.

()

the warping process in Figure 3.6.

BCC grid edges come in two lengths, and we use a differentevafux for each,
chosen by experimentation. Several options are summainizédble 3.1, and one is
illustrated in Figure 3.5 (right). In the table,,,, is the coefficient for the longer, axis-
aligned edges, which we call thdack edgesanday,,,.: is the coefficient for the shorter,
diagonal edges, which we call thed edges Angle bounds are given in Table 3.2, they
are derived with a computer-assisted proof, discusseddtidpe3.3.

The order in which we process and warp the lattice pointctfine final mesh, but
it does not affect most of our guarantees. The exceptionthareour rows of Table 3.1
wherein an angle bound is improved bsdered warpingin which we use the following
algorithm to ensure that a lattice point never warps alongdge toward a neighboring
vertex that will also be warped.

while some negative lattice point is violated by a cut point on
an edge adjoining annviolatedpositive lattice point
Warpg~ to a violating cut point on such an edge
while some positive lattice point" is violated

26

Chapter 3. Tetrahedral Meshing Inside an Isosurface

long Oghort | what is optimized safe?
0.26649 0.36918 maximum dihedral angle | unsafe
0.28511 0.39882 minimum dihedral angle | unsafe
0.24999 0.40173 maximum dihedral angle | safe
0.24999 0.41189 minimum dihedral angle | safe
0.24999 0.4297 ... with ordered warping safe
0.21509 0.35900 max dihedral, double-sidedsafe
0.22383 0.39700 min dihedral, double-sided safe
0.22385 0.4050 ... with ordered warping safe
0.23926 0.27376 max exposed plane angle| safe
10| 0.23463 0.2950 ... with ordered warping safe
11| 0.36378 0.33951 min exposed plane angle | unsafe
12| 0.24999 0.35464 min exposed plane angle | safe
13| 0.23573 0.5 ... with ordered warping safe

©OooO~NO O WNEPE

Table 3.1: Choices of ajn, and agno that optimize the minimum or maximum di-
hedral angles, or the minimum or maximum plane angles of triangles exposed
on the boundary of the mesh. Rows marked “safe” indicate values for which the
tetrahedra are guaranteed not to overlap each other, even if the background grid
is not fine enough to resolve the surface correctly. Rows marked “double-sided”
are for guaranteeing good quality when meshing both sides of an isosurface with
compatible tetrahedra. Ordered warping is described in Section 3.1.3. The bot-
tom five rows are of interest mainly for surface meshing; see Section 3.6.

Warpgq™ to a violating cut point

When this algorithm terminates, no violated lattice posusvive, because if a neg-
ative lattice point is still violated when the first loop endlse cut points that violate it
are discarded when the second loop warps the violated yo#ittice points. The disad-
vantage of this ordering is that it makes a parallel or stragrmplementation difficult,
because the dependencies of the first loop can cascade ktagas. When a negative
lattice point warps, the cut points that adjoin it disappe&drich may cause a formerly
violated positive lattice point to become unviolated, #isr forcing a different negative
lattice point to warp toward it, and so @ infinitum It is sometimes better to settle for
a slightly weaker angle bound so that the lattice points carpwn an arbitrary order.

27

Chapter 3. Tetrahedral Meshing Inside an Isosurface

minimum maximum| minimum maximum minimum maximum
dihedral dihedra plane plane exposed exposed
angle angle angle angle plane plane
1 8.9716 *158.7403] 11.9072 150.9944 12.0162 147.6786
2| *10.7843 164.7373| 9.0454 154.9845 9.0454 154.9845
3 9.0551 160.5331] 8.7614 155.7053 8.7614 155.7053
4 9.3171 161.6432 7.7810 158.2252 7.7810 158.2252
5 9.7766 163.5685| 10.5695 149.7137 15.1645 138.1929
6 6.4917 164.1013] 8.8535 157.8278 13.0689 145.1886
7 7.6872 168.0481] 9.2237 155.0594 9.2237 154.5340
8 7.8653 168.0572] 9.5400 154.6644 14.4726 135.7164
9 5.3440 163.8969 6.2646 158.2960 11.8387°124.9195
10 5.8017 162.1673 7.2694 158.0368 12.1108°124.0867
11 n/a n/a] 10.4741 7149.6794 *15.1285 *149.5205
12 7.8390 160.5447 10.4213 153.7863 13.5241 144.1259
13 7.4904 169.1465 9.2685 7145.4921 16.4299 144.9032

Table 3.2: For the choices of oy, and ago, Of the previous table, these columns
list the extremal dihedral angles, plane angles of triangular faces (including tri-
angles in the mesh interior), and plane angles of triangular faces exposed on
the boundary. Asterisks and daggers are explained in Section 3.5.3. All angle
bounds have been computer-verified to be strictly correct as written and tight to
within 0.0001°.

3.1.4 Triangulating the Background Grid

The fourth step generates the output tetrahedra specifi¢iebstencils depicted in Fig-
ure 3.3. We store the stencils in a table, indexed by the sifjine vertex values (positive,
negative, or zero). Some stencils generate two or threaubtéfrahedra, to respect sur-
viving cut points on the grid edges. Symmetry reduces thebraurof distinct cases from
81 to the 12 illustrated. In accounting for symmetry, not tilack edges are not always
interchangeable with red ones—some stencils offer bettality than others in particular
circumstances, and not all stencils meet compatibly facede.

Some cases admit more than one possible stencil becaussothaface truncates
some BCC grid triangles, creating quadrilateral facesh edavhich we bisect into two
triangles. Each stencil’s tetrahedra are determined bgttheee of diagonal used to bisect
each quadrilateral. To choose diagonals, we use two digaration rules, designed to
produce high-quality output tetrahedra.

Observe that every BCC grid triangle has one black edge aoddd ones, so each

28

Chapter 3. Tetrahedral Meshing Inside an Isosurface

guadrilateral has either a whole black edge or a truncated \0fe bisect a quadrilateral
with a truncated black edge by choosing the diagonal thair&lfhe cut point where the
black edge was truncated. The stencils in Figure 3.3 obeyrtite.

The Parity Rule

If a quadrilateral face has a whole black edge (and two trieniceed edges), we break
symmetry by using the followin@arity Ruleto choose a diagonal. Letandb be the
endpoints of the black edge, and teandd be the cut points where the red edges are
truncated, labeled so the quadrilateral’s diagonalsiaendbd. Because of the geome-
try of the BCC lattice, eithet, has an even number of coordinates that are greater than
¢'s corresponding coordinates ahdas an odd number of coordinates greater tian
coordinates, or vice versa. dfandb lie on the cubical lattic&? (the black points in Fig-
ure 3.2), we chooser if a has an odd number of coordinates greater tteooordinates;
we chooséd if the number is even. This rule allows us to use the bottort sgencil in
Figure 3.3, which has better quality than alternatives.edlesthat the stencil has not one
but two of these quadrilateral faces, front and back, andwbecorresponding diagonals
do not share an endpoint.

If a andb lie on the cubical lattic&® + (3, 1, 3) (the red points in Figure 3.2), we
reverse the rule and chooseif a has an even number of coordinates greater tfgaco-
ordinates. This reversal makes it possible to mesh botls sii@n isosurface compatibly
with the same stencil. To implement the Parity Rule, we docadly have to reflect one
of the stencils in the bottom row of Figure 3.3 after lookihgp.

Although isosurface stuffing could be implemented so thatuinerically measures
angles and uses them to choose stencils, we think much otfghgthm’s charm is its
ability to ensure quality with an absolute minimum of geonestomputation.

Quadruple-Zero Tetrahedra

Every BCC tetrahedron with no negative (outside) vertexobees an output tetrahedron,
exceptperhaps a BCC tetrahedron with all four vertices labeled.z8uch aquadruple-
zero tetrahedroms ambiguous; it is not clear whether to treat it as if it iSdi@sor outside
the domain. Because all four vertices of this tetrahedremarped, the most aggressive
choices for thex parameters in Table 3.1 (those labeled “unsafe”) may causele
inverted(turned inside-out, with negative signed volume)—evehéfisosurface is nearly
flat. Parameters are marked “safe” if our computer-assigtedf code (Section 3.3)
guarantees that no BCC tetrahedron can become invertedrtédvBCC tetrahedra do
not necessarily hurt the mesh or imply that the lattice isfingently fine to resolve the
surface. In rare cases, though, they might cause a few owgtjpahedra to have mutually

29

Chapter 3. Tetrahedral Meshing Inside an Isosurface

intersecting interiors. This danger is avoided if the zeudkace is a smooth manifold with
bounded curvature and the BCC grid is sufficiently fine to Ines.

We offer four options for handling quadruple-zero tetralhed he simplest is to dis-
card them all. In some applications this is mandatory; Mokt al. [65] observe that
for modeling large mechanical deformations, a tetrahedhridim all four vertices on the
boundary (or an edge that extends through the mesh intaridras both vertices on the
boundary) is easily crushed and can ruin a simulation.

For applications that can tolerate tetrahedra with all feentices on the boundary,
we observe that we can often improve a mesh’s surface fidslityeuristically retaining
some of the quadruple-zero tetrahedra. We discard the gpiladzero tetrahedra that
are inverted or whose dihedral angles are poor, and we argudttese tetrahedra are
too flat to have much effect on the surface fidelity. Of the lyiehaped survivors, we
choose to retain a tetrahedron if all four of its faces adgmitput tetrahedra (not of the
guadruple-zero kind), and to discard a tetrahedron if ndiits €aces does. This heuristic
prevents spurious “bubbles” from appearing in the mesh. tlk®remaining tetrahedra,
the decision is made by an evaluation of the cut funcfi@ each tetrahedron’s centroid.
This heuristic tends to reduce divots on a poorly-resolvethse.

Both these options guarantee the angle bounds in TableBdistarding quadruple-
zero tetrahedra that fail to meet them.

A third option is to change the warping parameters so that stafe to output every
guadruple-zero BCC tetrahedron, at the cost of weakeniaglthedral angle bounds.
The options labeled “double-sided” in Table 3.1 achievs;tthe bounds given in those
rows of the table include BCC tetrahedra with all four vestievarped (whereas the other
dihedral angles in the table do not take them into accoutigs@& options make it possible
to mesh both sides of an isosurface with compatible tetrahdd mesh the exterior of a
domain, simply swap the and— signs in Figure 3.3. Again, heuristics can classify each
guadruple-zero tetrahedron as being inside or outsidedhmh.

A fourth option is to observe that if the isosurface is a srhananifold with bounded
curvature, and the BCC grid is sufficiently fine, then the kg of the mesh will be
a geometrically and topologically accurate approximatbthe zero-surface. (See Sec-
tion 3.4.2.) Any good-quality quadruple-zero BCC tetraloadis a sign that the lattice
does not adequately resolve the surface, and that one naghoser with a finer lattice.
(But remember, @oor-quality quadruple-zero BCC tetrahedromist a sign of insuffi-
cient resolution; just discard it.)

30

Chapter 3. Tetrahedral Meshing Inside an Isosurface

VAVAVAVAVAS.
| VAVAVAVAVAVAY
VAV

X
FREES
R
KRS
-

K
7

X
CSPORANRES
VAN

> S

Ay,

5
2%
72505
RIS
SO

KRR
L

5
S5
2

X7
%

Y
g
K
5

X
7
2

KN
NN
DO
SN
AR
DTN
SORLOK
AN
(VAAY

A
NS T/
Agmvﬁe—«(“
S,
AVAVAVAVAV

0

20 40 60 801100 120 140 160 180

R
s,
<2

0 20 40 60 801100 120 140 160 180

Figure 3.7: Meshes of uniformly sized tetrahedra produced by isosurface stuffing
With e = 0.28511 and aghore = 0.39882. Whirled White Web is by courtesy of
Carlo Séquin. Histograms tabulate the dihedral angles in 2° intervals; multiply the
heights of the red bars by 20.

3.2 Mesh Examples

Figure 3.7 depicts two meshes whose dihedral angles liedegtid® and158°. More than

half the dihedral angles in each mesh éve or 90°. (Note the red bars, which represent

twenty times more angles than blue bars of the same heightgok 25.2 seconds to
generate the 131,259-tetrahedndirled White Webmesh on a Mac Pro with a 2.66

31

Chapter 3. Tetrahedral Meshing Inside an Isosurface

GHz Intel Xeon processor, of which 644 milliseconds were lImgsneration time (the
rest being used to evaluate the cut functfgn The 32,853-tetrahedron Stanford dragon
mesh took 24.5 seconds, of which 172 milliseconds were fahngeneration.

Our mesh generation timings are misleadingly slow, becausprototype implemen-
tation evaluates the cut function at every lattice pointlarge box, and typically inspects
twenty empty BCC tetrahedra for every BCC tetrahedron thi@rsects the domain. A
more efficient implementation would never stray far from dognain. To get a sense of
how much faster this would be, we performed a comparison opmiotype implementa-
tion against Pyramid, Jonathan Shewchuk’s fast Delausagd meshing code. We used
a dense domain, intersecting about half the BCC grid tethaéor which evaluating the
cut function took only 20% of the running time. Our implenegitn generates about 510
tetrahedra per millisecond, whereas the Delaunay mesherates about 157 tetrahedra
per millisecond. This discrepancy in running time occursause isosurface stuffing does
far fewer numerical calculations and requires less corafgit data structures.

3.3 Computer-Assisted Proofs of Angle Bounds
Isosurface stuffing guarantees that the tetrahedra it pesdiave good angles.

Theorem 1 The bounds in Table 3.2 on the angles produced by isosurtatfing are
correct as written (i.e., lower bounds are rounded down;empounds are rounded up).
They are tight to within a margin d¥.0001°—we can exhibit cut functions that cause
these angles to appear. O

Our angle guarantees were obtained through a computesteproof. There is only
a finite number of stencils to test; but there is an infinite hanof locations where a cut
point might be placed, or destinations a lattice point migghvarped to. Although a proof
by hand might be possible through a (horrendous) case asalys verified the angle
bounds by writing a program that breaks the space of pogsitsehedron configurations
into a finite number of subspaces that can be verified by iat@mthmetic.

The analysis begins with the observation that each edge®@C grid has a central
part (from a fraction oty to 1 — « of its length) where a cut point triggers no warping,
and two peripheral parts where a cut must trigger warpinge ateriskof a grid vertex
is the union of the peripheral parts adjacent to the vertex|wstrated in Figure 3.8. We
depend upon the following facts.

e A warped vertex lies on its asterisk, and its value (in chogsi stencil) is zero.

e Stencil vertices labeleg or — are not warped.

32

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.8: On the left, a tetrahedron from one of the stencils. On the right, the
possible positions where the tetrahedron vertices can lie: vertices labeled + or —
are fixed, cut points lie on the central part of an edge, and vertices labeled zero
can be warped and lie on an asterisk which involves seven separate cases.

e A cut point cannot lie on an edge adjoining a warped vertex.

e Two vertices that share an edge of the BCC grid cannot botp tearard each other
along that edge. (The first one to warp eliminates the cuttf@tween them.)

e If ordered warping is used, a vertex cannot warp along an adgese other end-
point also warps.

To divide the configuration space into cases, we considdr gdahedron in each
stencil; see Figure 3.8. Each cut point’s location is désctiby a single parameter (its
position along the segment). Each asterisk is composedvehssegments, so a vertex
labeled zero is represented by seven separate cases. itulpartthe quadruple-zero
tetrahedron requires the enumeratiorrbtases. In each case, the position of each vertex
is fixed or described by one parameter.

Figure 3.9 illustrates the most general case, where we askdaninimum and max-
imum possible dihedral angle in a tetrahedron where all faartices lie on different
segments. Call, anda; the endpoints of the segment where veuidies, and similarly
for the three other vertices. Then, the positions,df, ¢, andd can be parametrized as

a = ap+ Ai(ar — ag)
b = b+ Aa(by — bo)
¢ = co+ A3(cr — o)
d = dy+ M\(dy — do)

where\, A\, A3, Ay € [0, 1]. The dihedral angle at edgé is some function

f()\la)\27)\37)‘4)7

33

Chapter 3. Tetrahedral Meshing Inside an Isosurface

b

Figure 3.9: What is the minimum (or maximum) possible dihedral angle at edge
ab if all four vertices of the abcd tetrahedron lie on given segments?

and we are asking for the extrema of that function duet]*. To be able to answer that
guestion, we first develop some machinery.

3.3.1 Extrema of a Function ofn Variables

Let f(A,...,\,) be afunction of: variables for which the global minimum and maxi-
mum over|0, 1]* are sought. We consider several cases.

1. If fis a polynomial of arbitrary degree, but whose degree is atrhan each of
Ay ..o, Ay SUCh asf = A1 + A\ As + A1 A2 A3, then the minimum and maximum can
be found by evaluating th&" corners of the bojo, 1].

2. If f is a polynomial of degre, such asf = A\? + \,, then the extrema could be
one of the2™ corners, or somewhere along a boundary edge, a boundarydiace
a boundary entity of some higher dimension, or inside thenmedsional volume.
We can find local extrema along axis-aligned lines, planésatiner subspaces by
computing partial derivatives (which are of degtggesetting them t®), and solving
the linear equation or system. Solutions that fall outsid@d]™ are excluded. By
comparing the functiorf at every local extremum found, the global extrema are
obtained.

3. If fisthe ratio of two polynomials of degréesuch agf = (A1 +X2) /(A1 — X2 +1),
then partial derivatives will be rational functions withmarators of degreke Since
only the numerator matters when setting a ratio to 0, thd lpdeema can be found
by solving linear systems as before, and the global extremalktained. This
works for anyf such that poles ifo, 1]” can be ruled out, and the partial derivatives
written as a ratio where the numerator is a polynomial of eedr.

34

Chapter 3. Tetrahedral Meshing Inside an Isosurface

4. If f is a polynomial of degreé or higher, such ag = \?),, then the partial
derivatives are of degrexor higher, and the local extrema can be found by solving
non-linear systems in up toe variables. Iff is non-polynomial, then the partial
derivatives are non-linear also.

While solving non-linear systems is possible in practieanember that the goal is not
only to compute extrema but fwovethem. Even when there are few variables, detect-
ing and computing the intersection of curves and surfacesinserically sensitive, and
code that must do this with absolute correctness is unablyid@mplicated and hard to
verify [36].

We conclude that cases 1-3 above represent the most coteglicactions of: vari-
ables for which the extrema over the regionl]" can be easily and provably found.

3.3.2 Extrema of Elementary Geometric Computations

Assume the general case where the four vertices of a tet@inetcd lie on segments
apaq, boby, coc1, dody, leading to the parametrization

= ap+ M(a; — ap)
= by + Aa(by — bo)

co + A3(c1 — o)
= do+ M(dy — dp)

QU o o L
Il

wherel;, Ao, A3, Ay € [0, 1].

Letu =b—a,v = c—a,andw = d — a. The components of these vectors are
polynomials of degreéin Ay, - - - , A4, SO dot products (such as v) and the components
of cross products are polynomials of degeeand their extrema can be found by the
method described in the previous section.

An interesting case is that of the scalar triple product

[u,v,w=u-(vxXw)=v-(wxu) =w-(uxuwv).

It has degregin \; ...\, butitis a special function (equal to 6 times the signed rau
of the tetrahedronbcd) given by the determinants

v W u 1 a, ay a;
S 1 b, b, b,
[u,v,w|=| v, v, v, |=
v w. w I ¢ ¢ c
vy 1 d, d, d,
From this last expression, it is clear that this function iegreel in each of\, ...,)\,

when the three other variables are fixed. This means thatreatiof the scalar triple

35

Chapter 3. Tetrahedral Meshing Inside an Isosurface

product|u, v, w] can be found by comparing the values at the 16 combinatiossgrhent
endpoints.

In summary, the extrema of simple geometric expressionsinw such as dot prod-
ucts, components of cross products, and the scalar tripléupt [z, v, w| can be found
easily. The extrema of a more complicated geometric exregsannot, but if we con-
sider the minimum and maximum of an expression to be an iateme can use interval
arithmetic to compute conservative bounds on the minimudhraaximum of compli-
cated expressions. To do this efficiently, it is importangxpress a complicated expres-
sion using as few of the simple geometric expressions asippess

3.3.3 Dihedral Angles

Suppose atetrahedron has vertiegls ¢, andd. Letu = b—a, v = ¢—a, andw = d—a.

Then normals to the triangular facéls: andabd are given by x v andu x w, respectively.

The dihedral anglé at edge:b is the angle between these two normals, and can be derived
using the dot product formula

(uxv)-(uxw)

cosf = .
|u x o] [[ux wl|

There are other formulas for the dihedral angle, such as

ool fww)

lu x || ||ux w||’ (uxv)-(uxw)

sinf =

Remember that a cross product is expensive, with three coemp®in disguise. They
can be eliminated using the = ¢ rule”,

(pxq)-(rxs)=(p-r)qg-s)—(p-s)qg-7r).

By applying it to the tangent equation, we derive our finahfata for the dihedral an-
gle, written so that every expression in parentheses qunes to a “simple expression”
of the previous section, whose extrema can be computedtigird®ecausetan # has a
discontinuity at90°, it is important to turn it into an inverse cotangent formula

(u-uw)(v-w) — (u-v)(u-w)//(u-u)

[u, v, w]

6 =cot™! (3.1)

In our problem, each vertex of the tetraheddnd is constrained to lie on a segment
(different for each vertex). Suppose that the four vertzasnot be coplanar under that
constraint. (This can be verified by computing the minimurd araximum of the scalar

36

Chapter 3. Tetrahedral Meshing Inside an Isosurface

il

b

b

Figure 3.10: To find the dihedral angle extrema, recursively subdivide the param-
eter space, bound angles in each range with interval arithmetic, and stop when
the bound accuracy is 0.0001°

triple product[u, v, w|, and making sure that they have the same sign.) Then it isteasy
see that the dihedral angle at ed@gecan be minimized (or maximized) withandd lying

at endpoints of their respective segments. (For intuitiorggine opening an infinitely
large door that is constrained to intersect a line segmeatirilp in space.) Therefore, we
only need to consider cases wherein eachaidd lies at one of the two endpoints of the
segment it is constrained to lie on. We reduce every caseswsdhat have at most two
continuously varying parameters.

Our program verifies the dihedral angle bounds by subdigithiis two-dimensional
parameter space with a quadtree, and estimating the wasst-@angles using (3.1) for
each quadrant by interval arithmetic. When an interval dessprove our conjectured
bound to within a specified tolerance, the program subds/itie quadrant into smaller
guadrants, and tries again on those. Figure 3.10 illusttats.

By this means, we have verified all the dihedral angle boundable 3.2. The
cases that limit our bound on the smallest dihedral angle)ii843° degrees appear in
Figure 3.11.

3.3.4 Plane Angles

Using the same notation as in the previous section, fornfatdke plane angle = /bac
(illustrated in Figure 3.12) are

u-v) _Huva _HuXvH

Cosp = 0=
lull loll lull ol u-v

37

Chapter 3. Tetrahedral Meshing Inside an Isosurface

. a
L o
o 0o
i\
o =

Figure 3.11: Some of the limiting cases in which a dihedral angle of 10.7843°
arises (where the two yellow triangles meet). Warped background vertices must
lie on their green asterisks. Cut points must lie on the magenta segments.

b

@
a

Figure 3.12: What is the minimum (or maximum) possible plane angle ¢ if all
four vertices of the abcd tetrahedron lie on given segments? Obviously ¢ doesn’t
depend on the position of d, but it is not possible to argue that angle extrema must
be achieved at the endpoints of segments at a, b, or c¢. The parameter space is
thus three-dimensional.

By expanding the cross product in the tangent formula, wainlatur final expression
for the plane angle. Again, every expression in parenthiesessimple expression”, and
we transform the formula to use a cotangent:

(u-v)

Y= cot™?
V(v — uyv,)? + (uyvs — usv)? 4 (U0, — ugv,)?

(3.2)

To verify plane angle bounds, we subdivide a three-dimeraiparameter space with
an octree, and use (3.2) with interval arithmetic. By thisange we have verified all the
plane angle bounds in Table 3.2. This concludes the overmvighe proof of Theorem 1.

38

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.13: Isosurface triangulation torture. We mesh a random cut “function”
with a spherical probability distribution. Despite having nonsense for input, the
algorithm created a 16,240-tetrahedron mesh with all its dihedral angles between
13.6° and 147.5°.

3.4 Approximation Guarantees

A mesh generation algorithm needs more than good elemeéraisoi needs to produce
a mesh that is a reasonable facsimile of the domain it is sggpto represent. In this
section, we give some approximation results that hold foadnitrary isosurface, and
some stronger results that hold if the isosurface has balcualwature.

3.4.1 Arbitrary Isosurfaces

An interesting feature of our algorithmis that it can be raraa arbitrary isosurface. This
means that, in principle, we can run it with a cut functiont ttedurns a random value in
response to any probe; see Figure 3.13.

Hausdorff Distance

The one-sided Hausdorff distance between two sub4$eted B in any metric space is

defined to be
H.(A, B) =supd(a, B),

acA

whered(a, B) is the distance from the pointto the setB, given byinf,c gz d(a,b). A
consequence is that every pointnis at most at distanc&, (A, B) from B. Another

39

Chapter 3. Tetrahedral Meshing Inside an Isosurface

L
L L L
L
L L

Figure 3.14: A point p lies as far as possible from the vertices of a triangle with

maximum edge length L. In the worst case, the distance is L//3. For a tetra-
hedron, the distance is /3/8L, and in general for a simplex of dimension d, the

distance is y/d/(2d + 2)L.

way to think of it is that if we were to increase the thicknesg3oby brushing it with a
sphere of radiug,(A, B) centered at points a8, thenA would be completely included
init.
The expression is not symmetric fhand B. The full (symmetrized) Hausdorff dis-
tance is
H(A, B) = max{H.(A,B), H.(B, A)}.

One-Sided Hausdorff Distance Between Surfaces
We start with a very simple general result, and then applyisosurface stuffing.

Theorem 2 If a surfaceS is approximated by triangles whose vertices lie exactly>on
and there is an upper bountl on triangle edge lengths, then the one-sided Hausdorff
distance between the approximatitrand the surface satisfiesH. (T, S) < L/+/3.

PROOF. Given a poinp on the triangulated surfadg p lies in some trianglé\abc. Since
L is an upper bound on edge lengtpss at distance at most/+/3 from a vertex of the
triangle (the worst case is depicted in Figure 3.14, lefijc& vertices of the triangle are
assumed to lie exactly on the surfagel(p, S) < L/+/3. Sincep was arbitrary, the result
follows. O

It is clear from the description of isosurface stuffing thagry vertex on the boundary
of the mesh is a cut point or is labeled zero, and therefosediethe isosurface. For a
mesh produced by our algorithm with a uBICC background grid,

3
L = maX{l + 2along7 g(l + QQShOTt)}'

A straightforward application of Theorem 2 gives the foliog/result.

40

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Corollary 3 For a mesh produced by isosurface stuffing with a BtC background
grid, every point on the mesh boundary is within a distaacdrom the zero-surface,

where
1+ Qalong 1

= L/\/_ ma { \/— 2 + ashort}-

For example, ifaj,,, = 0.28511 and agnoy = 0.39882—the parameters from the
second line in Table 3.1, theh= 1.57022 andw, = 0.90657.

The Hausdorff distance discussed above is one-sided eeduse can only access
the cut functionf by pointwise probing, it is impossible to guarantee thatrgymint
on the zero-surface is close to the mesh boundary. In geraratosurface can have
extremely tiny components that are unlikely to be found binpuase probing.

The bound applies for the unscaled BCC lattice. If the BC@ickatis scaled by a
factor ¢, then the bound is scaled lyalso. Asc — 0, the greatest distance between a
mesh boundary point and its nearest neighbor on the zefaesuronverges to zero.

One-Sided Hausdorff Distance Between Volumes

Since Hausdorff distance can apply to arbitrary subsetantapply to volumes too. The
results are similar:

Theorem 4 Suppose a volume is approximated by a mesh of tetrahedra whose ver-
tices are correctly labeled by the volume, and are labeéldtdoundary) or+ (inside).

If there is an upper bound on tetrahedron edge lengths, then the one-sided Hausdorff
distance between the approximatidrand the volumé’ satisfiesH, (A, V) \/7 8L.

PROOF Given a pointp in the approximation mesH, p lies in some tetrahedromcd.
SinceL is an upper bound on edge lengthss at distance at mosy 3/8L from a vertex
of the tetrahedron (the worst case is depicted in Figure, 3igHt). Since vertices of the
tetrahedron are labeletlor +, they are part of the volum¥, sod(p,V \/7L
Sincep was arbitrary, the result followsJ

By inspection of the stencils, we see that isosurface stufiever connects a vertex
inside the isosurface (labelegd) to one outside (labeled), so the mesh respects the
isosurface and Theorem 4 applies with the same bound on edgthlas before. Also if
we assume that isosurface stuffing is used to generate citnhepaieshes on both sides
on the isosurface, then the theorem and Hausdorff boundy bBppveen the exterior
mesh and the closure of the complement voldi&V . These considerations lead to the
following result.

41

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Corollary 5 Suppose isosurface stuffing meshes a continuous cut farfct{ti does not
matter which quadruple-zero tetrahedra become outpuaitetdra.) For any poinp in
space, ifp lies in an output tetrahedron byt(p) < 0 (implying thatp should lie outside
the mesh), or i) does not lie in a output tetrahedron byitp) > 0, thenp is within a
distance no greater than

Wy = \/gL = \/gmax{l + 20Uong, ?(1 + 20gh0rt) }-

from the isosurface.

If ajong = 0.28511 andaghore = 0.39882, thenL = 1.57022 as before and/,.(A, V') <
0.96156. By taking into account the special geometry of the BCC hetdnon, a tighter
bound is possible:

1
Wy = max{\/ozlzong + Qong + 5/16, 5\/3a§hort + 3nort + 5/4}.

This bound also gives a tighter valuewaf for surfaces, but an even tightey could be
derived by analyzing the geometry of a BCC tetrahedrons.fate bound applied to the
examplen values above giveH, (A, V) < 0.85494.

3.4.2 Isosurfaces with Bounded Curvature

Bounds will be given in terms af,;, the minimum distance between the isosurféd@nd
its medial axisM .

Medial Axis

The medial axis of a surfacgis defined to be the set of points in space that have at least
two closest points 0. The medial axis is illustrated in Figure 3.15.

Write dys(p) = d(p, M) for p € S, and letd,, = d(S, M) be the minimum value that
dy(p) can attain—a constant which depends on the surface. Anrfaosuwith bounded
curvature will havel,; > 0, but a surface with a corner or an edge will hayg = 0.

An important property ofl,, is that for any poinp € S, a sphere tangent t8 at p
(on either side) is empty. Furthermore Sifis the isosurface of some cut function, then
the cut function is all positive inside one of the spheres, @hnegative inside the other.
Also note thatl /d,, is an upper bound on the curvatureffbut it isn’t necessarily the
maximum curvature becaudg, might be determined where different parts of the surface
come close to each other.

Assuming thatl,, is bounded away from zero, the Delaunay-based surface xppro
mation algorithm of Boissonnat and Oudot [14] and its extamf59] enjoy many surface

42

Chapter 3. Tetrahedral Meshing Inside an Isosurface

f

Figure 3.15: A two-dimensional representation of the medial axis M of a sur-
face S. Also, a tangent sphere of radius d,, at the position where the minimum
distance between the surface and the medial axis is attained.

approximation guarantees. Their guarantees follow frasulte by Amenta and Bern [2],
which themselves depend on results by Edelsbrunner and[S#iaitunfortunately, all of
this machinery is intimately linked with Delaunay propestithat don’t necessarily hold
in our case. Fortunately, equivalent results can be proiredtty.

Normal Approximation

Below is a general result, followed by its application tossdace stuffing.

Theorem 6 Let S be a surface and lef\abc be a triangle whose vertices lie exactly on
S. Assume thafub|, |ac| < L, sin(/bac) > s, anddy,(a) > r. Then the anglé between
the normal ofAabe and the normal of at a satisfies

. L
sinf < —.
rs

PROOF. For ease of notation, translate and rotate the geometiyato t= (0,0,0) and
the plane tangent t§ ata is thezy-plane (hence the normal is theaxis). The fact that
b,c € S anddy,(a) > r implies thath andc lie on or outside spheres of raditsentered

43

Chapter 3. Tetrahedral Meshing Inside an Isosurface

AZ

Figure 3.16: The vertices a and b are part of a triangle Aabc whose vertices lie on
a surface S which avoids two open spheres of radii » tangent at a. The vertex b is
moved along the ray ab so that |ab| = L. The distance between b and the plane
z = 0 is at most h, where h = L?/(2r) by geometry with similar triangles.

at(0,0,r)and(0, 0, —r). Since this is the only property éfandc that will be used, move

b andc along the rayss?) anda¢ (respectively) so thgtib| = |ac| = L. The property still
holds and the anglebac didn’t change. Note also that the maximum distance between
andc and the plane = 0is h = L?/(2r) (see Figure 3.16).

If the triangle/A\abc is completely horizontal, theh= 0 and we are done. Otherwise,
there exists a direction of maximal slope on the triangleegiby the projection of the
z-direction onto the triangle plane. Draw a line on the triangabc in the direction
of maximal slope so that the line goes through a vertex of ia@dgle and crosses the
opposite edge. Call the intersection point on the opposite edge.

44

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.17: (a) A line goes through vertex a, exiting at ¢ on the opposite edge.
The shortest possible distance between a and ¢ is Lcos(¢/2). (b) A line goes
through vertex b, exiting at ¢ on the opposite edge. The shortest possible distance
between b and ¢ is L sin ¢.

¢ In case the line goes through vertexthe maximum height difference between
andgq is h. Let ¢ = Zbac. The minimum distance betweerandg is

Lcos(¢/2) > Lcos(¢/2)sin(¢/2)
= L(sing)/2
> Ls/2

See Figure 3.17(a). This implies that 0 < h/(Ls/2) = 2h/(Ls).

e In case the line goes through vertear ¢ (without loss of generality assunag the
maximum height difference betweémandq is 2h. The minimum distance between
bandgqis Lsin¢ > Ls; see Figure 3.17(b). This implies thah 0 < 2h/(Ls).

In both cases we hawén § < 2h/(Ls). Plugging in the expressidn= L?/(2r) we
get the resultsin# < L/(rs). O

For a mesh produced by our algorithm with a usitC background grid with parame-
tersauong = 0.28511 andogpee = 0.39882, the maximum edge lengthis= 1.57022, the
minimum sine of an exposed plane angle is- 0.15721 (from Table 3.2), therefore the
angled between the normal afabc and the normal of' ata satisfiessin § < 9.9881/r.

Note that if L /(rs) is small, the bound given by Theorem 6 implies that the afgge
close to0° or close to180°. Thel80° case represents an inversion of the normal direction
and cannot be excluded based on the preconditions of The®retly.

Two-Sided Hausdorff Distance

Theorem 7 Suppose isosurface stuffing uses a background BCC griddsbgteto mesh
a continuous cut functionf whose zero-surfacé is a smooth 2-manifold. Let,, > 0

45

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.18: Three isotopy segments are shown, including the isotopy segment
s(p) corresponding to point p of the surface S. The union of all the isotopy seg-
ments forms an envelope around the surface, and the approximate surface 7'
must lie inside the envelope.

be the shortest distance from a point on the zero-surfacepirst on the medial axis of
the zero-surface. W, > w,c, withw, defined as in Corollary 5, then every point on the
zero-surface is within a distance ©f c from the mesh boundafd.

PROOF. Supposel,; > w,c. For each poinp on the zero-surface, léfp) be the point
found by moving a distance infinitesimally greater tham from p along the inward-
facing normal to the zero-surface, and ép) be the point found by moving the same
distance outward. Thisotopy segment(p) is the segment with endpoint&) ando(p);
it is perpendicular to the zero-surfacepatmagine an isotopy segment for each point on
the surface. None of these isotopy segments intersect td&ahais or each other, and
their union forms an envelope around the zero-surface. Beed=3.18.

By Corollary 5, for any poinp on the zero-surfaceé(p) lies in a tetrahedron angp)
does not, s&(p) intersects at least one point on the mesh boundary. Thusbtaedhe
two-sided Hausdorff distance boutti 7', S) < w,c whend,; > wyc. O

Topology

Theorem 8 Assume the preconditions of Theorem 7¢/H,, is sufficiently small, then
the boundary of the mesh is homeomorphic to the zero-suiackthere is a continuous
deformation of space that carries the zero-surface to thehnmundary. (l.e., there is

46

Chapter 3. Tetrahedral Meshing Inside an Isosurface

an ambient isotopy from the identity map on the zero-surfatiee homeomorphism that
maps the zero-surface to the mesh boundary.)

Proof sketch. We use the same isotopy segment construction as in the pfddfem-
rem 7. Our approach is similar to that of Kolluri [50]. We ctmist a continuous map
m : R® — R3 that maps each isotopy segment to itself, and maps each;pomthe
zero-surface to the point where its isotopy segm€p} intersects the boundary of the
mesh. Our goal is to show that each isotopy segment intergeetmesh boundary in one
and only one point. (Every point on the mesh boundary intéssexactly one isotopy
segment, because by Corollary 3, every point on the meshdaouiis within a distance
of wsc from the zero-surface.) It follows that induces a homeomorphism between the
zero-surface and the mesh boundary, and we have an amhitapydy linearly interpo-
lating between the identity map and

The hard part is showing that each isotopy segment intexselstone point—Iloosely
speaking, that the mesh boundary does not have wrinklegr@an@ous components. Sup-
pose for the sake of contradiction that an isotopy segmientintersects several points
on the mesh boundary. Then on a “walk” fra(p) to o(p) one re-enters the mesh at least
once, implying that some boundary trianglaces the “wrong” way relative te(p).

Because is a boundary face, all three of its vertices lie on the zendase, and it is
a face of a high-quality output tetrahedrbnLet v be the vertex of oppositet’s longest
edge. The two balls of radius, tangent to the zero-surfacewahave interiors that do not
intersect the zero-surface, so no vertex bés inside them. The size ofis proportional
to the BCC grid size, so if ¢/d,, is sufficiently small, the balls constrairto be nearly
parallel to the tangent plane (see Theorem 6, or Theorem Sr@ma, Choi, Dey, and
Leekha [3]). Becausg has good quality, its fourth vertex must lie inside one oftihe
balls, so the vertex is labeled (rather thard) and the ball lies entirely within the domain
(as its interior does not intersect the isosurface). Thesgbtopy segment(v), which is
collinear with the ball centers, is correctly oriented tekato¢ (i.e.,i(v) is on the same
side oft ash). So are all the isotopy segments that intersgbecause the curvature of
the zero-surface is bounded (see Lemma 3 of Amenta and Bpriwe omit details.O

3.5 Graded Interior Tetrahedra

For many applications in rendering and engineering, thel rieeaccuracy is greatest
near the surface of the domain. This section addresses tileofjoreating a graded
mesh that has uniformly fine (small) elements on its boundahgre accuracy is most
crucial, but increasingly coarse elements deeper in igimt as illustrated in Figures 3.1
and 3.19. By reducing the number of tetrahedra in the meshediece the finite element

47

Chapter 3. Tetrahedral Meshing Inside an Isosurface

IS A
LA
AVAS
R
A

VAN
YAy,
L

20 40 60 801100 120 140 160 180

Figure 3.19: Cutaway view of a 42,053-tetrahedron mesh whose elements are
uniformly fine on the surface but grade to coarse in the interior. Produced with
Qong = 0.28511 and aghore = 0.39882. A histogram of dihedral angles in 2° intervals
appears at lower right; multiply the heights of the red bars by 20. This mesh took
4.9 seconds on a Mac Pro with a 2.66 GHz Intel Xeon processor, of which 403
milliseconds were mesh generation time.

method’s computation time. (Ideally, we would like to all@ement sizes to grade on
the boundary too, but we have not been able to achieve satgisfiyhedral angle bounds.
See Section 3.6.)

3.5.1 Four Kinds of Tetrahedra

We replace the BCC grid with a graded background grid conghos®our kinds of tetra-
hedra, illustrated in Figure 3.20. In addition to the BCQakédron, we use a bisected
BCC tetrahedron, created by splitting a BCC tetrahedromeatrtidpoint of one of its long
edges, and a quadrisected BCC tetrahedron, created hyngpditbisected BCC tetrahe-
dron along the surviving long edge. These tetrahedra ardynas well shaped as the
BCC tetrahedron. The fourth tetrahedron kind is a half-pyda A cube can be divided
into six pyramids—one for each face of the cube—with theicepmeeting at the center
of the cube, as illustrated. Each pyramid can be bisected diggonal into two half-

48

Chapter 3. Tetrahedral Meshing Inside an Isosurface

BCC tetrahedron bisected

P NN

bisected guadrisected half-pyramids

Figure 3.20: Graded background grids consist of BCC tetrahedra, bisected BCC
tetrahedra, quadrisected BCC tetrahedra, and half-pyramids.

tetrahedron king dihedral angles radius-edge ratio
BCC 60°, 60°, 60°, 60°, 90°, 90° ~ 0.645
bisected 45°, 60°, 60°, 90°, 90°, 90° ~ 1.118
guadrisected | 45°, 45°, 60°, 90°, 90°, 90° ~ 0.866
half-pyramid | 45°, 45°, 60°, 60°, 90°, 120° ~ 0.866

Table 3.3: Quality statistics on the four kinds of tetrahedra used to grade the
interior of the mesh.

pyramids. Half-pyramids can also be obtained by bisectiegé¢d edge of a quadrisected
BCC tetrahedron. The dihedral angles and radius-edgematihese tetrahedra are listed
in Table 3.3.

In addition to the black and red edges of the BCC grid, bisaciind quadrisection
also introduce a new kind of diagonal edge we balle edgesBisection and quadrisec-
tion also split black edges into shorter black edges, andrigection creates a new black
edge (so colored because it is axis-aligned).

3.5.2 Non-Standard Octree

We use an octree to help create a graded tetrahedral backbgyid using these four
kinds of tetrahedra. The vertices of the background gritlvelicorners and centers of the
octants (cubes) in the octree. As in the BCC grid, one tethaimecan span two octants.

49

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.21: Background tetrahedra used to bridge two levels of the octree,
viewed from two different angles. Cube centers are red.

If the octree were refined to the same depth everywhere, ttiggbaund grid would be
composed of BCC tetrahedra, except at its boundary. Hoyweeery to refine the octree
as little as possible, to minimize the number of tetrahedra.

Our octree is not quite the usual one. In a classical octreenwan octant is refined, it
is divided into eight octants of half the length—dtisildren For better grading, our octree
is adjusted so that an octant can be refined without creatireght children—rather,
we can choose to create any subset of an octant’s eight poskildren, and thus target
refinement more precisely.

Figure 3.21 shows how to bridge between BCC grids whose edggHs differ by a
factor of two. Not only can our four tetrahedron kinds bridggween an octant and an
adjoining octant twice the size; they can bridge betweenciant and its parent (unlike
with most octree meshing algorithms). On the coarse sideyuseequadrisected BCC
tetrahedra. On the fine side, we use half-pyramids. (BideBteC tetrahedra are also
needed, because some octants have extra vertices at theimbédyf some of their edges.)

A useful intuition is to observe that, given a BCC grid, we tagect any arbitrary
subset of black (long) edges independently, yielding a noéshur first three tetrahedron

50

Chapter 3. Tetrahedral Meshing Inside an Isosurface

kinds. This fact is germane in the transition regions, wisenaller tetrahedra force some
larger ones to be bisected.

3.5.3 Conditions Close to the Isosurface

The main idea of our meshing algorithm is to ensure that o@ZBetrahedra will inter-
sect the isosurface, so most of the angle bounds in TablegpBl2 to our graded meshes
as well as our uniform ones. Tetrahedra of the other thregskimght still have their ver-
tices warped, however. It is a straightforward extensionwfcomputer-assisted proof,
described in Section 3.3, to show that these tetrahedranatilbe warped enough to vio-
late the angle bounds in Table 3.2, except for the two bourat&ed by daggers, which
deteriorate td 58.1918° and147.0470°, respectively.

To start the algorithm, a user selects an approximate &drah size by specifying the
width w of the leaf octants of the octree. Conceptually, the alboripartitions space into
an infinite grid of cubes having width. Each cube has nin@obe pointsits center and
its eight vertices. Theignof a probe point is the sign of the cut functigrat that point.
Ideally, we wish to find every cube that the isosurface pagsesigh. Practically, we
search for every cube that has at least one nonnegative poseand one nonpositive
probe point, as illustrated in Figure 3.22(a). (This inés@very cube with a zero probe
point.) If the isosurface is connected, and the grid is fineugh to resolve it accurately,
and we can find one such cube, then we can find the others by-fiegptbearch through
the space of cubes (using a hash table to store the cubes, &eyieeir coordinates). This
is a standard technique, sometimes catledtinuation see Bloomenthal [13] for details.

These cubes will be among the leaves of the octree. To ersatrerly BCC tetrahe-
dra will intersect the isosurface, we gather additionalesudccording to &ontinuation
Condition

If a leaf octant has a square facewith at least one nonpositive vertex and
one nonnegative vertex (a zero vertex counts as both), teemust create
a leaf octant (the same size @sadjoining the other side of. Moreover,

if a leaf octanto has a corner vertex whose sign is opposite the sign @$
center point, or if either sign is zero, then we must creaéhhee leaf octants
incident onv that share a square face with

Next, to obtain the angle guarantees marked by asteriskalile B.2, we sometimes
must create a few additional leaf octants to prevent haiépyds from becoming overly
deformed by warping. We determine which lattice points aodéated by cut points. If
a leaf octant has a violated center point and a taad&th two opposite violated corners,
we create a leaf octant adjoining the other side.oThe goal is to ensure that the kind
of triangle shared by two half-pyramids, having two red edged one blue edge, never

51

Chapter 3. Tetrahedral Meshing Inside an Isosurface

E.‘":.:.::.. a " : b

(@)
o

)

;s.';

-,
I\
9

e
\ &

_.!.
-y
-
Vel

t-:!) W' 2N
& 6493"11'9’. e s
oo s’ oleeleTe’e < ele] e
G- e Mgy i
e\ el e %
alsen s w o el e
mdﬂ'ﬂ AR S e

w v ”

S

A

ol CAK 4
bl Ll

-:,'a\\.‘
.“: ‘

uw"

d

)

e "I\v} = = K
.:‘.'a.-:e'e.-"-“ "

l. e
ERePeins

Figure 3.22: A two-dimensional illustration of the (three-dimensional) algorithm.
(a) Cells intersecting the isosurface. (b) After enforcing the Continuation Con-
dition and building an octree. (c) After enforcing the Weak Balance Condition.
(d) The background grid. (e) After introducing cut points and warping the ver-
tices. (f) The final mesh.

52

Chapter 3. Tetrahedral Meshing Inside an Isosurface

has all three vertices warped. This step is unnecessaryhtevacthe angle bounds not
marked by asterisks.

3.5.4 Interior Grading

Next, we create an octree whose octants are the leaf cubdb@ndncestors. We keep
the octree as sparse as possible by taking advantage ofcthtbdh an octant can have a
child without having eight children. See Figure 3.22(b).

We cannot bridge directly between two octants whose lengjffex by more than a
factor of two while maintaining high element quality, so thext step is to impose the
following Weak Balance Conditignllustrated in Figure 3.22(c).

If an octanto intersects an edgeof the octree for which the length efis
strictly less than halb’s width, then we must create every child ethat
intersects the interior of. (Note thate could be on the boundary or in the
interior of o—in the latter case, it would be an edge of a grandchild.pf

The algorithm in Figure 3.23 converts a balanced octree tackdround grid, as
illustrated in Figure 3.22(d).

3.5.5 Mesh Generation

Once we have a background grid, our algorithm for constngcéin internally graded
mesh is almost identical to the uniform meshing algorithme d¥mpute the value of
the cut functionf at every vertex of the background grid. (Most of these valuere
already computed to enforce the Continuation Conditiong admpute cut points and
warp the background grid as described in Section 3.1 anstrilted in Figure 3.22(e).
(The Continuation Condition ensures that blue edges arerrees.) We use the stencils
in Figure 3.3 to create output tetrahedra from the BCC tettednin the background grid.
Every background tetrahedron of the other three kinds besan output tetrahedron if
it has at least one positive vertex. See Figure 3.22(f) faradimensional analog.

3.6 Discussion

Surface Meshing

Isosurface stuffing doubles as a guaranteed-quality, tgttelisosurface triangulation
algorithm almost as simple and fast as Marching Cubes: gimytput the triangles on
the boundary of the mesh generated by isosurface stuffitheajoy the exposed plane
angle bounds listed in Table 3.2. The upper bounds of less ith& on plane angles

53

Chapter 3. Tetrahedral Meshing Inside an Isosurface

for each octand that is a leaf or has a nonnegative center point
¢ <= the center vertex af.
for each square faceof o
if there is no vertex at the center of
if s is shared with another octasitthe same size as
¢ < the center vertex aof'.
for each edge of the square
if there is no vertex at the midpoint ef
Create the BCC tetrahedrennv(e U {c, ¢'}).
else
m <= the midpoint vertex oé.
for each endpoint of e
Create the bisected BCC tetnv({p, m, ¢, c'}).
else{s is shared with a larger octant or the boundary
Create two half-pyramids filling the pyramidnv (s U {c}).
The diagonal bisecting the pyramid must
adjoin a corner or center vertex d§ parent.
else{there is a vertex at the center of the squdre
d < the center vertex of.
for each edge of the square
if there is no vertex at the midpoint ef
Create the bisected BCC tetrahedronv(e U {d, c}).
else
m < the midpoint vertex oé.
for each endpoing of e
if o has no child with vertey
Create the quadrisected BCC tetw ({p, m, d, c}).
{ else do nothingy has a child that will take care of
tetrahedralizing the corner ofnearp. }

Figure 3.23: Algorithm for creating a background grid from our weakly balanced
octree. Note that the algorithm as written here creates any background tetrahe-
dron that spans two octants twice; an implementation should take care to avoid

this duplication.

54

Chapter 3. Tetrahedral Meshing Inside an Isosurface

are noteworthy. They compete with the0° guarantee of Chew’s algorithm [24], at a
fraction of the effort and running time.

For thea parameters listed as “safe” in Table 3.1, the background B&@hedra
cannot become degenerate, so the surface mesh generatesl dgdrithm cannot have
self-intersections. Th&5.1285° bound in the table is unsafe; a BCC lattice tetrahedron
with four warped vertices could become inverted, and cootdmtially cause a few of the
output triangles to have intersecting interiors (thoughhaee not seen it in practice) if
the grid is insufficiently fine or if the zero-surface is notnasoth manifold with bounded
curvature. To obtain the most aggressive bound on the sshalfegle (6.4299°, with
ordered warping), we use,.... = 0.5, which allows a BCC tetrahedron to become ar-
bitrarily close to degenerate. To prevent it from becomiegfgrtly flat, we adopt the
convention that a cut point precisely at the midpoint of aedde violates the endpoint
on the cubical lattic&® + (1, 1, 1), but not the endpoint on the cubical lattiZé. The
choiceag,,,+ = 0.5 means that no cut point ever survives on a red edge, so mdse of t
stencils are never used. This simplifies the algorithm, ¢ésmraakes thé6.4299° bound
possible.

Surface Grading

An alluring goal that we have not been able to achieve is ahetiral meshing algorithm
that permits grading of both surface and interior tetraaeahd has a strong bound on the
dihedral angles. This is not to say that we have no algoritiith our techniques, we
can construct a background grid that is graded on the donmindary as well as in the
interior, and we can apply our cutting and warping technigue We have experimented
with different stencils for the four kinds of background-&tedron, and found some good
choices. The majority of the tetrahedra produced this waygaod in practice, as Fig-
ure 3.24 shows. However, we cannot make guarantees on dila@dples better than66°
or174.72°. We see three main obstacles: the half-pyramid backgratrahiedron can be
severely distorted by warping (because ofli28° dihedral angle); smaller tetrahedra can
have their vertices warped a long distance by larger neighlamd although we can find
good stencils for all four kinds of background tetrahedmwa,cannot get them to agree
on their shared diagonals without sacrificing quality. e @ptimistic that a solution to
this hard problem is tantalizingly within reach, but it mighquire a more clever graded
background grid, one that somehow avoids dihedral anglehdauger thard0°.

Conclusion

Nevertheless, we achieve a goal that has eluded reseafohersarly two decades: a
mesh generation algorithm for complicated shapes thatoffeeoretical guarantees on
dihedral angles strong enough to be meaningful to prangt® The shortcomings of

55

Chapter 3. Tetrahedral Meshing Inside an Isosurface

e

IO

i
(AR o
i \ S
&

P
YAV AV prawy)
P s ST
A
A
S

0 20 40 60 80100 120 140 160 180
Figure 3.24: A 22,728-tetrahedron mesh, and a cutaway view thereof, generated
in 2,859 milliseconds by a variant of isosurface stuffing that allows tetrahedra to
grade both on and inside the surface. Dihedral angles vary from 13.8° to 144.7°.
Plane angles on the surface vary from 10.9° to 138.5°. These results are typical,
but much worse angles can occur.

isosurface stuffing—its tendency to round off sharp coraexsedges, and the reduction
of guaranteed quality if the surface tetrahedra are notibdum size—are balanced by its
simplicity and raw speed. The combination of three featurgiseed, guaranteed quality,
and numerical robustness—makes isosurface stuffing therfesh generation algorithm
suitable for robust remeshing in physically-based aniomedit interactive rates.

For isosurfaces with bounded curvature, it would be interggo improve the bound
on Hausdorff distance fro(c) to O(c?) in Theorem 7, and to derive an explicit condi-
tion onc/d,, that guarantees isotopy in Theorem 8.

56

\/
X

\VAVAVAY

C\
\/
0

A

\WAVAVAVAVA

SAVAVAVAVAY.
X
\/

v
é
7

/N

\
%V

(@)

~
(=)
~

(©)

Figure 4.1: Two-dimensional equivalents of two possible strategies to get rid of
slivers by refinement. (a) The Delaunay triangulation of the input contains a poorly
shaped element. (b) Use a distorted fine grid. (c) Create small shells around input
vertices and use a regular mesh outside.

Chapter 4

Delaunay Refinement Without Slivers

In this chapter, we present a Delaunay refinement algoritrahwe calllattice refine-
mentthat can generate a mesh without slivers away from the baynddew vertices
are carefully chosen from lattices described in Section Th#& minimum dihedral angle
guarantee 080° is spectacularly good.

Inserting new vertices to get rid of slivers is a powerfulltatrich can be abused: a
first solution is to lay down a very fine regular grid, and tgktly perturb it to match the
input vertices. A second solution is to find a way to wrap eagui vertex individually
with a small shell of lattice vertices, and to fill the outsiofethe shells in some regular
way. See Figure 4.1. The problem with these two solutionkas they require a lot of
new vertices. The algorithm that we propose has the secduaticsoas its worst case, but
is likely to be much better in practice for two reasons.

57

Chapter 4. Delaunay Refinement Without Slivers

1. A new vertex is inserted only in response to a bad-quaditahedron. If the Delau-
nay tetrahedralization of the input is already a good quatiesh, then it won'’t be
changed by the algorithm. If the input has only a few bad betdaa, it is likely that
a few vertex insertions will suffice to eliminate them be@ageod angles can also
be obtained by chance, especially if the quality requirdsiare relaxed to, say, a
15° minimum dihedral angle.

2. Although one can start with standard Delaunay refinenodmtind the radius-edge
ratios and then use our algorithm to eliminate the remaisiivgrs, it is a much
better idea to use our algorithm to do both at the same tim#attice refinement,
vertices with arbitrary coordinates are the enemy; theylkhoot be needlessly
generated.

In Section 4.4, we present a way to incrementally generat®d guality mesh made
out of lattice vertices only. The tetrahedra generated byatgorithm can grade from
small to large and are guaranteed to have dihedral anglé®imterval[30°, 135°] and
radius-edge ratios at most119. Using this technique as part of a Delaunay refinement
algorithm guarantees good-quality tetrahedra away frarbtiundary (and internal fea-
tures of the domain), where the mesh is locally composediiddavertices only.

In Section 4.5, we add the ability to handle the simplest térimal features: input
vertices with arbitrary coordinates. This makes our redivéictly comparable to previous
results [25, 21]. This also slightly broadens the possiplgieations to, for example, the
simulation of a number of point-like heat sources in threeatisions, where each source
should be a vertex of the mesh. The dihedral angle guaratatge the samg30°, 135°],
and the bound on radius-edge ratio slightly worsen$.368. The algorithm can still
grade from small to large tetrahedra, although the constaifiite grading guarantee is
weaker.

4.1 Delaunay Refinement

In this section, we briefly review Delaunay refinement, a papomesh generation tech-
nique that is based on the Delaunay triangulation.

As we mentioned in Section 2.3, the Delaunay triangulatifca wertex set obeys the
empty circumcircle property: for every triangle in the trulation, its circumcircle con-
tains no vertex in its interior. In three dimensions, thepemy is that every tetrahedron
has an empty circumsphere. For more details and other piresesee the chapter by de
Berg et al. [28].

A Delaunay refinement algorithm first computes the Delaumayndgulation of the
input vertices (in two or three dimensions). If this gives@d quality mesh of the

58

Chapter 4. Delaunay Refinement Without Slivers

/

Figure 4.2: In Delaunay refinement, poorly-shaped triangles are eliminated by
inserting their circumcenters (J. Shewchuk).

domain then we are done. Most likely, the triangulation aorg a poor quality element,
or doesn’t even conform to the domain boundary, in which @asew vertex is inserted
to correct the problem and the Delaunay triangulation isatgdl The steps are repeated
until a good quality mesh is obtained.

By poor quality we mean a radius-edge ratio greater than dwuad B, in which
case the circumcenter of the poor quality simplex is inskedesliminate the simplex (see
Figure 4.2).

The domain boundary makes this simple procedure more coated. If the domain
boundary is missing from the mesh, it must be recovered bgriimg vertices. During
refinement, new vertices cannot be inserted too close todiwedary or outside of the do-
main; instead a vertex is inserted somewhere on the bourdamains with small angles
are another issue that is important to deal with. Using atcaimed Delaunay triangula-
tion [23, 79] can help. We defer to the literature for detaitdoundary handling [78, 71],
as the issue is unimportant in this chapter.

It is important to guarantee that the refinement proceduraitates. A proof of
termination can be given—it depends on the constarand on details of the domain
boundary handling.

4.1.1 Delaunay Triangulation Algorithms

In two dimensions, the Delaunay triangulation of a set pbints contain®(n) triangles
and can be computed in optimaln logn) time by a divide-and-conquer algorithm [52,
45, 31], or by Fortune’s sweep-line algorithm [40]. In thrdienensions, a Delaunay
tetrahedralization can have anywhere betw@ém) andO(n?) tetrahedra, which means
that the worst case running time must be at l€xst?).

59

Chapter 4. Delaunay Refinement Without Slivers

Incremental Insertion

For the purpose of mesh generation, the ability to constubielaunay triangulation
from scratch is not as useful as the abilityupdatea Delaunay triangulation when a
vertex is inserted. Incremental insertion can be done vdtfedlips in two dimensions,
as shown by Lawson [51], or by retriangulating a cavity by loathm of Bowyer [16]
and Watson [85] that works in arbitrary dimensions.

Because the effect of inserting one vertex is usually a lopatation, the running time
of one insertion is usuall® (1), although in the worst case this could ©én), giving a
O(n?) incremental Delaunay triangulation algorithm in two dirsiems. Clarkson and
Shor [27] randomize the order in which vertices are inserfidte randomization means
that inserting a vertex now requires the ability to locateapin the mesh based on co-
ordinates. By using a smart point location algorithm, thpested running time of one
insertion isO(log n), leading to an expected running time@©@fn logn) to compute the
full triangulation, and)(n/4/?1) in d > 3 dimensions. In mesh generation, we cannot ran-
domize the order in which vertices are inserted so a randsaranalysis is not possible.
In practice, insertions tak@(1) time on average during refinement, and mesh generation
takesO(n) time wheren is the size of the final mesh.

4.1.2 Data Structures

While a simple list of triangles might be sufficient to rendemesh, it is not a good
format to manipulate a mesh. To allow fast local operatitmsmesh must be represented
in computer memory in a way that makes it easy to look up neighfj elements. In
the straightforward implementation, the structure forraex contains pointers to the
neighboring simplices, in addition to pointers to its vegs. This requires 6 pointers per
triangle in two dimensions, and 8 pointers per tetrahedndhree dimensions.

Guibas and Stolfi [45] proposed a quad-edge representatiwvoidimensions. Some
advantages are that it can represent planar subdivisiong st triangulations, and one
can access the dual subdivision without any work. Unfottielgait is an expensive way
to represent a triangulation, requiring 12 pointers pantle.

More recently, Blandford et al. [12] proposed representing and three dimensional
triangulations in a special, compressed way that requiveata3 times less memory than
the straightforward representation. Neighbors can stifdund rapidly, and the method
has the practical advantage that mesh operations can loemped by deleting and adding
simplices without having to update any pointer.

60

Chapter 4. Delaunay Refinement Without Slivers

4.2 Simplified Mesh Generation

Ideally one would like to be able to mesh gpigcewise linear complegfLC) with high-
quality tetrahedra, even when the boundary is complicaltets chapter doesn't treat the
boundary. Provably eliminating slivers is a very hard peoibthat has seen little progress,
SO even a partial solution is significant.

Here are a few concrete ways to interpret boundary-less gerstration, the first two
being mathematically precise.

Periodic space [21, 33].The algorithm is used to mesh the periodic spice)?, where
space wraps around at the boundary like in the gasteroids Assuming that the
space is initialized with enough vertices that insertingea wertex won't create a
tetrahedron that uses that new vertex twice, the periodicespehaves locally like
R3.

Superset mesh.Given a domairf2 ¢ R? with boundary, one can ask for a good quality
mesh that does not necessarily respect the boundary butigeaset of2, some-
times called asimulation envelopg/7]. This can be accomplished by considering
only the quality of tetrahedra that interséraind allowing the insertion of new ver-
tices outside of). When the algorithm terminates, delete the tetrahedralthabt
intersect). The result is a superset meshbivith good quality tetrahedra only.

Good quality except at the boundary. The algorithm is used as part of an existing so-
lution to mesh PLCs. If the lattice refinement algorithm isuatto insert a vertex
that is too close to the boundary or even outside the dombant the insertion and
do what the PLC algorithm would do instead.

These are illustrated in Figure 4.3. In this chapter theltesund proofs are written
with the notation of the superset mesh problem.

4.2.1 Sizing Function and Local Feature Size

Definition 6 (Sizing Function) Thesizing functionis a scalar fields : 2 — (0, co] used
to prescribe the approximate size of elements at each pbthealomain.

We will use the sizing function as follows: the final mesh dddae such that a closed
ball of radiuss(p) centered ap is non-empty, for alp € (2. Because the mesh is Delau-
nay, this directly implies an upper bound €fp) for the circumradius of a tetrahedron,
wherep is its circumcenter.

Since the simplified setting does not allow input edges adawe use a definition of
local feature size adapted to the case of an input vertexisietansizing function. (See
Ruppert [74] for the original definition.)

61

Chapter 4. Delaunay Refinement Without Slivers

guarantee

periodic space superset mesh good quality except
at the boundary

Figure 4.3: Three problems that can be solved by a mesh generation algorithm
that doesn’t handle the boundary.

Definition 7 (Local Feature Size) Letp be any point ifR3. The local feature size due to
input vertices]fs;(p), is the distance betweenand its second-closest input vertex. The
local feature size due to the sizing functionifig(p) = inf{s(a) + dist(p,a) : a € Q}.
The combined local feature sizelfs(p) = min(Ifs;(p), lfss(p)).

By considering the case= p in the definition ofifs;(p) we see thalfs,(p) < s(p) for
p € Q. Note thatlfs;(p) can be interpreted as a “1-Lipschitzation” of the sizingdtion

s(p).
Lemma 9 For any two point® andg,
1. 1fsi(q) < Ilfsi(p) + dist(p, q),
2. Ifss(q) < Iss(p) + dist(p,),
3. Ifs(q) < lfs(p) + dist(p, q);
i.e. the functions are 1-Lipschitz.
PROOF. The proof is adapted from Ruppert [74].

1. By the definition offs;(p), there are two input verticesandw at distance at most
Ifs;(p) from p. By the triangle inequalityy andw are at distance at mos;(p) +
dist(p, q) from ¢. Therefordfs;(¢) < Ifs;(p) + dist(p, q).

62

Chapter 4. Delaunay Refinement Without Slivers

Ifss(q) = inf{s
inf{s
inf{s
Ifss(p

a) + dist(q,a) : a € Q}

a) + dist(q, p) + dist(p, a) : a € Q}
a) + dist(p,a) : a € Q} + dist(p, q)
+ dist(p, q).

IA

3. Follows by taking the minimum of both sides of inequasit(§ and (ii).

4.3 Uniform Tetrahedra

Creating a superset mesh composed of uniform tetrahedesysbecause we only have
to consider an infinite tiling of space with tetrahedra artdirethose that intersect the
domain. Sommerville [81] asked which tetrahedra can fillcepaith congruent copies
and found four such space-filling tetrahedra. More spateefitetrahedra exist, but they
do not meet face-to-face, which makes them unsuitable foita #lement mesh. See the
survey of Senechal [75] on space-filling tetrahedra.

Combining tetrahedra with different shapes gives morelfieyi. Field [37] proposes
filling the interior of a domain with a tetrahedral mesh consted from a complicated
icosahedral assembly. Naylor [66] compares the suitglfditnumerical methods of five
ways to fill space with tetrahedra, including Field’s assimiBased on five conditioning
measures, he concludes that the best choice was simply lgjvene of Sommerville’s
space-filling tetrahedra. This assembly corresponds t8@€ grid of Section 3.1, and
is the Delaunay tetrahedralization of the body-centerducdattice. It gives a mesh with
dihedral angles a0° and90°, and radius-edge ratios §f15/6 (= 0.645).

Eppstein, Sullivan andngdr [35] show that it is possible to tile space with acute
tetrahedra—tetrahedra with dihedral angles all strictgsltharfd0°. They give several
constructions, one even achieving dihedral angles bet@w@eand74.21°, and radius-
edge ratios at most 0.711. This way of filling space is more complicated than the BCC
grid, but its quality is comparable and possibly better,ahejing on the application.

4.4 Graded Tetrahedra

In this section, we show the lattices defined in Section 118 lm&a used in concert to
generate tetrahedra that can grade from small to large.

63

Chapter 4. Delaunay Refinement Without Slivers

An algorithm to generate graded meshes of guaranteed yjtiadit honor a sizing
function s (but not input vertices) can be devised easily: one can oactsh balanced
octree and take its Delaunay tetrahedralization. By aivadythe2° possible types of cells
in a balanced octree, we find that the dihedral angles areeifntierval[19.471°, 135°]
and radius-edge ratios at masB47. The dihedral angle bounds can be improved to
[45°,120°] by using templates of transition tetrahedra, as shown ii@®e8.5. The
radius-edge ratios are at magh/2 (< 1.119).

The technique presented in this section is simple and gesetetrahedra with di-
hedral angles in the intervat0°, 135°] and radius-edge ratios of at mogb/2. It is
formulated as an incremental insertion method to make it Bsasombine with standard
Delaunay refinement.

Given any full-rank lattice. C R?, lete(L) be the minimum distance between two
distinct points inL. Letr(L) be the radius of the largest empty open balRit\ L.

Lemma 10 Any ball of radiusr(L) contains at least one point df in its interior, or at
least4 on its boundary.

PROOF. Let B be an open ball of radius(L) with no point of L in its interior. By
definition ofr(L), B must be a largest possible empty open ball. Siiée of maximum
radius, there must be at leaspoints of L. on its boundary to prevent the radius from
being increased further. The result follovs.

Proposition 2
e(SCy) = 2F, e(BCCy) = 25/3/2,
r(SCi) = 28v/3/2, r(BCCy) = 28V/5/4.

PROOF The first two are clear. For the last two, note that maximaopalls occur at
Voronoi vertices of the lattices. For examplg, 3, 3) is a Voronoi vertex o5C, with
a maximal empty ball of radius/3/2, and(3,1,0) is a Voronoi vertex oBCC, with
a maximal empty ball of radiug/5/4. Due to the symmetry of these lattices, all other

maximal balls are of equal sizes.

The method depends crucially on the following two lemmasctviassert that a tetra-
hedron with vertices in a lattice and a small circumraditisezihas good dihedral angles,
or its circumsphere contains a lattice point (that the aflgor can insert to eliminate the
tetrahedron).

Lemma 11 Lett be a tetrahedron with vertices BC;, and a circumradius of (BCCy 1)
or less. Then the dihedral anglestadre all at least30° and at most 35°.

64

Chapter 4. Delaunay Refinement Without Slivers

Figure 4.4: Two worst-case tetrahedra for Lemma 11. Each tetrahedron has ver-

tices in SC, and a circumradius of v/5/2 or less. They are the only such tetrahedra
to achieve at least one of the angle bounds of Lemma 11.

PROOF. By rescaling, it suffices to show that a tetrahedron withiges inSC, a di-
hedral angle of less tha0° or of more thanl35°, and a circumradius of/5/2 or less
doesn't exist. Because of the bound on circumradius, ttseadinite number of possible
tetrahedra to test. The verification was carried out by a ederp Figure 4.4 shows the
tetrahedra that achieve the extreme anglées.

Lemma 12 Lett be a tetrahedron with vertices IBCC,, and a circumradius of (SCy,)
or less. Ift has a dihedral angle less thamnccos(v/6/3) (=~ 35.264°) or larger than
arccos(—+v/3/3) (= 125.264°), then there exists a point 8C;, inside the circumsphere
of ¢.

PROOF. By rescaling, it suffices to show that a tetrahedron withiges inBCC,, a dihe-
dral angle of less thaarccos(1/6/3) or of more thamrccos(—+/3/3), and a circumradius
of v/3/2 or less must always contain a pointS({, inside its circumsphere. Because of
the bound on circumradius, there is a finite number of posg#trahedra to test. The
verification was carried out by a computer.

In fact, there is a finite number of tetrahedra with vertiaeS¢, or BCC, that do
not contain a vertex from a coarser lattice inside theirwitspheres. They are listed in
Table 4.1, and the first two tetrahedra from the table arstifted in Figure 4.4. By
negation, every lattice tetrahedrant in the table contains a vertex from a coarser lat-
tice inside its circumsphere, which we can insert to refireerttesh and eliminate the
tetrahedron. Thus, by refinement, it is possible to consagraded mesh composed of
tetrahedra appearing in Table 4.1 only. (The proof of grg@dippears in Section 4.4.2.)

65

Chapter 4. Delaunay Refinement Without Slivers

minimum maximum radiust can refine
dihedral dihedral edgefrom same coordinates of an example
angle angle ratiq lattice tetrahedron{C, or BCC,)

SCh
30.0000 120.0000 1.118
30.0000 135.0000 0.790
35.2644 125.2644 0.866
35.2644 90.0000 1.118
45.0000 90.0000 0.866
45.0000 90.0000 1.118
48.1897 90.0000 1.118
54.7356 109.4712 0.707
54.7356 90.0000 0.866
60.0000 90.0000 0.645
70.5288 70.5288 0.612
BCC,,
35.2644 1252644 0.8660 vyes | (0,0,0),(0,0,2), (0,2,0), (2,2,
45.0000 120.0000 0.8660 vyes | (0,0,2),(0,2,2), (1,1,1), (2,2,2
45,0000 90.0000 0.8660 yes | (0,0,0),(0,0,2),(0,2,2), (2,2,2

0

5

4

o

yes | (0,0,0), (0,0,1), (0,2,0), (1,1,
yes | (0,0,1), (0,1,2), (0,2,1), (1,1,
no (0,0,0), (0,0,1), (0,1,0), (1,1,
yes | (0,0,0), (0,0,1), (0,2,1), (1,1,
no (0,0,0), (0,0,1), (0,1,1), (1,1,
yes | (0,0,0), (0,0,2), (0,1,1), (1,1,
yes | (0,0,0), (0,1,1), (1,0,2), (1,1,
yes | (0,0,1), (0,1,0), (0,1,2), (1,1,
no (0,0,1), (0,1,0), (0,1,1), (1,1,
yes | (0,0,1),(0,2,1), (1,1,0), (1,1,2
no (0,0,1), (0,1,0), (1,0,0), (1,1,

oo

[eNeoNeoNe
N N N N N N N N N N N

B~ O1 O -

54.7356 90.0000 0.8660 yes | (0,0,2),(0,2,0), (0,2,2), (2,2,2
60.0000 90.0000 0.6455 no (0,2,2), (1,1,1), (1,1,3), (2,2,2
70.5288 70.5288 0.6124 yes | (0,0,2),(0,2,0), (2,0,0), (2,2,2

N N N N N N

Table 4.1: Tetrahedra that do not contain a vertex of a coarser lattice inside their
circumsphere. The tetrahedra under the heading “SC,” relate to Lemma 11, and
the tetrahedra under the heading “BCC,” relate to Lemma 12. The fourth column
indicates if the tetrahedron’s circumsphere contains a vertex of the same lattice,
implying that these tetrahedra can be refined, but doing so may lead to a uniform
mesh (not graded).

4.4.1 Algorithm

Algorithm 1 generates a mesh by incrementally insertinickvertices while maintain-
ing a Delaunay tetrahedralization of these lattice vestide uses Algorithm 2 to refine
empty balls that are too large. When a vertex is created gsgyaed dabel, eitherSC;,

or BCC,, for somek, and is tagged with &pe number The labels are needed in the
implementation, but the type numbers are not (they are osdy in the analysis). Each
vertex belongs to the lattice of its label, but the label ismexessarily the coarsest lattice

66

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 1: Simple graded meshing
Input:

e AdomainQ2 C R
e A sizing functions : 2 — (0, co.

Repeat the enforcement steps below in any order until noply.apaintain a Delau
nay tetrahedralization as new vertices are inserted. Whe&shéd, remove all tetrahedra
whose interiors do not interseQt

Size enforcement: If there exists a poinp € 2 such that a closed baB of radiuss(p)
centered ap is empty, thercall Algorithm 2 to refine the empty balB with &
safety factorf = 0.

Quality enforcement: If the Delaunay tetrahedralization contains a tetrahedraith
circumradiusr and shortest edge lengthwhose interior intersectQ and which
has a dihedral angle smaller thaot or larger thani35°, or a radius-edge ratio/e
larger than3 = v/5/2, do:

Among the4 vertices oft, find the vertexo with the finest lattice label, according
to the nesting of lattices.

Case 1: The label ofv is SC;,.

By assumptiony > e > ¢(SCy)5 = r(BCCy4), ort has a dihedral angle
that is less thafi0° or greater than35°. By Lemma 11y > r(BCCy4). Let
B be a closed ball of radiug BCCy ;) tangent ab inside the circumsphere
of ¢t (see Figure 4.5, left). By Lemma 10 there exists a poif BCCy.; in
B\{v}. Insert w with label BCCy, and type 1

Case 2: The label ofv is BCC,,.

By assumptiony > e > e(BCCy)B > r(SCy), ort has a dihedral angle
that is less thars0° or greater thari35°. If » > r(SCy), then letB be a
closed ball of radius(SC;) tangent at inside the circumsphere of(see
Figure 4.5, right). By Lemma 10 there exists a painbf SC;, in B\{v}.
Else by Lemma 12 there exists a poindf SC;, inside the circumsphere of
Insert w with label SC;, and type 2

14

that contains the vertex.
The algorithm inserts vertices for one of two reasons: thmgifunction, or a bad-

67

Chapter 4. Delaunay Refinement Without Slivers

vin BCG,

insert insert

Figure 4.5: Two-dimensional examples of the geometric constructions in cases 1
and 2 of the quality-enforcement step of Algorithm 1. The new vertex w is chosen
from a lattice that is one level coarser than the label of v. Furthermore, w is
chosen from an inner ball B tangent at v in order to be close to v. This strategy
generates a mesh that grades quickly.

Algorithm 2: Refine empty ball
Input:

e An empty ballB (open or closed) with centerand radius: > 0.
e A safety factorf > 0 (a nonzero value will be used by Algorithms 3 and 6).

One of the following two cases holds because these two fasnilf intervals cover every
possibler > 0.

Case 1.7 € (27(v/3/2 + f),2(V/5/2 + f)] for somej € Z.
By Lemma 10 there exists a poiat of SC; at distance at mo¥/+/3/2 from c.
Insertw with labelSC; into the Delaunay tetrahedralization.

Case 2:7 € (2/(v/5/2 + f),2/(\/3 + 2f)] for somej € Z.

By Lemma 10 there exists a pointof BCC,,, at distance at mogt+/5/2 from c.
Insertw with labelBCC,_; into the Delaunay tetrahedralization.

BecauseB is empty, the new vertex is at a distance greater thahf from any previous
vertex, where the label af is SC; or BCCj;.

guality tetrahedron. In the latter case, the inserted xetigays comes from a lattice that
is strictly coarser than the finest lattice label of the tegdron vertices. This allows a
proof of good grading. The refinement strategy is clos&srigor’s off-centers [84] than

68

Chapter 4. Delaunay Refinement Without Slivers

to the circumcenter method.

Because the algorithm is building a superset mesh, any engthyspace that is tan-
gent to a vertex, an edge, or a triangle of the tetrahedtadizaan be considered a de-
generate circumsphere with missing vertices at infinitytivles at infinity are considered
infinitely coarse in the nesting of lattices. Obviously, thegent vertices can only be on
the convex hull of the tetrahedralization. If such a halkepintersect8, then the cor-
responding fictive tetrahedron with 1, 2 or 3 vertices fromiesh and the half-space as
its circumsphere qualifies for quality enforcement in Aiggon 1. During that step, the
vertexv with the finest lattice label is from the mesh. The circumuadiis considered to
be infinite. The circumcenter does not exist but it is not ugeds a closed ball tangent
atv inside the half-space. The other steps are unaffected.

As written, the algorithm starts with no vertices at all, smust first perform a size
enforcement step. When there is at least one vertex, theydmafitspace rule can apply
and lead to quality enforcement steps.

4.4.2 Analysis

A mesh generation algorithm hgeod gradingf the sizes of the elements can vary from
small to large over a short distance. Since the work of Rugpét, a grading guarantee
is usually a proof of a linear relationship between the reareighbor distance of a vertex
v of the final mesh and its local feature sif€v).

As a first step we show that there exist positive constamisdb such that

2%a if v has labeBCy,

lfs(v) < { 2 if v has labeBCC; (4.1)

We show by induction that these bounds are maintained byl¢joeitam. The con-
stantsa andb are derived at the end of this section. Once we have thesedbptime
following theorem shows that we obtain good grading.

Theorem 13 If a mesh consists of onlyC or BCC lattice vertices, and if there exist
positive constants and b such that (4.1) holds, then for any vertexf the mesh, the
distance to its nearest neighbor is at least

min(ﬁ, m)lfé(’l})
PROOF. (Adapted from Ruppert [74]). Let be any vertex of the mesh. Let be its

nearest neighbor.
If the label ofv is as fine or finer than the label efwe argue as follows.

69

Chapter 4. Delaunay Refinement Without Slivers

e In casev has labeBC;, dist(v, w) > e(SCy) = 2 andlfs(v) < 2¥a, so

dist(v, w) > L1fs(v).
e In casev has labeBCCy, dist(v, w) > e(BCC},) = 2¥v/3/2 andlfs(v) < 2b, so
dist(v, w) > L3fs(v).

In either case,
dist(v, w) > min(2, g)lfs(v).
Else (is finer tharmw), we use Lemma 9 and apply the bound above to
Ifs(v) < lfs(w) + dist(v, w)
< dist(v,w)/ min(2, %) + dist(v, w)
= max(l+a,1+ j—%)dist(v, w).
Sodist (v, w) > min(, HTl/\/g)lfs(v). O
We perform a separate analysis for each type of insertedxerin Algorithm 1.

Insertion due to size

In the size enforcement step of Algorithmyl¢ €2 is a point such that a closed bt of
radiuss(p) centered ap is empty. Letw be the new vertex. By Lemma 9,

Ifss(w) < 1fsg(p) + dist(p, w) < s(p) + dist(p, w).
o If wwas given labebC; by Algorithm 2, then
s(p) + dist(p,w) < 27/(V5/2 + f) + 27V3/2
(heref = 0, but a different value will be used in Section 4.5.2). We regjthat
V5/2+ f+V3/2<a
so thatlfs,(w) < 27a and the insertion preserves (4.1).
e Else w has labeBCC,,),

s(p) + dist(p, w) < 27(V3 + 2f) + 27V5/2.

We require that
V34+2f +V5/2 < 2b

so thatlfs,(w) < 2771p and the insertion preserves (4.1).

70

Chapter 4. Delaunay Refinement Without Slivers

Type 1 insertion

The new vertexw has labeBBCC,,; at a distance at mo8t(BCC,) = 2¥/5 from v
with labelSC;,. So

Ifs(w) < Ifs(v) + dist (v, w) < 2Fa 4 2¥V/5.

We require that
a+ V5 < 2b,

so that by inductionfs(w) < 2+1p.

Type 2 insertion

The new vertexw has labeBC;, at a distance at mo8t(SCy,) = 2¢1/3 from v with label
BCCy. So
Ifs(w) < Ifs(v) + dist(v, w) < 2¥b 4 25V/3.

We require that
b+V3<a,

so that by inductionfs(w) < 2*a.

Guarantee

The requirements (underlined in the text) can be satisfieskkyng

a = 2vV3++5, and
b = V3+V5.

By applying Theorem 13 we deduce that during the course ddlg@ithm, the distance
between any vertex and its nearest neighbor is at least

Ifs(v) /6.701.

Assuming there is a positive lower bound on the sizing fuorcti this result gives a
positive lower bound on the distance between any pair ofoest This in turn implies
termination of the algorithm, becau$kehas finite volume. (A slightly bigger volume
must be considered in the case of a superset mesh).

71

Chapter 4. Delaunay Refinement Without Slivers

4.5 Adding Vertex Constraints

In this section we extend lattice refinement to allow inputigces with arbitrary coordi-
nates in2. The algorithm inserts lattice vertices, but never “tocselbto an input vertex.
Each lattice point has an associatetbidden regionaround it. No lattice point is ever
inserted that has an input vertex in its forbidden region.

Definition 8 (Forbidden Region) Letp € R? andk € Z. The forbidden regioi(p, k)
is an axis-aligned cube with sid¥(2 + v/6)/2 centered ap. Mathematically,

R(p,k) ={q: lg — pll < 2%(2+ V6) /4}.

Also define

p=3(2+6)/4 (4.2)

to be the safety radius constant, which is the distance fsoim the furthest point of
R(p,0).

The lattice points that the algorithm inserts are calgfthement vertice® distinguish
them from input vertices. The algorithm maintains the iraairthat if a refinement vertex
v has labeBCy, or BCCy, 4, thenR(v, k) contains no input vertex.

Theorem 14 For anyp € R? and anyk € Z, let S = {p} U (SC;\R(p,k)). Then
every Delaunay tetrahedron it has dihedral angles in the intervéd0°, 127.903°], and
a radius-edge ratio of at mogt368.

PROOF. By rescaling, it suffices to consider the case 0. Because the forbidden region
is an axis-aligned cube with half-side= (2 + v/6)/4 (~ 1.112), if the coordinate of
along some axis falls in the sgt,3 — o) + Z, then two points o8C, will be covered
by the forbidden regio®(p, 0) along that axis. If the coordinate falls in the complement
[3 — 0,1+ o] + Z, then three points d3C, will be covered along that axis. The total
number of points ofC, that are removed by the set difference witfp, 0) is therefore
8, 12, 18 or 27, depending on the three coordinates of

By invoking translational symmetry, we can assume that ttmdinate ofp along
some axis falls in the intervdl, 1 + o|. We consider two separate cases: either the
coordinate falls ino,3 — o), or it falls in [3 — o, 1 + o|. In the first case, the interval is
mirror symmetric abouto + (3 — 0))/2 = 2 and the integers covered by the forbidden
region are 1 and 2, also symmetric abéuSo without loss of generality we can assume
that the coordinate of falls on the left half of the interval, i.el = (o, 3]. The second
case is similar: the symmetry axis(i — o) + (1 + ¢))/2 = 2, the covered integers are
1,2 and 3, so without loss of generality we assume that thedawatte ofp falls in the left

72

Chapter 4. Delaunay Refinement Without Slivers

case| min dihedral| max dihedral | max ratio achieved ap =
1 ~ 31.962° | ~ 125.264°(*) | ~ 1.198 (0,0,0)
2 ~ 30.129° | ~ 125.264°(*) | ~ 1.267 (0,0,3 —0)
3 30° < 127.903° | ~1.329 (0,3 —0,3—0)
4 A 34.785° | &~ 125.264°(*) | < 1.368 | (3—0,3—0,3—0)

Table 4.2: Four cases in the proof of Theorem 14. In all cases the dihedral angles
are in the interval [30°,127.903°) and the radius-edge ratios are less than 1.368.
The bounds marked (*) are intrinsic to the simple cubic lattice and are achieved
independently of the position of p. (The Delaunay tetrahedralization of a simple
cube may contain a dihedral angle of arccos(—v/3/3) ~ 125.264°.)

half J = [3 — o, 2]. There are further symmetries because the three axes camrbated,
e.g. the casé x J x I is equivalenttd x I x J. The possible cases fprare then reduced
to these four:

1. pe I*andS = {p} U (SCo\{1,2}?)

2. peI* x JandS = {p} U (SCo\{1, 2}* x {1,2,3})
3. pelxJ*andS = {p} U (SCo\{1,2} x {1,2,3}?)
4. pe JPandS = {p} U (SCo\{1,2,3}?)

The hole inSC,, created by the set difference witb(p, 0) is a box with side either 3
or 4 in each axis direction (see Figure 4.6).

In each case the lattice vertices forming the box arqguodn be naturally classified
as corner, edge or face vertices. We claim that in a Delawtaghedralization of, p
always connects exactly to the convex hull of the box facéoes only. This is because
the box corner and box edge vertices are isolated fpdmy Delaunay tetrahedra. The
tetrahedra whose circumspheres come closest to contaioicgur in case 1. An example
is a tetrahedron with circumsphere centérs, 2) and radiusy/3/2. The circumsphere
goes through the poiriy, o, %) which is avoided by € (o, %]3. This is why we chose
this value ofo.

The angle bounds are more difficult to prove formally than @mmas 11 and 12
because the coordinates of paintan vary continuously in a range. Nonetheless the di-
hedral angles are smooth functions of the position @here is no change in connectivity
asp moves) and the extrema are easily found. See Table 4.2 fonmauy of the bounds
in each case. Figure 4.7 shows tetrahedra that achievevtlee bmunds

73

Chapter 4. Delaunay Refinement Without Slivers

A

([] ([] ([] ([] —
([] ([] ([] ([] —
([] ([] ([] ([] ([] ([] ([] ——

Figure 4.6: A two-dimensional equivalent of the set S = {p} U (SCy\R(p,0)) and
its Delaunay tetrahedralization in the proof of Theorem 14. In this example, p lies
in the rectangular frame [3 — 0,1+ o] x (0,3 —) shown at the center of the right-
hand figure, so the hole in SCy\R(p,0) is a 4 x 3 rectangle. By mirror symmetry,
we assume that p lies in the smaller sub-rectangle [3—o, 2] x (o, 3] = J x I. Hollow
circles are the box face vertices.

P p PN 309

(
\
-

Figure 4.7: Tetrahedra achieving a minimum dihedral angle in each case of The-
orem 14. Only two sides of the box around the input vertex p are shown. The
minimum dihedral angles and coordinates of p appear in Table 4.2. (The coordi-
nate system is different for this figure.)

Corollary 15 Letp € R?® andk € Z. Lett be a tetrahedron with vertices in the set
S = {p} U (SCL\R(p, k)). Suppose that is not inside the circumsphere of If ¢ has

a dihedral angle smaller thaB0° or larger than127.903°, or a radius-edge ratio larger
than1.368, then there exists a poigtof SC,.\ R(p, k) inside the circumsphere of

PROOF. By Theorem 14¢ cannot be Delaunay ifi. Therefore there exists a poiptn S
inside the circumsphere of Since we assumed thats not inside the circumsphere f
q # p. Soq € SCL\R(p, k). O

74

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 3: Meshing with input vertices
Input:

e AdomainQ) C R3.
¢ A finite number of input vertices with arbitrary coordinates).
e A sizing functions : Q@ — (0, oc].

Compute a Delaunay tetrahedralization of the input vesticRepeat the enforcement
steps below in any order until none apply. Maintain a Delgustrahedralization as new
vertices are inserted. When finished, remove all tetrahgdose interiors do not intersect
Q.

Size enforcement: If there exists a poinp € €2 such that a closed bal of radiuss(p)
centered ap is empty, thercall Algorithm 2 to refine the empty balB with &
safety factorf = v/3(2 + v/6)/4 (p of Definition 8). Assigntype 0 to the new
vertex.

Quality enforcement: If the Delaunay tetrahedralization contains a tetrahedrghose
interior intersects$? and which has a dihedral angle smaller tBanor larger than
135°, or a radius-edge ratio larger than= 1.368, thencall Algorithm 4 if ¢ has at
least 1 refinement vertex, édgorithm 6 if ¢ has at least 2 input vertices. (If both
cases apply, then choose either algorithm.)

45.1 Algorithm

Algorithm 3 is an extension of Algorithm 1 of Section 4.4.%.ukes Algorithms 2, 4,
5 and 6 to handle specific geometric cases. At places thesgthlgs make queries of
the form*“Is there an input vertex in the regio®(w, k)?” This kind of query can be
answered efficiently by using the Delaunay tetrahedratinas a search structure.

In Algorithm 4, an attempt is made to insert a new vertex frastriatly coarser lattice,
to obtain good mesh grading. The attempt is aborted if thdidate for insertion is “too
close” to an input vertex.

In Algorithm 5, there is an input vertex nearby and the akiponi has permission
to insert a new vertex from a lattice that is just as fine as thesfivertex of the bad-
quality tetrahedron, or even one level finer (inserting dexefrom SC;, when the finest
tetrahedron vertex label BCCy,). Corollary 15 allows an analysis of this case.

In Algorithm 6, there are two input vertices nearby. Conglla5 cannot be used
because it can only deal with one nearby input vertex at a. tifeehave no other choice

75

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 4: Refine tetrahedron (Case 1)
Input:

e A tetrahedront of bad quality (dihedral angle smaller thaa° or larger thanl35°, or 4
radius-edge ratio larger thah= 1.368) with circumcentere, circumradius-, and at least
1 refinement vertex.

Let v be the refinement vertex ofwith the finest label, according to the nesting of lattices.

1.1 If the label ofv is SC;, for somek.

1.1.11f r > r(BCCgy41), then letB be a closed ball of radiug BCCy 1) tangent ab inside the
circumsphere of. By Lemma 10 there exists a pointof BCCy.; in B\{v}. Note that
dist(w, v) < 2r(BCCp41). w is a candidate for insertion.

\1%4

1.1.2 Else if t has at least one input vertex, thencall Algorithm 5. Return. Note that
dist(u1,v) < 2r(BCCg41) anddist(uy,c) = 7.

1.1.3 Else ¢ has 4 refinement vertices), the radius-edge ratio tofis at most
r(BCCiy1)/e(SCL) = V5/2 < 3, sot must have a dihedral angle smaller than
30° or larger thanl35°. This is impossible by Lemma 11, so this subcase never happen

If the forbidden regionk(w, k) of the candidater doesn’t contain any input vertex, then
insert w with label BCCy1; and type 1.1 Else, letu; be an input vertex in the forbidden
region. Note thatlist(u;,v) < 2r(BCCgy1) + 2%p anddist(ur,c) < 7+ 28p < (1 +
2p/\/5)r because > r(BCCy, 1) = 2¥1/5/2. Call Algorithm 5.

1.2 Else (the label ob is BCCy,, 1 for somek).

1.2.11f r > r(SCg41), then letB be a closed ball of radius(SCy 1) tangent aw inside the
circumsphere of. By Lemma 10 there exists a poiat of SCy; in B\{v}. w is &
candidate for insertion.

1.2.2 Else if t has at least one input vertex, thencall Algorithm 5. Return. Note that
dist(uq,v) < 2r(SCgyq) anddist(uq,c) = r.

1.2.3Else ¢ has 4 refinement vertices), the radius-edge ratio tofis at most
r(SCk+1)/e(BCCrt1) = 1 < [, sot must have a dihedral angle smaller thao?
or larger than35°. By Lemma 12 there exists a poiatof SCy_, 1 inside the circumsphere
of t. w is a candidate for insertion.

If the forbidden regiorR(w, k+1) of the candidatev doesn’t contain any input vertex, then
insert w with label SCy; and type 1.2 Else, letu; be an input point in the forbidden
region. Note thatlist(ui,v) < 2r(SCry1) + 28T1p anddist(ug,c¢) < r + 281y <
(1+4p/+/3)r because > e(BCCy1)/2 = 2¥1/3/2. Call Algorithm 5.

76

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 5: Refine tetrahedron (Case 2)
Input:

¢ Atetrahedront of bad quality (dihedral angle smaller thaef or larger than 35°,
or a radius-edge ratio larger than= 1.368) with circumcentek, circumradius-,
and at least 1 refinement vertex. kdbe the finest refinement vertexifwith labe
SCy or BCCy 4.

e An input vertexu, (possibly a vertex of) such thatdist (u;,v) < 2%(2v/3 + 2p)
anddist (uy, ¢) < (14 4p//3)r.

2.1 If r > r(SCy) + 2¥p/2, then letB be a closed ball of radiugSCy,) + 2¢p/2 tangen
at v inside the circumsphere of Let B’ be a closed ball of radius(SCy) lying
in B as far as possible from;. By Lemma 10 there exists a poiat of SC;, in
B"\{v}. By construction, the forbidden regiaR(w, k) doesn’t contair:,, and
dist(w, v) < 2r(SCy) + 2¥p. w is a candidate for insertion.

—F

2.2 Else ift has no input vertex except possihly, by Corollary 15 there exists a pojint
w of SCy, inside the circumsphere éfsuch thatw ¢ R(uq, k). This implies that
uy ¢ R(w, k). Note thatdist(w, v) < 2r(SCy)+2%p. w is a candidate for insertign.

2.3 Else ¢ has an input vertex, # u;), note thatdist(us, c) = r. Call Algorithm 6 .
Return.

If the forbidden region of?(w, k) doesn’t contairanyinput vertex, thennsert w with

dist(ug, ¢) < 7+ 2Fp < (1 + 2p)r because > ¢(SC},)/2 = 2*/2. Call Algorithm 6 .

Algorithm 6: Refine tetrahedron (case 3)
Input:

e A tetrahedront with circumcenter and circumradius.

e Two input verticesu; andu, that are vertices of or are at distance at mo§t +
4p/+/3)r fromc.

Call Algorithm 2 to refine the empty circumsphere oWwith a safety factop. Assign
type 3to the new vertex.

than to refine the mesh with a lattice vertex and try to makddbal lattice resolution
smaller than the distance between the two input vertices.

77

label SCy, and type 2 Else letuy be an input vertex in the forbidden region. Note that

Chapter 4. Delaunay Refinement Without Slivers

4.5.2 Analysis

The analysis is structured in the same way as in Section.AMeZind positive constants
a andb such that (4.1) holds.

We perform a separate analysis for each type of the inseeexw. The first three
analyses are identical to what was done in Section 4.4.2f#or type 1.2 wheré is
defined to be one less).

Insertion due to size

As in Section 4.4.2, we require that

V5/2+ f+v3/2<aandV3+2f +5/2 < 2b

so that the insertion preserves (4.1), whére p this time.

Type 1.1 insertion

As in Section 4.4.2 (for a Type 1 insertion), we require that
a+ /5 < 2b,

so that by inductionfs(w) < 2+1p.

Type 1.2 insertion

The new vertexv has labelSC;,, at a distance at mogt(SCyy1) = 257'v/3 from v
with labelBCC,,, ;. So

Ifs(w) < Ifs(v) + dist(v, w) < 2871 4+ 28+14/3,

We require that
b++V3<a,

so that by inductionfs(w) < 2**!a.

Type 3 insertion

By assumption, the two input vertices are at distance at fost4p/+/3)r from c. By
Lemma 9,

Ifs;(w) < Ifs;(c) 4 dist(c,w) < (1 + 4p/V/3)r + dist(c, w).

78

Chapter 4. Delaunay Refinement Without Slivers

o If wwas given labefC; by Algorithm 2, then

Ifs; (w) < (1+4p/V3)2/(V5/2 + p) + 27V3/

o

We require that

(144p/V3)(V5/2+ p) +V3/2<a

so thatlfs;(w) < 2/a.

e Else (v has labeBCC;,),

Ifs;(w) < (1+4p/V3)27 (V3 + 2p) + 29/5/2.

We require that

(1+4p/V3)(V3+2p) +V5/2 < 2b

so thatlfs; (w) < 27+15.

Type 2 insertion

This case is the most difficult because in the neighborho@hahput vertex, new lattice
vertices are not necessarily coarser than their neighlf®ngen a vertex of type 2, the
idea is to construct a sequence of lattice vertices. Theesemguis designed to consist of
type 1.1 and type 2 vertices because type 2 vertices do nat framm a coarser lattice and
they can undo the coarsening progress made by type 1.1egrlibe sequence is used to
discover a nearby vertex of type 0, 1.2 or 3, or to discovercarsé nearby input vertex.
Figure 4.8 illustrates all possible sequences.
Each new vertexo produced by the algorithm will be assignegp@rentp(w) and a

nearby input vertex(w), depending on the type of inserted vertex

For type 1.1, lep(w) = v andn(w) = n(v).

For type 2, lep(w) = v andn(w) = u;.

Fortype 0, 1.2, or 3, let(w) = null andn(w) = null.

Lemma 16 If p(w) # null wherew has labelSC, or BCCy.; thenw is of type 1.1 or 2
and
2k\/5 if w is of type 1.1
dist(p(w), w) < ¢ 28(v/3 +p) if wis of type 2
2¢(\/3 + p) in general

PROOF. The bounds appear in Algorithms 4 and 5.
For type 1.1dist(p(w), w) < 2r(BCCry1) = 2FV/5.
For type 2dist(p(w), w) < 2r(SCy) + 28p = 28(v/3 + p). O

79

Chapter 4. Delaunay Refinement Without Slivers

type 2
BCCk type O or 3

type 1.1

finer

t 2
SCK W y type 0, 1.2, or 3
t
BCCk+l type 1.1 ype 0 ors3
type 2

BCCk+2 type O or 3

type 1.1

coarser

Figure 4.8: This diagram shows all possible parent relationships in the analysis
of a Type 2 insertion. Nodes represent vertices and arrows point to all possible
parents. A chain of parents correspond to one path in this graph, starting from
one of the leftmost vertices (of type 2), and ending at one of the red vertices (or
anywhere before). The vertical position of a node indicates its lattice label from
the nesting of lattices. We see that a chain can consist of a sequence of type 1.1
or type 2 vertices of arbitrary length from the same two lattices, and must end if a
vertex of type 0, 1.2 or 3 is encountered.

Lemma 17 If n(w) # null wherew has labelSC;, or BCCy; thenw is of type 1.1 or 2

and
28(3v/3 + 3p) if wis of type 1.1

dist(n(w), p(w)) < { 28(24/3 + 2p) if wis of type 2
2k(3v/3+3p) in general

PROOF. For type 2, the bound comes from the input conditions of Atga 5.

For type 1.1, leb = p(w) which has labeBC;. Note thatn(v) = n(w) # null. v
must be of type 2 because this is the only type of vertex whlellaC andn(v) # null.
We use the triangle inequality

dist(n(w), p(w)) < dist(n(v), p(v)) + dist(p(v), v)
wherev = p(w) andn(w) = n(v). v has labeBCy, so
dist(n(v), p(v)) < 2%(2V3 + 2p)

80

Chapter 4. Delaunay Refinement Without Slivers

from the consideration above for type 2, and
dist(p(v), v) < 2°(V3 + p)

from Lemma 16. By combining these inequalities the resuiibizs. O

Lemma 18 If n(w) # null wherew has labelSC;, or BCCy; thenw is of type 1.1 or 2
and
28(3v/3+3p++/5) ifwisoftype 1.1
dist(n(w),w) < { 28(3v/3 + 3p) if w is of type 2
2¥(3v/3 +3p++/5) ingeneral

PROOF The bound for each particular type follows by applying thartgle inequality
to the corresponding bounds in Lemmas 16 and 17. The biugeneralis simply the
maximum.O

Lemma 19 If a vertexw is of type 0, 1.2, or 3, with lab&lC;, or BCCy.4, thenlfs(w) <
2¥ max(b + /3,), where

a=(1+4p/V3)(V3+2p) +V5/2. (4.3)

PROOF. From the previous analyses we have the following, depenoiinthe type ofo.

For type 0Jfs,(w) < 2¥(v/5/2 + p+v/3/2) orlfs,(w) < 2%(v/3 4+ 2p + v/5/2) from
Section 4.5.2.

For type 1.2]fs(w) < 2¥(b + /3) from Section 4.5.2 witlk replacingk + 1.

For type 3,1fs;(w) < 28((1 + 4p/v/3)(V5/2 + 2p) + v/3/2) or Ifs;(w) < 2F((1 +
4p/+/3)(v/3 + 2p) 4+ v/5/2) from Section 4.5.2.

The result follows by considering the maximum over all pbisies. O

Now, starting from a vertew of type 2, follow the chain of parents as follows.
e Initialize w’ := w.
e While p(w') is of type 1.1 or 2, and(p(w’)) = n(w), dow’ := p(w’).

Note that by construction, every vertex of the chain frento w’ has labelSC, or
BCCy1 with thesamek. n(w') = n(w) because otherwise thvehile loop would have
stopped on the previous iteration. Furthermaremust be of type 2 becauseuf is of
type 1.1 withn(w’) = n(w) # null, thenp(w’) is of type 2 withn(p(w')) = n(w) and
thewhile loop would have continued.

dist (p(w'), n(w")) < 28(2v/3 + 2p) sincew’ is of type 2.

81

Chapter 4. Delaunay Refinement Without Slivers

dist(n(w'), w) < 2¥(3v/3 + 3p) sincen(w’) = n(w) andw is of type 2.
By the triangle inequality,

dist(p(w'), w) < 28(5v/3 + 5p).
The rest of the analysis depends on which condition madwitile loop stop.

o If p(w’)is of type 0, 1.2, or 3:

By Lemma 19,
Ifs(p(w')) < 2¥ max(b + V3, a).

By Lemma 9,
Ifs(w) < lfs(p(w')) + dist(p(w'), w) < 28 max(b+ /3, o) + 25(5v/3 + 5p).

We require that
max(b 4+ V3,a) +5vV3 +5p < a

so that by inductionfs(w) < 2*a.

e Elseifn(p(w’)) = null:
p(w’) must be of type 1.1 angp(w’)) of type 0, 1.2 or 3. By Lemma 19,

Ifs(p(p(w’))) < 2¥ max(b+ v/3,).

By Lemma 16,
dist (p(p(w")), p(w')) < 2°V5

sincep(w’) is of type 1.1. By Lemma 9 and the triangle inequality,
Ifs(w) < Us(p(p(w'))) + dist(p(p(w")), p(w)) + dist (p(w’), w)
< 2Pmax(b+ V3, a) + 28VE 4+ 28(5v3 + 5p).

We require that
max(b+ v3,a) + V5 +5V3+5p<a

so that by inductionfs(w) < 2*a.

e Else @(p(w')) # n(w) andn(p(w’)) # null):
By Lemma 18,

dist(n(p(w')), p(w')) < 2°(3V3 +3p + V/5).

82

Chapter 4. Delaunay Refinement Without Slivers

By the triangle inequality,

dist(n(p(w")), w) < dist(n(p(w")), p(w)) + dist (p(w’), w)

2"(3v/3 + 3p + V/5) + 28 (5V/3 + 5p).

IA A

On the other hand,
dist(n(w),w) < 3v/3 + 3p
sincew is of type 2.n(p(w’)) # n(w), which implies that
Ifsi(w) < max(dist(n(p(w’)), w), dist(n(w), w))
< 28(8V3+8p + V).
We require that
8V3+8p++v5<a

so thatlfs(w) < 2*a.

Guarantee

The requirements (underlined in the text) can be satisfieskeklyng

a = a++V5+5V3+5p, and
b = (a+V5)/2.

Theorem 13 does not apply directly because of the inputoesrtjwhich have no labels).
We need to add two cases to the proof of Theorem 13:

e If v andw are both input vertices, then we directly haliet (v, w) > Ifs(v).

o If v is arefinement vertex and is an input vertex, then:

— In casev has labeBC;: dist(v, w) > 2¥c, whereo = (2 + 1/6) /4.
— In casev has labeBCCj: dist(v, w) > 2Fa /2.
The bound given by Theorem 13 becomes
min(p%a, ﬁ)lfg(’(})

By applying this, we deduce that during the course of therélgo the distance between
any vertexv and its nearest neighbor is at least

Ifs(v)/53.086.

This implies that the algorithm terminates, as argued iriGed.4.2.

83

Chapter 4. Delaunay Refinement Without Slivers

4.6 Discussion

The use of two types of lattices is complicated but appealsetoecessary to obtain a
lower bound 0f30° on dihedral angles. For a system that would give good grdauisgd
uniquely on one of the simple, body-centered, or face-cedteubic lattices we could
only obtain these respective approximate lower bouhd$23°, 14.312°, and14.197°.

Lattice refinement tends to create coplanar and cosphertctites so the Delau-
nay code must be robust. Fortunately, lattice point coatei are rational numbers
with a power-of-two denominator, so in reasonable caseg dhe exactly represented
by floating-point numbers.

Because of the guarantee on tetrahedron quality and thedbaurelement size in
terms of local feature size, when the domain is convex it khbe possible to prove
size-optimality (Section 1.2.2). This doesn’t hold for roanvex domains where two
input vertices can be very close geometrically, but quiteafzart when the distance is
computed as a geodesic inside the domain. In this case aarthlg will refine the mesh
around the two input vertices while the optimal mesh doeseéd to. The same issue
affects conforming Delaunay mesh generation algorithms.

The time complexity of the algorithm depends on the paréidties of mesh opera-
tions like point location and incremental insertion, so wave the analysis as an open
problem.

It would be interesting to perform experiments with Algbnt 3 to see how much re-
finement is done in practice compared to standard Delauriisngneent, and when trying
to eliminate slivers from an already refined mesh.

We hope that this work is just a first step toward a lattice egfiant algorithm for
domains with boundary constraints. As a step in that divective showed in Section 4.5
how internal input vertices can be handled. We believe thatgy constraints can also
be handled without much difficulty. Sharp features like segta and corners are more
challenging because when a segment is split, there is omydegree of freedom for the
position of the split point. Of course, the dihedral anglarguntees don’t have to stay as
good as30° and135°.

84

Bibliography

[1] Pierre Alliez, David Cohen-Steiner, Mariette YvineaddBMathieu Desbrun. Varia-
tional Tetrahedral MeshingACM Transactions on Graphic24(3):617-625, 2005.
Special issue on Proceedings of SIGGRAPH 2005.

[2] Nina Amenta and Marshall Bern. Surface Reconstructigrivbronoi Filtering.
Discrete & Computational Geometrg2(4):481-504, December 1999.

[3] Nina Amenta, Sunghee Choi, Tamal Krishna Dey, and N. beelA Simple Algo-
rithm for Homeomorphic Surface Reconstructidmternational Journal of Compu-
tational Geometry and Application$2(1-2):125-141, 2002.

[4] Dominique Attali, David Cohen-Steiner, and Herbert Btleunner. Extraction and
Simplification of Iso-surfaces in Tandem. 8ymposium on Geometry Processing
2005 pages 139-148, Vienna, Austria, July 2005. Eurographgsogiation.

[5] J. Andreas Baerentzen and Henrik Aanges. Generating &Gigistance Fields from
Triangle Meshes. Technical Report IMM-TR-2002-21, Infatios and Mathemat-
ical Modelling, Technical University of Denmark, LyngbyeBmark, 2002.

[6] Brenda S. Baker, Eric Grosse, and Conor S. Rafferty. Ntuse Triangulation of
Polygons.Discrete and Computational GeometB(2):147-168, 1988.

[7] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Briendalohn A. Strain. A
Semi-Lagrangian Contouring Method for Fluid SimulatiohCM Transactions on
Graphics 25(1):19-38, January 2006.

[8] Marshall Bern and David Eppstein. Mesh Generation antindgd Triangulation.
In Ding-Zhu Du and Frank Hwang, editor€omputing in Euclidean Geomeiry
volume 1 ofLecture Notes Series on Computimages 23-90. World Scientific,
Singapore, 1992.

[9] Marshall Bern, David Eppstein, and John R. Gilbert. Ritdy Good Mesh Genera-
tion. Journal of Computer and System Sciendeéy3):384—-409, June 1994.

85

Bibliography

[10] Marshall Bern and Paul Plassmann. Mesh Generation. 0ig 3ack and Jorge
Urrutia, editorsHandbook of Computational Geometchapter 6. Elsevier Science,
2000.

[11] Jurgen Bey. Tetrahedral Grid Refineme@bmputing 55:355-378, 1995.

[12] Daniel K. Blandford, Guy E. Blelloch, David E. Cardozand Clemens Kadow.
Compact Representations of Simplicial Meshes in Two ancedHbimensions.
International Journal of Computational Geometry and Apations 15(1):3-24,
February 2005.

[13] Jules Bloomenthal. An Implicit Surface PolygonizerGraphics Gems I\chapter
IV.8, pages 324—-349. Academic Press, 1994.

[14] Jean-Daniel Boissonnat and Steve Oudot. Provably Gawaface Sampling and
Approximation. InSymposium on Geometry Processipages 9—18. Eurographics
Association, June 2003.

[15] Sergey N. Borovikov, Igor A. Kryukov, and Igor E. Ivano®n Approach for De-
launay Tetrahedralization of Bodies with Curved Boundari Fourteenth Inter-
national Meshing Roundtablgages 221-238, San Diego, California, September
2005. Sandia National Laboratories.

[16] Adrian Bowyer. Computing Dirichlet TessellatiorfSomputer Journal24(2):162—
166, 1981.

[17] Scott A. Canann, S. N. Muthukrishnan, and R. K. Phillipspological Refinement
Procedures for Triangular Finite Element Mesh&ngineering with Computeys
12(3 & 4):243-255, 1996.

[18] Hamish Carr, Torsten Moller, and Jack Snoeyink. Attt Caused by Simpli-
cial Subdivision. IEEE Transactions on Visualization and Computer Graphics
12(2):231-242, 2006.

[19] Long Chen. Mesh Smoothing Schemes Based on OptimaliDalaTriangulations.
In Proceedings of the Thirteenth International Meshing Raabl&, pages 109-120,
Williamsburg, Virginia, September 2004.

[20] Siu-Wing Cheng and Tamal K. Dey. Quality Meshing with iged Delaunay
RefinementSIAM Journal on Computind33(1):69-93, 2003.

[21] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbemiichael A. Facello,
and Shang-Hua Teng. Sliver Exudatiorlournal of the ACM 47(5):883-904,
September 2000.

86

Bibliography

[22] Evgeni V. Chernyaev. Marching Cubes 33: Constructibmapologically Correct
Isosurfaces. Technical Report CERN-CN-95-17, Europeaga@ization for Nu-
clear Research, Geneva, Switzerland, 1995.

[23] L. Paul Chew. Constrained Delaunay TriangulatioAdgorithmicg 4(1):97-108,
1989.

[24] L. Paul Chew. Guaranteed-Quality Triangular Mesheschhical Report TR-89-
983, Department of Computer Science, Cornell Univers@gal

[25] L. Paul Chew. Guaranteed-Quality Delaunay Meshingn B Proceedings of the
Thirteenth Annual Symposium on Computational Geometiges 391-393, June
1997.

[26] Philippe G. Ciarlet. The Finite Element Method for Elliptic ProblemsNorth-
Holland, Amsterdam, 1978.

[27] Kenneth L. Clarkson and Peter W. Shor. Applications ahBom Sampling in Com-
putational Geometry, lIDiscrete & Computational Geometrg(1):387-421, 1989.

[28] Mark de Berg, Marc van Kreveld, Mark Overmars, and @triSchwarzkopf. De-
launay Triangulations. Ii€omputational Geometry: Algorithms and Applicatipns
chapter 9. Springer-Verlag, Berlin, 1997.

[29] Boris Nikolaevich Delaunay. Sur la Sphere Videvestia Akademia Nauk SSSR,
VII Seria, Otdelenie Matematicheskii i Estestvennyka Nau93-800, 1934.

[30] J. Donea, Antonio Huerta, J.-Ph. Ponthot, and A. Rpdez-Ferran. Arbitrary
Lagrangian-Eulerian Methods. Encyclopedia of Computational Mechanics, Vol-
ume 1 chapter 14. John Wiley, 2004.

[31] Rex A. Dwyer. A Faster Divide-and-Conquer Algorithnr fdonstructing Delaunay
Triangulations Algorithmica 2(2):137-151, 1987.

[32] Herbert Edelsbrunner and Damrong Guoy. An Experinletizdy of Sliver Exuda-
tion. In Tenth International Meshing Roundtapfeages 307-316, Newport Beach,
California, October 2001.

[33] Herbert Edelsbrunner, Xiang-Yang Li, Gary Miller, Amds Stathopoulos, Dafna
Talmor, Shang-Hua Teng, Alpdingér, and Noel Walkington. Smoothing and
Cleaning Up Slivers. IProceedings of the 32nd Annual Symposium on the The-
ory of Computing pages 273-278, Portland, Oregon, May 2000. Association fo
Computing Machinery.

87

Bibliography

[34] Herbert Edelsbrunner and Nimish R. Shah. Trianguipfinpological Spaces. In
Proceedings of the Tenth Annual Symposium on Computat®eaimetry pages
285-292, 1994.

[35] David Eppstein, John M. Sullivan, and Alpgngor. Tiling Space and Slabs with
Acute TetrahedraComputational Geometry: Theory and ApplicatipBg(3):237—
255, March 2004.

[36] EXACUS. Libraries for efficient and exact algorithms fourves and surfaces.
http://mww.mpi-inf. mpg.de/projects/EXACUS/.

[37] David A. Field. Implementing Watson’s Algorithm in Tée Dimensions. lfPro-
ceedings of the Second Annual Symposium on Computational€&ey pages 246—
259, Yorktown Heights, New York, June 1986. AssociationGamputing Machin-
ery.

[38] David A. Field. Qualitative Measures for Initial Meshdnternational Journal for
Numerical Methods in Engineering7:887—906, 2000.

[39] David A. Field and Warren D. Smith. Graded TetrahediaitE Element Meshes.
International Journal for Numerical Methods in Engineeagjn31(3):413—-425,
March 1991.

[40] Steven Fortune. A Sweepline Algorithm for Voronoi Dragns. Algorithmica
2(2):153-174,1987.

[41] Lori A. Freitag and Carl Ollivier-Gooch. Tetrahedralelsh Improvement Using
Swapping and Smoothingnternational Journal for Numerical Methods in Engi-
neering 40(21):3979-4002, November 1997.

[42] William H. Frey. Selective Refinement: A New Strategy fAautomatic Node Place-
ment in Graded Triangular Meshemternational Journal for Numerical Methods
in Engineering 24(11):2183—-2200, November 1987.

[43] Alexander Fuchs. Automatic Grid Generation with AlmBggular Delaunay Tetra-
hedra. InSeventh International Meshing Roundtaglgages 133—-148, October 1998.

[44] R.A. Gingold and J.J. Monaghan. Smoothed Particle Hghgnamics: Theory and
Application to Non-Spherical StarsMonthly Notices of the Royal Astronomical
Society 181:375-389, 1977.

[45] Leonidas J. Guibas and Jorge Stolfi. Primitives for thanidulation of General
Subdivisions and the Computation of Voronoi Diagran®CM Transactions on
Graphics 4(2):74-123, April 1985.

88

Bibliography

[46] L. R. Hermann. Laplacian-Isoparametric Grid GeneratScheme. Journal of
the Engineering Mechanics Division of the American SocétZivil Engineers
102:749-756, October 1976.

[47] Martin Isenburg and Peter Lindstrom. Streaming mesHhasvisualization 2005
pages 231-238, Minneapolis, Minnesota, October 2005. IEEE

[48] Claes JohnsonNumerical Solution of Partial Differential Equations byetlrinite
Element MethodCambridge University Press, Cambridge, 1987.

[49] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, andrd-Peter Seidel. Fea-
ture Sensitive Surface Extraction from Volume Data.Computer Graphics (SIG-
GRAPH 2001 Proceedingg)ages 57-66, 2001.

[50] Ravikrishna Kolluri. Provably Good Moving Least Sgesar Submitted t?ACM
Transactions on Algorithm&007.

[51] Charles L. Lawson. Software far! Surface Interpolation. In John R. Rice, editor,
Mathematical Software lJlpages 161-194. Academic Press, New York, 1977.

[52] Der-Tsai Lee and Bruce J. Schachter. Two AlgorithmsGonstructing a Delau-
nay Triangulation. International Journal of Computer and Information Sciegce
9(3):219-242, 1980.

[53] Xiang-Yang Li and Shang-Hua Teng. Generating Well{&thDelaunay Meshes
in 3D. In Proceedings of the Twelfth Annual Symposium on Discreterifthgns
pages 28-37, January 2001.

[54] Xiang-Yang Li, Shang-Hua Teng, and Alpeingor. Biting Ellipses to Generate
Anisotropic Mesh. InEighth International Meshing Roundtablpages 97-108,
South Lake Tahoe, California, October 1999.

[55] Xiang-Yang Li, Shang-Hua Teng, and Alpeéngoér. Biting Spheres in 3d. IBighth
International Meshing Roundtahlpages 85-95, South Lake Tahoe, California, Oc-
tober 1999.

[56] Xiang-Yang Li, Shang-Hua Teng, and Alpdngdr. Biting: Advancing Front Meets
Sphere Packing. International Journal for Numerical Methods in Engineegjn
49(1):61-81, September 2000.

[57] Anwei Liu and Barry Joe. Relationship between Tetrabadshape MeasureBIT,
34:268-287, 1994.

89

Bibliography

[58] R. Lohner and P. Parikh. Generation of Three-DimemsidJnstructured Grids by
the Advancing Front Methodinternational Journal of Numerical Methods in Flu-
ids, 8(10):1135-1149, 1988.

[59] William E. Lorensen and Harvey E. Cline. Marching CubadHigh Resolution 3D
Surface Construction Algorithm. IGomputer Graphics (SIGGRAPH '87 Proceed-
ings), pages 163-170, Anaheim, California, July 1987.

[60] L. B. Lucy. A Numerical Approach to Testing the Fissioypbthesis.The Astro-
nomical Journal 82(12):1013-1924, December 1977.

[61] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noelliihgton. A Delaunay
Based Numerical Method for Three Dimensions: Generationnklation, and Par-
tition. In Proceedings of the Twenty-Seventh Annual ACM Symposiume dineory
of Computingpages 683-692, Las Vegas, Nevada, May 1995.

[62] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, Noel Waliton, and Han Wang.
Control Volume Meshes Using Sphere Packing: Generatiofin&aent and Coars-
ening. InFifth International Meshing Roundtahlpages 4761, Pittsburgh, Penn-
sylvania, October 1996.

[63] Scott A. Mitchell and Stephen A. Vavasis. Quality Meskr@ration in Three Di-
mensions. IrProceedings of the Eighth Annual Symposium on Computdt®ea
ometry pages 212-221, 1992.

[64] Scott A. Mitchell and Stephen A. Vavasis. Quality Meskr@ration in Higher
Dimensions.SIAM Journal on Computing@9(4):1334-1370, 2000.

[65] Neil Molino, Robert Bridson, Joseph Teran, and Ronaddifw. A Crystalline,
Red Green Strategy for Meshing Highly Deformable Object$h wietrahedra. In
Twelfth International Meshing Roundtabjgages 103-114, Santa Fe, New Mexico,
September 2003.

[66] David J. Naylor. Filling Space with Tetrahedtaternational Journal for Numerical
Methods in Engineeringt4(10):1383-1395, April 1999.

[67] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, GregkTwand Hans-Peter Sei-
del. Multi-Level Partition of Unity Implicits. ACM Transactions on Graphics
22(3):463-470, July 2003. Special issue on ProceedingE3d6RAPH 2003.

[68] Stanley Osher and Ronald Fedkiwevel Set Methods and Dynamic Implicit Sur-
faces Springer-Verlag, New York, 2002.

90

Bibliography

[69] Steve Oudot, Laurent Rineau, and Mariette Yvinec. NiggNWolumes Bounded by
Smooth Surfaces. IRroceedings of the 14th International Meshing Roundtable
pages 203-219, 2005.

[70] Steven J. Owen. A Survey of Unstructured Mesh Genarafechnology. InPro-
ceedings of the Seventh International Meshing Roundtgislges 239-267, Dear-
born, Michigan, October 1998.

[71] Steven E. Pav and Noel J. Walkington. Robust Three Dsiwgral Delaunay Refine-
ment. InThirteenth International Meshing Roundtapfgges 145-156, Williams-
burg, Virginia, September 2004. Sandia National Laborasor

[72] Steven E. Pav and Noel J. Walkington. Delaunay RefinegiCorner Lopping.
In Fourteenth International Meshing Roundtapgbages 165-182, San Diego, Cali-
fornia, September 2005. Sandia National Laboratories.

[73] Shmuel Rippa. Long and Thin Triangles Can Be Good foreBininterpolation.
SIAM Journal on Numerical Analysi29(1):257-270, February 1992.

[74] Jim Ruppert. A Delaunay Refinement Algorithm for QuaktDimensional Mesh
GenerationJournal of Algorithms18(3):548-585, May 1995.

[75] Marjorie Senechal. Which Tetrahedra Fill Space?Mathematics Magazine
54(5):227-243, 1981.

[76] James A. Sethian. A Fast Marching Level Set Method fonbtonically Advanc-
ing Fronts. Proceedings of the National Academy of Scien&3¢4):1591-1595,
February 1996.

[77] Chen Shen, James F. O'Brien, and Jonathan R. Shewcimidétpolating and Ap-
proximating Implicit Surfaces from Polygon SoupCM Transactions on Graphics
23(3):896-904, August 2004. Special issue on ProceedingsasisRAPH 2004.

[78] Jonathan Richard Shewchuk. Tetrahedral Mesh Geperéty Delaunay Refine-
ment. InProceedings of the Fourteenth Annual Symposium on CompuighiGe-
ometry pages 86—-95, Minneapolis, Minnesota, June 1998. Associfr Comput-
ing Machinery.

[79] Jonathan Richard Shewchuk. Constrained Delaunayfetiralizations and Prov-
ably Good Boundary Recovery. IBleventh International Meshing Roundtable
pages 193-204, Ilthaca, New York, September 2002. Sandiarndhtaboratories.

91

Bibliography

[80] Jonathan Richard Shewchuk. What Is a Good Linear El¢irterpolation, Con-
ditioning, and Quality Measures. [Bleventh International Meshing Roundtable
pages 115-126, September 2002.

[81] D. M. Y. Sommerville. Space-Filling Tetrahedra in Eddelan SpaceProceedings
of the Edinburgh Mathematical Socie#§1:49-57, 1923.

[82] Graham M. Treece, Richard W. Prager, and Andrew H. GeguRrised Marching
Tetrahedra: Improved Iso-Surface Extracti@@omputers & Graphics23(4):583—
598, 1999.

[83] LeeAnn Tzeng. Warping Cubes: Better Triangles from ¢hang Cubes. 120th
European Workshop on Computational Geome®gville, Spain, March 2004.

[84] Alper Ungor. Off-Centers: A New Type of Steiner Points for ConipgtSize-
Optimal Guaranteed-Quality Delaunay TriangulationsL&tin American Theoret-
ical Informatics pages 152—-161, Buenos Aires, Argentina, April 2004.

[85] David F. Watson. Computing thedimensional Delaunay Tessellation with Appli-
cation to Voronoi PolytopesComputer Journal24(2):167-172, 1981.

[86] Mark A. Yerry and Mark S. Shephard. A Modified Quadtreepfgach to Finite
Element Mesh GenerationEEE Computer Graphics and Applicatign®:39-46,
January/February 1983.

[87] Mark A. Yerry and Mark S. Shephard. Automatic Three-Bimsional Mesh Gen-
eration by the Modified-Octree Techniquénternational Journal for Numerical
Methods in Engineerin@20(11):1965-1990, November 1984.

[88] Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. FastaBe Reconstruction
Using the Level Set Method. IWorkshop on Variational and Level Set Methods
pages 194-202, July 2001.

92

