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Abstract 
We present a simple new algorithm for triangulating poly- 
gons and planar straightline graphs. It provides “shape” and 
%izen guarantees: 

l All triangles have a bounded aspect ratio. 
l The number of triangles is within a constant factor of 

optimal. 
Such “quality” triangulations are desirable as meshes for the 
finite element method, in which the running time generally 
increases with the number of triangles, and where the con- 
vergence and stability may be hurt by very shinny triangles. 
The technique we use-successive refinement of the Delau- 
nay triangulation-extends a mesh generation technique of 
Chew by allowing triangles that vary in size. Previous al- 
gorithms with shape and size bounds have all been based 
on quadtrees. The Delaunay refinement algorithm matches 
their theoretical bounds, but uses a fundamentally different 
approach. It is much simpler, and hence easier to implement, 
and it generally produces smaller meshes in practice. 

1 Introduction 
Many applications in computational geometry, graphics, 
solid modeling, numerical simulation and other areas re- 
quire complicated geometric objects to be decomposed 
into simpler pieces for further processing. For instance, 
in the finite element method, a planar domain is divided 
into a mesh of elements, typically triangles. Differential 
equations representing some physical property such as 
heat distribution or airflow are then approximated us- 
ing functions that are piecewise polynomial within each 
triangle. The running time and accuracy of these al- 
gorithms often depends on properties of the decompo- 
sition, such as its size (the number of pieces), and its 
shape (whether the pieces are “long and skinny”). 

Our interest in this paper is the decomposition of 
2-dimensional objects such as polygons into triangles. 
We will refer to this problem both as mesh generation 
and triangulation. Quality mesh generation describes 
techniques that offer a guarantee on some measure of 
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shape, such as all triangles non-obtuse, or all with 
bounded aspect ratio. The aspect ratio of a triangle is 
length of the longest edge divided by the length of the 
shortest altitude. A fairly general measure of triangle 
shape is the minimum angle cr, since this gives a bound 
of ?r - 2a on maximum angle and guarantees an aspect 
ratio between ] & ] and ] & 1. We allow triangulations 
to contain Steiner points-vertices of the mesh that are 
not vertices of the input-because in general they are 
necessary for achieving shape bounds (see Figure 1, for 
example). A mesh satisfying a certain shape bound 
is said to be size-optimal if the number of triangles 
is within a constant factor of the minimum number 
possible in any triangulation of the given input that 
meets the same shape bound. 

The first algorithm to give a shape guarantee was 
due to Baker, Grosse and Rafferty [l]. They gave 
a technique for producing a non-obtuse triangulation 
of polygons, in which all angles are at most 90’. In 
addition, the smallest angle is at least 13”. (Of course, 
this is only possible if all angles in the input are at least 
13”.) Together, these bounds guarantee an aspect ratio 
of at most 4.6. Their algorithm places a uniform square 
grid over the polygon, with grid spacing determined by 
the smallest feature present in the polygon. (Roughly 
speaking, the smallest feature is determined either by 
the pair of closest vertices, or by the closest vertex- 
edge pair, where the edge does not contain the vertex.) 
Since the smallest feature determines the mesh density 
throughout the polygon, the number of triangles can be 
very large. 

Bern, Eppstein and Gilbert gave the first mesh gen- 
eration algorithm with both shape and size guarantees 
in [3]. They show how to triangulate polygons so that 
every triangle has aspect ratio at most 5. In addition, 
their analysis shows that the mesh is size-optimal. One 
of the key ideas in their algorithm is to replace the uni- 
form grid of [l] with a quadtree, which is a recursive 
subdivision into squares of varying sizes. This yields 
large triangles in areas of large features. By keeping 
the quadtree balanced, aspect ratios are bounded in the 
output. Melissaratos and Souvaine [9] give some exten- 
sions to the quadtree algorithm. Mitchell and Vavasis 
show in [lo] an extension of the quadtree technique to 
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(a) Typical input PSLG and bounding box (b) Typical triangulation without 
Steiner points 
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Figure 1: Sample input planar straightline graph (PSLG), typical (non-Steiner) triangulation of PSLG and 
bounding box, and Delaunay refinement algorithm’s output. 

3D. They give an algorithm that uses octrees to pro- 
duce size-optimal, bounded aspect ratio triangulations 
of polyhedra. 

All the above techniques use grids or quadtrees. A 
quite different technique for quality mesh generation is 
Delaunay refinement, so-called because a Delaunay tri- 
angulation is maintained, and some criterion is used to 
successively pick new points to add to it. Chew [5] pre- 
sented a Delaunay refinement algorithm that triangu- 
lates a given polygon into a mesh in which all angles are 
between 30 and 120 degrees. The algorithm produces 
vnifonn meshes, meaning that all triangles are roughly 
the same size. The output mesh is size-optimal (to 
within a constant factor) amongst all uniform meshes. 
However, as was the case for the algorithm of [l], a 
uniform mesh may have many more triangles than are 
necessary. 

In this paper, we extend Chew’s work by giving 
an algorithm to triangulate planar straightline graphs 
(PSLGs) such that all triangles in the output have 
angles between (Y and a-2a. Here cx is a parameter that 
can be chosen between 0 and 20 degrees. The triangles 
will vary in size, and the mesh will be size optimal 
to within a constant factor (the constant depends on 
the choice of (.y). PSLGs include polygons, polygons 
with holes, and complexes (objects made of multiple 
polygons); dangling edges and isolated vertices are also 
allowed (see Figure l(a)). 

Theoretically speaking, our algorithm essentially 
matches the PSLG algorithms of [9] and [3](modified as 
mentioned in [2]), but it is distinguished from them in a 
number of ways: (1) The Delaunay refinement approach 
is fundamentally different from the quadtree techniques. 

(2) It is much simpler. With fewer special case con- 
structions, it is easier to implement. (3) It generally 
produces fewer triangles in practice. (4) It is “param- 
eterized” : the user can ask for the “best” with a given 
number of triangles. In this way, the algorithm takes 
advantage of the inherent mesh size/shape tradeoff. (5) 
The output mesh is more “intrinsic” to the input. For 
instance, quadtree meshes produce a sort of “scaffold” 
of mesh edges aligned with the coordinate axes. Such 
alignment may affect subsequent computation. (6) De- 
launay refinement produces a unique mesh, independent 
of the orientation of the input. (Strictly speaking, this 
requires careful handling of input degeneracies such as 
co-circular points, as well as elimination of the bounding 
box, see $ 5.) 

A few words about the input to the algorithm: The 
input can be any planar straightline graph (PSLG), 
with dangling edges and isolated points allowed (see 
Figure l(a)). A s s h own in the figure, the algorithm 
will triangulate a larger region, out to an enclosing box. 
To get a triangulation of a particular region, say the 
interior of a polygon, exterior triangles can be removed. 
(To maintain the size optimality guarantee in this case, 
the algorithm must be modified slightly, as discussed in 
§ 5.1 

The remainder of this paper is organized as follows. 
In the next section we present our algorithm. Then 
we show that it halts and outputs a valid triangulation 
satisfying the minimum angle bound. We define the 
local feature site at each point in the input, and bound 
the output size in terms of it. Then we show that 
every triangle is within a constant factor of the largest 
possible at that point, which proves size-optimality. We 
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diame tral circle of s 1 

Figure 3: Input PSLG in bold, Delaunay triangulation 
of its vertices shown dotted. This is not a valid 
triangulation of the PSLG because sr is not present 
as a Delaunay edge. Vertex a “encroaches upon” both 

b segments si and ~2. 

Figure 2: Moving a to circumcenter doubles its angle. 

also show sample outputs, discuss some implementation 
issues and give directions for further work. Due to space 
constraints, some details are omitted here. The full 
version is available as [12]. 

2 The Delaunay Refinement Algorithm 
The basic idea of the algorithm is to maintain a trian- 
gulation, making local improvements in order to remove 
the skinny triangles. Each improvement involves adding 
a new vertex to the triangulation and retriangulating. 
To pick good locations for these new vertices, we use 
the following fact of elementary geometry: 

FACT 2.1. If triangle T = abc has Lbac = 8, and 
p is the circumcenter of T,, then Lbpc = 20. (See 
Figure 2.) 

As described below, we will generally be adding ver- 
tices that are circumcenters, though when such locations 
are unsuitable, we will instead place new vertices on the 
input segments. 

The particular triangulation we maintain is a Delau- 
nay triangulation, which has been extensively discussed 
in the literature (see, e.g., [ll] or [S]). (At this point, we 
mention the constrained Delaunay triangulation [8],[4], 
which takes into account segments as well as vertices of 
the input. Its usefulness as an alternative to Delaunay 
triangulation will be discussed in a later section.) 

Edges of the input PSLG will be referred to as 
segments to distinguish them from the edges of the 
Delaunay triangulation that is maintained. Also, a 
vertex is a vertex of the input or of the growing Delaunay 
triangulation, whereas a point is any point in the plane. 
During the course of the algorithm, we will maintain a 
set V of vertices (initialized to the vertices in the input) 
and a set S of segments (initially those in the input). 

Vertices are added to the triangulation for two reasons: 
to improve triangle shape, and to insure that all input 
segments are present in the Delaunay triangulation (as 
the union of one or more Delaunay edges). 

The two basic operations in the algorithm are to 
split a segment by adding a vertex at its midpoint, and 
to split a triangle with a vertex at its circumcenter. 
In each case, the new vertex is added to V; and 
when a segment is split, it is replaced in S by its two 
subsegments. 

For a segment s, the circle with s as a diameter 
is referred to as its diametral circle, and we say that 
a vertex encroaches upon segment s if it lies within the 
diametral circle of s. Figure 3 illustrates this: the vertex 
a encroaches upon both segments sr and ss (only Q’S 
diametral circle is shown). It is easy to show that a 
segment not present in the Delaunay triangulation is 
encroached upon by some vertex. 

To simplify the description and analysis of the 
algorithm, we assume for now that all angles of the input 
PSLG are at least 90 degrees. In 5 5, this restriction will 
be removed. 

Any triangle with an angle below (Y is called skinny. 
In a nutshell, the algorithm says to split skinny trian- 
gles, unless the triangle’s circumcenter would encroach 
upon some input segment, in which case split the seg- 
ment instead. Here is the algorithm in detail, including 
subroutines for the two basic operations: 

subroutine SplitTri(triangle t ) 
Add circumcenter of t to V, updating DI(V) 

subroutine SplitSeg(segment s > 
Add midpoint of s to V, updating VDI(V) 
Remove s from S, add its 

two halves si and s2 to S 
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Algorithm DelaunayRefine 
INPUT: planar straightline graph X; 

desired minimum angle bound CY 
OUTPUT: triangulation of X, 

with all angles 2 (Y. 
Initialize: 

add a bounding square B to X: 
compute extremes of X: 

xmin, ymin, xmax, ymax 
let span(X) = max( xmax-xmin, ymax- ymin) 
let B be the square of side 3 x spun(X), 

centered on X 
add the four boundary segments of B to X 

let segment list S = edges of X 
let vertex list V = vertices of X 
compute initial Delaunay triangulation z)I(V) 

repeat : 
while any segment s is encroached upon: 

SplitSeg( s > 
let t be (any) skinny triangle (min angle < o> 
let p be t’s circumcenter 
if p encroaches upon any 

segments si, . . . , sk then 
for i=l to k: 

SplitSeg( Si > 
else 

SplitTri(t) (* adds p to V *> 
endif 

until no segments encroached upon, 
and no angles < CY 

output current Delaunay triangulation ZU(V) 

The execution of the algorithm on a simple polygo- 
nal example is described in Figures 4-6. (The observant 
reader might notice a slight enhancement in the algo- 
rithm used in the example: if a segment s is encroached 
upon by a vertex on another segment, s does not have 
to be split as long as it appears in the triangulation, 
and no skinny triangles are present. For instance, the 
vertex added between (b) and (c) encroaches upon two 
segments that are never split.) 

In the next section, we show that the algorithm 
halts for any (Y < 20’. (In practice, larger values 
can be chosen, up to (Y M 30’ .) Upon termination, 
all triangles will have aspect ratios at most 1 &I, 
since all angles smaller than (Y will have been removed. 
Furthermore, all input segments will be present in 
the output (as the union of one or more Delaunay 
edges), since any segments missing from the Delaunay 
triangulation are encroached upon, and hence get split 
until they are present. Note that the algorithm specifies 
no order for splitting skinny triangles. This and other 

Figure 7: Local feature size at several points. Radius of 
disk Di is Ifs(pi). 

implementation issues will be discussed in f 6. 

3 Output Size 
In this section we give an upper bound on the number 
of triangles in the output. The bound depends upon 
the local feature size of the input. At every point in 
the mesh, the vertex spacing will be close to the local 
feature size. In the next section, we will show that the 
local feature size is indeed the desired spacing, since it 
yields meshes within a constant factor of the optimal 
size. 

DEFINITION 3.1. Given a PSLG X, The local fea- 
ture size at a point p, &x(p), or simply Ifs(p), is the 
radius of the smallest disk centered at p that intersects 
2 non-incident vertices or segments of X. 

Figure 7 illustrates the definition of Ifs( ), the radius 
of the disk Di being Ifs(pi). Note D3 in particular: a 
smaller disk would intersect 2 segments, but they are 
incident to each other. 

For a given input X, Ifs(p) is defined for all points 
p in the plane, and the entire function, which we refer 
to as &r(X), is continuous. If Ifs(p) is interpreted as an 
elevation at p, then Ifs(X) is a “not-too-steep” surface 
above the plane. The following Lemma shows that it has 
a Lipschitz condition of 1, i.e. the slope in any direction 
is at most 1. 

LEMMA 3.1. Given any PSLG X, and any two 
points p and q in the plane, 

rfs(q) I Ifs(~) + dist(p, d, 

where dist(p, q) is the distance between p and q. 
Proof See Figure 8. The disk D of radius r = Ifs(p) 

centered at p intersects 2 non-incident portions of X. 
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Figure 4: Execution of the algorithm on a simple example. For clarity, no bounding box is used. In each picture, 
the input is shown in thick lines, the current Delaunay triangulation is overlayed in thin lines. The initial Delaunay 
triangulation is shown in (b). Note that input segment s is not a Delaunay edge. This is because s is encroached 
upon by vertices p and q, so s is split at its midpoint into two segments sl and s2, yielding the updated Delaunay 
triangulation shown in (c). Now we choose skinny triangles to be split. The shaded triangle has the smallest 
angle, 5.9 degrees. A cross indicates its circumcenter. 

Figure 5: In (d), we see what would happen if the skinny triangle’s circumcenter p were added to the triangulation: 
it would encroach upon two segments s3 and s4. These segments are split instead of adding p, yielding the 
triangulation shown in (e). The shaded triangle has the smallest angle, 9.8 degrees. Splitting that triangle yields 
(f), minimum angle now 11.8 degrees. 

Figure 6: Allowing the execution to continue until all angles are at least 25 degrees yields (g), and optionally, 
external triangles can be removed, as shown in (h). 
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Figure 8: Lemma 3.1: local feature size is not too 
“steep” . 

c 

Figure 9: Lemma 3.2 Case 1: p added as circumcenter 
of triangle T with small angle 0 < (Y. 

The disk D’ of radius r’ = P + dist(p, q) centered at q 
contains D and hence intersects the same portions of X. 
So Ifs(q) 5 T’. Putting this together, we have 

Ifs(q) 5 r’ = r + dist(p, q) = Ifs(p) + dist(p, q). 

The next lemma is the crux of the mesh size 
analysis. It shows that as each vertex is added, it is 
at the center of a “vertex-free” circle of radius at least 
a constant fraction of the local feature size. Thus the 
density of added vertices is bounded by the geometry of 
the input. We emphasize that adding vertices does not 
change the I&( ) f unc t ion, since it is determined by the 
input. 

LEMMA 3.2. For fixed constants CT and C’s, spec- 
ified below, the following statements hold: 

l At initialization, for each input vertex p, the dis- 
tance to its nearest neighbor vertex is at least Ifs(p). 

a When a point p is chosen as the circumcenter of a 
skinny triangle, the distance to the nearest vertex is 
at least v. (p may be added to the triangulation, 
or may be rejected because it encroaches upon some 
segment.) 

l When a vertex p is added as the midpoint of a split 
segment, the distance to its nearest neighbor vertex 
is at least $$. 

Proof. For any input vertex p, the distance to its 
nearest neighbor vertex is at least Ifs(p), by definition 
of the lfs( ) function. This is the base case of the lemma. 
For vertices added later, we assume the lemma is true 
for all previous vertices. 

Case 1: We first consider the case where p is the 
circumcenter of a skinny triangle T. Since p is at the 
center of T’s Delaunay circle, its nearest neighbors are 
the vertices of T (see Figure 9), at a distance of r. 
Assume the vertices of T are a, b, c, with the smallest 
angle 0 at c. Then the shortest edge of T is from a to 
b. Call its length d. Without loss of generality, assume 
a was added after b (or that both were in the input). 
We will use the fact that a and b are close together to 
bound Ifs(a) in each of several cases, which in turn will 
bound Ifs(p). 

- \-I 

Case l(a): a was a vertex of the input. Then so 
was b, so Ifs(a) 2 d. 

Case l(b): a was added as a circumcenter of some 
triangle with circumradius r’ < d (since b was 
outside that triangle’s circumcircle). We can apply 
this lemma to a, yielding Ifs(a) 5 r’CT 5 dCT. 

Case l(c): a was the midpoint of a segment that 
was split. Applying this lemma to a now yields 
Ifs(a) 5 dCs, since 6 was outside a’s vertex-free 
circle. 

so we have Ifs(a) 5 dCs, assuming we have the 

satisfy belw 2yhi?z$s ==wi~O,b~oa~~~ 
condition C’s > CT > 1 

geometry gives sin0 = $. Putting this all together, 
Lemma 3.1 gives 

WP) 5 Ifs(a) + r 

using our bound for Ifs(a) we have 

Ifs(p) 5 dCs + r 

=PrCssinO+r 
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This yields the correct bound on r, provided that 
-1. 

It can be checked that the 3 boxed conditions can be 
simultaneously satisfied for any o-5 20’. For instance, 
CT = 1+2sina 

1-2lJZsina' Cs = ,-~>~~oI will work. For 
CY = lo’, we can choose CT = 2.3, and CS = 5. 

Since CT 5 C’S, the lemma shows that when a 
vertex p is added, no other vertex is within a distance 
y of p. The following theorem shows that vertices 
adied later cannot get much closer to p. 

THEOREM 3.1. Given a vertex p of the output 
mesh, its nearest neighbor vertex q is at a distance at 

Figure 10: Lemma 3.2 Case 2: p added to split segment 
s which is encroached upon by a. 

or, since ~9 < a, 

r> 
Ifs(p) 

1+2Cssina 

So we get the desired bound on r as long as we can 
satisfy the condition CT > 1 + ‘LC.5 sin (Y 

[- Case 2: We now consi er t e case w ere a vertex p 
is added to split a segment s. Segment s is split because 
some vertex or circumcenter a is inside s’s diametral 
circle, which has radius r. (See Figure 10.) We have 
two cases for a: 

Case 2(a): a lies on some’ segment t, which cannot 
be incident to s, since we are assuming that all angles 
in the input PSLG are at least 90’. (Any segment 
incident to s makes a larger angle, and hence would 
be completely outside the diametral circle.) So there 
are two non-incident segments, one containing p, the 
other containing a, within a distance r of each other. 
Thus Ifs(p) 5 r. Above, we have assumed the condition 
C’s 2 1, so this case is done. 

Case 2(b): a was a circumcenter, proposed for addi- 
tion to the Delaunay triangulation, but rejected because 
it lay inside the diametral circle of s. Suppose it was 
the center of circle C’ with radius r’. By this applying 
this lemma to a, we know that r’ 1 v. Also, b and c, 
the endpoints of S, must be outside the Delaunay circle 
C’, so r’ 5 fir. Lemma 3.1 gives 

Ifs(p) I Ifs(a) + r 

or 

Proof. The previous lemma handles all but the case 
when q was added after p, in which case we can apply 
the lemma to q and get 

dist(p, q) > $$ 

Lemma 3.1 gives a bound for Ifs(q) in terms of Ifs(p) 
and q’s distance from p, so 

dist(p , q) > Ifs(p) - dist(p, 9) 
cs 

rearranging finishes the proof: dist(p, q) > m 
The next theorem uses an area argument to yield a 

bound on the number of vertices. Intuitively, a region 
of small local feature size requires small triangles, i.e. 
the vertex spacing should be proportional to the local 
feature size. Thus the triangle density in the mesh is 
proportional to the inverse of the square of the local 
feature size. So we will “charge” the cost for each vertex 
to the local feature size around it. 

THEOREM 3.2. The number of vertices in the out- 
put mesh is at most 

Cl J 1 
T-dx, 

B Ifs (x) 

where B is the region enclosed by the bounding square, 
and Cl is a constant to be specified. 

Proof. The previous theorem says that each vertex 
p in the mesh is at the center of an open disk of radius 
m that contains no other vertex. Halving the radii 
g&es non-intersecting disks: let Dp be the open disk of 
radius rp = .$%J centered on p. Since at least one- 
fourth of each Dp is contained in the bounding square B, 
we can lower bound the integral by summing its value 
in the disks Dp for every p in the vertex set V: 

r > Ifs(p) 
- l+d%T 
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By Lemma 3.1, the maximum Ifs( ) attainable in DP is 
Ifs(p) + rr, which gives a bound for SD,: 

J 1 
-dx 1 area 

1 

D, Ifs2(x) =%ED, {!fS2(z)) 

z area(Dp)(lfs(,)l+ rp)2 
Using area = arp2, plugging in for rp, and can- 
celling yields 

J 1 
-dx 2 

D, lfs2(x) (SCSI 3)2 

Substituting back in for the entire integral, 

= lr 2D 
4(2Cs + 3) PEV 

Since the summation merely counts the number of 
vertices in the output mesh, the theorem holds if we 
choose the constant Ci 2 F. 

4 Size-Optimality 

We omit this section except to state the main result. 
The details are given in [12]. The analysis is similar to 
that given by Mitchell and Vavasis in [lo] for their 3D 
algorithm. A series of technical lemmas are proved, with 
the final lemma stating that for any point q within any 
bounded aspect ratio triangulation T of a given input 
PSLG X, the “triangle size” at q is within a constant 
factor of Ifs(q). Th is is what we showed in the previous 
section for the triangulation output by our Delaunay 
refinement algorithm and hence we have the following 
theorem. 

THEOREM 4.1. Given (Y < 20°, and input X, 
suppose 7 is any tn’angulation of X with minimum 
angle bound (Y. There is a constant C, such that if 
7 has N triangles, then our triangulation has at most 
C, . N triangles. Letting 7 be the triangulation with 
fewest possible triangles shows that our triangulation is 
within a factor C, of optimal. 

The constant factor C, depends on the choice of (Y, 
but not on X, i.e. our algorithm is optimal on every 
input, not just in the worst case. We discuss C, more 
in 3 6. 

5 Corner-Lopping and Riemann Sheets 
In this section we discuss two issues that must be re- 
solved so that our algorithm produces optimal bounded 

Figure 11: Do the polygon’s two “arms” determine a 
small feature at p? 

aspect ratio triangulations for general 2-dimensional in- 
puts. These problems have been tackled by previous 
researchers, and here we briefly sketch how to adapt 
their solutions to our algorithm. More details are given 
in [12]. 

First, we must deal with small input angles reason- 
ably (recall that we unreasonably assumed all angles 
were at least go’!). Also, though input angles smaller 
than our minimum angle bound of CY cannot be removed, 
they should be dealt with gracefully. We deal with small 
angles by “lopping off’ the sharp corners as follows. The 
input is preprocessed so as to “shield” any vertex p with 
a small angle by committing in advance to a specific 
triangulation around p. This was previously done in [3] 
with a circle around p, and in the 3D algorithm of [lo], 
a cube was used. We can adapt the technique of [3], 
using circles of radius q, so that the size-optimality 
property will still hold for the output. 

The second issue relates to our definition of local 
feature size in non-convex polygons: in Figure 11, 
do the two “arms” of the polygon generate a small 
feature at p? Our definition says they do, and produces 
small triangles around p accordingly. This could be 
suboptimal if only an interior triangulation of p is 
desired. In particular, the local feature size at p should 
be r, rather than d, as our definition states. As in [lo], 
we modify the definition to use the geodesic distance to 
the 2 nearest non-incident portions of the input. The 
geodesic distance is measured along the shortest path 
that stays within the region to be triangulated (e.g. the 
interior of the polygon). We modify our algorithm to 
work using a constrained Delaunay triangulation, say 
by using Riemann sheet techniques, similar to [lo]. 

6 Implementation and Discussion 
The basic algorithm of f 2 leaves unspecified some issues 
concerning its implementation. We now discuss these 
issues in general, and describe our own implementation. 

An incremental Delaunay triangulation algorithm 
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is ideal as a basis for our algorithm, Guibas and Stolfi 
[7] give a useful implementation. The algorithm allows 
skinny triangles to be split in any order; by always 
splitting the one with the smallest angle, the algorithm 
trades off nicely between mesh size and shape: the 
overall minimum improves as the algorithm continues 
to run (see Figure 13). 

The detection of “encroached upon” segments 
(those containing a point in their diametral circle) can 
be done efficiently by checking some local criteria during 
each update of the Delaunay triangulation. A segment 
is encroached upon if either: (1) It is not present as a 
Delaunay edge (e.g. s1 in Figure 3); or (2) It is present, 
but opposite an obtuse angle in a Delaunay triangle (e.g. 
s2 in Figure 3). 

We have implemented our algorithm, except for 
the corner-lopping and Riemann sheet modifications. 
Though the corner-lopping was required for the opti- 
mality analysis in the presence of input angles below 
90°, in practice, redefinition of a skinny triangle to ex- 
clude small input angles works well in most cases. Some 
configurations with input angles below 10’ can cause too 
many points to be added near that angle. 

Figure 12 shows the output on two examples, each 
with a minimum output angle of 20’. The example on 
the right has several input angles near 15’, which remain 
in the output. 

We now turn to the question of how size-optimal 
the algorithm is. The examples of Figure 12 seem to 
be within a factor of 2-4 times the minimum possible 
size for the given angle bound, so the “true” optimal&y 
constant lies somewhere between there and the value of 
C, of f 4. For a minimum angle bound of 20°, the best 
explicit value we were able to prove for the optimality 
constant C, was C, = 2.1 x 10z5. Though this is the 
first explicitly stated optimality constant for a bounded 
aspect ratio triangulatiou algorithm, the value is clearly 
meaningless as a practical guarantee. Examination of 
the analysis shows much slack that might be tightened 
up, for example a constant of A2K+6, with A a 6, 
K z 4, that we suspect can be replaced by 2K or A’, 
but even shaving off 10 or 15 orders of magnitude would 
not yield a useful value for C,. One would really like a 
stronger proof technique. 

We can make a non-rigorous argument about output 
size using the constant Cs of § 4. It bounds the density 
of points along input segments, and its value indicates 
that at most 5 “layers” of triangles will appear between 
2 nearby input vertices. In Figure 12, we see that short 
segments are not broken up at all, and so there is usually 
only 1 layer. This contrasts with the algorithm in [3], in 
which each input vertex must be isolated within a 5-by- 
5 grid of quadtree squares, yielding at least 2-3 layers 
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Figure 13: Progress of minimum angle, during a typical 
run. Arrow shows when a minimum angle of 20’ is first 
reached. 

of triangles between any two vertices. 
Additional evidence concerning the behavior of the 

algorithm comes from Figure 13, which charts the 
overall minimum angle during a lengthy run on a simple 
input with about 15 vertices. We see the minimum rise 
to about 30° and then level off, except for frequent 
downward spikes when a small angle gets divided in 
two, then quickly improved. The optimality proof says 
that eventually, no spike will drop below the dotted line 
(here, for cy = 200), which would be far to the right of 
the plotted portion of the graph. The arrow points out 
when the algorithm would actually halt for this case. 

We have not analyzed the running time of the De- 
launay refinement algorithm in detail. The worst-case 
running time for incremental Delaunay triangulation is 
O(M’), where M is the output size. In practice, such al- 
gorithms usually run much faster [7]. Much of the time 
is typically taken up locating the triangle containing the 
new point. For non-input vertices, this is simplified in 
our algorithm by starting at the skinny triangle or en- 
croached upon segment being split. 

7 Conclusion 
We have presented a new Delaunay refinement algo- 
rithm for bounded aspect ratio triangulation of planar 
straightline graphs. The algorithm is very simple, and 
quite different from previous techniques. 

There are many opportunities for further work. Can 
the corner-lopping preprocessing step be avoided by 
some technique that splits edges more cleverly than al- 
ways at the midpoints? The algorithm is well-suited 
applications involving adaptive analyses that increase 
mesh density in regions of large error. For problems 
with a solution that changes, mesh reduction is also 
useful-is there a Delaunay based criterion that indi- 
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Figure 12: Output on two sample PSLGs, minimum angle w 20’. 

cates good vertices to delete from the mesh? There rithmica, 4:97-108, 1989. 
are several questions regarding the size-optimality con- 
stants: Can the analysis be significantly improved? Are 
there lower bounds for bounded-aspect ratio triangula- 
tion, even for specific inputs like two c-separated points 
centered in the unit square? Finally, can the Delau- 
nay refinement algorithm be generalized to work for 3D 
triangulation of polyhedra? 
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