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1 Introduction

Linkage analysis attempts to locate genes responsible for a genetic disease by
performing computations on genetic data from a group of related individuals
with a high incidence of that disease. Preliminary analysis can usually suggest
a rough location for a disease gene(s) and limit the search to a portion of a
single chromosome. Blood samples can then be taken from the (available) indi-
viduals in the extended family to determine their genetic profile (or genotype)
at a number of markers within this region of the chromosome. Markers are
identifiable locations on a chromosome (often microsatillite positions or sin-
gle nucleotide polymorphisms) where individual humans are known to show
genetic differences. Because the DNA molecule is linear, these markers can be
ordered into a list. Each individual has two copies of every marker, one from
his or her father and one from his or her mother. Each copy can also be in
two possible states, depending on whether the parent transmitted the marker
from his or her mother or father (the grandparents of the individual).

In general, if a given marker was received (for instance) from the paternal
grandfather, it is very likely that the next marker in the list was also received
from the paternal grandfather. However, meiosis, the process of cell division
which produces eggs and sperm, can create other inheritance patterns. During
this process, the parent’s two chromosomes can “cross-over,” resulting in two
new chromosomes which each contain a portion of the original two. Cross-over,
also known as recombination, occurs when two DNA helices with similar se-
quences intertwine and base pair with each other. Under these circumstances,
the phosphate backbone of one of the helices can break and join with the
that of the other DNA molecule. Because recombination occurs between ho-
mologous regions of the original chromosomes, both new chromosomes have a
complete set of markers, but the ancestry of these markers is mixed between
the grandfather and grandmother of the offspring.

The closer two markers are on the chromosome the more likely it is that
they will be inherited together, since the probability that a recombination
event will separate them is low. Two markers that are widely separated on a
chromosome will almost always have at least one recombination event occur
between them. As a result, two such markers will be inherited together only
50% of the time (i.e. when an even number of recombination events occurs
between them); a pair inherited together more often than this is said to be
linked [1,2]. Thus the number of recombination events that have occurred
between two markers is a distance measure which can be statistically correlated
with the pattern of disease incidence in the extended family. This correlation
gives insight into where on the chromosome the disease gene is located and
is referred to as linkage analysis. The mathematical theory behind linkage
analysis dates to work done by Fisher, Haldane and Smith, and Morton, who
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used maximum likelihood to infer genetic maps from imperfect data [3–5].
As genetic marker data becomes increasingly prolific and cheap to obtain,
computational techniques like linkage analysis will become correspondingly
more powerful.

Two algorithms are commonly used for the linkage analysis problem. The al-
gorithm described by Elston and Stewart scales linearly with the number of
individuals in the pedigree, but exponentially with the number of markers [6].
In 1987, Lander and Green proposed a complementary algorithm with linear
scaling in the number of markers but exponential scaling in both time and
memory in the number of individuals in the pedigree [7]. Lander and Green’s
algorithm is widely used for multipoint linkage analysis: i.e. problems where
many markers are correlated simultaneously. Unfortunately, many researchers
are interested in analyzing datasets which are too large for current implemen-
tations of the algorithm. As we discuss below, the code we have modified,
Genehunter 2.1 [8,9], sets a hard-coded limit of 16 offspring individuals in an
analysis. In addition, even problems smaller than this can require significant
amounts of memory and CPU time on single-processor systems. For instance,
a dataset we have analyzed with 14 individuals requires 1GB of memory and
runs for 2.6 hours on a 650MHz Pentium III. When one realizes that adding
even a single person to this analysis (15 individuals) quadruples both time
and memory requirements, the scope of the problem becomes clear.

Dwarkadas et. al. have previously presented a shared-memory parallelization
of a linkage analysis code; however, it was not designed to scale to more
than a few processors [10]. Here we present a parallel version of the Lander
and Green algorithm that has been implemented in the Genehunter program;
to our knowledge it is the first distributed-memory implementation of the
algorithm. Because the Lander and Green approach scales exponentially, very
large pedigrees will always remain out of reach with this algorithm. However,
we show that our parallel version of Genehunter extends the range of possible
analyses up to 20-22 individuals. In addition, because of the flexibility of our
message-passing implementation, this new version of Genehunter can be run on
diverse hardware platforms, from shared-memory workstations to massively-
parallel supercomputers.

The Lander and Green algorithm is based on a novel representation of inher-
itance data. These authors point out that the inheritance of a genetic locus
in a pedigree can be completely described by identifying from which parental
chromosome each child derives its alleles at that locus. Figure 1 presents a
simple example of this principle. Two parents (who are termed founders be-
cause their parents are not present in the pedigree) have a single offspring.
Each parent has two copies of the locus in question. The father (top square)
has different alleles (versions of a gene) at this locus: an A from his father
and an a from his mother. The mother (circle) is homozygous: she received
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an A’ from both parents. When considering the offspring (bottom square),
we can describe the offspring’s two alleles at this locus simply by indicating
in binary coding whether he received the allele from his grandfather or his
grandmother. In this case, we can unambiguously state that he received an A
from his paternal grandfather and designate his parental chromosome with a
0. On the maternal chromosome we cannot unambiguously determine whether
the offspring received his allele from his maternal grandmother or grandfather.
We therefore must consider both possibilities throughout the analysis, leaving
this chromosome coded as 0/1.

This example is artificial because we assume that the phase of the two parents
is known: i.e. that we can distinguish paternal from maternal chromosomes. In
fact, this is generally not the case; instead, common algorithms assign defini-
tions of maternal and paternal to founders. Since this assignment is arbitrary,
it is referred to as founder-phase symmetry.

Lander and Green’s algorithm works by representing each possible inheritance
pattern for the pedigree as a string of 2n bits, where n is the number of
non-founding individuals in the pedigree (a single offspring in the example
above). In fact, we can make use of the founder symmetry described above,
so that instead of considering all 2n bits, picking a definition of maternal and
paternal for each founder allows us to reduce the size of the representation to
2n− f , where f is the number of founders in the pedigree. For details of this
modification, see [8].

One limitation of Genehunter 2.1 as written is that 32-bit integer data types
are used as binary masks by the code. Thus (on standard platforms), the
code has a hard limit of 2n ≤ 32, or 16 non-founding individuals, which is
also roughly the limit of what is computationally feasible on modern single
processor systems. Note that 2n and not 2n− f is limited, due to constraints
in the manner in which inheritance patterns are stored. In order to make
use of the increased computing power and memory available on distributed
memory machines, we have increased this limit to 2n ≤ 64 by replacing the
32-bit integers with a 64-bit integer type. Use of the 64-bit integer rather than
a custom datatype was necessary to maintain the structure of the code as
written, but this new upper limit should be sufficient for any computationally
feasible analysis.

Although any given inheritance pattern can be represented in 2n − f bits,
uncertainties about the actual pattern of inheritance at each locus (as in the
maternal chromosome above) means that no single pattern will represent the
data exactly. Instead, a (possibly zero) probability is assigned to each of the
22n−f possible inheritance patterns (an inheritance vector of probabilities) at
each marker in the map. In multipoint linkage analysis, it is assumed that one
has a genetic map containing the recombination distance between each pair
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of markers. Using this map information, it is conceptually straight-forward
to use a Markov-chain approach to calculate the probability of each marker,
conditional on all of the markers before or after it on the map. Consider
two markers m1 and m2 separated by a recombination distance θ (in other
words, two markers which undergo recombination between each other with
probability θ). For each of the possible inheritance patterns j in m1, define a
distance d(i, j) between pattern j and each possible pattern i in m2. Any bit
position where i and j differ implies a cross-over event. Thus we compute d(i, j)
as the Hamming distance between i and j. The probability of the transition
between pattern j at m1 and pattern i at m2 is given by

θd(i,j) · (1− θ)2n−f−d(i,j) (1)

Using this formula, one can create a transition probability matrix M(i, j)
where the i, jth entry gives the probability of the transition from inheritance
pattern i to j, as calculated by (1). Given inheritance probability vectors P1

and P2 (containing the probability of every inheritance pattern at marker
1 and 2, respectively), we can calculate P2|1 (vector of inheritance pattern
probabilities at marker 2 conditional on the probabilities at marker 1) by:

P2|1 = P2 ◦ (M · P1) (2)

where ◦ represents a component-wise vector product. (2) can be then applied
iteratively to calculate any required conditional probability vector (i.e. using
Pi|i−1 to compute Pi+1|i). This Markov-chain approach is an O((22n−f )2) time
algorithm, but the structure of matrix M allows the matrix-vector multiplica-
tion to be performed as an FFT, reducing the complexity of the Genehunter
algorithm to O(22n−f · log2(22n−f )) [11]. It is important to note that although
M is a convenient mathematical description of the transition probabilities, its
structure is such that there are only 2n − f + 1 distinct entries; no object of
size 22n−f × 22n−f need ever be stored in the linkage analysis computation.

2 Genehunter Computation

The Genehunter 2.1 software [9] uses the above algorithm to compute like-
lihood and non-parametric scores for the occurrence of a disease gene at a
number of user-requested locations in a genetic map. Genehunter’s computa-
tion proceeds in three distinct stages:

(1) Calculation of the probability of each possible 2n − f -bit inheritance
pattern for each marker and for the disease gene. Calculation of a non-
parametric statistic for each inheritance pattern.
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(2) Calculation of the conditional inheritance probabilities for each marker,
conditioned on all markers to the right of it in the map and on all markers
to the left. We refer to this operation as ”walking” up or down the map,
using at each marker the results of the last marker to calculate conditional
probabilities with equation 2.

(3) Calculation of likelihood and non-parametric scores for the requested
disease location(s). In Genehunter, scores are calculated for placing the
disease gene at each marker and at a default of five evenly-spaced points
between every pair of markers.

In addition to the FFT mentioned above, Genehunter 2.1 introduced an im-
portant improvement, based on the insight that some of the 22n−f possible
inheritance patterns will be precluded by the observed genotype data and can
be ignored. Recall that in the example in figure 1 the offspring’s allele on the
paternal chromosome could not have been inherited from the paternal grand-
mother. Therefore inheritance patterns of the form 1* can be ignored. Clearly,
each restriction of this kind reduces the number of possible inheritance pat-
terns by half, since each restriction excludes one of the two settings at a bit
position. Thus, for many pedigrees, these restrictions substantially reduce the
problem size. (For the full details of this improvement, see [9]). This improve-
ment reduces the size of the vectors used to store inheritance probabilities
from O(22n−f ) to O(22n−f−k), where k is the number of inheritance bits that
can be unambiguously determined, or fixed. There is also a similar effect on
running time.

3 Memory requirements in Genehunter

On many computers, linkage analysis problems are limited by the amount of
available memory, rather than running time (unpublished data). The mem-
ory requirements for Genehunter consist of two distinct parts: the memory
needed to store the inheritance probability vectors for the markers and the
memory required to store the inheritance probability vectors for the disease
phenotypes (i.e. which individuals are affected with the disease). This second
vector stores the probability of seeing the observed disease phenotypes in the
pedigree for each inheritance pattern. Because of the non-deterministic map-
ping of genotype to disease phenotype, it is impossible to definitively exclude
any inheritance patterns. As a result, the vector of inheritance probabilities
for the disease always requires O(22n−f ) memory. (It is possible to perform
non-parametric linkage analysis which does not always require storing a vec-
tor of this size; however the computation has an identical form, and we will
not discuss it here). In the worst case, the amount of memory required for
all the marker probability vectors could be as high as O(m22n−f ), where m is
the number of markers. However, the presence of fixed bits in the dataset will
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almost always mean that the actual memory requirements for a given dataset
are significantly lower.

4 Parallelization Approach

In order to allow larger problems to be solved, a scalable parallelization scheme
for Genehunter must partition both the computation and memory. We discuss
the parallelization of each of the 3 steps described above separately. The I/O
requirements for Genehunter are typically quite small (no more than a few
hundred lines of text input and postscript output), meaning that parallel I/O
is not a significant bottleneck.

4.1 Step 1

Step 1 is the most straight-forwardly parallelizable part of Genehunter. The
purpose of step 1 is to calculate, for each inheritance pattern, the probability of
that pattern at each marker, the probability of that pattern given the disease
phenotype data, and the non-parametric score for that pattern. The non-
parametric scores and disease probabilities are independent; thus they can
simply be divided evenly across processors, so that each processor owns and
operates on inheritance probability sub-vectors of length 22n−f/P , where P is
the number of processors.

The distribution of the marker vectors is slightly more tricky: each marker
has a vector of size 22n−f−k, where k is the number of fixed bits for that
particular marker. One possible approach would be to store entire inheritance
probability vectors on each processor, i.e. each processor would be assigned a
fraction m/P of the m marker vectors. However, the size of each vector varies
considerably from marker to marker depending on k (the number of fixed
bits), making load-balancing with this approach problematic. Our strategy of
having each processor store a fraction 22n−f−k/P of every marker vector is
better balanced.

4.2 Step 2

Step 2 consists of calculating, for each marker mi, the vector of inheritance
probabilities Pi|1..i−1 (probability of each inheritance pattern at mi conditioned
on markers m1 through mi−1) and the vector Pi|i+1..m (inheritance pattern
probabilities conditioned on markers mi+1 through mm). This calculation is
performed using FFTs in the conceptual manner of equation 2.
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For the moment, assume that each processor has all the elements of the con-
ditional probability vector at mi−1 needed to compute the conditional prob-
abilities at mi. (Since the vectors at mi−1 and mi are not typically the same
length this is not a valid assumption; we deal with this additional data move-
ment complexity below.) The calculation itself consists of first using an FFT
to compute a matrix-vector product similar to that seen in (2). The presence
of k fixed bits at a marker means that the size of the probability vector is
22n−f−k and the matrix has effective dimension 22n−f−k × 22n−f−k.

In Genehunter, the matrix-vector multiply is replaced by an FFT-based con-
volution, with forward 1d FFTs on vectors of length (N =)22n−f−k, followed
by an element by element multiplication and an inverse FFT. Note that for
large n, these 1d FFTs are still quite computationally intensive. Note also that
the elements of each N-length vector are distributed across the P processors
in contiguous chunks. Conceptually this data layout can be viewed as a 2d
matrix of values with P rows and N/P elements in each row and each proces-
sor owning a row of the matrix. The FFT operation can then be parallelized
the same way that a 2d FFT is performed on a distributed memory parallel
machine. 1d FFTs of length N/P are first performed within each row (an on-
processor computation). Then a matrix transpose is performed which requires
all-to-all communication between the processors, followed by a series of 1d
FFTs of length P on data that is now local to each processor. The inverse
FFT simply reverses this process.

The result of the FFT calculation is a new conditional probability vector of
the same size as the original, still distributed evenly among the processors.
The remaining calculation is a component-wise vector product between every
element of the probability vector at mi and the corresponding element in this
new conditional probability vector, yielding a vector of the size of the original
vector at mi. This calculation can be done very efficiently in parallel with each
processor calculating a component-wise product with its particular portion of
the probability vector.

4.3 Step 3

Conceptually, step 3 is very similar to step 2. The major difference is that
in step 2 we calculated the conditional probability of all of the inheritance
patterns at a marker given the markers to the left or right, while in step 3
we are calculating the probability of the disease gene being at position x in
the map, given the markers to the left and right of x. This probability can be
written as

p = PD · Px|1..i · Px|i+1..m (3)
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where PD is the disease vector and Px|1..i and Px|i+1..m are calculated in the
manner of equation 2. Non-parametric scores are calculated in a similar man-
ner using the non-parametric scores rather than PD. An FFT is used with
the conditional probabilities calculated in step 2 to calculate the conditional
probability of each inheritance pattern at the point x from the marker at left
and at right. In this case, θ is given by the distance between the marker and
x. Once again, the calculation of this dot-product can be done efficiently in
parallel once each processor has the data needed for its part of the calculation.

The above description must be modified somewhat for certain values of x.
In general, x is at some point between two markers. However, x can also be
positioned at a single marker. This difference does not affect the overall form
of the computation shown in (3), but, because the conditional probabilities at
each marker are already known, the on-marker case does not require an FFT
to calculate them.

4.4 Redistribution of marker vectors for computation of vector products

In the above discussion we ignored one very important complication. If all
marker vectors were of size 22n−f , the computation of dot and component-
wise vector products between markers could be trivially distributed among
processors, because element i in one marker could be mapped directly to the
same element i in any other marker. However, the introduction of k fixed
bits at a particular marker location means that a particular marker vector is
actually of length 22n−f−k. Since the values of k for adjacent markers are often
different, the data layout of the 2 marker vectors is also different, redefining the
mapping between inheritance probability vectors. Fixed bits are represented
using bit masks of length 2n − f with 1s at positions where the fixed bits
occur. Figure 2 gives a possible configuration of the fixed bit masks for two
adjacent markers m1 and m2. Note that the value at which each of these bits
is fixed is also required and is shown in figure 2.

Only non-fixed bits are stored in inheritance probability vectors. Thus, in
figure 2, marker m1 would have a size of 26 and marker m2, 27. Suppose we
have an inheritance pattern i1 at marker m1 for which we would like to know
what inheritance pattern i2 that it corresponds to in the variable bit space
of marker m2. Starting with i2 = i1, we first note that any fixed bits ks that
are common to both markers (such as the last bit in figure 2) are already
absent from i1 and can be ignored from this point on. We next define two new
operations for the mapping of indices between markers: (1) If m1 has k1 fixed
bits not present in m2, (boxed in figure 2) we look up the value of those fixed
bits and insert them in the appropriate locations of i2. Thus index i2 now has
length 2n − f − ks + k1. (2) If m2 has fixed bits not present in m1 (shown
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underlined in figure 2), we drop those k2 bits from i2. The final size of i2 is
therefore 2n− f − ks + k1 − k2.

Consider converting the example index i1 = 010110 at marker m1 to i2 at m2.
The fixed bit in the ones position has already been removed from i2, and can
be ignored. First, we insert three fixed bits into i2 at the locations specified in
the mask. This gives us 011001110 (figure 2 shows the inserted bits boxed).
We now drop the two fixed bits present at m2 but not m1 (shown underlined
in figure 2). The result is i2 = 1100110.

Unfortunately, the above process of adding and removing bits may result in
the need to access indices (and the associated data) that are owned by other
processors. If we assume we have 2p processors for some integer p, we can
visualize the processor distribution of each marker by writing a bit-string of
the length of each marker and drawing a line through it after p bits. This op-
eration is shown in figure 2 for an eight-processor (3-bit) distribution. For our
example index above, we see that i1 = 010|110, meaning that i1 is located on
processor 010 (2). However, we find that i2 = 110|0110, meaning i2 is located
on processor 110 (6). Clearly, we may need to redistribute probability vectors
when we compute the dot or component-wise products between markers.

This redistribution may at first appear to be costly, but the bit patterns in the
data allow the construction of reasonably efficient communication routines. It
is first convenient to represent the source and target masks in their partner’s
variable bit space. Thus, the target mask in the source representation shows
all the locations in the target (m2) where there are fixed bits not present in the
source (m1). The symmetric situation applies for the source mask represented
in the target configuration. Figure 3 gives examples for the masks in figure 2.

We can now use these two new masks and apply the same procedure of consid-
ering only the highest log2(2p)-order bits in each mask. We will refer to these p
bits as the processor-order bits. For eight processors, m1 in m2’s representation
is 011|0100 and m2 in m1’s representation is 100|100. The first thing to note
is that if the processor-order bits in the masks are all zeros, each processor
already has its required data on-processor and no communication is needed.
This case is actually fairly common when the number of processors is small
relative to 22n−f . There are, however, two other cases to consider.

First, there may be fixed processor-order bits in the target not in the source.
This implies that processors whose ranks do not match the processor-order
values of those fixed bits will be idled. For instance, in figure 3, only pro-
cessors with ranks of the form 1** will contribute source probabilities to
the computation. The communication algorithm based on this observation
is straight-forward: the subset of vectors contained on non-idled processors is
evenly redistributed on all processors using a scatter operation. For the exam-
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ple in figure 3, processors 100 through 111 will send their data to processors
000-001, 010-011, 100-101, and 110-111, respectively.

The second case is when there are processor-order fixed bits in the source
not in the target. This situation results in reuse of elements in the source
vector. In this case the processor-order fixed bits create equivalence classes of
processors which all need identical data. Every such fixed bit doubles the size
of the resulting data vectors and halves the number of equivalence classes. For
instance, in figure 3, processors are grouped into two equivalence classes based
on the value of their rank’s highest order bit position (thus one equivalence
class is 000-011 and the other is 100-111). We refer to these equivalence
classes as ”blocks”. Each member of a block will need the complete set of
probabilities common to all members of the block.

Using the current data layout and mask values, we invoke a unit time exchange
operation where processors put their current data onto a processor that will
need it. Once this exchange has taken place, the data for each block is evenly
distributed among the block members and can be collected using a logarithmic
time gather operation within each block.

In step 3, the target is the disease probability vector, which has no fixed bits,
meaning that we only need to consider fixed bits in the source (the second case
above). In this step, there are actually two communication schemes required,
depending on whether x is positioned on a marker or between two markers:

• For the general case when x is between two markers, we use the above
scheme: a unit-time point-to-point exchange followed by a gather that takes
place within each block and results in each processor obtaining a complete
copy of that block.
• If x is on a marker the situation is simpler. For this on-marker calculation

any inheritance pattern that does not have appropriate fixed bit values for
the marker can be ignored. Thus, we need only consider a subset of size
22n−f−k of the disease vector, which is distributed according to the fixed bit
mask for that marker. If no fixed bits intrude into the processor order-bits,
communication is unnecessary. Otherwise, any processor with a rank that
does not have the correct value of those fixed bits is idled. The remaining
non-idle processors R each require 22n−f−k/R of the marker vectors. This
distribution can be easily accomplished with a gather operation, where the
marker vectors on P/R processors are gathered onto the single processor
that requires them.

Unfortunately, since some processors are idled, this on-marker communication
scheme introduces load imbalance. However, the on-marker computation is
fast relative to that used between-markers, and the communication required
to evenly distribute data for the on-marker calculation would be prohibitively
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expensive.

The parallel complexity of step 3 depends on several parameters. The total
size of a marker vector is N = 22n−f−k, of which N/P is stored on each
processor. For the parallel FFT (section 4.2), the serial runtime is O(N ·logN),
which in parallel is decreased to O(N/P · logN). Our implementation of the
parallel FFT requires each processor to exchange half its data with another
processor log(P ) times, incurring a bandwidth cost of O(logP · N/P ) and a
latency cost of O(logP ). The second part of the parallel complexity of step
3 is the communication routines required to assemble the marker vectors for
the computation of the likelihood value (see section 4.3). This communication
step is of course unnecessary in the serial code, but the trade-off is that the
serial computation of the likelihood requires O(22n−f ) work. In parallel, this
computation is reduced to O(22n−f/P ) work, but requires a communication
overhead. The size of this overhead depends on k′: the number of processor-
order fixed bits for the marker (in figure 2, k′ is 1 for marker m1). The required
communication is essentially a series of gathers over groups of 2k

′
processors

and thus requires O(2k
′ ·N/P ) bandwidth with a latency of O(k′). These values

hold both for the between-marker and on-marker calculation.

In step 2, there can be arbitrary combinations of target and source fixed
bits. Thus, the two communication schemes described above must be slightly
modified. Instead of the blocks being originally distributed on all processors,
they are only distributed on the non-idled ones (where the processor ranks
match the fixed bit values). This means that one processor may hold a much
larger fraction of the necessary data. Thus, in the first scheme above, instead
of every processor sending its current data to another processor, only the non-
idled processors send data. Once this exchange is finished, any further collect
or broadcast operations needed to complete the communication are performed.

The parallel complexity of step 2 is rather more elaborate than that of step
3, as it depends on both k′1 and k′2 (the processor order-fixed bits at the
current marker and the next marker, respectively). Recall that the marker
data is of size N = 22n−f−k1 . In addition to the complexity of the parallel FFT
already discussed, there are two situations to consider. First, if k′2 > k′1, there
is point-to-point communication requiring O(N/(P · 2k2−k′2)) bandwidth and
O(2k

′
2−k

′
1) latency. This communication is followed by a broadcast requiring

O((k′1 · 2k
′
1 ·N)/(P · 2k2)) bandwidth and O(k′1) latency. If, on the other hand,

k′1 ≥ k′2, then there are gather operations requiring O((2k
′
1 · N)/(P · 2k2))

bandwidth and O(k′1 − k′2) latency. This is followed by a broadcast requiring
O((k′2·2k

′
1 ·N)/(P ·2k2)) bandwidth andO(k′2) latency. The extraO(k′1) orO(k′2)

bandwidth requirements in broadcast operations are inefficiencies required by
these special data layouts.
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4.5 Founder symmetry lookups

There is one final wrinkle to the communication routines above involving the
founder-phase symmetry state space reduction. Founder symmetry occurs in
sibships, or groups of siblings. Essentially, in a sibship of s siblings where
one parent is a founder, one of the s bits in that sibship for the founder’s
chromosome can be eliminated. However, if some of the other s−1 bits for the
sibship are fixed, we must also consider the complementary assignment of the
founder-phase. Thus, if there is one sibship with a fixed bit, for each inheritance
pattern calculation, we will need to look up two indices: one with the original
founder-phase assignment and one with the complementary assignment. This
operation corresponds to ”flipping” all of the variable bits in that sibship.
When we distribute this calculation, we must check to see if any of these
founder sibling ”flips” intrude into the processor-order bits. When this occurs,
it means that each processor will require another block in addition to the one it
already has. We handle this by looping over the above communication routines
for each founder-symmetry case required. It is important to note that these
flips may change the values of the fixed bits, but this is handled transparently
by the above algorithm.

4.6 Entropy calculation

Each inheritance pattern has an associated non-parametric linkage (NPL)
score. However, these scores are not in general unique (meaning that several
inheritance patterns may yield the same NPL score). Genehunter maintains a
list of all unique NPL score values and uses this list to calculate positional en-
tropies during the computation. The list of unique NPL scores is implemented
in Genehunter as an array which must be linearly searched 22n−f times at
every position in step 3. To improve performance, we have replaced the array
with a standard binary search tree (BST), which offers reasonable performance
improvements even in the serial code (data not shown).

In the parallel code, each processor maintains a BST of all the unique NPL
scores stored on that processor. The proportion of the total probability ac-
counted for at each position by each of these scores is also stored locally. How-
ever, to actually compute the entropy, we must make sure that each unique
NPL score is represented exactly once over all processors. The difficulty is that
the list of unique NPL scores could potentially be too long to store on a single
processor. We have therefore implemented a progressive reduction strategy. It
starts by broadcasting the first processor’s list of unique scores to all other
processors. Any other processor that also has one of these scores removes it
from its BST and returns the associated probabilities to processor 0. This
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process is repeated for each processor, broadcasting scores only to those pro-
cessors with higher rank. The result is that each score is represented exactly
once, although the progressive nature of the operation means that, on average,
lower ranked processors have more scores to handle. This load imbalance is
not generally large (unpublished data).

5 Performance

We have analyzed the performance of our algorithm on Sandia National Lab-
oratories’ Cplant cluster. Cplant consists of several hundred DEC Alpha EV6
processors connected via Myrinet. Two different types of performance analysis
were carried out. First, we used the new 64-bit version of the code to run a
problem of size 2n = 42, which is a thousand times larger than was possible
with the original 32-bit version of Genehunter, even assuming unlimited time
and memory were available. (The dataset used for this example was a scaled-
up version of the chromosome 6 data discussed below.) On 128 processors,
this problem runs in 5 hours, requires approximately 34GB of memory, and
demonstrates that our code has extended the limits of possible analyses with
Genehunter.

We next analyzed the parallel performance of our code. We ran two different
datasets: a 10cM chromosome 1 genotype screen of a 51 member family with
a genetic skin disease, vitiligo (genotypying done using the Prism Linkage
Mapping Set Version 2 (LMSv2-MD10) panel of microsatellite markers from
Applied Biosystems) (analysis size was 2n− f = 21 bits) and a 5cM chromo-
some 6 genotype screen of a 29 member family having 13 members affected
with multiple lentigenes syndrome, an autosomal dominant disorder (geno-
typying done using the ABI Linkage Mapping Set version 2.5-MD10, Applied
Biosystems, Foster City CA and ABI Linkage Mapping Set version 2.5-MD5).
For this second dataset we ran two problem sizes: a 2n− f = 19 bit problem
and a 2n − f = 23 bit problem. The 23 bit problem has 2n = 34, meaning
that it could not be run with the original version of Genehunter. Figure 4
shows the overall runtime performance of these problems on different num-
bers of processors and the corresponding efficiency of each problem for these
processor counts. A line of perfect scaling for each problem size is included for
reference in figure 4a, which would correspond to 100% efficiency in figure 4b.

As mentioned above, pedigree analyses are often limited by available memory
rather than CPU time. We therefore also show how the memory usage in
the largest problem size in figure 4 scales with processor counts (figure 5).
Although memory scaling is imperfect as high processor counts are reached,
the algorithm nonetheless shows reasonable scalability in memory.

14



Figure 4 raises the question of where scaling is falling off in the algorithm.
For the chromosome 6, 19 bit dataset (the largest for which we have single
processor timings) fully 60% of the difference between the ideal and actual
runtimes is accounted for in the entropy reduction step (see section 4.6), a
communication routine not required by the serial code. 5% of the remaining
difference appears to be due to communication costs in the parallel FFT (com-
munication and computation are closely interleaved in this routine, preventing
us from explicitly timing the FFT communication). Remaining parallel costs
include the step 2 and 3 marker reorganizations (< 1%), start-up and I/O
costs ( 11%) and re-computation in step 1 ( 8%). There are also other factors
which may limit scalability. One is the disparate sizes of the different marker
vectors. For our datasets, markers sizes may range from less than 210 up to
full size (22n−f ). To avoid dividing a marker onto more processors than it has
bits, we have set a limit L(= 28 for the 19 and 21-bit datasets and = 211 for
the 23 bits dataset in figure 4), such that any markers with fewer than L bits
are analyzed in serial. At some point, these serial markers may begin to have
an impact on running time.

The above problems are good tests of our parallel algorithm because they have
different runtime features. In particular, the chromosome 1 dataset is memory-
limited, which is likely why super-linear speed-up is seen between 2 and 16
processors. The chromosome 6 dataset is not memory limited, and thus its
scaling falls off more rapidly for the 19 bit analysis as runtimes become short
(the 64-processor running time for the 19-bit dataset was 98 seconds). Because
the chromosome 6 dataset has a large number of fixed bits which reduce its
memory requirements, steps 2 and 3 also require more communication and
hence do not scale as well as the chromosome 1 dataset. Clearly, however, the
larger version of the chromosome 6 problem (23 bits) scales quite well (single
processor times for this problem are not available due to memory constraints).
Although scaling does drop off in each of these cases, it is encouraging that
our largest problem scales well even on 64 and 128 processors, suggesting that
this code should extend to very large problems in a reasonable way.
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Figure Captions

Figure 1: An example pedigree used to illustrate Lander and Green’s ap-
proach to representing inheritance patterns as binary strings. Alleles at this
locus are represented by the letters A, a, and A’. Symbols above each allele
indicate whether that allele was inherited from the mother or father of the
individual in question.

Figure 2: Examples of fixed bit masks for two markers, m1 and m2. Masks for
the location of fixed bits are shown, with the corresponding fixed bit values in
the next column. Boxed and underlined fixed bits indicate cases where that bit
is fixed only on the source or target, respectively. The lower half of the figure
shows the mapping of an index in m1 representation into m2 representation.

Figure 3: Example showing the masks in figure 2 in each other’s representa-
tion (see text).

Figure 4: Algorithm scaling for three problems, one on chromosome 1 and two
on chromosome 6 (see text for details). A: Running times for different problem
sizes by processor counts. (Linear scaling curves are shown for reference.) B:
Efficiency for different processor counts.

Figure 5: Memory scaling for the largest problem analyzed in figure 4 (23
bits, chromosome 6). A linear scaling curve is shown for reference.

17



A a A’ A’

A A’

Figure 1



Figure 2

m2

Mask
• 1=Fixed
• 0=Variable

1000010001 000 0000

m1 000 000

1****0***1

**10**1**0

Fixed bit 
values

Using the above, we can map an index from m1 (i1) to m2 (i2)

i2=i1=010110 011001110 011001110

Remove 2 fixed bits

1100110=i2

Insert 3 fixed bits

0011001001

Marker
Marker 

size

26

27

Division of 
variable bits on  8 

processors

Indices per 
processor

23

24



Figure 3

Marker m1:

Mask in target representation

100100

1**0**

Fixed bit values:

Marker m2:

Mask in source representation

0110100

*10*1**

Fixed bit values:



10

100

1000

10000

100000

1 2 4 8 16 32 64 128

T
im

e 
(s

ec
)

A) Runtimes

Figure 4

Performance of Three Example Problems

Number of Processors

Chromosome 6 (23 bits)
Chromosome 6 (19 bits)
Chromosome 1 (21 bits)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 4 8 16 32 64 128
E

ff
ic

ie
nc

y

�

B) Efficiency 

Chromosome 6 (23 bits)
Chromosome 6 (19 bits)
Chromosome 1 (21 bits)



10

100

2 4 8 16 32 64 128

M
em

or
y 

U
sa

ge
 (

M
B

/P
ro

ce
ss

or
)

Number of Processors

Memory Usage for an Example Problem

Figure 5


