
Table of Contents
Pizza.py Documentation..1
1. Introduction..3
2. Installing Pizza.py..5
3. Basics of using Pizza.py..12
4. Tools within Pizza.py..17
5. Example scripts..20
6. Extending Pizza.py..21
animate tool..22
cdata tool..23
chain tool..26
clog tool...27
data tool..28
dump tool...30
gl tool...33
gnu tool..35
histo tool..37
image tool..38
log tool...39
matlab tool...40
pair tool..42
patch tool..43
pdbfile tool...44
plotview tool..46
rasmol tool...47
raster tool...48
svg tool...50
vcr tool...52
vec tool...54
vtk tool...55
xyz tool..55

i

Pizza.py Documentation

(1 Oct 2006 version of Pizza.py)

Pizza.py is a loosely integrated collection of tools written in Python, many of which provide pre− and
post−processing capability for the LAMMPS molecular dynamics and ChemCell cell simulator packages.
There are tools to create input files, convert between file formats, process log and dump files, create plots, and
visualize and animate simulation snapshots.

The name Pizza.py is meant to evoke the aroma of a collection of "toppings" that the user can combine in
different ways on a "crust" of basic functionality, with Python as the "cheese" that glues everything together.

The maintainer of Pizza.py is Steve Plimpton at Sandia National Laboratories, a US Department of Energy
(DOE) laboratory. Many of the tools were written by Matt Jones, a BYU student who spent a summer at
Sandia. The Pizza.py WWW Site at www.cs.sandia.gov/~sjplimp/pizza.html has more information about
Pizza.py and its uses.

The Pizza.py documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to sjplimp@sandia.gov so we
can improve the Pizza.py documentation.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is Pizza.py
1.2 Open source distribution
1.3 Acknowledgements

1.

Installing Pizza.py
2.1 Installing Python
2.2 Running Pizza.py
2.3 Setting up the DEFAULTS.py file
2.4 Installing additional Python packages
2.5 Installing other software

2.

Basics of using Pizza.py
3.1 Python syntax
3.2 Pizza.py command line arguments
3.3 Pizza.py extensions to the Python interpreter
3.4 Using Pizza.py tools
3.5 Runnning Pizza.py and Python scripts
3.6 Error messages

3.

Tools within Pizza.py4.
Example scripts5.
Extending Pizza.py6.

List of tools in Pizza.py:

animate.py
Animate a
series of image
files

cdata.py

Pizza.py Documentation 1

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp
http://www.sandia.gov
http://www.doe.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.easysw.com/htmldoc

Read, write,
manipulate
ChemCell data
files

chain.py

Create
bead−spring
chains for
LAMMPS input

clog.py

Read ChemCell
log files and
extract species
data

data.py

Read, write,
manipulate
LAMMPS data
files

dump.py

Read, write,
manipulate
dump files and
particle
attributes

gl.py
3d interactive
visualization via
OpenGL

gnu.py

Create plots via
GnuPlot
plotting
program

histo.py
Particle density
histogram from
a dump

image.py
View and
manipulate
images

log.py

Read LAMMPS
log files and
extract
thermodynamic
data

matlab.py

Create plots via
MatLab
numerical
analysis
program

pair.py

Compute
LAMMPS
pairwise
energies

Pizza.py Documentation 2

http://www.gnuplot.info
http://www.mathworks.com

patch.py

Create patchy
Lennard−Jones
particles for
LAMMPS input

pdbfile.py

Read, write
PDB files in
combo with
LAMMPS
snapshots

plotview.py
Plot multiple
vectors from a
data set

rasmol.py
3d visualization
via RasMol
program

raster.py
3d visualization
via Raster3d
program

svg.py
3d visualization
via SVG files

vcr.py

VCR−style GUI
for 3d
interactive
OpenGL
visualization

vec.py
Read columns
of numbers
from a file

vtk.py

Convert
LAMMPS
snapshots to
VTK format

xyz.py

Convert
LAMMPS
snapshots to
XYZ format

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

1. Introduction

These sections describe what Pizza.py is, what it means to be open−source software, and acknowledge the
funding and people who have contributed to Pizza.py.

1.1 What is Pizza.Py
1.2 Open source distribution
1.3 Acknowledgements

1. Introduction 3

http://www.openrasmol.org
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.w3.org/Graphics/SVG
http://www.cs.sandia.gov/~sjplimp/pizza.html

1.1 What is Pizza.py

Pizza.py is a loosely integrated collection of tools, many of which provide pre− and post−processing
capabilities for the LAMMPS molecular dynamics and ChemCell cell simulator packages.

There are tools to create input files, convert between file formats to connect to other codes, process log and
dump files, plot output, and visualize and animate simulation snapshots.

Python is used in Pizza.py in 3 ways:

to provide an interactive and scripting interface to the tools•
as a language for writing tools•
to wrap existing stand−alone codes•

Python makes it easy for users of Pizza.py to:

experiment with tools interactively•
automate tasks as script files of commands•
extend tools or create new ones•

The topmost level of Pizza.py adds a modest bit of functionality to the Python interpreter to make it easier to
invoke tools and pass data between them. As such, Python is an ideal "framework" or "glue" language that
enables various tools to be hooked together, while also providing a rich programming environment of its own.

1.2 Open source distribution

Pizza.py comes with no warranty of any kind. As each source file states in its header, it is distributed
free−of−charge, under the terms of the GNU Public License (GPL). This is often referred to as open−source
distribution − see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is in the
LICENSE file that is included in the Pizza.py distribution.

Here is a summary of what the GPL means for Pizza.py users:

(1) Anyone is free to use, modify, or extend Pizza.py in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of Pizza.py, it must remain open−source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of Pizza.py.

(3) If you release any code that includes Pizza.py source code, then it must also be open−sourced, meaning
you distribute it under the terms of the GPL.

(4) If you give Pizza.py to someone else, the GPL LICENSE file and source file headers (including the GPL
notices) should remain part of the code.

In the spirit of an open−source code, these are various ways you can contribute to making Pizza.py better.
You can send email to sjplimp@sandia.gov on any of these items.

If you write a Pizza.py script that is generally useful or illustrates how to do something cool with
Pizza.py, it can be added to the Pizza.py distribution. Ditto for a picture or movie that can be added to

•

1. Introduction 4

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/chemcell.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

the Pizza.py WWW site.
If you add a new method to one of the tools or create a new tool that is useful for Pizza.py or
LAMMPS or ChemCell users, it can be added to the Pizza.py distribution. See the ToDo list at the
beginning of the src/*.py files for features that haven't yet been implemented.

•

If you find a bug, report it.•
Report if you find an error or omission in the Pizza.py documentation or on the Pizza.py WWW Site,
or have a suggestion for something to clarify or include.

•

Point prospective users to the Pizza.py WWW Site or link to it from your WWW site.•

1.3 Acknowledgements

Pizza.py has been developed at Sandia National Laboratories which is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under contract DE−AC04−94AL85000.

Funding for Pizza.py development has come from the US Department of Energy (DOE), through its LDRD
and Genomes−to−Life programs. The latter effort has been funded by DOE's OASCR and OBER offices as
part of the US Department of Energy's Genomics:GTL program (www.doegenomestolife.org) under the
project, "Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling".

The maintainer of Pizza.py is Steve Plimpton.

Matt Jones, a BYU student who was a summer intern at Sandia, wrote several of the coolest tools in Pizza.py
and about half the code in the initial version.

Others who have written tools or scripts that are part of the Pizza.py distribution are listed on the Pizza.py
WWW site.

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

2. Installing Pizza.py

Unpack the Pizza.py distribution by typing the following:

gunzip pizza.tar.gz
tar xvf pizza.tar

The Pizza.py main directory should then contain the following directories:

README
initial
instructions

LICENSE
the GNU
open−source
license

doc
HTML
documentation
for Pizza.py

examples scripts and data
sets that
exercise

1. Introduction 5

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://www.cs.sandia.gov/~sjplimp
http://www.cs.sandia.gov/~sjplimp/pizza/thanks.html
http://www.cs.sandia.gov/~sjplimp/pizza/thanks.html
http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py tools

scripts
various
Pizza.py script
files

src
source code for
Pizza.py and
its tools

Because Python is an interpreted language, there is no need to compile or "make" Pizza.py. You run Pizza.py
by executing the src/pizza.py file directly, as described below. However there are 3 issues to consider: (a) you
must have Python installed on your machine, (b) some Pizza.py tools require your Python to be extended with
additional Python packages, and (c) some Pizza.py tools are wrappers on other software which needs to be
available on your system.

If you don't plan to use a particular Pizza.py tool, you don't need to install additional Python packages or other
software it requires.

2.1 Installing Python
2.2 Running Pizza.py
2.3 Setting up the DEFAULTS.py file
2.4 Installing additional Python packages
2.5 Installing other software

Note that we cannot provide help on installing the various software packages described here. If you have
problems, you'll need to talk to a local expert who can help you with your machine. If you find that
instructions on this page are incorrect or incomplete or you can provide a better description of the install
procedure, please send an email to sjplimp@sandia.gov.

Installing Python

Python is open−source software available for Unix, Macintosh, and Windows machines. If you have a Linux
box or Mac it is probably already installed. If the python executable is in your path, typing "python" should
give you a Python prompt ">>>" and tell you what version you are running. Version 2.3 or 2.4 is sufficiently
current to run Pizza.py, though older versions may work as well.

If Python is not installed on your machine, go to www.python.org to download a binary or source−code
version and then build and/or install it.

Running Pizza.py

Typically Pizza.py should be run from the directory where your LAMMPS or other data files are. Like any
Python program, Pizza.py can be run in one of 2 ways, by typing either

python −i ~/pizza/src/pizza.py
~/pizza/src/pizza.py

where the last argument is the full pathname of the pizza.py file.

The −i switch leaves Python in interactive mode (instead of exiting) after the pizza.py script is run. In the 2nd
case, if the src dir is in your path, just pizza.py could be typed. For the 2nd case, you must also set
src/pizza.py to be an executable file (chmod +x pizza.py) and edit the 1st line of pizza.py to reflect where

2. Installing Pizza.py 6

http://www.python.org

Python lives on your system (find it by typing "which python"), e.g.

#!/usr/local/bin/python −i

Putting a definition like one of the following in your .cshrc file (or equivalent syntax for other Unix shell
start−up files) will let you simply type "pizza" at the command−line to start Pizza.py.

alias pizza python −i ~/pizza/src/pizza.py alias pizza ~/pizza/src/pizza.py

Pizza.py accepts several command−line options; they are described in this section of the documentation.

When Pizza.py starts, it reads a few values from the src/DEFAULTS.py file (described below) and imports
the *.py files from the src directory as Python modules. These are the Pizza.py tools. Error messages will be
printed if your Python has not been extended with a Python package that a tool requires. If you don't plan to
use the tool you can ignore the message, or exclude that tool via a command−line switch.

Once all tools have been loaded and any initial scripts and commands have been run (via command−line
arguments) you should see the Pizza.py ">" prompt. From this point on, everything you type is a Python
command. Python interprets what you type, operates on your data, and produces output or error messages, just
as if you were typing in response to Python's interactive prompt ">>>".

You can also type special commands that have been added to the Python interpreter by Pizza.py or commands
that invoke Pizza.py tools. More details about these options are explained in this section of the documentation.

As with Python, type Ctrl−D to exit Pizza.py at any time.

Setting up the DEFAULTS.py file

When Pizza.py starts it reads 3 values from the src/DEFAULTS.py file:

PIZZA_TOOLS

directories
that
contain
additional
Pizza.py
tools

PIZZA_SCRIPTS

directories
that
contain
additional
Pizza.py
scripts

PIZZA_EXCLUDE

Python
files that
are not
loaded,
since they
are not
tools

2. Installing Pizza.py 7

These are designed to allow users to augment Pizza.py with their own tools and scripts, which need not be
stored in the directories of the Pizza.py pacakge. Follow the instructions in the DEFAULTS.py file for using
these options.

The DEFAULTS.py files also contains various variables that specify the name and path of programs that
Pizza.py tools will execute on your system. In some cases the variables contain settings that are used by these
programs. Read the comments in the DEFAULTS.py file for more information.

The following table lists the keywords in the DEFAULTS.py, the program or setting that will be used by
default if the keyword line is commented out, and the Pizza.py tools that use the keyword. If the program is
not in your path or you wish to use an alternate program or setting, you must edit the DEFAULTS.py file
accordingly. If you don't plan to use any tool that needs the keyword, you can ignore its setting.

Keyword
Default
Value

Purpose
Tools
that Use
it

DISPLAY display
display image
files
(ImageMagick)

rasmol,
raster,
svg

CONVERT convert
convert image
files
(ImageMagick)

image

MONTAGE montage
montage image
files
(ImageMagick)

image

GNUPLOT gnuplot
Gnu Plotting
package

gnu

GNUTERM x11
GnuPlot
terminal

gnu

GUNZIP gunzip
unzip a
compressed
*.gz file

dump,
log

LABEL3D label3d
put a label on a
Raster3D image

raster

MATLAB matlab

MatLab
numerical
analysis
&plotting
package

matlab

RASMOL rasmol

RasMol
molecular
vizualization
package

rasmol

RENDER render

Raster3D
vizualization
rendering
engine

raster

2. Installing Pizza.py 8

Installing additional Python packages

This is the list of extra Python packages various Pizza.py tools require. If a tool is not listed it requires no
extra packages. Instructions on where to find the Python extensions and how to install them are listed below.

Package
Tools
that Use
it

Numeric dump

PIL
animate,
gl, image

Pmw image

PyOpenGLgl

readline
Pizza.py
itself

Tkinter
animate,
image,
plotview

Numeric

Numeric enables Python to process vectors and arrays of numbers efficiently, both in memory and CPU
speed. It's an extremely useful extension to have in your Python if you do any numerical work on large data
sets. Note that Pizza.py uses the older (but still popular) Numeric package, not the newer numarray package.

If Numeric is already installed in your Python, you should be able to type the following without getting an
error:

>>> import Numeric

Numeric can be downloaded from this site. Version 23 or newer is fine. Once unpacked, you can type the
following from the Numeric directory to install it in your Python.

python setup.py install

PIL

The PIL (Python Imaging Library) allows Python to read image files, manipulate them, and convert between
several common image formats.

If PIL is already installed in your Python, you should be able to type the following without getting an error:

>>> import Image,ImageTk

PIL can be downloaded from this site. Version 1.1.4 is fine. Once the Imaging−1.1.4 tar file is unpacked,
follow the instructions to insure that PIL is linked to the correct libraries for image formats you intend to use.
The actual installation can be done by typing

python setup.py install

2. Installing Pizza.py 9

http://numeric.scipy.org
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=1351
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil

Pmw

Pmw (Python mega−widgets) is a common Tkinter extension that provides a host of more powerful GUI
widgets.

If Pmw is already installed in your Python, you should be able to type the following without getting an error:

>>> import Pmw

Pmw can be downloaded from this site. Version 1.2 is fine. Pmw is installed by placing its files in your
Python's site−packages directory. This install text is from the Pmw distribution:

... assuming you have placed the tar file in the /tmp directory, you can simply run the following commands:

cd /usr/lib/python2.2/site−packages
gunzip /tmp/Pmw.1.2.tar.gz (or gzip −d /tmp/Pmw.1.2.tar.gz)
tar xvf /tmp/Pmw.1.2.tar

If you do not have write permission for these standard directories, place the Pmw directory somewhere on
your PYTHONPATH or sys.path. If this is not possible, place the Pmw directory somewhere else and add the
parent directory to your PYTHONPATH or sys.path.

PyOpenGL

The PyOpenGL package is a wrapper on the ubiquitous OpenGL graphics library and allows a Python
program to make graphics calls in standard OpenGL syntax. It also includes Togl (Tcl/Tk) support for
opening a Tk OpenGL widget, which Pizza.py uses.

If PyOpenGL is already installed in your Python, you should be able to type the following without getting an
error:

>>> import OpenGL

PyOpenGL can be downloaded from this site on SourceForge. You want the latest PyOpenGL release (not
OpenGLContext). After you have downloaded the needed files, you will want to read the PyOpenGL
installation instructions. If you are installing from source, you can hopefully type the following from the
PyOpenGL directory to install it in your Python, though in my experience it doesn't always work
transparently:

python setup.py install

Note that running PyOpenGL requires your system have OpenGL, GLUT, Tcl/Tk, PIL, and Numeric libraries
already installed. The GL and Tck/Tk libraries are already in place on most Linux systems.

readline

Support for the readline library is part of Python but is not supported on all systems. If it works in your
Python, then Pizza.py (and Python) prompts are more shell−like and should support arrow keys, Emacs−style
editing, command history, etc. If you get an error "No module named readline" when Pizza.py starts up, you
can ignore it, or comment out the line "import readline" in pizza.py.

2. Installing Pizza.py 10

http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pyopengl.sourceforge.net
http://sourceforge.net/project/showfiles.php?group_id=5988
http://pyopengl.sourceforge.net/documentation/installation.html
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

If readline is already installed in your Python, you should be able to type the following without getting an
error:

>>> import readline

The readline library can be downloaded from this site. After building the library, I believe you then have to
rebuild Python for Python to work with it.

Tkinter

The Tkinter package is part of Python but is not always enabled when Python is built. If you can type the
following without an error message in your Python, then Tkinter is operational in your Python:

>>> import Tkinter
>>> Tkinter._test()

If not, this WWW page explains how to determine what your Python lacks and how to fix it. Unfortunately
these instructions are not 100% clear to me. They also typically require root privelege on your system.

Alternatively, you can install your own version of Python, insure that Tkinter is enabled when you build it,
and make the new Python your default (i.e. put it first in your path, or point to it with an alias or link). This is
what I did, but unfortunately, this is also a non−trivial procedure.

If any Python afficionado understands a better way to enable Tkinter or can explain it more clearly, I'd
appreciate an email to sjplimp@sandia.gov.

Installing other software

Some Pizza.py tools invoke other software which must be installed on your system for the tool to work. This
is an alphabetic list of the needed software. Except where noted, it is freely available for download on the
WWW. The Pizza.py tools that use this software are listed above in this section.

ImageMagickk display, convert, montage commands

Several Pizza.py tools display image files. The ImageMagick "display" program can be used for this purpose.
Likewise, the ImageMagick "convert" and "montage" comands are used by the image tool. The ImageMagick
toolkit can be downloaded from this site and contains a variety of useful image conversion and manipulation
software.

GnuPlot

The Pizza.py gnu tool is a wrapper on the open−source GnuPlot program. GnuPlot can be downloaded from
this site.

Gunzip

Gunzip is invoked by Python to read compressed (*.gz) data and dump files. It is almost certainly on your
Unix system (type "which gunzip"). If not if can be downloaded from this site.

2. Installing Pizza.py 11

http://cnswww.cns.cwru.edu/~chet/readline/rltop.html#Availability
http://wiki.python.org/moin/TkInter
http://www.imagemagick.org/script/index.php
http://www.gnuplot.info
http://www.gnu.org/software/gzip/gzip.html

Label3d

The Pizza.py tool raster uses the label3d and render programs from the Raster3d visualization package to
produce high−quality ray−traced images. See the description of "Render" below for information about
Raster3d.

MatLab

The Pizza.py matlab tool is a wrapper on MatLab which is a widely−used commercial numerical analysis
package that also produces nice plots. Further information is available at the MathWorks WWW site. When
MatLab is installed on your system and the appropriate environment variables are set, the command "matlab"
should launch the program.

RasMol

The Pizza.py rasmol tool invokes the RasMol visualization package to view molecular systems and produce
nice images. RasMol can be downloaded from this site, which is for the original open−source version of
RasMol, not the Protein Explorer derivative version of RasMol.

Note that when using RasMol on a Mac, you will need to launch X11 first (or run Pizza.py from an X11
xterm) to get RasMol to display properly.

Render

The Pizza.py tool raster uses the render and label3d programs from the Raster3d visualization package to
produce high−quality ray−traced images. Raster3d can be downloaded from this site.

For Macs, Raster3d is available for download via Fink as an unstable package.

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

3. Basics of using Pizza.py

The previous section describes how to install and run Pizza.py and the various software it uses. After Pizza.py
has started you should see a ">" prompt. The following sections describe what comes next:

3.1 Python syntax
3.2 Pizza.py command line arguments
3.3 Pizza.py extensions to the Python interpreter
3.4 Using Pizza.py tools
3.5 Runnning Pizza.py and Python scripts
3.6 Error messages

3.1 Python syntax

Aside from its tools, Pizza.py itself simply adds a bit of functionality to the Python interpreter to enable it to
more easily launch shell commands and scripts and invoke its tools. Pizza.py's ">" prompt is different from
Python's ">>>" prompt to indicate the extra functionality is available, but you can type any Python command
you would type at the Python prompt.

2. Installing Pizza.py 12

http://www.mathworks.com
http://www.openrasmol.org
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://fink.sourceforge.net/pdb/package.php/raster3d
http://fink.sourceforge.net/faq/usage-fink.php?phpLang=en#unstable
http://www.cs.sandia.gov/~sjplimp/pizza.html

Python is a powerful scripting and programming language, similar in scope and universality to Perl. This little
Pizza.py manual cannot attempt to teach you how to use Python, its syntax, or its rich set of powerful built−in
commands. If you only use the extra tools provided by Pizza.py, you can think of Pizza.py as an application
with a self−contained set of commands. However, if you learn more about Python, you will be able to write
more powerful Pizza.py scripts, access and manipulate data stored inside Pizza.py tools, or even add your own
commands and tools, which need not have anything to do with LAMMPS or ChemCell.

You can learn about Python at www.python.org. My most−used Python book is Essential Python by Dave
Beazley which assumes some programming experience but covers both the basics of Python and its many
powerful libraries in a well−written, concise manner.

3.2 Pizza.py command line arguments

When running Pizza.py, several command−line options can be added as switches, e.g.

pizza.py switch args switch args ...

−s

silent (else
print
start−up
help)

−t log dump
raster

load only
these tools

−x raster
rasmol

load all
tools except
these

−f file arg1
arg2

run script
file with
args

−c "vec =
range(100)"

run Python
command

−q
quit (else
interactive)

Switches can appear in any order and be used multiple times. The −f scripts and −c commands are executed in
the order they appear. Script files are Python files which can contain Python or Pizza.py tool commands.
Pizza.py looks for script files in 3 places: your current working directory, the pizza/scripts directory, and any
extra directories you list in the src/DEFAULTS.py file. This means you can add your own scripts to
pizza/scripts or to directories of your choosing.

The argument of the −c switch will typically need to be enclosed in quotes to avoid being interpreted by the
shell. This also allows multiple Python commands to be separated by semi−colons, e.g.

−c "a = range(100); print a"

3.3 Pizza.py extensions to the Python interpreter

As mentioned above, the standard Python syntax is extended a bit at the Pizza.py ">" interactive prompt.
These options were inspired by the LazyPython.py code of Nathan Gray, which taught me how to extend the
Python interpreter. These are the short−cuts:

3. Basics of using Pizza.py 13

http://www.amazon.com/exec/obidos/tg/detail/-/0735709017/104-4868532-2659916?v=glance
http://www.idyll.org/~n8gray/code/index.html

?
print help
message

??
one−line for
each tool and
script

? raster
list tool
commands or
script syntax

?? energy.py
full
documentation
of tool or script

!ls −l shell command

@cd ..
cd to a new
directory

@log tmp.log

log all
commands
typed so far to
file

@run block.py
arg1 arg2

run script file
with args

@time d =
dump("*.dump")

time a
command

Shell commands begun with a "!" can include the redirection operators "". The shell command "!cd" will not
change directories permanently; use the "@cd" short−cut instead. Any short−cut command starting with "@"
can be abbreviated with one or more letters. E.g. "@r" is the same as "@run". The @log command requires
that the Python readline library be available on your system.

Each of the above short−cuts can be performed by native Python commands; they are just not as simple to
type. Here is how several of the short−cuts can be written in Python, which is what you need to do in a script,
since the above short−cuts only work at the Pizza.py interactive prompt:

Short−cut Native Python

!ls −l sys.command("ls −l")

@cd .. os.chdir("..")

@run
myfile.py

execfile("myfile.py")

CTRL−D sys.exit()

3.4 Using Pizza.py tools

The tools that Pizza.py adds to Python are each implemented as a single Python class (e.g. dump, log, raster),
so the first step in using a tool is to create an instance of the class (an object). Each class defines a set of
methods (functions) that operate on the objects you create and their associated data. Each method, including
the constructor, takes zero or more arguments, which may be previously created objects. In practical terms,
this means that you type commands like this:

d = dump("dump.*")
p = pdb("my.pdb",d)

3. Basics of using Pizza.py 14

p.many()
dnew = dump("dump.all")

The first 2 commands create dump and pdb objects named "d" and "p" respectively. The "d" and "p" are
Python variable names; you could use any names you wish: "dump12" or "Dump_mine" or whatever. The 3rd
line invokes the "many" method within the pdb class for the pdb object "p". This method writes out a series of
PDB files using the snapshots in "d" which was passed to "p" when it was created. The final command creates
a new dump object "dnew" from another dump file. You can create and manage as many objects (of the same
or different classes) simultaneously as you wish. If the last line assigned the object to "d", the original dump
object with the same name would be deleted by Python.

Various Pizza.py tools create temporary files as they operate. These are all named tmp.*. Pizza.py does not
clean up all of these files, since they are sometimes useful to look at for debugging or other purposes.

Python syntax allows for powerful combinations of tools to be invoked in one or a few commands. For
example

lg = log("log.*")
m = matlab()
plotview(lg,m)

could be abbreviated as

plotview(log("log.*"),matlab())

With the −c command line switch, this one−liner could be specified when Pizza.py is launched. This example
also illustrates that created objects (like the plotview object) do not need to be assigned to variables if they
will not be accessed in subsequent commands.

3.5 Running Pizza.py and Python scripts

A file containing Python and/or Pizza.py commands can be executed as a script and arguments can be passed
to it (if desired). The script can be run in several different ways:

(1) From the Pizza.py command line

% pizza −f script.sample file.test 10 ...

(2) From the Pizza.py interactive prompt

> @run script.sample file.test 10 ...

(3) From the Python command line

% python −i script.sample file.test 10 ...

(4) From a shell prompt with #!/usr/local/bin/python −i as 1st line of script

% script.sample arg1 arg2 ...

(5) From the Python interactive prompt

>>> argv = 0,"file.test","10",...

3. Basics of using Pizza.py 15

>>> execfile("script.sample")

(6) As a nested script from within another Python or Pizza.py script file

argv = 0,"file.test","10",...
execfile("script.sample")

The Pizza.py interpreter short−cut commands described in the next section cannot be used in a script file.

There are 2 additional issues to address in your script files.

(A) First, if the script uses Pizza.py commands and you want to run it from Python itself (methods 3,4,5,6),
then your script should import the necessary Pizza.py tools directly. E.g. if your script uses the log and matlab
tools, you would put these lines at the top:

from log import log
from matlab import matlab

This is OK to do even if the script will be run by Pizza.py since it doesn't matter that Pizza.py already
imported the tools. Note that if you do this, you can then give your script file and the Python tool *.py files it
uses to someone who doesn't have Pizza.py and they can run your script with their Python.

(B) Second, if your script takes arguments and you want the same script to run identically for all 6 methods,
then you need to include this line at the beginning of the script:

if not globals().has_key("argv"): argv = sys.argv

This will enable the arguments to be accessed in the script as argv1 for the 1st argument, argv2 for the 2nd,
etc.

This works because in methods 3,4 Python stores the script arguments in sys.argv and the script name in
sys.argv0. The above line of Python code copies sys.argv to argv. When Pizza.py runs the script (methods 1,2)
it loads the arguments directly into the "argv" variable. Methods 5,6 load the arguments into argv explicitly
before executing the script via execfile(). In this case argv0 is a dummy argument to conform with the Python
convention for sys.argv.

Also note in methods 5,6 that all arguments such as "10" must be strings even if they are numeric values,
since this is the way they are passed to the script in methods 1,2,3,4.

As an example of the flexibility enabled by combining scripts, arguments, and command−line options in
Pizza.py, consider the 3−line example of the previous sub−section. We modify the script as follows and save
it as logview.py:

files = ' '.join(argv1:) # create one string from list of filenames
lg = log(files)
m = matlab()
plotview(lg,m)

If an alias is defined in your shell start−up file, such as

alias logview ~/pizza/src/pizza.py −f logview.py

3. Basics of using Pizza.py 16

then you can type the following one−liner at the shell prompt to invoke Pizza.py on the logview.py script with
a list of files you specfiy.

% logview log.1 log.2 ...

A set of plots and a control GUI will appear on your screen.

3.6 Error messages

If you mistype a Pizza.py or Python command or pass an invalid argument to a tool method, an error message
will be printed by Python. Usually these will be self−explanatory. Sometimes they will point to a line of code
inside a tool which Python was unable to execute successfully. This could be because you passed the wrong
arguments to the tool, the data the tool is operating on is invalid, or because there's a bug in the tool. In the
latter case, please figure out as much as you can about the bug and email a description and the necessary files
to reproduce the bug in the simplest possible way to sjplimp@sandia.gov.

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

4. Tools within Pizza.py

Th previous section describes how Pizza.py tools are used in Pizza.py.

Help on the syntax for invoking a tool and using its methods and settings can be accessed interactively within
Pizza.py itself by typing "? tool" or "?? tool". Typing "??" gives a one−line description of each tool.

These are the different categories of Pizza.py tools:

LAMMPS
in/out files

chain,
data,
dump,
log, patch

ChemCell
in/out files

cdata,
clog,
dump

Visualization

gl,
rasmol,
raster,
svg

File
conversion

pdbfile,
vtk, xyz

GUI wrappers

animate,
image,
plotview,
vcr

Plotting
gnu,
matlab

Miscellaneous
histo,
pair, vec

3. Basics of using Pizza.py 17

http://www.cs.sandia.gov/~sjplimp/pizza.html

Within the plotting and viz categories, individual tools share many common methods, so the tools can often be
used interchangeably. For example, the same script can produce an animation using either Raster3d or SVG to
generate the movie frames, by simply changing the line that creates the visualizer object, or by passing the
object into the script as an argument.

This is the complete list of tools in Pizza.py; the link is to each tool's documentation page.

animate.py
Animate a
series of image
files

cdata.py

Read, write,
manipulate
Chemcell data
files

chain.py

Create
bead−spring
chains for
LAMMPS input

clog.py

Read ChemCell
log files and
extract species
data

data.py

Read, write,
manipulate
LAMMPS data
files

dump.py

Read, write,
manipulate
dump files and
particle
attributes

gl.py
3d interactive
visualization via
OpenGL

gnu.py

Create plots via
GnuPlot
plotting
program

histo.py
Particle density
histogram from
a dump

image.py
View and
manipulate
images

log.py Read LAMMPS
log files and
extract
thermodynamic

3. Basics of using Pizza.py 18

http://www.gnuplot.info

data

matlab.py

Create plots via
MatLab
numerical
analysis
program

pair.py

Compute
LAMMPS
pairwise
energies

patch.py

Create patchy
Lennard−Jones
particles for
LAMMPS input

pdbfile.py

Read, write
PDB files in
combo with
LAMMPS
snapshots

plotview.py
Plot multiple
vectors from a
data set

rasmol.py
3d visualization
via RasMol
program

raster.py
3d visualization
via Raster3d
program

svg.py
3d visualization
via SVG files

vcr.py

VCR−style GUI
for 3d
interactive
OpenGL
visualization

vec.py
Read columns
of numbers
from a file

vtk.py

Convert
LAMMPS
snapshots to
VTK format

xyz.py

Convert
LAMMPS
snapshots to
XYZ format

This diagram represents the different ways tools can be interconnected by Pizza.py. Tools within the same red
box are tools that are (roughly) interchangeable.

3. Basics of using Pizza.py 19

http://www.mathworks.com
http://www.openrasmol.org
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.w3.org/Graphics/SVG

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

5. Example scripts

The Pizza.py distribution includes 2 sets of example scripts. A listing of included scripts is given on the
Pizza.py WWW site.

(A) The examples directory has a README file and a variety of scripts. For each tool in Pizza.py there is a
test_tool.py script that invokes the tool on a simple data set (from the files sub−directory) and exercises
various tool methods. These scripts are meant to illustrate how the tool is used.

Assuming pizza.py is in your path, each of the test scripts can be run from within the examples directory by
typing one of these lines (from the shell or from within Pizza.py):

% pizza.py −f test_animate.py
> @run test_animate.py

The remaining scripts in the examples directory illustrate how to do various tasks in Pizza.py. They are not
meant to be generically useful nor are they well documented. Rather they are illustrations of how to do some
specific task quickly and straightforwardly. Most of these scripts are not meant to be run by other users, since
their data files are not included.

(B) The scripts directory contains several scripts you may find useful either to use directly or to modify to
create a new script for your purposes.

The top of each script file describes its purpose and syntax. That information can be be accessed from within
Pizza.py by typing "??" or "? name.py" or "?? name.py".

5. Example scripts 20

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza/scripts.html

As explained in this section, any file in the scripts directory can be run from the directory where your data
lives, by typing a line appropriate to the script's syntax, e.g.

% pizza.py −f movie.py svg 60 135 dump.protein from the shell
> @run movie.py svg 60 135 dump.protein from Pizza.py

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

6. Extending Pizza.py

Pizza.py can easily be extended in several ways:

fix a bug1.
make a tool method faster or cleaner2.
add a new method or setting to a tool3.
add a new tool4.
add a generically useful script to the scripts dir5.
add a script that does something interesting to the examples dir6.
send a picture or movie you made with Pizza.py for the WWW page.7.

You might be able to do (2) because you're better with Python than we are! Note that generally, we've opted
for simplicity versus speed in writing the tools, unless the operation is very costly. An example of something
I'd like to speed up is the reading of large dump files in dump.py.

Some of the ideas we've had for (3), but haven't gotten around to, are listed at the top of the src/*.py files as
ToDo items.

If you think your addition will be useful to other Pizza.py users, email it to sjplimp@sandia.gov and it can be
added to the distribution with an attribution to you, both in the source code and on the Pizza.py WWW site.

Here are ideas to consider when creating new Pizza.py tools or scripts:

(1) For tools, your *.py file should contain a Python class with the same name as the *.py file since it will be
imported into Pizza.py with a statement like

from dump import dump

(2) Your scripts can use methods from Pizza.py classes to make data analysis easier. E.g. scripts can be
written that use the dump tool to read dump files, then use the iterator calls and vecs() method from dump.py
to loop over snapshots and extract lists of particles for further computation. See the scripts and examples
directories for examples of this.

(3) To flag an error in your script or tool and exit back to the Pizza.py prompt, use a line like:

raise StandardError,"error message"

(4) Document your tool be defining the "oneline" and "docstr" variables at the top of the file. This is what will
be printed when you type "? dump", for example.

(5) If you intend your tool to interact with other Pizza.py tools, you should follow the Pizza.py philosophy of
having objects be passed as arguments to the tool methods. If you're creating a tool that is similar to an

6. Extending Pizza.py 21

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza/thanks.html

existing tool, but a different flavor (e.g. wrapping another plotting package in addition to MatLab or GnuPlot),
then try to make the interface similar to the others so all the related tools can be used interchangeably.

(6) From the Pizza.py perspective, the difference between a script and a tool is as follows. A script typically
does a specific operation (with or without arguments). E.g. process a dump file and compute a quantity. A tool
version of the same operation would allow it to store internal state and persist, or to be packaged in a way that
other tools or scripts can create instances of it and call its methods. From the Python perspective the code for
the 2 cases may not look very different. The tool version might just be some Python variables and methods
stuck inside a Python class, which is what a Pizza.py tool basically is.

(7) The various Pizza.py tools are mostly related to the "LAMMPS" molecular dynamics or ChemCell cell
simulator packages. But of course you can write Pizza.py tools that have nothing to do with LAMMPS or
ChemCell. If you think they will still be of general interest to Pizza.py users, you can send them to us to
include in the Pizza.py distribution. Or you can keep the top−level pizza.py file, throw away the LAMMPS
and ChemCell tool files, build your own toolkit for whatever application you wish, and use or even distribute
it yourself. That's the open−source philosophy.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

animate tool

Purpose:

Animate a series of image files.

Description:

The animate tool displays a GUI to view and animate a series of image files.

The animate constructor creates the GUI. The animation can be controlled by the GUI widgets or by invoking
the tool methods: play(), stop(), next(), etc. The frame slider can be dragged to view a desired frame.

Image files can be in any format (PNG, GIF, BMP, etc) recognized by the Python Image Library (PIL)
installed in your Python. Various Pizza.py visualization tools (raster, rasmol, etc) create such image files. If a
particular image format fails to load, your PIL installation was linked without support for that format. Rebuild
PIL, and follow its install instructions.

Usage:

a = animate("image*.png") create GUI to animate set of image files

Actions (same as GUI widgets):

a.first() go to first frame
a.prev() go to previous frame
a.back() play backwards from current frame to start
a.stop() stop on current frame
a.play() play from current frame to end
a.next() go to next frame
a.last() go to last frame

a.frame(31) set frame slider

animate tool 22

http://www.cs.sandia.gov/~sjplimp/chemcell.html
http://www.cs.sandia.gov/~sjplimp/pizza.html

a.delay(0.4) set delay slider

Related tools:

gl, raster, rasmol, svg, vcr

Prerequisites:

Python Tkinter and PIL packages.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

cdata tool

Purpose:

Read, create, manipulate ChemCell data files.

Description:

The cdata tool reads and writes ChemCell data files which contain particle and surface information. It enables
the creation of geometric models of cells for input to ChemCell.

The cdata constructor reads in the specified LAMMPS data file. With no argument, an empty cdata object is
created which can have objects added to it later, and then be written out.

A cdata object or file contains "objects" of different types. Each object has a unique user−assigned ID.
Objects can be of several types: "group", "triangles", "region", "facets", or "lines". A group is a list of
particles, all of the same type. Triangles define a surface and include a list of vertices, triangle definitions, and
adjacent edge connections. A region is a geometric object that defines a surface, such as a sphere. Facets are a
CUBIT meshing format that defines a set of vertices and triangles; it is converted into a triangles entry. Lines
are a collection of line segments.

The box(), sphere(), shell(), cyl(), and cap() methods create a new "region" object. The q() method sets
triangulations factors that are used when the region is converted into a triangulated surface for output or
visualization.

The line() and ibox() methods create a "lines" object.

The surf() method creates a "triangles" object from a region, using the q() parameters. The surftri() method
creats a new "triangles" object from a list of triangle indices belonging to another surface. The surfselect()
method applies an if test to vertices and triangles in another surface to choose a subset of them to form a new
"triangles" object. The bins() method sets the number of bins in x,y when surfaces are binned for the purpose
of creating particles inside/outside the surface.

The part(), part2d(), partarray(), and partring() methods create a "group" of particles inside, outside, or on
regions or triangulated surfaces. Particles are 3d by default, or 2d if created on a surface. The partsurf()
method can be used to change the name of the surface 2d particles are on, since that attribute is written to a
file when the particles are output. The creation of particles uses a random # generator whose initial seed can
be set via the seed() method.

cdata tool 23

http://www.cs.sandia.gov/~sjplimp/pizza.html

The random() method can be used to pick a random point on the surface of a "region" or "triangles" object.
The project() method maps particles to the surface of a "region" or "triangulate" object.

The center(), trans(), rotate(), and scale() methods are used to perform a geometric transformation on a
"group" of particles or a "triangles" object. The union() method creates a new object of "union" type from a
list of objects. The join() method does the same thing except all objects in the list must be of the same type
and the new object is also of that type. A join() can only be done for "group", "triangles", or "line" objects.
The delete(), rename(), and copy() methods manipulate the IDs of previously defined objects.

Be default all objects are selected when created. The select() and unselect() methods can be used to select a
subset of existing objects. The write() and append() methods write out selected objects to a file.

The iterator() and viz() methods are called by Pizza.py tools that visualize snapshots of atoms (e.g. gl, raster,
svg tools). Only selected objects are returned to the caller. A cdata file can be visualzed similarly to a
snapshots from a dump file. In the case of a cdata file, there is only a single snapshot with index 0.

Usage:

c = cdata() create a datafile object
c = cdata("mem.surf") read in one or more ChemCell data files
c = cdata("mem.part.gz mem.surf") can be gzipped
c = cdata("mem.*") wildcard expands to multiple files
c.read("mem.surf") read in one or more data files

 read() has same argument options as constructor
 files contain the following kinds of entries, each of which becomes an object
 particles, triangles, region, facets
 particles is a list of particles −> becomes a group
 triangles is 3 lists of vertices, triangles, connections −> becomes a surf
 region is a ChemCell command defining a region −> becomes a region
 facets is a CUBIT format of vertices and triangles −> becomes a surf
 each object is assigned an ID = name in file
 ID can be any number or string, must be unique

c.box(ID,xlo,ylo,zlo,xhi,yhi,zhi) create a box region
c.sphere(ID,x,y,z,r) create a sphere region
c.shell(ID,x,y,z,r,rinner) create a shell region
c.cyl(ID,'x',c1,c2,r,lo,hi) create a axis−aligned cylinder region
c.cap(ID,'x',c1,c2,r,lo,hi) create a axis−aligned capped−cylinder region
c.q(ID,q1,q2,...) set region triangulation quality factors

 box() can create an axis−aligned plane, line, or point if lo=hi
 cyl() can create an axis−aligned circle if lo=hi
 for cyl() and cap(): 'x' c1,c2 = y,z; 'y' c1,c2 = x,z; 'z' c,c2 = x,y
 q's are size factors for region triangulation
 for box, q1,q2,q3 = # of divisions per xyz of box
 for sphere or shell, q1 = # of divisions per face edge of embedded cube
 for cyl or cap, q1 = # of divisions per face edge of end cap, must be even
 q2 = # of divisions along length of cylinder

c.line(ID,x1,y1,z1,x2,y2,z2) create a line object with one line
c.lbox(ID,xlo,ylo,zlo,xhi,yhi,zhi) create a line object with 12 box lines

c.surf(ID,id−region) create a triangulated surf from a region
c.surftri(ID,id−surf,t1,t2,...) create a tri surf from list of id−surf tris
c.surfselect(ID,id−surf,test) create a tri surf from test on id−surf tris
c.bins(ID,nx,ny) set binning parameters for a surf

cdata tool 24

 triangulation of a shell is just done for the outer sphere
 for surftri(), one or more tri indices (1−N) must be listed
 for surfselect(), test is string like "$x <2.0 and $y > 0.0"
 bins are used when particles are created inside/outside a surf

c.part(ID,n,id_in) create N particles inside object id_in
c.part(ID,n,id_in,id_out) particles are also outside object id_out
c.part2d(ID,n,id_on) create 2d particles on object id_on
c.partarray(ID,nx,nz,nz,x,y,z,dx,dy,dz) create 3d grid of particles
c.partring(ID,n,x,y,z,r,'x') create ring of particles
c.partsurf(ID,id_on) change surf of existing 2d particle group
c.seed(43284) set random # seed (def = 12345)

 generate particle positions randomly (unless otherwise noted)
 for part(), id_in and id_out must be IDs of a surf, region, or union object
 inside a union object means inside any of the lower−level objects
 outside a union object means outside all of the lower−level objects
 for part2d(), id_on must be ID of a surf, region, or union object
 for part2d(), particles will be written as 2d assigned to surf id_on
 for partring(), ring axis is in 'x','y', or 'z' direction
 partsurf() changes surf id_on for an existing 2d particle group

x,n = c.random(ID) pick a random pt on surf of object ID
c.project(ID,ID2,dx,dy,dz,eps,fg) project particles in ID to surf of obj ID2

 random() returns pt = [x,y,z] and normal vec n [nx,ny,nz]
 for random(), ID can be surf or region obj
 project() remaps particle coords in group ID
 moves each particle along dir until they are within eps of surface
 if no fg arg, dir = (dx,dy,dz)
 if fg arg, dir = line from particle coord to (dx,dy,dz)
 ID2 can be surf or region obj
 particles are converted to 2d assigned to surf ID2

c.center(ID,x,y,z) set center point of object
c.trans(ID,dx,dy,dz) translate an object
c.rotate(ID,'x',1,1,0,'z',−1,1,0) rotate an object
c.scale(ID,sx,sy,sz) scale an object

 objects must be surface or particle group, regions cannot be changed
 for center(), default is middle of bounding box (set when obj is created)
 for rotate(), set any 2 axes, must be orthogonal, 3rd is inferred
 object is rotated so that it's current xyz axes point along new ones
 rotation and scaling occur relative to center point

c.union(ID,id1,id2,...) create a new union object from id1,id2,etc
c.join(ID,id1,id2,...) create a new object by joining id1,id2,etc
c.delete(id1,id2,...) delete one or more objects
c.rename(ID,IDnew) rename an object
c.copy(ID,IDnew) create a new object as copy of old object

 for union, all lower−level objects must be of surface, region, or union style
 for join, all joined objects must be of same style: group, surf, line
 new object is the same style

c.select(id1,id2,...) select one or more objects
c.select() select all objects
c.unselect(id1,id2,...) unselect one or more objects
c.unselect() unselect all objects

cdata tool 25

 selection applies to write() and viz()

c.write("file") write all selected objs to ChemCell file
c.write("file",id1,id2,...) write only listed &selected objects to file
c.append("file") append all selected objs to ChemCell file
c.append("file",id1,id2,...) append only listed &selected objects

 union objects are skipped, not written to file

index,time,flag = c.iterator(0/1) loop over single snapshot
time,box,atoms,bonds,tris = c.viz(index) return list of viz objects

 iterator() and viz() are compatible with equivalent dump calls
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = timestep index within dump object (only 0 for data file)
 time = timestep value (only 0 for data file)
 flag = −1 when iteration is done, 1 otherwise
 viz() returns info for selected objs for specified timestep index (must be 0)
 time = 0
 box = [xlo,ylo,zlo,xhi,yhi,zhi]
 atoms = id,type,x,y,z for each atom as 2d array
 bonds = empty list of bonds
 tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
 regions are triangulated according to q() settings by viz()
 if surfaces do not exist is just an empty list
 lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
 if lines do not exist is just an empty list
 types are assigned to each object of same style in ascending order

Related tools:

clog, data, gl, raster, svg

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

chain tool

Purpose:

Create bead−spring chains for LAMMPS input.

Description:

The chain tool creates random, overlapping bead−spring (FENE) chains and writes them out as a LAMMPS
data file. They need to be simulated with a soft potential in LAMMPS to un−overlap them before they form a
proper melt.

The chain constructor uses the total number of monomers and the Lennard−Jones reduced density to create a
simulation box of the appropriate size. Optionally, the box shape can also be specified.

The build() method creates N chains, each with M monomers. It can be invoked multiple times to create sets
of chains with different properties. The starting point of each chain is chosen randomly, as is the position of
subsequent monomers. The seed value sets the random number generator used for coordinate generation.

chain tool 26

http://www.cs.sandia.gov/~sjplimp/pizza.html

The mtype, btype, blen, and dmin settings affect how the chain and its monomers are created. Dmin is the
minimum distance allowed between a new monomer and the monomer two before it, so it determines the
stiffness of the chain. Each monomer is assigned a molecule ID as it is created, in accord with the id setting.

Once N total monomers have been created, the ensemble of chains is written to a LAMMPS data file via the
write() method.

Usage:

c = chain(N,rho) setup box with N monomers at reduced density rho
c = chain(N,rho,1,1,2) x,y,z = aspect ratio of box (def = 1,1,1)

c.seed = 48379 set random # seed (def = 12345)
c.mtype = 2 set type of monomers (def = 1)
c.btype = 1 set type of bonds (def = 1)
c.blen = 0.97 set length of bonds (def = 0.97)
c.dmin = 1.02 set min dist from i−1 to i+1 site (def = 1.02)

c.id = "chain" set molecule ID to chain # (default)
c.id = "end1" set molecule ID to count from one end of chain
c.id = "end2" set molecule ID to count from either end of chain

c.build(100,10) create 100 chains, each of length 10

 can be invoked multiple times interleaved with different settings
 must fill box with total of N monomers

c.write("data.file") write out all built chains to LAMMPS data file

Related tools:

data, patch

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

clog tool

Purpose:

Read ChemCell log files and extract species data.

Description:

Read one or more ChemCell log files and combine their species statistical data into long, named vectors
(versus time). The vectors can be used in Python for further processing and plotting, or they can be output to a
file.

The log constructor reads one or more log files. If 2 arguments are specified, a single file is specified, and it is
assumed to contain data for multiple runs, which are averaged.

clog tool 27

http://www.cs.sandia.gov/~sjplimp/pizza.html

The nvec, nlen, and names values give the # of vectors, their length, and names. The get() method returns one
of more vectors as a Python list. The write() method outputs the numeric vectors to a file.

Usage:

c = clog("file1") read in one or more log files
c = clog("log1 log2.gz") can be gzipped
c = clog("file*") wildcard expands to multiple files
c = clog("log.cell",0) two args = average multiple runs

 incomplete and duplicate thermo entries are deleted
 average assumes all runs start at time 0

nvec = c.nvec # of vectors of thermo info
nlen = c.nlen length of each vectors
names = c.names list of vector names
a,b,... = c.get("A","B",...) return one or more vectors of values
c.write("file.txt") write all vectors to a file
c.write("file.txt","A","B",...) write listed vectors to a file

 get and write allow abbreviated (uniquely) vector names

Related tools:

plotview, gnu, log, matlab

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

data tool

Purpose:

Read, write, manipulate LAMMPS data files.

Description:

The data tool reads and writes LAMMPS data files. It also allows their content to be accessed or modified.

The data constructor reads in the specified LAMMPS data file. With no argument, an empty data object is
created which can have fields added to it later, and then be written out.

The map() method assigns names to different atom attributes by their column number (1−N). The get()
method extracts columns of information from the specified section of the data file.

The title, headers, and sections variables can be set directly. The header values correspond to one−line
definition that appear at the top of the data file. The box size values should be set to a Python tuple, e.g.

d.headers["xlo xhi"] = (−30, 30)

The section value should be a list of text lines, each of which includes a newline at the end.

data tool 28

http://www.cs.sandia.gov/~sjplimp/pizza.html

The delete() method deletes a header or entire section of the data file. The replace() method allows one
column of a section to be replaced with a vector of new values. The newxyz() methods replaces the xyz
coords of the "Atoms" section of the data file with xyz values from the Nth snapshot of a dump object
containing snapshots.

The iterator() and viz() methods are called by Pizza.py tools that visualize snapshots of atoms (e.g. raster, svg
tools). A data file can be visualzed similarly to snapshots from a dump file. In the case of a data file, there is
only a single snapshot with index 0.

The write() method outputs a LAMMPS data file.

Usage:

d = data("data.poly") read a LAMMPS data file, can be gzipped
d = data() create an empty data file

d.map(1,"id",3,"x") assign names to atom columns (1−N)

coeffs = d.get("Pair Coeffs") extract info from data file section
q = d.get("Atoms",4)

 1 arg = all columns returned as 2d array of floats
 2 args = Nth column returned as vector of floats

d.title = "My LAMMPS data file" set title of the data file
d.headers["atoms"] = 1500 set a header value
d.sections["Bonds"] = lines set a section to list of lines (with newlines)
d.delete("bonds") delete a keyword or section of data file
d.delete("Bonds")
d.replace("Atoms",5,vec) replace Nth column of section with vector
d.newxyz(dmp,1000) replace xyz in Atoms with xyz of snapshot N

 newxyz assumes id,x,y,z are defined in both data and dump files
 also replaces ix,iy,iz if they are defined

index,time,flag = d.iterator(0/1) loop over single data file snapshot
time,box,atoms,bonds,tris = d.viz(index) return list of viz objects

 iterator() and viz() are compatible with equivalent dump calls
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = timestep index within dump object (only 0 for data file)
 time = timestep value (only 0 for data file)
 flag = −1 when iteration is done, 1 otherwise
 viz() returns info for specified timestep index (must be 0)
 time = 0
 box = [xlo,ylo,zlo,xhi,yhi,zhi]
 atoms = id,type,x,y,z for each atom as 2d array
 bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
 if bonds do not exist is just an empty list
 tris = empty list of triangles
 lines = empty list of lines

d.write("data.new") write a LAMMPS data file

Related tools:

gl, raster, svg

data tool 29

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

dump tool

Purpose:

Read, write, manipulate dump files and particle attributes.

Description:

The dump tool reads one or more LAMMPS dump files, stores their contents as a series of snapshots with 2d
arrays of atom attributes, and allows the values to be accessed and manipulated.

The constructor method is passed a string containing one or more dump filenames. They can be listed in any
order since snapshots are sorted by timestep after they are read and duplicate snapshots (with the same time
stamp) are deleted. If a 2nd argument is specified, the files are not immediately read, but snapshots can be
read one−at−a−time by the next() method.

The map() method assigns names to columns of atom attributes. The tselect() methods select one or more
snapshots by their time stamp. The delete() method deletes unselected timesteps so their memory is freed up.
This can be useful to do when reading snapshots one−at−a−time for huge data sets. The aselect() methods
selects atoms within selected snapshots. The write() and scatter() methods write selected snapshots and atoms
to one or more files.

The scale(), unscale(), wrap(), unwrap(), and owrap() methods change the coordinates of all atoms with
respect to the simulation box size. The sort() method sorts atoms within snapshots by their ID.

The set() method enables new or existing columns to be set to new values. The minmax() method sets a
column to an integer value between the min and max values in another column; it can be used to create a color
map. The clone() method copies that column values at one timestep to other timesteps on a per−atom basis.

The time(), atom(), and vecs() methods return time or atom data as vectors of values.

The iterator() and viz() methods are called by Pizza.py tools that visualize snapshots of atoms (e.g. raster, svg
tools). You can also use the iterator() method in your scripts to loop over selected snapshots. The atype setting
determines what atom column is returned as atom "type" by the viz() method. The bonds() method can be
used to create a static list of bonds that are returned by the viz() method.

Usage:

d = dump("dump.one") read in one or more dump files
d = dump("dump.1 dump.2.gz") can be gzipped
d = dump("dump.*") wildcard expands to multiple files
d = dump("dump.*",0) two args = store filenames, but don't read

 incomplete and duplicate snapshots are deleted
 if atoms have 5 or 8 columns, assign id,type,x,y,z (ix,iy,iz)
 atoms will be unscaled if stored in files as scaled

time = d.next() read next snapshot from dump files

dump tool 30

http://www.cs.sandia.gov/~sjplimp/pizza.html

 used with 2−argument constructor to allow reading snapshots one−at−a−time
 snapshot will be skipped only if another snapshot has same time stamp
 return time stamp of snapshot read
 return −1 if no snapshots left or last snapshot is incomplete
 no column name assignment or unscaling is performed

d.map(1,"id",3,"x") assign names to atom columns (1−N)

d.tselect.all() select all timesteps
d.tselect.one(N) select only timestep N
d.tselect.none() deselect all timesteps
d.tselect.skip(M) select every Mth step
d.tselect.test("$t >= 100 and $t <10000") select matching timesteps
d.delete() delete non−selected timesteps

 selecting a timestep also selects all atoms in the timestep
 skip() and test() only select from currently selected timesteps
 test() uses a Python Boolean expression with $t for timestep value
 Python comparison syntax: == != <> <= >= and or

d.aselect.all() select all atoms in all steps
d.aselect.all(N) select all atoms in one step
d.aselect.test("$id > 100 and $type == 2") select match atoms in all steps
d.aselect.test("$id > 100 and $type == 2",N) select matching atoms in one step

 all() with no args selects atoms from currently selected timesteps
 test() with one arg selects atoms from currently selected timesteps
 test() sub−selects from currently selected atoms
 test() uses a Python Boolean expression with $ for atom attributes
 Python comparison syntax: == != <> <= >= and or
 $name must end with a space

d.write("file") write selected steps/atoms to dump file
d.scatter("tmp") write selected steps/atoms to mutiple files

 scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc

d.scale() scale x,y,z to 0−1 for all timesteps
d.scale(100) scale atom coords for timestep N
d.unscale() unscale x,y,z to box size to all timesteps
d.unscale(1000) unscale atom coords for timestep N
d.wrap() wrap x,y,z into periodic box via ix,iy,iz
d.unwrap() unwrap x,y,z out of box via ix,iy,iz
d.owrap("other") wrap x,y,z to same image as another atom
d.sort() sort atoms by atom ID in all selected steps
d.sort(1000) sort atoms in timestep N

 scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
 wrap(), unwrap(), owrap() require ix,iy,iz be defined
 owrap() requires a column be defined which contains an atom ID
 name of that column is the argument to owrap()
 x,y,z for each atom is wrapped to same image as the associated atom ID
 useful for wrapping all molecule's atoms the same so it is contiguous

m1,m2 = d.minmax("type") find min/max values for a column
d.set("$ke = $vx * $vx + $vy * $vy") set a column to a computed value
d.spread("ke",N,"color") 2nd col = N ints spread over 1st col
d.clone(1000,"color") clone timestep N values to other steps

 minmax() operates on selected timesteps and atoms

dump tool 31

 set() operates on selected timesteps and atoms
 left hand side column is created if necessary
 left−hand side column is unset or unchanged for non−selected atoms
 equation is in Python syntax
 use $ for column names, $name must end with a space
 spread() operates on selected timesteps and atoms
 min and max are found for 1st specified column across all selected atoms
 atom's value is linear mapping (1−N) between min and max
 that is stored in 2nd column (created if needed)
 useful for creating a color map
 clone() operates on selected timesteps and atoms
 values at every timestep are set to value at timestep N for that atom ID
 useful for propagating a color map

t = d.time() return vector of selected timestep values
fx,fy,... = d.atom(100,"fx","fy",...) return vector(s) for atom ID N
fx,fy,... = d.vecs(1000,"fx","fy",...) return vector(s) for timestep N

 atom() returns vectors with one value for each selected timestep
 vecs() returns vectors with one value for each selected atom in the timestep

index,time,flag = d.iterator(0/1) loop over dump snapshots
time,box,atoms,bonds,tris = d.viz(index) return list of viz objects
d.atype = "color" set column returned as "type" by viz
d.extra("dump.bond") read bond list from dump file
d.extra(data) extract bond/tri/line list from data

 iterator() loops over selected timesteps
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = index within dump object (0 to # of snapshots)
 time = timestep value
 flag = −1 when iteration is done, 1 otherwise
 viz() returns info for selected atoms for specified timestep index
 time = timestep value
 box = [xlo,ylo,zlo,xhi,yhi,zhi]
 atoms = id,type,x,y,z for each atom as 2d array
 bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
 if bonds() was used to define bonds, else empty list
 tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
 if extra() was used to define tris, else empty list
 lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
 if extra() was used to define lines, else empty list
 atype is column name viz() will return as atom type (def = "type")
 extra() stores list of bonds/tris/lines to return each time viz() is called

Related tools:

data, gl, raster, svg

Prerequisites:

Numeric Python package. Gunzip command (if you want to read gzipped files).

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

dump tool 32

http://www.cs.sandia.gov/~sjplimp/pizza.html

gl tool

Purpose:

3d interactive visualization via OpenGL.

Description:

The gl tool does visualizes LAMMPS snapshots or data files via OpenGL graphics calls. The interface to
OpenGL is provided to Python by the open−source PyOpenGL toolkit. To do interactive visualization,
consider using this tool in conjunction with the vcr tool.

The gl constructor takes a data object containing atom snapshots as an argument (dump, data).

The show() method displays a single image of the selected atoms of snapshot N and saves it as image.png.
While an image is displayed, the view can be changed directly by using the mouse buttons in the OpenGl
window to translate (left), rotate (middle), or zoom (right) the image. However, these mouse changes are not
permanent, unless the corresponding trans(), rotate(), and zoom() methods are invoked. The all() method loops
thru all selected snapshots, displaying each one in turn. The resulting image files are saved to image0000.png,
image0001.png, etc. The prefix "image" can be changed via the file setting.

The bg(), size(), rotate(), trans(), zoom(), box(), label(), and nolabel() methods control various aspects of the
images produced. Without the trans() and zoom() settings, the GL image should roughly fill the window and
be centered.

Additional movie effects can be produced using the pan() and select() methods. The pan() method specifies an
initial and final viewpoint that is applied to the images produced by the all() method. For intermediate images,
the view parameters will be interpolated between their initial and final values. The pan() method can thus be
used to rotate a single image or fly−by the simulation as it animates. The select() method performs additional
atom selection for each image of the all() sequence. An image−dependent %g variable can be used in the
select() string. The select() method can thus be used to slice thru the data set.

The acol(), arad(), bcol(), brad(), tcol(), and tfill() methods change attributes of the atoms, bonds, and triangles
displayed. Each atom or bond returned from the data object has an integer "type" from 1 to N. The type is
used to index into a list of RGB colors or radii for atoms and bond thickness. The adef(), bdef(), and tdef()
methods setup default mappings of types to colors/radii. The other methods enable specific assignments to be
made. The interpolation option (e.g. many types assigned to a few colors), enables a smooth rainbow of colors
to be assigned to a range of types. Note that the dump tool allows any vector to be returned as an atom "type"
via its atype setting. Thus displayed colors can be keyed to atom velocity or other properties.

Colors are specified with a string, e.g. "red". There are 140 pre−defined colors from this WWW page which
can be examined by importing the "colors" variable from "vizinfo". New colors can be defined by assigning a
nickname of your choice to an RGB triplet, as described below.

The visual quality of atom spheres can be set via the q() method. The axis() method toggles whether xyz axes
are displayed in the OpenGL window. Red is the +x axis, green is +y, and blue is +z. The ortho() method
toggles between an orthographic and perspective display of the snapshot. The clip() method can be used to
narrow the amount of data that is visualized. The reload() method is needed if you change the selection
attributes of the underlying data assigned to the gl tool, such as via the dump tool's methods. These changes
will not be visible in the OpenGL window until the data is reloaded.

gl tool 33

http://pyopengl.sourceforge.net
http://www.oreilly.com/catalog/wdnut/excerpt/color_names.html

Usage:

g = gl(d) create OpenGL display for data in d

 d = atom snapshot object (dump, data)

g.bg("black") set background color (def = "black")
g.size(N) set image size to NxN
g.size(N,M) set image size to NxM
g.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
g.shift(x,y) translate by x,y pixels in view window (def = 0,0)
g.zoom(0.5) scale image by factor (def = 1)
g.box(0/1/2) 0/1/2 = none/variable/fixed box
g.box(0/1/2,"green") set box color
g.box(0/1/2,"red",4) set box edge thickness
g.file = "image" file prefix for created images (def = "image")

g.show(N) show image of snapshot at timestep N

g.all() make images of all selected snapshots
g.all(P) images of all, start file label at P
g.all(N,M,P) make M images of snapshot N, start label at P

g.pan(60,135,1.0,40,135,1.5) pan during all() operation
g.pan() no pan during all() (default)

 args = z theta, azimuthal phi, zoom factor at beginning and end
 values at each step are interpolated between beginning and end values

g.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
g.select = "" no extra aselect (default)

 %g varies from 0.0 to 1.0 from beginning to end of all()

g.acol(2,"green") set atom colors by atom type (1−N)
g.acol([2,4],["red","blue"]) 1st arg = one type or list of types
g.acol(0,"blue") 2nd arg = one color or list of colors
g.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
g.acol(range(10),"loop") assign colors in loop, randomly ordered

 if 1st arg is 0, set all types to 2nd arg
 if list of types has a 0 (e.g. range(10)), +1 is added to each value
 interpolate means colors blend smoothly from one value to the next

g.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()

g.bcol() set bond color, same args as acol()
g.brad() set bond thickness, same args as arad()

g.tcol() set triangle color, same args as acol()
g.tfill() set triangle fill, 0 fill, 1 line, 2 both

g.lcol() set line color, same args as acol()
g.lrad() set line thickness, same args as arad()

g.adef() set atom/bond/tri/line properties to default
g.bdef() default = "loop" for colors, 0.45 for radii
g.tdef() default = 0.25 for bond/line thickness

gl tool 34

g.ldef() default = 0 fill

 by default 100 types are assigned
 if atom/bond/tri/line has type > # defined properties, is an error

from vizinfo import colors access color list
print colors list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255

 140 pre−defined colors: red, green, blue, purple, yellow, black, white, etc

Settings specific to gl tool:

g.q(10) set quality of image (def = 5)
g.axis(0/1) turn xyz axes off/on
g.ortho(0/1) perspective (0) vs orthographic (1) view
g.clip('xlo',0.25) clip in xyz from lo/hi at box fraction (0−1)
g.reload() force all data to be reloaded
g.cache = 0/1 turn off/on GL cache lists (def = on)
theta,phi,x,y,scale,up = g.gview() grab all current view parameters
g.sview(theta,phi,x,y,scale,up) set all view parameters

 data reload is necessary if dump selection is used to change the data
 cache lists usually improve graphics performance
 gview returns values to use in other commands:
 theta,phi are args to rotate()
 x,y are args to shift()
 scale is arg to zoom()
 up is a 3−vector arg to sview()

Related tools:

dump, rasmol, raster, svg, vcr,

Prerequisites:

Python PyOpenGL and PIL packages.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

gnu tool

Purpose:

Create plots via GnuPlot plotting program.

Description:

The gnu tool is a wrapper on the GnuPlot plotting package. GnuPlot is open source software and runs on any
platform.

The gnu constructor launches GnuPlot as a process which the gnu tool sends commands to. The GnuPlot
process can be killed via the stop() method, though this is typically unnecessary.

gnu tool 35

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.gnuplot.info/

The plot() method plots a single vector against a linear index or pairs of vectors against each other. The pairs
of vectors are written to files and read−in by GnuPlot's plot command.

The mplot() method creates a series of plots and saves them each to a numbered file. Each file is a plot of an
increasing portion of the vector(s). This can be used to make an animation of a plot.

The enter() method can be used to interact with GnuPlot directly. Each subsequent line you type is a GnuPlot
command, until you type "quit" or "exit" to return to Pizza.py. Single GnuPlot commands can be issued as
string arguments to the gnu tool.

The export() method writes numeric data as columns to text files, so that GnuPlot can read them via its "plot"
command.

Mutliple windows can be displayed, plotted to, and manipulated using the select() and hide() methods. The
save() method writes the currently selected plot to a PostScript file.

The remaining methods (aspect, title, xrange, etc) set attributes of the currently selected plot. The erase()
method resets all attributes to their default values.

Usage:

g = gnu() start up GnuPlot
g.stop() shut down GnuPlot process

g.plot(a) plot vector A against linear index
g.plot(a,b) plot B against A
g.plot(a,b,c,d,...) plot B against A, D against C, etc
g.mplot(M,N,S,"file",a,b,...) multiple plots saved to file0000.eps, etc

 each plot argument can be a tuple, list, or Numeric vector
 mplot loops over range(M,N,S) and create one plot per iteration
 last args are same as list of vectors for plot(), e.g. 1, 2, 4 vectors
 each plot is made from a portion of the vectors, depending on loop index i
 Ith plot is of b[0:i] vs a[0:i], etc
 series of plots saved as file0000.eps, file0001.eps, etc
 if use xrange(),yrange() then plot axes will be same for all plots

g("plot 'file.dat' using 2:3 with lines") execute string in GnuPlot

g.enter() enter GnuPlot shell
gnuplot> plot sin(x) with lines type commands directly to GnuPlot
gnuplot> exit, quit exit GnuPlot shell

g.export("data",range(100),a,...) create file with columns of numbers

 all vectors must be of equal length
 could plot from file with GnuPlot command: plot 'data' using 1:2 with lines

g.select(N) figure N becomes the current plot

 subsequent commands apply to this plot

g.hide(N) delete window for figure N
g.save("file") save current plot as file.eps

gnu tool 36

Set attributes for current plot:

g.erase() reset all attributes to default values
g.aspect(1.3) aspect ratio
g.xtitle("Time") x axis text
g.ytitle("Energy") y axis text
g.title("My Plot") title text
g.title("title","x","y") title, x axis, y axis text
g.xrange(xmin,xmax) x axis range
g.xrange() default x axis range
g.yrange(ymin,ymax) y axis range
g.yrange() default y axis range
g.xlog() toggle x axis between linear and log
g.ylog() toggle y axis between linear and log
g.label(x,y,"text") place label at x,y coords
g.curve(N,'r') set color of curve N

 colors: 'k' = black, 'r' = red, 'g' = green, 'b' = blue
 'm' = magenta, 'c' = cyan, 'y' = yellow

Related tools:

matlab, plotview

Prerequisites:

GnuPlot plotting package.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

histo tool

Purpose:

Particle density histogram from a dump.

Description:

The histo tool creates spatial histograms of particle snapshots in a dump file.

The histo constructor takes an object that stores atom snapshots (dump, data) as its argument.

The compute() method creates a histogram in a specific dimension at a desired resolution, averaged across all
selected snapshots and atoms in the dump. The returned vectors can be plotted; x is the distance along the
chosen dimension, y is the histogram counts.

Usage:

h = histo(d) d = dump/cdump object

x,y = h.compute('x',N,lo,hi) compute histogram in dim with N bins

 lo/hi are optional, if not used histo will be over entire box

histo tool 37

http://www.cs.sandia.gov/~sjplimp/pizza.html

Related tools:

dump

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

image tool

Purpose:

View and manipulate images.

Description:

The image tool can be used to display image files or convert them to other formats via the ImageMagick tools
(or alternate tools if specified in the DEFAULTS.py file).

The image constructor creates a GUI to view a set of image files as a palette of thumbnail−size images. Each
thumbnail can be clicked on to view the full−size image. Clicking on the full−size image removes it. The
view() method does the same operation for a new set of files.

The convert() method invokes the ImageMagick "convert" command to convert an image file to a different
format. If both arguments have a wildcard character, one conversion is done for each file in the 1st argument
to create a file in the 2nd argument, e.g. "convert image0012.svg new0012.png". If either argument has no
wildcard, one "convert" command is issued using both arguments. This form can be used to create a movie
file, e.g. "convert *.png ligand.mpg".

The montage() method invokes the ImageMagick "montage" command to combine 2 image files to create a
3rd. If all 3 arguments have a wildcard character, one montage is created for each file in the 1st argument,
paired with one file in the 2nd argument, e.g. "montage image0012.svg plot0012.eps combine0012.png". For
this to work, the 1st arguments must each expand to the same number of files. If any of the 3 arguments does
not have a wildcard, one "montage" command is issued using all 3 arguements.

Image files can be in any format (PNG, GIF, JPG, etc) recognized by the Python Image Library (PIL)
installed in your Python or by ImageMagick. Various Pizza.py visualization tools (raster, deja, rasmol, etc)
create such image files. If a particular image format fails to load, your PIL installation was linked without
support for that format. Rebuild PIL, and follow the install instructions included in its top directory.

Usage:

i = image("my1.gif my2.gif") display thumbnails of matching images
i = image("*.png *.gif") wildcards allowed
i = image("") blank string matches all image suffixes
i = image() no display window opened if no arg

 image suffixes for blank string = *.png, *.bmp, *.gif, *.tiff, *.tif
 click on a thumbnail to view it full−size
 click on thumbnail again to remove full−sized version

i.view("*.png *.gif") display thumbnails of matching images

image tool 38

http://www.cs.sandia.gov/~sjplimp/pizza.html

 view arg is same as constructor arg

i.convert("image*.svg","new*.png") each SVG file to PNG
i.convert("image*.svg","new*.jpg","−quality 50") 3rd arg is switch
i.convert("image*.png","movie.mpg") all PNGs to MPG movie
i.convert("image*.png","movie.mpg","−resize 128x128") 3rd arg is switch
i.montage("","image*.png","plot*.png","two*.png") image + plot = two
i.montage("−geometry 512x512","i*.png","new.png") 1st arg is switch

 convert with 2 wildcard args loops over 1st set of files to make 2nd set
 convert with not all wildcard args will issue single convert command
 montage with all wildcard args loops over 1st set of files,
 combines with one file from other sets, to make last set of files
 montage with not all wildcard args will issue single montage command

Related tools:

raster, rasmol, animate

Prerequisites:

Python Tkinter, Pmw, and PIL packages. ImageMagick convert and montage commands or equivalent.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

log tool

Purpose:

Read LAMMPS log files and extract thermodynamic data.

Description:

Read one or more LAMMPS log files and combine their thermodynamic data into long, named vectors
(versus time). The vectors can be used in Python for further processing and plotting, or they can be output to a
file.

The log constructor reads one or more log files. If 2 arguments are specified, a single file is specified, and it
can be read incrementally (e.g. as it is created) by the next() method.

The nvec, nlen, and names values give the # of vectors, their length, and names. The get() method returns one
of more vectors as a Python list. The write() method outputs the numeric vectors to a file.

Usage:

l = log("file1") read in one or more log files
l = log("log1 log2.gz") can be gzipped
l = log("file*") wildcard expands to multiple files
l = log("log.lammps",0) two args = store filename, but don't read

 incomplete and duplicate thermo entries are deleted

time = l.next() read new thermo info from file

log tool 39

http://www.cs.sandia.gov/~sjplimp/pizza.html

 used with 2−argument constructor to allow reading thermo incrementally
 return time stamp of last thermo read
 return −1 if no new thermo since last read

nvec = l.nvec # of vectors of thermo info
nlen = l.nlen length of each vectors
names = l.names list of vector names
t,pe,... = l.get("Time","KE",...) return one or more vectors of values
l.write("file.txt") write all vectors to a file
l.write("file.txt","Time","PE",...) write listed vectors to a file

 get and write allow abbreviated (uniquely) vector names

Related tools:

clog, plotview, gnu, matlab

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

matlab tool

Purpose:

Create plots via MatLab numerical analysis program.

Description:

The matlab tool is a wrapper on the MatLab numerical analysis package, primarily designed to use its plotting
capabilities. MatLab is commercial software available on a variety of platforms.

The matlab constructor launches MatLab as a process which the matlab tool sends commands to. The MatLab
process can be killed via the stop() method, though this is typically unnecessary.

The plot() method plots a single vector against a linear index or pairs of vectors against each other. The pairs
of vectors are written to files and read−in by MatLab. The Nth curve in a plot is stored in the MatLab variable
pizzaN, so the 2 vectors can be accessed within MatLab as pizzaN(:,1) and pizzaN(:,2).

The mplot() method creates a series of plots and saves them each to a numbered file. Each file is a plot of an
increasing portion of the vector(s). This can be used to make an animation of a plot.

The enter() method can be used to interact with MatLab directly. Each subsequent line you type is a MatLab
command, until you type "quit" or "exit" to return to Pizza.py. Single MatLab commands can be issued as
string arguments to the gnu tool.

The export() method writes numeric data as columns to text files, so that MatLab can read them via its
"importdata" command.

Mutliple windows can be displayed, plotted to, and manipulated using the select() and hide() methods. The
save() method writes the currently selected plot to a PostScript file.

matlab tool 40

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.mathworks.com

The remaining methods (aspect, title, xrange, etc) set attributes of the currently selected plot. The erase()
method resets all attributes to their default values.

Usage:

m = matlab() start up MatLab
m.stop() shut down MatLab process

m.plot(a) plot vector A against linear index
m.plot(a,b) plot B against A
m.plot(a,b,c,d,...) plot B against A, D against C, etc
m.mplot(M,N,S,"file",a,b,...) multiple plots saved to file0000.eps, etc

 each plot argument can be a tuple, list, or Numeric vector
 mplot loops over range(M,N,S) and create one plot per iteration
 last args are same as list of vectors for plot(), e.g. 1, 2, 4 vectors
 each plot is made from a portion of the vectors, depending on loop index i
 Ith plot is of b[0:i] vs a[0:i], etc
 series of plots saved as file0000.eps, file0001.eps, etc
 if use xrange(),yrange() then plot axes will be same for all plots

m("c = a + b") execute string in MatLab

m.enter() enter MatLab shell
matlab> c = a + b type commands directly to MatLab
matlab> exit, quit exit MatLab shell

m.export("data",range(100),a,...) create file with columns of numbers

 all vectors must be of equal length
 could plot from file with MatLab commands:
 cols = importdata('data')
 plot(cols(:,1),cols(:,2))

m.select(N) figure N becomes the current plot

 subsequent commands apply to this plot

m.hide(N) delete window for figure N
m.save("file") save current plot as file.eps

Set attributes for current plot:

m.erase() reset all attributes to default values
m.aspect(1.3) aspect ratio
m.xtitle("Time") x axis text
m.ytitle("Energy") y axis text
m.title("My Plot") title text
m.title("title","x","y") title, x axis, y axis text
m.xrange(xmin,xmax) x axis range
m.xrange() default x axis range
m.yrange(ymin,ymax) y axis range
m.yrange() default y axis range
m.xlog() toggle x axis between linear and log
m.ylog() toggle y axis between linear and log
m.label(x,y,"text") place label at x,y coords
m.curve(N,'r') set color of curve N
m.curve(N,'g','−−') set color and line style of curve N
m.curve(N,'b','−','v') set color, line style, symbol of curve N

matlab tool 41

 colors: 'k' = black, 'r' = red, 'g' = green, 'b' = blue
 'm' = magenta, 'c' = cyan, 'y' = yellow
 styles: '−' = solid, '−−' = dashed, ':' = dotted, '−.' = dash−dot
 symbols: '+' = plus, 'o' = circle, '*' = asterik, 'x' = X,
 's' = square, 'd' = diamond, '^' = up triangle,
 'v' = down triangle, '>' = right triangle,
 '

Related tools:

gnu, plotview

Prerequisites:

The MatLab numerical analysis package.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

pair tool

Purpose:

Compute LAMMPS pairwise energies.

Description:

The pair tool computes a pairwise energy between 2 particles using a LAMMPS molecular dynamics force
field. Thus it can be used in an analysis script to compute energies between groups of atoms from a LAMMPS
snapshot file.

The pair constructor specifies the force field style. Only some of the LAMMPS pair styles are currently
included in this tool, but new styles can easily be added. Code from the LAMMPS pair*.cpp file needs to be
re−coded in Python to make this work.

The coeff() method reads the pairwise coefficients for the force field from a data file object (see the data tool).
The init() method does pre−computations for the force field parameters needed by the single() method which
does a pairwise computation between two atoms of type = itype,jtype separated by a squared distance rsq. The
arguments for init() and single() can be different for a particular force field style. When you write the init()
and single() methods for a new style, you can define what arguments are needed.

Usage:

p = pair("lj/charmm/coul/charmm") create pair object for specific pair style

 available styles: lj/cut, lj/cut/coul/cut, lj/charmm/coul/charmm

p.coeff(d) extract pairwise coeffs from data object
p.init(cut1,cut2,...) setup based on coeffs and cutoffs

 init args are specific to pair style:
 lj/cut = cutlj
 lj/cut/coul/cut = cutlj,cut_coul (cut_coul optional)
 lj/charmm/coul/charmm = cutlj_inner,cutlj,cutcoul_inner,cut_coul

pair tool 42

http://www.cs.sandia.gov/~sjplimp/pizza.html

 (last 2 optional)

e_vdwl,e_coul = p.single(rsq,itype,jtype,q1,q2,...) compute LJ/Coul energy

 pairwise energy between 2 atoms at distance rsq with their attributes
 args are specific to pair style:
 lj/cut = rsq,itype,jtype
 lj/cut/coul/cut = rsq,itype,jtype,q1,q2
 lj/charmm/coul/charmm = rsq,itype,jtype,q1,q2

Related tools:

data

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

patch tool

Purpose:

Create patchy Lennard−Jones particles for LAMMPS input.

Description:

The patch tool creates large multi−atom particles and writes them out as a LAMMPS data file. They need to
be simulated with a soft potential in LAMMPS to un−overlap them before they form a proper ensemble.

The individual particles consist of a collection of Lennard−Jones atoms of various types. By defining force
field coefficients appropriately, specific atoms can be made attractive or repulsive, so that "patches" of atoms
on the particle surface are reactive. The Pizza.py WWW site has example images and movies of simulations
using such particles. A paper by Sharon Glotzer's group at U Michigan describing a variety of patchy particle
models was the motivation for this tool.

The patch constructor takes a volume fraction as an argument to determine how densely to fill the simulation
box. Optionally, the box shape can also be specified.

The build() method creates N particles, each of speficied style and with specified atom types. Several styles
are available and new ones can easily be added to patch.py. You will need to look in patch.py for the details of
what each style represents. For example, "hex2" uses a C60 bucky ball as a template and creates hexagonal
6−atom patches (atoms of a different type) on either side of the ball.

The build() method can be invoked multiple times to create collections of particles. The position and
orientation of each particle is chosen randomly. The seed value sets the random number generator used for
coordinate generation.

The ensemble of chains is written to a LAMMPS data file via the write() method.

Usage:

p = patch(vfrac) setup box with a specified volume fraction

patch tool 43

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.engin.umich.edu/dept/che/research/glotzer

p = patch(vfrac,1,1,2) x,y,z = aspect ratio of box (def = 1,1,1)

p.seed = 48379 set random # seed (def = 12345)
p.blen = 0.97 set length of tether bonds (def = 0.97)
p.dmin = 1.02 set min r from i−1 to i+1 tether site (def = 1.02)

p.build(100,"hex2",1,2,3) create 100 "hex2" particles with types 1,2,3

 can be invoked multiple times
 keywords:
 c60hex2: diam,1,2,3 = C−60 with 2 hex patches and ctr part, types 1,2,3
 hex2: diam,1,2 = one large particle with 2 7−mer hex patches, types 1,2
 hex4: diam,1,2 = one large particle with 4 7−mer hex patches, types 1,2
 ring: diam,N,1,2 = one large part with equatorial ring of N, types 1,2
 ball: diam,m1,m2,1,2,3 = large ball with m12−len tethers, types 1,2,3
 tri5: 1,2 = 3−layer 5−size hollow tri, types 1,2
 rod: N,m1,m2,1,2,3 = N−length rod with m12−len tethers, types 1,2,3
 tri: N,m1,m2,m3,1,2,3,4 = N−size tri with m123−len tethers, types 1−4
 hex: m1,m2,m3,m4,m5,m6,1,2,3,4,5,6,7 = 7−atom hex with m−len tethers, t 1−7

p.write("data.patch") write out system to LAMMPS data file

Related tools:

chain, data

Prerequisites: none

(Glotzer) Zhang and Glotzer, NanoLetters, 4, 1407−1413 (2004).

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

pdbfile tool

Purpose:

Read, write PDB files in combo with LAMMPS snapshots.

Description:

The pdbfile tool reads in PDB (Protein Data Bank) files of protein coordinates and uses them in conjunction
with LAMMPS snapshots in various ways. The PDB format is commonly used by various vizualization and
analysis programs.

The pdbfile constructor takes a string argument listing one or more PDB filenames and a data argument with
LAMMPS atom information (data or dump object). Both arguments are optional, as described below. If a
single PDB file is given as a constructor argument, and it is 4 letters long, and it does not exist on your
system, then it is treated as a PDB identifier and the matching PDB file is downloaded from a PDB repository
on the WWW to your machine.

The one(), many(), and single() methods write out PDB files in various manners, depending on the 1 or 2
arguments used in the constructor. If only a string was specified (no data object), the specified PDB files are

pdbfile tool 44

http://www.cs.sandia.gov/~sjplimp/pizza.html

written out as−is. Thus the one() method concatenates the files together. If only a data object was specified
(no string of PDB files), then PDB files in a generic format (Lennard−Jones atoms) are created. If both
arguments are specified, then only a single PDB file can be listed. It is treated as a template file, and the atom
coordinates in the data object replace the atom coordinates in the template PDB file to create a series of new
PDB files. This replacement is only done for selected atoms (in the dump object) and for atom IDs that appear
in the PDB file.

The iterator() method is called by the rasmol tool to create a series of PDB files for visualization purposes.

Usage:

p = pdbfile("3CRO") create pdb object from PDB file or WWW
p = pdbfile("pep1 pep2") read in multiple PDB files
p = pdbfile("pep*") can use wildcards
p = pdbfile(d) read in snapshot data with no PDB file
p = pdbfile("3CRO",d) read in single PDB file with snapshot data

 string arg contains one or more PDB files
 don't need .pdb suffix except wildcard must expand to file.pdb
 if only one 4−char file specified and it is not found,
 it will be downloaded from http://www.rcsb.org as 3CRO.pdb
 d arg is object with atom coordinates (dump, data)

p.one() write all output as one big PDB file to tmp.pdb
p.one("mine") write to mine.pdb
p.many() write one PDB file per snapshot: tmp0000.pdb, ...
p.many("mine") write as mine0000.pdb, mine0001.pdb, ...
p.single(N) write timestamp N as tmp.pdb
p.single(N,"new") write as new.pdb

 how new PDB files are created depends on constructor inputs:
 if no d: one new PDB file for each file in string arg (just a copy)
 if only d specified: one new PDB file per snapshot in generic format
 if one file in str arg and d: one new PDB file per snapshot
 using input PDB file as template
 multiple input PDB files with a d is not allowed

index,time,flag = p.iterator(0)
index,time,flag = p.iterator(1)

 iterator = loop over number of PDB files
 call first time with arg = 0, thereafter with arg = 1
 N = length = # of snapshots or # of input PDB files
 index = index of snapshot or input PDB file (0 to N−1)
 time = timestep value (time stamp for snapshot, index for multiple PDB)
 flag = −1 when iteration is done, 1 otherwise
 typically call p.single(time) in iterated loop to write out one PDB file

Related tools:

data, dump, rasmol

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

pdbfile tool 45

http://www.cs.sandia.gov/~sjplimp/pizza.html

plotview tool

Purpose:

Plot multiple vectors from a data set.

Description:

The plotview tool displays a GUI for showing a series of plots of vectors stored in another Pizza.py tool.
Individual plots can be displayed or hidden or saved to a file.

The plotview constructor creates the GUI and takes a data object (log, vec) and a plot object (gnu, matlab) as
arguments.

The vectors in the data object are converted to individual plots. The 2nd thru Nth vectors are each plotted
against the 1st vector to create N−1 plots. One or more plots can be displayed simultaneously (right buttons in
GUI), but only one is selected at a time (left buttons in GUI). The yes(), no(), and select() methods perform
the same function as the GUI buttons.

The currently selected plot can be modified (title, range, etc) by the methods of the plot object.

The file() and save() methods (or corresponding GUI widgets) save the currently selected plot to a PostScript
file.

Usage:

p = plotview(d,p) create GUI for viewing plots

 d = Pizza.py object that contains vectors (log, vec)
 p = Pizza.py plotting object (gnu, matlab)

p.select(2) select one plot as current (1−N)
p.yes(3) toggle one plot's visibility
p.no(3)

 only one plot is selected at a time
 multiple plots can be visible at same time
 select is same as clicking on left−side radio−button
 yes/no is same as clicking on right−side checkbox

p.file("pressure") filename prefix for saving a plot
p.save() save currently selected plot to file.eps

Related tools:

log, gnu, matlab

Prerequisites:

Python Tkinter package.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

plotview tool 46

http://www.cs.sandia.gov/~sjplimp/pizza.html

rasmol tool

Purpose:

3d visualization via RasMol program.

Description:

The rasmol tool is a wrapper on the RasMol visualization program. RasMol is open source software and runs
on many platforms. The link above is for the Open Rasmol WWW site, not the Protein Explorer WWW site.
Protein Explorer is a derivative of RasMol and runs primarily on Windows machines within a browser. This
Pizza.py tool wraps the original RasMol program, not Protein Explorer.

The rasmol constructor takes a pdbfile object as its argument which produces PDB files that RasMol reads in.
The pdbfile object can produce PDB files from a LAMMPS dump or data file, as well as in other ways.

The show() method runs RasMol on the atoms of snapshot N (converted to a PDB file) and displays the
resulting image stored as image.gif. Either a default RasMol script or one you specify is used to format the
RasMol image. The all() method loops thru all selected snapshots and runs RasMol on each one. The resulting
image files are saved to image0000.gif, image0001.gif, etc. The prefix "image" can be changed via the file
setting.

A RasMol script can be created by running RasMol itself (outside of Pizza.py), typing commands or choosing
menu options to format the display as desired, then typing "write script filename". Alternatively the run()
method will do this for you. It runs RasMol on snapshot N and lets you interact with RasMol directly either
via typing or mouse operations in the RasMol window. When you type "quit" or "exit" the script file will be
saved (do not exit via the Rasmol menu).

Usage:

r = rasmol(p) create RasMol wrapper for pdb object p

r.file = "image" file prefix for created images (def = "image")

r.show(N) show snapshot at timestep N with default script
r.show(N,"my.rasmol") use file as RasMol script

r.all() make images of all selected snapshots with def script
r.all("my.rasmol") use file as RasMol script

r.run(N) run RasMol interactivly on snapshot N
r.run(N,"new.rasmol") adjust via mouse or RasMol commands
r.run(N,"new.rasmol","old.rasmol") type quit to save RasMol script file

 if 2 args, 2nd arg is new script file, else save to "tmp.rasmol"
 if 3 args, 3rd arg is initial script file, else use default script

Related tools:

dump, gl, pdbfile, raster, svg

rasmol tool 47

http://www.openrasmol.org

Prerequisites:

The RasMol program.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

raster tool

Purpose:

3d visualization via Raster3d program.

Description:

The raster tool is a wrapper on the Raster3d visualization program. Raster3d is open source software and runs
on many platforms.

The raster constructor takes a data object containing atom snapshots as an argument (dump, data).

The show() method runs Raster3d on the selected atoms of snapshot N and displays the resulting image stored
as image.png. The all() method loops thru all selected snapshots and runs Raster3d on each one. The resulting
image files are saved to image0000.png, image0001.png, etc. The prefix "image" can be changed via the file
setting.

The bg(), size(), rotate(), trans(), zoom(), box(), label(), and nolabel() methods control various aspects of the
images produced. Without the trans() and zoom() settings, the Raster3d image should roughly fill the window
and be centered.

Additional movie effects can be produced using the pan() and select() methods. The pan() method specifies an
initial and final viewpoint that is applied to the images produced by the all() method. For intermediate images,
the view parameters will be interpolated between their initial and final values. The pan() method can thus be
used to rotate a single image or fly−by the simulation as it animates. The select() method performs additional
atom selection for each image of the all() sequence. An image−dependent %g variable can be used in the
select() string. The select() method can thus be used to slice thru the data set.

The acol(), arad(), bcol(), brad(), and tcol() methods change attributes of the atoms, bonds, and triangles
displayed. Each atom or bond returned from the data object has an integer "type" from 1 to N. The type is
used to index into a list of RGB colors or radii for atoms and bond thickness. The adef(), bdef(), and tdef()
methods setup default mappings of types to colors/radii. The other methods enable specific assignments to be
made. The interpolation option (e.g. many types assigned to a few colors), enables a smooth rainbow of colors
to be assigned to a range of types. Note that the dump tool allows any vector to be returned as an atom "type"
via its atype setting. Thus displayed colors can be keyed to atom velocity or other properties.

Colors are specified with a string, e.g. "red". There are 140 pre−defined colors from this WWW page which
can be examined by importing the "colors" variable from "vizinfo". New colors can be defined by assigning a
nickname of your choice to an RGB triplet, as described below.

Usage:

r = raster(d) create Raster3d wrapper for data in d

raster tool 48

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.oreilly.com/catalog/wdnut/excerpt/color_names.html

 d = atom snapshot object (dump, data)

r.bg("black") set background color (def = "black")
r.size(N) set image size to NxN
r.size(N,M) set image size to NxM
r.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
r.shift(x,y) translate by x,y pixels in view window (def = 0,0)
r.zoom(0.5) scale image by factor (def = 1)
r.box(0/1/2) 0/1/2 = none/variable/fixed box
r.box(0/1/2,"green") set box color
r.box(0/1/2,"red",4) set box edge thickness
r.file = "image" file prefix for created images (def = "image")

r.show(N) show image of snapshot at timestep N

r.all() make images of all selected snapshots
r.all(P) images of all, start file label at P
r.all(N,M,P) make M images of snapshot N, start label at P

r.pan(60,135,1.0,40,135,1.5) pan during all() operation
r.pan() no pan during all() (default)

 args = z theta, azimuthal phi, zoom factor at beginning and end
 values at each step are interpolated between beginning and end values

r.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
r.select = "" no extra aselect (default)

 %g varies from 0.0 to 1.0 from beginning to end of all()

r.label(x,y,"h",size,"red","This is a label") add label to each image
r.nolabel() delete all labels

 x,y coords = −0.5 to 0.5, "h" or "t" for Helvetica or Times font
 size = fontsize (e.g. 10), "red" = color of text

r.acol(2,"green") set atom colors by atom type (1−N)
r.acol([2,4],["red","blue"]) 1st arg = one type or list of types
r.acol(0,"blue") 2nd arg = one color or list of colors
r.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
r.acol(range(10),"loop") assign colors in loop, randomly ordered

 if 1st arg is 0, set all types to 2nd arg
 if list of types has a 0 (e.g. range(10)), +1 is added to each value
 interpolate means colors blend smoothly from one value to the next

r.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()

r.bcol() set bond color, same args as acol()
r.brad() set bond thickness, same args as arad()

r.tcol() set triangle color, same args as acol()
r.tfill() set triangle fill, 0 fill, 1 line, 2 both

r.lcol() set line color, same args as acol()
r.lrad() set line thickness, same args as arad()

r.adef() set atom/bond/tri/line properties to default
r.bdef() default = "loop" for colors, 0.45 for radii

raster tool 49

r.tdef() default = 0.25 for bond/line thickness
r.ldef() default = 0 fill

 by default 100 types are assigned
 if atom/bond/tri/line has type > # defined properties, is an error

from vizinfo import colors access color list
print colors list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255

 140 pre−defined colors: red, green, blue, purple, yellow, black, white, etc

Related tools:

dump, gl, rasmol, svg

Prerequisites:

The Raster3d render and label3d programs.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

svg tool

Purpose:

3d visualization via SVG files.

Description:

The svg tool creates Scalable Vector Graphics (SVG) files from atom snapshots. The SVG format can be
displayed or animated by various tools and is a popular format for viewing solid state lattices.

The svg constructor takes a data object containing atom snapshots as an argument (dump, data).

The show() method creates an image.svg file for snapshot N. The all() method loops thru all selected
snapshots and creates the image files image0000.svg, image0001.svg, etc. The prefix "image" can be changed
via the file setting.

The bg(), size(), rotate(), trans(), zoom(), box(), label(), and nolabel() methods control various aspects of the
images produced. Without the trans() and zoom() settings, the Raster3d image should roughly fill the window
and be centered.

Additional movie effects can be produced using the pan() and select() methods. The pan() method specifies an
initial and final viewpoint that is applied to the images produced by the all() method. For intermediate images,
the view parameters will be interpolated between their initial and final values. The pan() method can thus be
used to rotate a single image or fly−by the simulation as it animates. The select() method performs additional
atom selection for each image of the all() sequence. An image−dependent %g variable can be used in the
select() string. The select() method can thus be used to slice thru the data set.

The acol(), arad(), bcol(), brad(), and tcol() methods change attributes of the atoms, bonds, and triangles
displayed. Each atom or bond returned from the data object has an integer "type" from 1 to N. The type is

svg tool 50

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.w3.org/Graphics/SVG

used to index into a list of RGB colors or radii for atoms and bond thickness. The adef(), bdef(), and tdef()
methods setup default mappings of types to colors/radii. The other methods enable specific assignments to be
made. The interpolation option (e.g. many types assigned to a few colors), enables a smooth rainbow of colors
to be assigned to a range of types. Note that the dump tool allows any vector to be returned as an atom "type"
via its atype setting. Thus displayed colors can be keyed to atom velocity or other properties.

Colors are specified with a string, e.g. "red". There are 140 pre−defined colors from this WWW page which
can be examined by importing the "colors" variable from "vizinfo". New colors can be defined by assigning a
nickname of your choice to an RGB triplet, as described below.

Usage:

s = svg(d) create SVG object for data in d

 d = atom snapshot object (dump, data)

s.bg("black") set background color (def = "black")
s.size(N) set image size to NxN
s.size(N,M) set image size to NxM
s.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
s.shift(x,y) translate by x,y pixels in view window (def = 0,0)
s.zoom(0.5) scale image by factor (def = 1)
s.box(0/1/2) 0/1/2 = none/variable/fixed box
s.box(0/1/2,"green") set box color
s.box(0/1/2,"red",4) set box edge thickness
s.file = "image" file prefix for created images (def = "image")

s.show(N) show image of snapshot at timestep N

s.all() make images of all selected snapshots
s.all(P) images of all, start file label at P
s.all(N,M,P) make M images of snapshot N, start label at P

s.pan(60,135,1.0,40,135,1.5) pan during all() operation
s.pan() no pan during all() (default)

 args = z theta, azimuthal phi, zoom factor at beginning and end
 values at each step are interpolated between beginning and end values

s.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
s.select = "" no extra aselect (default)

 %g varies from 0.0 to 1.0 from beginning to end of all()

s.label(x,y,"h",size,"red","This is a label") add label to each image
s.nolabel() delete all labels

 x,y coords = −0.5 to 0.5, "h" or "t" for Helvetica or Times font
 size = fontsize (e.g. 10), "red" = color of text

s.acol(2,"green") set atom colors by atom type (1−N)
s.acol([2,4],["red","blue"]) 1st arg = one type or list of types
s.acol(0,"blue") 2nd arg = one color or list of colors
s.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
s.acol(range(10),"loop") assign colors in loop, randomly ordered

 if 1st arg is 0, set all types to 2nd arg

svg tool 51

http://www.oreilly.com/catalog/wdnut/excerpt/color_names.html

 if list of types has a 0 (e.g. range(10)), +1 is added to each value
 interpolate means colors blend smoothly from one value to the next

s.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()

s.bcol() set bond color, same args as acol()
s.brad() set bond thickness, same args as arad()

s.tcol() set triangle color, same args as acol()
s.tfill() set triangle fill, 0 fill, 1 line, 2 both

s.lcol() set line color, same args as acol()
s.lrad() set line thickness, same args as arad()

s.adef() set atom/bond/tri/line properties to default
s.bdef() default = "loop" for colors, 0.45 for radii
s.tdef() default = 0.25 for bond/line thickness
s.ldef() default = 0 fill

 by default 100 types are assigned
 if atom/bond/tri/line has type > # defined properties, is an error

from vizinfo import colors access color list
print colors list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255

 140 pre−defined colors: red, green, blue, purple, yellow, black, white, etc

Settings specific to svg tool:

s.thick = 2.0 pixel thickness of black atom border

Related tools:

dump, gl, raster, rasmol

Prerequisites:

Display program for viewing *.svg image files.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vcr tool

Purpose:

VCR−style GUI for 3d interactive OpenGL visualization.

Description:

The vcr tool displays a GUI to do 3d interactive visualization of LAMMPS snapshots or data files. It is a
wrapper on the gl tool which draws the individual images in OpenGL windows

vcr tool 52

http://www.cs.sandia.gov/~sjplimp/pizza.html

The vcr constructor creates the GUI. Note that multiple OpenGL windows can be run by the same GUI so that
multiple views of the same data set can be manipulated simultaneously (or views of different data sets so long
as they have the same # of snapshots).

The view can be controlled by the GUI widgets or by invoking the tool methods: play(), stop(), axis(), etc.
The frame slider can be dragged to view a desired frame. The mouse can also be used in the OpenGL window
to translage, rotate, or zoom the scene. The clipping sliders or methods can be used to narrow the view of
displayed data, though their interactivity can be slow for scenes with lots of data.

The reload() method is needed if you change the selection attributes of the underlying data assigned to the gl
tool, such as via the dump tool's methods. These changes will not be visible in the OpenGL windows until the
data is reloaded.

The save() method will save the current OpenGL window contents to a PNG file. If multiple OpenGL
windows are being used, multiple files will be created. The save−all checkbox or method will store one file
per snapshot if the Play or Back buttons are used to start an animation.

Usage:

v = vcr(gl1,gl2,...) start vcr GUI with one or more gl windows
v.add(gl) add a gl window to vcr GUI

Actions (same as GUI widgets):

v.first() go to first frame
v.prev() go to previous frame
v.back() play backwards from current frame to start
v.stop() stop on current frame
v.play() play from current frame to end
v.next() go to next frame
v.last() go to last frame

v.frame(31) set frame slider
v.delay(0.4) set delay slider
v.q(5) set quality slider

v.xaxis() view scene from x axis
v.yaxis() view scene from y axis
v.zaxis() view scene from z axis
v.box() toggle bounding box
v.axis() toggle display of xyz axes
v.norm() recenter and resize the view
v.ortho() toggle ortho/perspective button
v.reload() reload all frames from gl viewer data files

v.clipxlo(0.2) clip scene at x lo fraction of box
v.clipxhi(1.0) clip at x hi
v.clipylo(0.2) clip in y
v.clipyhi(1.0)
v.clipzlo(0.2) clip in z
v.clipzhi(1.0)

v.save() save current scene to file.png
v.file("image") set filename
v.saveall() toggle save−all checkbox

vcr tool 53

Related tools:

animate, gl

Prerequisites:

Python Tkinter package.

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vec tool

Purpose:

Read columns of numbers from a file.

Description:

The vtk tool converts atom snapshots in a LAMMPS dump file to the VTK format used by various
visualization packages.

The vtk constructor takes a Pizza.py object that stores atom snapshots (e.g. dump or data). Optionally, a file
prefix for the VTK output files can also be specified. A ".vtk" suffix will be appended to all output files. The
file prefix can also be specified by the file setting.

The one(), many(), and single() methods convert specific snapshots to VTK format and write them out.

Usage:

v = vec("file1") read in numeric vectors from a file

 skip blank lines and lines that start with non−numeric characters
 assign names = "col1", "col2", etc

nvec = v.nvec # of vectors
nlen = v.nlen lengths of vectors
names = v.names list of vector names
x,y,... = l.get(1,"col2",...) return one or more vectors of values
l.write("file.txt") write all vectors to a file
l.write("file.txt","col1",7,...) write listed vectors to a file

 get and write allow abbreviated (uniquely) vector names or digits (1−Nvec)

Related tools:

data, dump

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vec tool 54

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html

vtk tool

Purpose:

Convert LAMMPS snapshots to VTK format.

Description:

The vtk tool converts atom snapshots in a LAMMPS dump or data file to the VTK format used by various
visualization packages.

The vtk constructor takes an object that stores atom snapshots (dump, data) as its first argument. Optionally, a
file prefix for the XYZ output files can also be specified. A ".xyz" suffix will be appended to all output files.
The file prefix can also be specified by the file setting.

The one(), many(), and single() methods convert specific snapshots to the VTK format and write them out.

Usage:

v = vtk(d) d = object containing atom coords (dump, data)

v.one() write all snapshots to tmp.vtk
v.one("new") write all snapshots to new.vtk
v.many() write snapshots to tmp0000.vtk, tmp0001.vtk, etc
v.many("new") write snapshots to new0000.vtk, new0001.vtk, etc
v.single(N) write snapshot for timestep N to tmp.vtk
v.single(N,"file") write snapshot for timestep N to file.vtk

 surfaces in snapshot will be written to SURF1.vtk, SURF2.vtk, etc
 where each surface (triangle type) is in a different file

Related tools:

data, dump, xyz

Prerequisites: none

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

xyz tool

Purpose:

Convert LAMMPS snapshots to XYZ format.

Description:

The xyz tool converts atom snapshots in a LAMMPS dump or data file to the XYZ format used by various
visualization packages.

The xyz constructor takes an object that stores atom snapshots (dump, data) as its first argument. Optionally, a
file prefix for the XYZ output files can also be specified. A ".xyz" suffix will be appended to all output files.

vtk tool 55

http://www.cs.sandia.gov/~sjplimp/pizza.html

The file prefix can also be specified by the file setting.

The one(), many(), and single() methods convert specific snapshots to the XYZ format and write them out.

Usage:

x = xyz(d) d = object containing atom coords (dump, data)

x.one() write all snapshots to tmp.xyz
x.one("new") write all snapshots to new.xyz
x.many() write snapshots to tmp0000.xyz, tmp0001.xyz, etc
x.many("new") write snapshots to new0000.xyz, new0001.xyz, etc
x.single(N) write snapshot for timestep N to tmp.xyz
x.single(N,"file") write snapshot for timestep N to file.xyz

Related tools:

data, dump, vtk

Prerequisites: none

vtk tool 56...1

	Table of Contents
	
	Pizza.py Documentation
	1. Introduction
	2. Installing Pizza.py
	3. Basics of using Pizza.py
	4. Tools within Pizza.py
	5. Example scripts
	6. Extending Pizza.py
	animate tool
	cdata tool
	chain tool
	clog tool
	data tool
	dump tool
	gl tool
	gnu tool
	histo tool
	image tool
	log tool
	matlab tool
	pair tool
	patch tool
	pdbfile tool
	plotview tool
	rasmol tool
	raster tool
	svg tool
	vcr tool
	vec tool
	vtk tool
	xyz tool

