
Chapter 10
A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation*

Jim Ruppertt

Abstract
We present a simple new algorithm for triangulating poly-
gons and planar straightline graphs. It provides “shape” and
%izen guarantees:

l All triangles have a bounded aspect ratio.
l The number of triangles is within a constant factor of

optimal.
Such “quality” triangulations are desirable as meshes for the
finite element method, in which the running time generally
increases with the number of triangles, and where the con-
vergence and stability may be hurt by very shinny triangles.
The technique we use-successive refinement of the Delau-
nay triangulation-extends a mesh generation technique of
Chew by allowing triangles that vary in size. Previous al-
gorithms with shape and size bounds have all been based
on quadtrees. The Delaunay refinement algorithm matches
their theoretical bounds, but uses a fundamentally different
approach. It is much simpler, and hence easier to implement,
and it generally produces smaller meshes in practice.

1 Introduction
Many applications in computational geometry, graphics,
solid modeling, numerical simulation and other areas re-
quire complicated geometric objects to be decomposed
into simpler pieces for further processing. For instance,
in the finite element method, a planar domain is divided
into a mesh of elements, typically triangles. Differential
equations representing some physical property such as
heat distribution or airflow are then approximated us-
ing functions that are piecewise polynomial within each
triangle. The running time and accuracy of these al-
gorithms often depends on properties of the decompo-
sition, such as its size (the number of pieces), and its
shape (whether the pieces are “long and skinny”).

Our interest in this paper is the decomposition of
2-dimensional objects such as polygons into triangles.
We will refer to this problem both as mesh generation
and triangulation. Quality mesh generation describes
techniques that offer a guarantee on some measure of

sported by funds from NSF PYI Grant CCR90-58840.
tcomputer Science Division, University of California at Berke-

ley, Berkeley, CA 94720, USA. Email: ruppertQcs.berkeley.edu.
A portion of this work was done while the author was at Hewlett-
Packard Laboratories, Palo Alto, CA 94303-0969, USA.

shape, such as all triangles non-obtuse, or all with
bounded aspect ratio. The aspect ratio of a triangle is
length of the longest edge divided by the length of the
shortest altitude. A fairly general measure of triangle
shape is the minimum angle cr, since this gives a bound
of ?r - 2a on maximum angle and guarantees an aspect
ratio between] &] and] & 1. We allow triangulations
to contain Steiner points-vertices of the mesh that are
not vertices of the input-because in general they are
necessary for achieving shape bounds (see Figure 1, for
example). A mesh satisfying a certain shape bound
is said to be size-optimal if the number of triangles
is within a constant factor of the minimum number
possible in any triangulation of the given input that
meets the same shape bound.

The first algorithm to give a shape guarantee was
due to Baker, Grosse and Rafferty [l]. They gave
a technique for producing a non-obtuse triangulation
of polygons, in which all angles are at most 90’. In
addition, the smallest angle is at least 13”. (Of course,
this is only possible if all angles in the input are at least
13”.) Together, these bounds guarantee an aspect ratio
of at most 4.6. Their algorithm places a uniform square
grid over the polygon, with grid spacing determined by
the smallest feature present in the polygon. (Roughly
speaking, the smallest feature is determined either by
the pair of closest vertices, or by the closest vertex-
edge pair, where the edge does not contain the vertex.)
Since the smallest feature determines the mesh density
throughout the polygon, the number of triangles can be
very large.

Bern, Eppstein and Gilbert gave the first mesh gen-
eration algorithm with both shape and size guarantees
in [3]. They show how to triangulate polygons so that
every triangle has aspect ratio at most 5. In addition,
their analysis shows that the mesh is size-optimal. One
of the key ideas in their algorithm is to replace the uni-
form grid of [l] with a quadtree, which is a recursive
subdivision into squares of varying sizes. This yields
large triangles in areas of large features. By keeping
the quadtree balanced, aspect ratios are bounded in the
output. Melissaratos and Souvaine [9] give some exten-
sions to the quadtree algorithm. Mitchell and Vavasis
show in [lo] an extension of the quadtree technique to

83

(a) Typical input PSLG and bounding box (b) Typical triangulation without
Steiner points

RUPPERT

(cl Ot4#ut o!p@nay refinement
a gorl m WI mlnlmum angle 20 degrees

Figure 1: Sample input planar straightline graph (PSLG), typical (non-Steiner) triangulation of PSLG and
bounding box, and Delaunay refinement algorithm’s output.

3D. They give an algorithm that uses octrees to pro-
duce size-optimal, bounded aspect ratio triangulations
of polyhedra.

All the above techniques use grids or quadtrees. A
quite different technique for quality mesh generation is
Delaunay refinement, so-called because a Delaunay tri-
angulation is maintained, and some criterion is used to
successively pick new points to add to it. Chew [5] pre-
sented a Delaunay refinement algorithm that triangu-
lates a given polygon into a mesh in which all angles are
between 30 and 120 degrees. The algorithm produces
vnifonn meshes, meaning that all triangles are roughly
the same size. The output mesh is size-optimal (to
within a constant factor) amongst all uniform meshes.
However, as was the case for the algorithm of [l], a
uniform mesh may have many more triangles than are
necessary.

In this paper, we extend Chew’s work by giving
an algorithm to triangulate planar straightline graphs
(PSLGs) such that all triangles in the output have
angles between (Y and a-2a. Here cx is a parameter that
can be chosen between 0 and 20 degrees. The triangles
will vary in size, and the mesh will be size optimal
to within a constant factor (the constant depends on
the choice of (.y). PSLGs include polygons, polygons
with holes, and complexes (objects made of multiple
polygons); dangling edges and isolated vertices are also
allowed (see Figure l(a)).

Theoretically speaking, our algorithm essentially
matches the PSLG algorithms of [9] and [3](modified as
mentioned in [2]), but it is distinguished from them in a
number of ways: (1) The Delaunay refinement approach
is fundamentally different from the quadtree techniques.

(2) It is much simpler. With fewer special case con-
structions, it is easier to implement. (3) It generally
produces fewer triangles in practice. (4) It is “param-
eterized” : the user can ask for the “best” with a given
number of triangles. In this way, the algorithm takes
advantage of the inherent mesh size/shape tradeoff. (5)
The output mesh is more “intrinsic” to the input. For
instance, quadtree meshes produce a sort of “scaffold”
of mesh edges aligned with the coordinate axes. Such
alignment may affect subsequent computation. (6) De-
launay refinement produces a unique mesh, independent
of the orientation of the input. (Strictly speaking, this
requires careful handling of input degeneracies such as
co-circular points, as well as elimination of the bounding
box, see $ 5.)

A few words about the input to the algorithm: The
input can be any planar straightline graph (PSLG),
with dangling edges and isolated points allowed (see
Figure l(a)). A s s h own in the figure, the algorithm
will triangulate a larger region, out to an enclosing box.
To get a triangulation of a particular region, say the
interior of a polygon, exterior triangles can be removed.
(To maintain the size optimality guarantee in this case,
the algorithm must be modified slightly, as discussed in
§ 5.1

The remainder of this paper is organized as follows.
In the next section we present our algorithm. Then
we show that it halts and outputs a valid triangulation
satisfying the minimum angle bound. We define the
local feature site at each point in the input, and bound
the output size in terms of it. Then we show that
every triangle is within a constant factor of the largest
possible at that point, which proves size-optimality. We

QUALITY 2-DIMENSIONAL MESH GENERATION 85

diame tral circle of s 1

Figure 3: Input PSLG in bold, Delaunay triangulation
of its vertices shown dotted. This is not a valid
triangulation of the PSLG because sr is not present
as a Delaunay edge. Vertex a “encroaches upon” both

b segments si and ~2.

Figure 2: Moving a to circumcenter doubles its angle.

also show sample outputs, discuss some implementation
issues and give directions for further work. Due to space
constraints, some details are omitted here. The full
version is available as [12].

2 The Delaunay Refinement Algorithm
The basic idea of the algorithm is to maintain a trian-
gulation, making local improvements in order to remove
the skinny triangles. Each improvement involves adding
a new vertex to the triangulation and retriangulating.
To pick good locations for these new vertices, we use
the following fact of elementary geometry:

FACT 2.1. If triangle T = abc has Lbac = 8, and
p is the circumcenter of T,, then Lbpc = 20. (See
Figure 2.)

As described below, we will generally be adding ver-
tices that are circumcenters, though when such locations
are unsuitable, we will instead place new vertices on the
input segments.

The particular triangulation we maintain is a Delau-
nay triangulation, which has been extensively discussed
in the literature (see, e.g., [ll] or [S]). (At this point, we
mention the constrained Delaunay triangulation [8],[4],
which takes into account segments as well as vertices of
the input. Its usefulness as an alternative to Delaunay
triangulation will be discussed in a later section.)

Edges of the input PSLG will be referred to as
segments to distinguish them from the edges of the
Delaunay triangulation that is maintained. Also, a
vertex is a vertex of the input or of the growing Delaunay
triangulation, whereas a point is any point in the plane.
During the course of the algorithm, we will maintain a
set V of vertices (initialized to the vertices in the input)
and a set S of segments (initially those in the input).

Vertices are added to the triangulation for two reasons:
to improve triangle shape, and to insure that all input
segments are present in the Delaunay triangulation (as
the union of one or more Delaunay edges).

The two basic operations in the algorithm are to
split a segment by adding a vertex at its midpoint, and
to split a triangle with a vertex at its circumcenter.
In each case, the new vertex is added to V; and
when a segment is split, it is replaced in S by its two
subsegments.

For a segment s, the circle with s as a diameter
is referred to as its diametral circle, and we say that
a vertex encroaches upon segment s if it lies within the
diametral circle of s. Figure 3 illustrates this: the vertex
a encroaches upon both segments sr and ss (only Q’S
diametral circle is shown). It is easy to show that a
segment not present in the Delaunay triangulation is
encroached upon by some vertex.

To simplify the description and analysis of the
algorithm, we assume for now that all angles of the input
PSLG are at least 90 degrees. In 5 5, this restriction will
be removed.

Any triangle with an angle below (Y is called skinny.
In a nutshell, the algorithm says to split skinny trian-
gles, unless the triangle’s circumcenter would encroach
upon some input segment, in which case split the seg-
ment instead. Here is the algorithm in detail, including
subroutines for the two basic operations:

subroutine SplitTri(triangle t)
Add circumcenter of t to V, updating DI(V)

subroutine SplitSeg(segment s >
Add midpoint of s to V, updating VDI(V)
Remove s from S, add its

two halves si and s2 to S

86 RUPPERT

Algorithm DelaunayRefine
INPUT: planar straightline graph X;

desired minimum angle bound CY
OUTPUT: triangulation of X,

with all angles 2 (Y.
Initialize:

add a bounding square B to X:
compute extremes of X:

xmin, ymin, xmax, ymax
let span(X) = max(xmax-xmin, ymax- ymin)
let B be the square of side 3 x spun(X),

centered on X
add the four boundary segments of B to X

let segment list S = edges of X
let vertex list V = vertices of X
compute initial Delaunay triangulation z)I(V)

repeat :
while any segment s is encroached upon:

SplitSeg(s >
let t be (any) skinny triangle (min angle < o>
let p be t’s circumcenter
if p encroaches upon any

segments si, . . . , sk then
for i=l to k:

SplitSeg(Si >
else

SplitTri(t) (* adds p to V *>
endif

until no segments encroached upon,
and no angles < CY

output current Delaunay triangulation ZU(V)

The execution of the algorithm on a simple polygo-
nal example is described in Figures 4-6. (The observant
reader might notice a slight enhancement in the algo-
rithm used in the example: if a segment s is encroached
upon by a vertex on another segment, s does not have
to be split as long as it appears in the triangulation,
and no skinny triangles are present. For instance, the
vertex added between (b) and (c) encroaches upon two
segments that are never split.)

In the next section, we show that the algorithm
halts for any (Y < 20’. (In practice, larger values
can be chosen, up to (Y M 30’ .) Upon termination,
all triangles will have aspect ratios at most 1 &I,
since all angles smaller than (Y will have been removed.
Furthermore, all input segments will be present in
the output (as the union of one or more Delaunay
edges), since any segments missing from the Delaunay
triangulation are encroached upon, and hence get split
until they are present. Note that the algorithm specifies
no order for splitting skinny triangles. This and other

Figure 7: Local feature size at several points. Radius of
disk Di is Ifs(pi).

implementation issues will be discussed in f 6.

3 Output Size
In this section we give an upper bound on the number
of triangles in the output. The bound depends upon
the local feature size of the input. At every point in
the mesh, the vertex spacing will be close to the local
feature size. In the next section, we will show that the
local feature size is indeed the desired spacing, since it
yields meshes within a constant factor of the optimal
size.

DEFINITION 3.1. Given a PSLG X, The local fea-
ture size at a point p, &x(p), or simply Ifs(p), is the
radius of the smallest disk centered at p that intersects
2 non-incident vertices or segments of X.

Figure 7 illustrates the definition of Ifs(), the radius
of the disk Di being Ifs(pi). Note D3 in particular: a
smaller disk would intersect 2 segments, but they are
incident to each other.

For a given input X, Ifs(p) is defined for all points
p in the plane, and the entire function, which we refer
to as &r(X), is continuous. If Ifs(p) is interpreted as an
elevation at p, then Ifs(X) is a “not-too-steep” surface
above the plane. The following Lemma shows that it has
a Lipschitz condition of 1, i.e. the slope in any direction
is at most 1.

LEMMA 3.1. Given any PSLG X, and any two
points p and q in the plane,

rfs(q) I Ifs(~) + dist(p, d,

where dist(p, q) is the distance between p and q.
Proof See Figure 8. The disk D of radius r = Ifs(p)

centered at p intersects 2 non-incident portions of X.

QUALITY ~-DIMENSIONAL MESH GENERATION 87

Figure 4: Execution of the algorithm on a simple example. For clarity, no bounding box is used. In each picture,
the input is shown in thick lines, the current Delaunay triangulation is overlayed in thin lines. The initial Delaunay
triangulation is shown in (b). Note that input segment s is not a Delaunay edge. This is because s is encroached
upon by vertices p and q, so s is split at its midpoint into two segments sl and s2, yielding the updated Delaunay
triangulation shown in (c). Now we choose skinny triangles to be split. The shaded triangle has the smallest
angle, 5.9 degrees. A cross indicates its circumcenter.

Figure 5: In (d), we see what would happen if the skinny triangle’s circumcenter p were added to the triangulation:
it would encroach upon two segments s3 and s4. These segments are split instead of adding p, yielding the
triangulation shown in (e). The shaded triangle has the smallest angle, 9.8 degrees. Splitting that triangle yields
(f), minimum angle now 11.8 degrees.

Figure 6: Allowing the execution to continue until all angles are at least 25 degrees yields (g), and optionally,
external triangles can be removed, as shown in (h).

88 RUPPERT

Figure 8: Lemma 3.1: local feature size is not too
“steep” .

c

Figure 9: Lemma 3.2 Case 1: p added as circumcenter
of triangle T with small angle 0 < (Y.

The disk D’ of radius r’ = P + dist(p, q) centered at q
contains D and hence intersects the same portions of X.
So Ifs(q) 5 T’. Putting this together, we have

Ifs(q) 5 r’ = r + dist(p, q) = Ifs(p) + dist(p, q).

The next lemma is the crux of the mesh size
analysis. It shows that as each vertex is added, it is
at the center of a “vertex-free” circle of radius at least
a constant fraction of the local feature size. Thus the
density of added vertices is bounded by the geometry of
the input. We emphasize that adding vertices does not
change the I&() f unc t ion, since it is determined by the
input.

LEMMA 3.2. For fixed constants CT and C’s, spec-
ified below, the following statements hold:

l At initialization, for each input vertex p, the dis-
tance to its nearest neighbor vertex is at least Ifs(p).

a When a point p is chosen as the circumcenter of a
skinny triangle, the distance to the nearest vertex is
at least v. (p may be added to the triangulation,
or may be rejected because it encroaches upon some
segment.)

l When a vertex p is added as the midpoint of a split
segment, the distance to its nearest neighbor vertex
is at least $$.

Proof. For any input vertex p, the distance to its
nearest neighbor vertex is at least Ifs(p), by definition
of the lfs() function. This is the base case of the lemma.
For vertices added later, we assume the lemma is true
for all previous vertices.

Case 1: We first consider the case where p is the
circumcenter of a skinny triangle T. Since p is at the
center of T’s Delaunay circle, its nearest neighbors are
the vertices of T (see Figure 9), at a distance of r.
Assume the vertices of T are a, b, c, with the smallest
angle 0 at c. Then the shortest edge of T is from a to
b. Call its length d. Without loss of generality, assume
a was added after b (or that both were in the input).
We will use the fact that a and b are close together to
bound Ifs(a) in each of several cases, which in turn will
bound Ifs(p).

- \-I

Case l(a): a was a vertex of the input. Then so
was b, so Ifs(a) 2 d.

Case l(b): a was added as a circumcenter of some
triangle with circumradius r’ < d (since b was
outside that triangle’s circumcircle). We can apply
this lemma to a, yielding Ifs(a) 5 r’CT 5 dCT.

Case l(c): a was the midpoint of a segment that
was split. Applying this lemma to a now yields
Ifs(a) 5 dCs, since 6 was outside a’s vertex-free
circle.

so we have Ifs(a) 5 dCs, assuming we have the

satisfy belw 2yhi?z$s ==wi~O,b~oa~~~
condition C’s > CT > 1

geometry gives sin0 = $. Putting this all together,
Lemma 3.1 gives

WP) 5 Ifs(a) + r

using our bound for Ifs(a) we have

Ifs(p) 5 dCs + r

=PrCssinO+r

QUALITY !&DIMENSIONAL MESH GENERATION 89

This yields the correct bound on r, provided that
-1.

It can be checked that the 3 boxed conditions can be
simultaneously satisfied for any o-5 20’. For instance,
CT = 1+2sina

1-2lJZsina' Cs = ,-~>~~oI will work. For
CY = lo’, we can choose CT = 2.3, and CS = 5.

Since CT 5 C’S, the lemma shows that when a
vertex p is added, no other vertex is within a distance
y of p. The following theorem shows that vertices
adied later cannot get much closer to p.

THEOREM 3.1. Given a vertex p of the output
mesh, its nearest neighbor vertex q is at a distance at

Figure 10: Lemma 3.2 Case 2: p added to split segment
s which is encroached upon by a.

or, since ~9 < a,

r>
Ifs(p)

1+2Cssina

So we get the desired bound on r as long as we can
satisfy the condition CT > 1 + ‘LC.5 sin (Y

[- Case 2: We now consi er t e case w ere a vertex p
is added to split a segment s. Segment s is split because
some vertex or circumcenter a is inside s’s diametral
circle, which has radius r. (See Figure 10.) We have
two cases for a:

Case 2(a): a lies on some’ segment t, which cannot
be incident to s, since we are assuming that all angles
in the input PSLG are at least 90’. (Any segment
incident to s makes a larger angle, and hence would
be completely outside the diametral circle.) So there
are two non-incident segments, one containing p, the
other containing a, within a distance r of each other.
Thus Ifs(p) 5 r. Above, we have assumed the condition
C’s 2 1, so this case is done.

Case 2(b): a was a circumcenter, proposed for addi-
tion to the Delaunay triangulation, but rejected because
it lay inside the diametral circle of s. Suppose it was
the center of circle C’ with radius r’. By this applying
this lemma to a, we know that r’ 1 v. Also, b and c,
the endpoints of S, must be outside the Delaunay circle
C’, so r’ 5 fir. Lemma 3.1 gives

Ifs(p) I Ifs(a) + r

or

Proof. The previous lemma handles all but the case
when q was added after p, in which case we can apply
the lemma to q and get

dist(p, q) > $$

Lemma 3.1 gives a bound for Ifs(q) in terms of Ifs(p)
and q’s distance from p, so

dist(p , q) > Ifs(p) - dist(p, 9)
cs

rearranging finishes the proof: dist(p, q) > m
The next theorem uses an area argument to yield a

bound on the number of vertices. Intuitively, a region
of small local feature size requires small triangles, i.e.
the vertex spacing should be proportional to the local
feature size. Thus the triangle density in the mesh is
proportional to the inverse of the square of the local
feature size. So we will “charge” the cost for each vertex
to the local feature size around it.

THEOREM 3.2. The number of vertices in the out-
put mesh is at most

Cl J 1
T-dx,

B Ifs (x)

where B is the region enclosed by the bounding square,
and Cl is a constant to be specified.

Proof. The previous theorem says that each vertex
p in the mesh is at the center of an open disk of radius
m that contains no other vertex. Halving the radii
g&es non-intersecting disks: let Dp be the open disk of
radius rp = .$%J centered on p. Since at least one-
fourth of each Dp is contained in the bounding square B,
we can lower bound the integral by summing its value
in the disks Dp for every p in the vertex set V:

r > Ifs(p)
- l+d%T

90 RUPPERT

By Lemma 3.1, the maximum Ifs() attainable in DP is
Ifs(p) + rr, which gives a bound for SD,:

J 1
-dx 1 area

1

D, Ifs2(x) =%ED, {!fS2(z))

z area(Dp)(lfs(,)l+ rp)2
Using area = arp2, plugging in for rp, and can-
celling yields

J 1
-dx 2

D, lfs2(x) (SCSI 3)2

Substituting back in for the entire integral,

= lr 2D
4(2Cs + 3) PEV

Since the summation merely counts the number of
vertices in the output mesh, the theorem holds if we
choose the constant Ci 2 F.

4 Size-Optimality

We omit this section except to state the main result.
The details are given in [12]. The analysis is similar to
that given by Mitchell and Vavasis in [lo] for their 3D
algorithm. A series of technical lemmas are proved, with
the final lemma stating that for any point q within any
bounded aspect ratio triangulation T of a given input
PSLG X, the “triangle size” at q is within a constant
factor of Ifs(q). Th is is what we showed in the previous
section for the triangulation output by our Delaunay
refinement algorithm and hence we have the following
theorem.

THEOREM 4.1. Given (Y < 20°, and input X,
suppose 7 is any tn’angulation of X with minimum
angle bound (Y. There is a constant C, such that if
7 has N triangles, then our triangulation has at most
C, . N triangles. Letting 7 be the triangulation with
fewest possible triangles shows that our triangulation is
within a factor C, of optimal.

The constant factor C, depends on the choice of (Y,
but not on X, i.e. our algorithm is optimal on every
input, not just in the worst case. We discuss C, more
in 3 6.

5 Corner-Lopping and Riemann Sheets
In this section we discuss two issues that must be re-
solved so that our algorithm produces optimal bounded

Figure 11: Do the polygon’s two “arms” determine a
small feature at p?

aspect ratio triangulations for general 2-dimensional in-
puts. These problems have been tackled by previous
researchers, and here we briefly sketch how to adapt
their solutions to our algorithm. More details are given
in [12].

First, we must deal with small input angles reason-
ably (recall that we unreasonably assumed all angles
were at least go’!). Also, though input angles smaller
than our minimum angle bound of CY cannot be removed,
they should be dealt with gracefully. We deal with small
angles by “lopping off’ the sharp corners as follows. The
input is preprocessed so as to “shield” any vertex p with
a small angle by committing in advance to a specific
triangulation around p. This was previously done in [3]
with a circle around p, and in the 3D algorithm of [lo],
a cube was used. We can adapt the technique of [3],
using circles of radius q, so that the size-optimality
property will still hold for the output.

The second issue relates to our definition of local
feature size in non-convex polygons: in Figure 11,
do the two “arms” of the polygon generate a small
feature at p? Our definition says they do, and produces
small triangles around p accordingly. This could be
suboptimal if only an interior triangulation of p is
desired. In particular, the local feature size at p should
be r, rather than d, as our definition states. As in [lo],
we modify the definition to use the geodesic distance to
the 2 nearest non-incident portions of the input. The
geodesic distance is measured along the shortest path
that stays within the region to be triangulated (e.g. the
interior of the polygon). We modify our algorithm to
work using a constrained Delaunay triangulation, say
by using Riemann sheet techniques, similar to [lo].

6 Implementation and Discussion
The basic algorithm of f 2 leaves unspecified some issues
concerning its implementation. We now discuss these
issues in general, and describe our own implementation.

An incremental Delaunay triangulation algorithm

QUALITY ‘&DIMENSIONAL MESH GENERATION 91

is ideal as a basis for our algorithm, Guibas and Stolfi
[7] give a useful implementation. The algorithm allows
skinny triangles to be split in any order; by always
splitting the one with the smallest angle, the algorithm
trades off nicely between mesh size and shape: the
overall minimum improves as the algorithm continues
to run (see Figure 13).

The detection of “encroached upon” segments
(those containing a point in their diametral circle) can
be done efficiently by checking some local criteria during
each update of the Delaunay triangulation. A segment
is encroached upon if either: (1) It is not present as a
Delaunay edge (e.g. s1 in Figure 3); or (2) It is present,
but opposite an obtuse angle in a Delaunay triangle (e.g.
s2 in Figure 3).

We have implemented our algorithm, except for
the corner-lopping and Riemann sheet modifications.
Though the corner-lopping was required for the opti-
mality analysis in the presence of input angles below
90°, in practice, redefinition of a skinny triangle to ex-
clude small input angles works well in most cases. Some
configurations with input angles below 10’ can cause too
many points to be added near that angle.

Figure 12 shows the output on two examples, each
with a minimum output angle of 20’. The example on
the right has several input angles near 15’, which remain
in the output.

We now turn to the question of how size-optimal
the algorithm is. The examples of Figure 12 seem to
be within a factor of 2-4 times the minimum possible
size for the given angle bound, so the “true” optimal&y
constant lies somewhere between there and the value of
C, of f 4. For a minimum angle bound of 20°, the best
explicit value we were able to prove for the optimality
constant C, was C, = 2.1 x 10z5. Though this is the
first explicitly stated optimality constant for a bounded
aspect ratio triangulatiou algorithm, the value is clearly
meaningless as a practical guarantee. Examination of
the analysis shows much slack that might be tightened
up, for example a constant of A2K+6, with A a 6,
K z 4, that we suspect can be replaced by 2K or A’,
but even shaving off 10 or 15 orders of magnitude would
not yield a useful value for C,. One would really like a
stronger proof technique.

We can make a non-rigorous argument about output
size using the constant Cs of § 4. It bounds the density
of points along input segments, and its value indicates
that at most 5 “layers” of triangles will appear between
2 nearby input vertices. In Figure 12, we see that short
segments are not broken up at all, and so there is usually
only 1 layer. This contrasts with the algorithm in [3], in
which each input vertex must be isolated within a 5-by-
5 grid of quadtree squares, yielding at least 2-3 layers

Overall
minimum
angle in
degrees

50 100 150 200

Total number of vertices

Figure 13: Progress of minimum angle, during a typical
run. Arrow shows when a minimum angle of 20’ is first
reached.

of triangles between any two vertices.
Additional evidence concerning the behavior of the

algorithm comes from Figure 13, which charts the
overall minimum angle during a lengthy run on a simple
input with about 15 vertices. We see the minimum rise
to about 30° and then level off, except for frequent
downward spikes when a small angle gets divided in
two, then quickly improved. The optimality proof says
that eventually, no spike will drop below the dotted line
(here, for cy = 200), which would be far to the right of
the plotted portion of the graph. The arrow points out
when the algorithm would actually halt for this case.

We have not analyzed the running time of the De-
launay refinement algorithm in detail. The worst-case
running time for incremental Delaunay triangulation is
O(M’), where M is the output size. In practice, such al-
gorithms usually run much faster [7]. Much of the time
is typically taken up locating the triangle containing the
new point. For non-input vertices, this is simplified in
our algorithm by starting at the skinny triangle or en-
croached upon segment being split.

7 Conclusion
We have presented a new Delaunay refinement algo-
rithm for bounded aspect ratio triangulation of planar
straightline graphs. The algorithm is very simple, and
quite different from previous techniques.

There are many opportunities for further work. Can
the corner-lopping preprocessing step be avoided by
some technique that splits edges more cleverly than al-
ways at the midpoints? The algorithm is well-suited
applications involving adaptive analyses that increase
mesh density in regions of large error. For problems
with a solution that changes, mesh reduction is also
useful-is there a Delaunay based criterion that indi-

RUPPERT

Figure 12: Output on two sample PSLGs, minimum angle w 20’.

cates good vertices to delete from the mesh? There rithmica, 4:97-108, 1989.
are several questions regarding the size-optimality con-
stants: Can the analysis be significantly improved? Are
there lower bounds for bounded-aspect ratio triangula-
tion, even for specific inputs like two c-separated points
centered in the unit square? Finally, can the Delau-
nay refinement algorithm be generalized to work for 3D
triangulation of polyhedra?

8 Acknowledgements
I would particularly like to thank Raimund Seidel, for
many productive discussions. Helpful suggestions were
provided by Balas Natarajan and Marshall Bern. The
development of the algorithm was aided by the Voronoi
diagram implementation of Steve Fortune (available via
netlib).

References

[1] T.J. Baker, E. Grosse, and C.S. Rafferty. Nonobtuse
triangulation of polygons. Disc. and Comput. Geom.,
3:147-168, 1988.

[2] M. Bern and D. Eppstein. Mesh generation and
optimal triangulation. In D.Z. Du and F.K. Hwang,
editors, Euclidean Geometry and the Computer (to
appear). World Scientific, (1992?).

[3] M. Bern, D. Eppstein, and J.R. Gilbert. Provably good
mesh generation. In Proceedings of the 91st Annual
Symposium on Foundations of Computer Science, pages
231-241. IEEE, 1990. To appear in J. Comp. System
Science.

[4] L.P. Chew. Constrained Delaunay triangulation. Algo-

[5] L.P. Chew. Guaranteed-quality triangular meshes.
Technical report, Cornell University, 1989. No. TR-
89-983.

[6] S. Fortune. A sweepline algorithm for Voronoi dia-
grams. Algorithmica, 2:153-174, 1987.

[7] L.J. Guibas and 3. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graphics,
4:74-123, 1985.

[8] D.T. Lee and A. Lin. Generalized Delaunay triangula-
tion for planar graphs. Discrete Comput. Geom., 1:201-
217, 1986.

[9] E. Melissaratos and D. Souvaine. Coping with incon-
sistencies: A new approach to produce quality triangu-
lations of polygonal domaini with holes. In Proceedings
of the Eighth Annual Symposium on Computational Ge-
ometry, pages 202-211. ACM, 1992.

[lo] S.A. Mitchell and S.A. Vavasis. Quality mesh genera-
tion in three dimensions. In Proceedings of the Eighth
Annual Symposium on Computational Geometry, pages
212-221. ACM, 1992. Full version in Cornell Tech. Re-
port TR 92-1267, Feb. 1992.

[ll] F. P. Preparata and M. I. Shamos. Computational
Geometry - an Introduction. Springer-Verlag, New
York, 1985.

[12] J. Ruppert. A new and simple algorithm for quaI-
ity 2-dimensional mesh generation. Technical Report
UCB/CSD 92/694, Computer Science Division, 570
Evans Hall, University of California, Berkeley, CA
94720, June 1992.

