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ABSTRACT 
 
This document contains the project artifacts from the XT4 Catamount Risk Mitigation Project funded by DOE’s 
Office of Science. The deliverable is Catamount N-Way (CNW), a version of the Catamount Light Weight Kernel 
operating system that can run on Cray XT4 supercomputer systems with quad-core Opteron processors. The 
requirements and design of the revisions to the Catamount Virtual Node operating system are contained herein. The 
preliminary results of running applications on CNW at small scale are provided and compare 1) CNW and Compute 
Node Linux application results and 2) Generic Portals versus Accelerated Portals protocol results. Lastly, in this 
second version of the document, the results of running applications on up to 7832 quad-core nodes on the Jaguar 
XT4 system are included.

                                                 
* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United 
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 
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Executive Summary 
 

The XT4 Catamount Light Weight Kernel Risk Mitigation Project began in January 2007 and 
completed in June 2008. The project’s charter was to provide a quad-core version of the Catamount 
compute node operating system for ASCR’s flagship Cray XT4 system, called Jaguar, located at Oak 
Ridge National Laboratory (ORNL). DOE and ORNL are now running the Cray-provided Compute 
Node Linux (CNL) operating system on Jaguar. However, CNL was a new software development 
effort and therefore subject to the usual risks associated with schedule, stability, and performance. 
The Catamount project was the backup software development effort and like CNL, it too met with 
success. Either Catamount or CNL could support Jaguar in production mode. 
 
This document provides an integrated set of project artifacts. The requirements and design 
specifications are provided. Besides support for four cores, there were two additional functional 
requirements imposed on this version of Catamount over its predecessor. A second implementation 
of the Portals networking software is provided. The original version performs protocol processing on 
the host CPU while the additional one uses the processor on the SeaStar network interface chip for 
protocol processing. This second Portals implementation is complete. The second new functional 
requirement is support for dual-core and quad-core Opterons in one job. Previous versions of 
Catamount and the current version of CNL require that the same number of processes run on each 
node in the job. This feature is complete. During the design process, we changed the Catamount 
internal logic from a master processor with at most one slave processor to a master processor with N 
slave processors. This design change was the basis for naming this version of Catamount, CNW—
Catamount N-Way. 
 
The implementation phase stretched longer than originally planned due to the lack of quad-core 
Opterons for testing. This delay was apparent early enough in the project that staffing levels were 
adjusted to allow continuous progress, but at a slower pace. The first quad-cores that could be booted 
were available in January 2008. The months of January through March were spent debugging, 
testing and producing comparison results with dual-core Opterons and CNL. Those results were 
provided in the first version of this document and are retained herein. In early June, the opportunity 
arose to run CNW on Jaguar with 7832 quad-core Opterons. A number of large scale runs were done 
and those results are presented in this second version of the document. The data provides answers to 
the two key questions associated with the project: 1) What is the effective utilization of the four 
cores and 2) What is the performance difference between CNW and CNL?  
 
For Sandia applications, the 2006 upgrade from single-core to dual-core Opertons resulted in an 
effective increase of 70%. That is, on average for Sandia applications, one dual-core Opteron could 
do the work of 1.7 single core Opterons. While this may initially appear disappointing, it was 
actually very worthwhile, since it was done at a cost of 10% over the original purchase price. A 70% 
performance boost was obtained for a 10% cost. For the ten applications run on the four initial 
Budapest Opterons, one quad-core Opteron could replace between 2.5 and 3.5 equivalent single-core 
Opterons. At large scale, we only have results for the CTH application. It showed effective 
utilization numbers ranging from 2.2 to 3.2 cores.  
 
Another important economic question is the performance difference between CNW and CNL on 
quad-core Opterons. Of the ten applications compared on four quad-core Opterons, CNW 
outperformed CNL by an average of 6%, with the range being between -0.8% and 21%. However, 
for the applications important to ORNL, the CNW performance improvement averaged 2%. During 
the large scale test in June, only ORNL applications were compared. For the four ORNL 
applications tested (GTC, VH1, POP, and AORSA), the CNW performance improvement averaged 
3.8%, with the range being from -14% to 44%. In all cases, CNW outperformed CNL for the tests 
involving the highest core counts. 
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1. Introduction and Project Overview 
 
The XT4 Catamount Light Weight Kernel (LWK) Risk Mitigation Project began in January 2007 
and completed in June 2008. The project’s charter was to provide a quad-core version of the 
Catamount compute node operating system (OS) for ASCR’s2 flagship Cray XT4 system, called 
Jaguar, located at Oak Ridge National Laboratory (ORNL). ORNL is running Compute Node Linux 
(CNL) from Cray, Inc. on Jaguar as part of its upgrade to quad-core Opteron processors. Should 
Cray’s CNL and/or the associated runtime have shown insufficient scalability, stability, or 
performance, the quad-core Catamount would have been used.  
 
Rather than using the Catamount LWK operating system, the yod job launcher, and the compute 
processor allocator, (CPA), Cray is providing the ALPS runtime software. The ALPS software is all 
custom, newly developed software, with the exception of the compute node operating system. Cray 
is using a Linux software base that has been tuned to minimize jitter and remove/disable unnecessary 
services. These new software components have been delivered and have satisfied the goals of 
schedule, scalability and stability on quad-core Opterons.  
 
This project has met its goal of providing a version of the Catamount OS that will run on quad -core 
Opterons. This version is called CNW: Catamount N-Way. The name is derived from the fact that 
the implementation was done assuming N cores per socket. N has been tested for dual and quad 
cores. Single core sockets have been simulated, but none were available for actual testing. The 
design and implementation are also believed to support a value of 8 for N, but that could not be 
tested either, since none exist. Note that the same OS image can support more than one value of N at 
the same time, should a heterogeneous mix of processors exist on a machine. 
 
This document provides an integrated set of project artifacts. Variations of the text in most sections 
have been provided in previous status reports and/or documents. We begin with the requirements 
and a design strategy. We follow with results from application testing. Although less indicative of 
“real” performance, we provide the results of testing with micro benchmarks and unit tests. We then 
discuss the impact of the protocol offload version of the Portals networking software. 
 
In this second version of the document, we provide the results of running CNW at full scale on 7832 
quad-core Opterons on the Jaguar XT4 system. We ran four applications of interest to ORNL: GTC, 
VH1, POP, and AORSA. We used the Generic Portals protocol and then reran the same test with 
Accelerated Portals. We performed a scaling study using Sandia’s CTH application. We have 
considerable experience with this application could therefore structure strong and weak scaling test 
problems that used a good percentage of memory. Lastly, we ran HPL and the non-HPL portions of 
the HPCC benchmarks. These results are contains in section 6. 
 
 
 

                                                 
2 ASCR is the Office of Advanced Scientific Computing Research; a part of the Department of Energy’s 
Office of Science. 
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2. Requirements 
 
The immediate goal was to create an enhanced Catamount to support 4 processors per node, suitable 
to run on a Cray XT4 computer populated with quad-core AMD Budapest Opteron processors. In so 
far as reasonable, the implementation should be N-way rather than 4-way and be able to run on 
single or dual core processors without recompilation. 

2.1. Regression-less Functionality and Performance 
 
As is typical of most enhancement efforts, regressions are not acceptable. Existing 
functionality shall be maintained from the Cray’s Catamount Virtual Node (CVN) 
operating system. Likewise, the existing performance characteristics of the applications 
shall be retained. Performance improvements, of course, are acceptable.   
 
MPI and shared memory (shmem) applications will be supported. Catamount will continue 
to interface to other system components, such as the Lustre File System, the Compute 
Processor Allocator, the batch scheduler, and the RAS system. 
 
There was one identified exception to the no-regression requirement. The undocumented 
“share mode” feature in the Catamount Virtual Node (CVN) implementation will no longer 
be functional.  Share mode allowed a node to simultaneously run up to four independent 
user processes. Share mode was available in versions of the light weight kernel prior to 
Catamount. It never proved useful, complicated the load protocol, and hindered 
independent progress of an application.  
 
Heterogeneous mode, like share mode is a rarely used feature. The “-F <filename>” option 
of the yod command allows up to 32 different binaries to be loaded onto independent 
subsets of nodes in a single job. This functionality shall be preserved with N-way 
Catamount. Unlike the CVN implementation, the number of processes per node can vary 
for each subset of nodes3. The same binary shall run on each process on each node within 
the subset. Only the last node of a given subset can have a number of processes that is 
different than the rest of the group. 

 

2.2. Networking 
 
Enhancements to the original CVN implementation allow each processor to access the 
Network Interface Chip (NIC) directly when sending messages. This feature shall be 
retained for N-way. It ensures the more independent progress of the process on each core. 
 
The CVN implementation only supports NIC-sharing on messages being sent. All received 
messages are initially processed by the QK on the first CPU, who parses the message to 
determine the ultimate CPU destination. This limitation is due to host-side protocol 
processing. N-way Catamount supports NIC-side processing of the protocol. This allows 
messages to be sent to the target CPU/process immediately upon message receipt. 

 

                                                 
3 The February 2007 version of the requirements document had stated that the number of processes per node 
must be the same across the entire heterogeneous job. This was not an acceptable requirement, given the early 
plan to run a mix of dual and quad cores on Jaguar. The error was caught quite early in the implementation 
and the restriction was eliminated. 
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2.3. Processes per Node 
 
With CVN, the number of processes per node is specified with either the –SN or –VN 
option. If not specified, the file /etc/xt.conf provides the system-wide default. With CNW, -
VN2 is a synonym for –VN. And –VN3 and –VN4 have been added to request three and 
four processes per node, respectively. There was early discussion of making major changes 
to how the user specified the total number of application processes and how many processes 
should run on each node. No consensus was reached, so the interface remains largely 
unchanged from CVN. 
 

2.4. Scalability 
 
The OS shall be scalable to at least 100,000 nodes. There should be no limit on the number 
of virtual nodes except the 2**31 limit on the signed integer value.  
 
Memory usage by the OS itself shall be minimized and not scale with the size of the 
machine. 

 

2.5. Other Requirements 
 
The initial version of N-way Catamount will not support applications using OpenMP. Some 
consideration was given to re-introducing OpenMP-style support in Catamount. Prior light 
weight kernel versions of Catamount did support a simple threaded model. It was removed 
from Catamount since it was rarely used and had atrophied through the years. 
 
N-way Catamount will retain three design choices made in CVN. After initial job start up, a 
process is permanently bound to a particular processor. The heap is divided equally among 
virtual nodes. There is no shared memory between application processes on a node. (The 
shmem library is supported for sharing memory access between any virtual nodes in a job.) 

 



Catamount N-Way                June, 2008 

Page 8 

3. Design 
 
From the application perspective, Catamount’s virtual node mode makes the processors as 
equivalent as possible. From the system perspective, much of the behavior is master-slave with cpu-
0 continuing to be master in Catamount N-Way.  In CVN, many Catamount system activities are 
divided between “SYSTEM_SIDE” and “USER_SIDE”. While the architectural perspective of one 
master is retained in CNW, the handling of the other CPU’s is modified from “the one user” to “the 
N others”. 

3.1. Limit Memory Requirements 
 
The requirement for OS memory to not grow with the number of nodes is not met by CVN. 
Catamount’s Process Control Thread (PCT) has a number of static arrays that are 
dimensioned by the maximum number of virtual nodes. These are used during the job load 
process and can be eliminated by borrowing space that the application will ultimately use. 
The PCT’s use of malloc after initialization is very restricted since the PCT’s heap is used 
for application memory. Hence, fragmenting the PCT’s heap would impact the maximum 
memory available for the application. The current N-way implementation uses a shared 
read-only memory region for the application that contains the application’s node map and a 
single executable text section. This space is allocated early in job load and the text portion 
is used for the various temporary tables the PCT requires to load the job. 
 

3.2. Change “2” to “N” 
 
Conceptually the changes to go from two-way to N-way are quite simple. In CVN there are 
many places were there are separate paths for handling the two processes or processors. The 
processing for other than cpu-0 needs to become a loop over processors. In some cases, it 
can be combined to a loop over all processors. There were a few places where a loop over 
“N” was not possible. The logic for each individual node is unique. C preprocessor 
commands flag these places when “N” is changed to a value greater than 4.  
 
Certain OS structures need expansion to support the increased number of processors. For 
example, the “other processor” field in the Process Control Block is now dimensioned and 
references converted to loops, as appropriate.   

 

3.3. PCT – QK Interface 
 
There are generalizations to the interface between the PCT and the QK for virtual node 
initiation and subsequent job scheduling. Rather than looping over calls into the QK, it is 
more efficient to modify the QK’s API to specify the number of times a request shall be 
executed. 

3.4. Process Migration 
 
In CVN, the two processes on a node both start on cpu-0 and the second is “migrated” to 
cpu-1 by an application system call from the start up library and then the application 
notifies the PCT. The N-way migration process is made more robust by making the only 
application system calls for this go through the PCT and allow the PCT to make a single 
call into the QK to migrate the list of processes.    
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3.5. QK Multi-CPU Code 
 
There are several places in the CVN QK where there are separate entries or paths for the 
CPUs. These need to be replicated or generalized. The current N-way implementation does 
some of each. Where there is hard-coded replication, it is, at present, 4-way. The behind the 
scenes handling to provide the software with cpu-id information needed slight 
generalization.   

3.6. Portal Process Identifier 
 
In CVN, at the request of Lustre, the local pids, which were also used as portal pids,  were 
being used round robin, instead of first available. Whereas 4-way would use all pids since 
MAX_NUM_PROCS is not increased, we could prevent early reuse of the portal pid by 
defining it with a moving bias added to the local pid. Testing proved that this changed was 
no longer necessary and was not implemented. 

3.7. Portals Networking Software 
 
During the development of the Red Storm system, two versions of the Portals 
communication API were conceived. One version would run on the host, while the second 
version would run on the NIC. (These are sometimes referred to as “generic” and 
“accelerated” Portals.) The second version has only recently been fully developed and 
integrated into CVN V2.1. It has been introduced, tested, and integrated into CNW. Using 
the NIC to process the protocol should become more important as the number of cores 
being supported by one NIC grows. See Section 5 for more information on this feature. 
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4. Results as of March 30, 2008 
 
The CNW implementation is complete. It was tested at large scale on Jaguar in the summer of 2007, 
when the system consisted of over 10,000 dual-core Opteron nodes. It has only been tested on four 
quad-core Opteron nodes as that is all we had access to during the planned project timeframe. We 
provide application performance results from the large scale dual-core test and from the four quad-
core nodes. For most tests, we have the corresponding CNL results and those are presented as well. 
We also provide the results from micro benchmark testing and from unit testing.  
 
The results in this section all used the host-based Portals networking software implementation, called 
“generic Portals”. Generic Portals (GP) does all protocol processing on the host CPU, thus taking 
compute time away from the application. Sandia implemented a second version of the Portals 
protocol called “accelerated” Portals. Accelerated Portals (AP) uses the processing power available 
on the NIC. This kind of implementation is generally referred to as a protocol offload engine, or 
POE. Those results are provided in the next section. The discussions are more easily focused when 
the comparisons are between only two variations at a time (CNL versus CNW and then CNW/GP 
versus CNW/AP).  

4.1. Application Testing 

4.1.1. Large Scale Dual-Core Testing on Jaguar 
 

On June 16-17, 2007, Cray booted Jaguar with UNICOS/lc 2.0.5 to test CNL. For 
our test on June 18th, the CNW binary was applied to the boot image (aka /raw0) 
and the system rebooted with CNW compute nodes. The goals of the test were to 

- Run applications that are important to ORNL. The selected applications 
were GTC, LSMS, S3D, VH1, and POP 

- Compare to CNL results obtained by Don Ferry in May by using the same 
test problems and node counts. 

- Verify that CNW can support nodes with different numbers of cores in one 
job (i.e. pretend that some of the dual-core nodes were single-core). 

 
The results for the five applications are itemized in Table 1 below. 
 

 CNL 2.0.03+ CNW 2.0.05+  
 PGI 6.1.6 PGI 6.1.3 
GTC      
 1024 XT3 only 595.6 secs 584.0 secs 
 20000 XT3/XT4 786.5 secs 778.9 secs 
 4096 XT3 only 614.6 secs 593.8 secs 
LSMS    
 23000 XT3/XT4 544.3 secs Invalid result 
S3D     
 20000 XT3/XT4 981.9 secs no results 
 4096 XT3 only 556.1 secs no results 
VH1     
 1024 XT3 only 22.7 secs 20.9 secs 
 20000 XT3/XT4 1186.0 secs 981.7 secs 
 4096 XT3 only 137.1 secs 117.4 secs 
POP      
 4800 XT3 only 90.6 secs 77.6 secs 
 20000 XT3/XT4 98.8 secs 75.2 secs 
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Unfortunately the test time ended before we could diagnose the problems with 
LSMS and S3D. We later determined that our version of LSMS was built with 
some debug enabled. With 20,000 cores providing diagnostic output one character 
at a time; the standard output was incomprehensible and looked like garbage. We 
had millions of lines of print’s which caused the results to be unusable.  
 
The S3D tests terminated almost immediately under CNW after reporting file not 
found on ../data/pressure_wave_test.0000E+00/field.00000. We later determined 
that S3D was linked with incompatible versions of libsysio.a and liblustre.a.  
 
The July 31st test shot was cancelled and we were unable to obtain results at scale 
for those two applications. Particularly disappointing is the fact that these were the 
two applications that had shown better performance with CNL over CVN. Given 
that caveat, we provide summary graphs of run time comparisons between CNL 
and CVN for the applications that did run correctly. 
 

CNW & CNL Application results 
on Jaguar May, June 2007
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During this same test shot, we did run HPL across the entire machine, with some 
nodes configured as one core per node and some with two cores per nodes. The job 
ran to completion and provided the expected result. 

 
There were two non-repeatable job launch hangs and one job that hung at 
termination during the testing. Although the exact cause of these failures is 
unknown, there have been code changes in these areas that hopefully addressed the 
issues. 

4.1.2. Testing on four Quad-Core Budapest Nodes – Small 
Pages 
 
Using 2 MB large pages was a performance advantage of the light weight kernels 
prior to Catamount. However, large pages were often a disadvantage for 
applications using Catamount on the first and second generations of AMD 
Opterons. The problem was due to the very small number of Translation Look 
aside Buffers (TLBs) available for large pages versus small (4 KB) pages. The 
early generations had 8 large page TLB entries and 512 small page TLB entries. 
The Budapest generation kept the same number of small page entries and 
increased the number to 128 for large pages. We ran our test applications with and 
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without yod’s small page option. Most applications run slightly better (less than 
3%) with large pages. However, some HPCC benchmarks ran significantly better 
with large pages. An exhaustive study was not done, but we collect the data points 
we have in the following table. 
 
Code Mode Performance of  small pages 

relative to large pages 
HPCC/PTRANS SN 36.2% 
HPCC/HPL SN 98.5% 
HPCC/STREAMS SN 98.1% 
HPCC/Random SN 87.9% 
HPCC/FFT SN 97.6% 
CTH SN 97-99% 
CTH VN4 103% 
GTC Various 99% 
LSMS VN4 98.9% 
POP Various 97% 
S3D Various 99.4% 
VH1 Various 98.6-100.02% 
 

4.1.3. Testing on four Quad-Core Budapest Nodes SN vs VN4 
 
The purpose of this section is to obtain a first-look into how well applications 
might utilize four CPU cores while sharing memory and NIC access. We do this 
by running the same problem on one core per node (SN), two cores per node 
(VN2), and four cores per node (VN4). All problems use four MPI ranks. Since the 
process count is so small, the results may not prove to be a very reliable forecaster 
of applications at large scale. Additionally, we are concerned that not all test cases 
sufficiently taxed processor resources, in particular memory. 
 
The results in this section were run on an XT4 board with four 2.2 GHz Budapest B2 
Opterons. Each node has 8 GB of memory. The system did not have a Lustre file 
system, so all I/O was forced to go through yod to the user’s nfs-mounted home 
directory. PGI 6.1.3 compilers with ACML 3.6.1 were used. Note that PGI 7.1 and 
ACML 4.1 are needed to utilize the extra SSE instructions. 
 
We begin with the summary. We attempt to quantify the impact of going from one 
core per node to four cores per node by calculating an effective utilization value. 
 

Application Utilization of each Core Cores Effectively Used 
CTH 71% 2.84 
POP 96% 3.83 
GTC 91% 3.66 
S3D 64% 2.56 
LSMS 97% 3.87 
VH1 94% 3.76 
PRONTO 79% 3.18 
SAGE 74% 2.95 
UMT2K 91% 3.62 
PARTISN 40% 1.60 

 
 
By way of example, here is how the calculation is done: 



Catamount N-Way                June, 2008 

Page 13 

 
- Assume a test case runs in one hour on all four cores of a single Opteron 
- Assume the same test case runs in .85 hours on a single core of four Opterons 
(.85Q=S) 
- Assuming the single core test case is utilizing 100% of its processor, in quad-core 
mode it is utilizing 85% of each processor 
- The quad-core test case is effectively using 3.4 of the 4 processors (.85 x 4 = 3.4) 
 
It is difficult to make predictions based on such problem sizes, but most 
applications should be able to use 2.6 to 3.9 cores of a quad-core node over a 
single core per node run.  
 
HPCC4 stresses various hardware resources that are important to scientific 
calculations. The results from key portions of the test are provided in the following 
table. 
 

HPCC Test SN mode VN2 mode VN4 mode 
HPL – GFLOPS 17.90 18.03 17.72 
PTRANS – GB/s  1.606  1.551  1.244 
STREAMS – GB/s 25.84 18.11  9.95 
Random Access  – GUPs  0.01182  0.01150  0.011476 
FFT – GFLOPS  1.646  1.36  0.959 
 
After the application tests were run, we found a bug in the Portals code that allows 
intra-node messaging to be done via a memcpy, rather than via the SeaStar NIC. 
We have corrected the bug, but have not found that results differ significantly from 
the results that follow in this section. The results in all other sections are from after 
the bug was corrected. 
 
CTH is a popular shock hydrodynamics code. The selected shaped charge 
problems use a large number of materials and consume at least 1 GB of memory 
per MPI rank. The large memory footprint ensures the entire problem does not fit 
in each cores’ private L2 cache. In other words, the effect of sharing the memory 
bus will be seen in these results. 
  

CTH – time on 4 cores SN mode VN2 mode VN4 mode 
Shaped 4  8.385  9.338 11.832 
Shaped 2  4.534  5.056  6.901 
Meso 2 12.312 13.863 18.023 
Meso 1  6.482  7.076  8.953 

 
Timing results in the Parallel Ocean Program (POP) include I/O time. The I/O 
time dominates the calculation, thus making it a measure of the I/O capability, 
rather than core utilization. The test problem supplied with POP was run once 
sending the output the user’s nfs-mounted home directory and once to the in-
memory /tmp file system. That difference dominates the results, more so that the 
difference between running on one core per node and all four cores. We are also 
concerned that the supplied test problem is very small and may well fit in each 
core’s L2 cache, thus showing higher than expected per-core utilization. 
 
 

POP – time on 4 cores SN mode VN2 mode VN4 mode 

                                                 
4 HPCC is not an application, but does not fit well in the micro benchmark section of this document either. 
The analysis was similar to that done for applications, so its results are reported here. 
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I/O to nfs-mounted /home 25.43 25.87 25.98 
I/O to tmpfs /tmp 11.81 12.04 12.34 

 
The Gyrokinetic Toroidal Code (GTC) is a 3-d PIC code for magnetic confinement 
fusion. The time includes I/O of about 1.2 MB. It took 9.3% longer in VN4 mode 
than in SN mode. The computation difference is probably longer, but hidden by 
the I/O time. 
 

GTC - 4 cores SN mode VN2 mode VN4 mode 
Time (sec) 593.6 607.7 649.2 

 
S3D is a combustion modeling code. The reported time includes I/O of 125 MB, 
which is a subset of what of the original source code produced. The program 
writes one dump file per process. For this environment, the I/O for these core 
dumps is serialized through yod.  
 

S3D - 4 cores SN mode VN2 mode VN4 mode 
Time (sec) 1654 1857 2580 

 
The LSMS electron structure code also includes about 200 KB of output in its 
timing results. This is a small amount of I/O. It only took 3.3% longer in VN4 
mode than in SN mode 
 

LSMS - 4 cores SN mode VN2 mode VN4 mode 
Time (sec) 36.7 37.0 37.9 

 
The VH1 multidimensional ideal compressible hydrodynamics code came with a 
small test problem. It took 6.4% longer in VN4 mode over SN mode. 
 

VH1 - 4 cores SN mode VN2 mode VN4 mode 
Time (sec) 115.7 117.0 123.1 

 
Pronto3D is a structured analysis code. The walls problem simulates two sets of 
brick walls hitting each other and is therefore contact intensive. The VN4 mode 
takes 26% longer than SN mode. 
 

Pronto3D - 4 cores SN mode VN2 mode VN4 mode 
Grind time e-6 (sec) 6.116 6.601 7.699 

 
For the SAGE test (a hydrodynamics code), we used the timing_c problem with 
250000 cells/PE. It took 5.8% longer in VN2 mode than SN mode, which is 
consistent with dual-core results. The VN4 results are 26.3% longer than SN 
mode. For the SAGE table, a higher result is better. 
 

SAGE - 4 cores SN mode VN2 mode VN4 mode 
CC/sec/PE 6181.6 5823.6 4556.2 

 
SPPM is a benchmark code for 3-D gas dynamics using a simplified version of the 
PPM (piecewise parabolic method) code. The test case uses 192 x 192 x 192 cells 
per processing element. The code ran faster in VN2 and VN4 mode than in SN 
mode. More study is needed, but an initial guess is communication effects. 
 

SPPM - 4 cores SN mode VN2 mode VN4 mode 
Time (sec) 317.1 301.3 305.7 
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UMT2K is an unstructured mesh radiation transport code. It took 10.5% long in 
VN4 mode than SN mode. 
 

UMT2K - 4 cores SN mode VN2 mode VN4 mode 
Time (minutes) 28.53 29.51 31.52 

 
Partisn is a time-dependent, parallel neutral particle transport code. It reports grind 
times for the transport and diffusion phases in nanoseconds. It takes 28% to 46% 
longer in VN2 mode than in SN mode. It takes 2.2 to 2.8 times longer in VN4 
versus SN mode. This result is unfortunately consistent with Adolfy Hoise’s result 
in his SC07 paper.  
 
 

Partisn - 4 cores grind time 
nsec 

SN mode VN2 mode VN4 mode 

184 MB/core 32.56 / 28.23 47.55 / 39.45 90.78 / 74.07 
367 MB/core 41.73 / 29.11 53.52 / 38.51 92.02 / 71.02 
1444 MB/core 34.70 / 26.93 48.43 / 35.37 89.45 / 65.53 

 

4.1.4. Testing on four Quad-Core Budapest Nodes CNW vs CNL 
 
The purpose of this section is to look at performance on CNW and compare it to 
CNL performance. We attempted to make this comparison as head-to-head as 
possible. The same hardware was used for both tests. The base system was 
UNICOS 2.0.44 with one XT4 board containing our four quad-core Budapest 
nodes, each having 8 GB of memory. The same test problems were used for both 
CNW and CNL. The default page size is used for both systems—4 KB pages for 
CNL and 2 MB pages for CNW. This system has a 2TB 2-OSS/4-OST Lustre file 
system. The PGI 6.2.5 compiler was used when building the CNL and CNW 
binaries. File I/O was to Lustre in both cases.  
 
The system was booted with CVN using vanilla 2.0.44 software. We then swapped 
out the 2.0.44 CVN binary (aka stage2.sf), the portals module, the SeaStar driver 
firmware, and vmlinux with the corresponding CNW versions. The stage2.sf 
contains the Catamount image. The last three files contain modifications for 
Accelerated Portals. The system was rebooted with CNW and the tests run. We 
then booted the system using vanilla 2.0.44 software, but this time specifying CNL 
compute nodes and the tests were rerun.  
 
As in the last section, we begin with the non-application, HPCC. The HPL result is 
very similar between CNL and CNW, with less than a 1% difference. Large pages 
give CNW a significant benefit for the Random Access and PTRANS tests. For the 
following table, larger numbers are better when comparing columns 4 and 5. 
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Application 
Performance

Number 
MPI 
Ranks

Cores per 
Node CNL CNW CNW/CNL

PTRANS 4 1 0.5671 1.606 2.83
HPL 4 1 17.88 17.9 1.00
STREAMS 4 1 25.21 25.84 1.02
Random 4 1 0.006445 0.011823 1.83
FFT 4 1 1.609 1.646 1.02
PTRANS 4 2 0.4878 1.551 3.18
HPL 4 2 17.78 18.03 1.01
STREAMS 4 2 16.45 18.11 1.10
Random 4 2 0.006105 0.011503 1.88
FFT 4 2 1.337 1.36 1.02
PTRANS 4 4 0.2871 1.244 4.33
HPL 4 4 17.59 17.72 1.01
STREAMS 4 4 7.85 9.95 1.27
Random 4 4 0.005984 0.011476 1.92
FFT 4 4 0.902 0.959 1.06
 
We then worked with eleven different applications. However, VH1 failed on CNL 
with a message “MEMDPost() failed : PTL_PT_VAL_FAILED”. So no CNL 
results are provided.  
 
In the previous section, we provided a short discussion of each application. This 
time, we simply provide the tables of results. The first set of data is obtained using 
all 16 available cores on the four quad-core nodes. Results are in time units, so 
smaller is better. 
 

Application

Number 
MPI 
Ranks

Cores per 
Node CNL CNW

(CNL/CNW -1) * 
100%

CTH 16 4 15.131 12.982 16.55
GTC 16 4 664.9 670.6 -0.85
LSMS 16 4 290.1 276.7 4.84
PARTISN 16 4 43.2 35.7 21.01
POP 16 4 153.78 151.93 1.22
PRONTO 16 4 241.5 222 8.78
S3D 16 4 1949.1 1948.9 0.01
SAGE 16 4 267.83 234.94 14.00
SPPM 16 4 847.8 845 0.33
UMT 16 4 8.379 7.872 6.44
 
The average increase in CNW performance is approximately 7% for all 
applications, but only 1.3% for the applications of interest to ORNL (GTC, LSMS, 
POP and S3D). The following figure shows the percent improvement in graphical 
form: 
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CNW & CNL Application results 
16 MPI ranks on four sockets (VN4 mode)
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We now look at performance on the four sockets, taking into account the number 
of cores used per socket. CNW appears to have a slightly greater advantage when 
all four cores are used. Possible reasons are 1) 2MB pages on CNW versus 4KB 
pages on CNL or 2) the differences (e.g. locking algorithms) in intra-node message 
passing. In the following table, the results are provided in units of time, so smaller 
numbers are better. 
 



Catamount N-Way                June, 2008 

Page 18 

Application

Number 
MPI 
Ranks

Cores per 
Node CNL CNW

(CNL/CNW -1) * 
100%

CTH 4 1 8.614 8.167 5.47
GTC 4 1 583.1 577.7 0.93
LSMS 4 1 1160.6 1105.6 4.97
PARTISN 4 1 64 59.3 7.93
POP 4 1 428.04 425.46 0.61
PRONTO 4 1 175.8 164.2 7.06
S3D 4 1 1327.8 1282.5 3.53
SAGE 4 1 169.984 158.949 6.94
SPPM 4 1 294.6 293.1 0.51
UMT 4 1 29.48 28.35 3.99
VH1 4 1 104.3
CTH 4 2 9.497 8.778 8.19
GTC 4 2 592.9 589.5 0.58
LSMS 4 2 1177.3 1118.6 5.25
PARTISN 4 2 91 81.2 12.07
POP 4 2 440.07 435.67 1.01
PRONTO 4 2 186.8 175 6.74
S3D 4 2 1482.2 1439.7 2.95
SAGE 4 2 179.895 165.276 8.85
SPPM 4 2 297.3 295.2 0.71
UMT 4 2 30.27 29.34 3.17
VH1 4 2 105.7
CTH 4 4 12.195 10.378 17.51
GTC 4 4 622.8 622.4 0.06
LSMS 4 4 1208.1 1144.6 5.55
PARTISN 4 4 166.8 138.5 20.43
POP 4 4 467.32 464.27 0.66
PRONTO 4 4 209.1 195.1 7.18
S3D 4 4 1937.3 1940.4 -0.16
SAGE 4 4 223.374 190.15 17.47
SPPM 4 4 301.1 297.8 1.11
UMT 4 4 32.41 30.46 6.40
VH1 4 4 108.6
 
 
The following graphical views make it apparent that the ORNL applications 
perform almost the same on CNL and CNW. 
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CNW & CNL Application results 
4 MPI ranks on four sockets (SN mode)
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CNW & CNL Application results 
4 MPI ranks on two sockets (VN2 mode)
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CNW & CNL Application results 
4 MPI ranks on one socket (VN4 mode)
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4.2. Micro Benchmarks 

4.2.1. OS Noise – Selfish 
 
We ran Sandia’s version of the selfish benchmark to compare OS interrupts in 
CVN, CNW, and CNL. The CVN and CNW results are very similar. CNL 
interrupts are slightly shorter than CVN interrupts, but there are 250 per second, 
rather than Catamount’s 10 per second. The 10 microsecond interrupt that occurs 
once per second in CVN and CNW is the Process Control Thread. This data is 
reasonable and represents the expected behavior patterns in Catamount and CNL. 
For completeness, let it be known that one data point was deleted from both the 
CNL and CNW graphs. Starting with UNICOS/lc releases V2.0 and higher, a long 
40 microsecond interrupt is taken 4 seconds after each application starts. Based on 
our analysis, this is part of BEER initialization. Since it only happens once per job, 
the data is irrelevant and has been thrown out to preserve the finer scale shown in 
the graph below. The y-axis should read nsec, rather than usec. 
 

 
 

4.2.2. Memory – Streams 
 
The harshest micro benchmark for a multi-core processor is one that stresses a 
shared resource. We ran the STREAMS benchmark to confirm the expected poor 
result for memory bandwidth: STREAMS on 4 cores of one socket achieves 30.7% 
of the performance obtained when running on one core of four sockets. 
 

4.2.3. Network – Pallas 
 
A single SeaStar network interface is shared between the four cores of one 
Opteron processor. We used V2.2.1 of the Pallas MPI Benchmark to exercise the 
NIC. The results are as poor as expected. Since we only have four Budapest 
Opterons, we compared runs using one core per socket with runs using four cores 
on one socket.  
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Alltoall operations take 1.5 – 3.4 times longer depending on message size. 
Allreduce operations take 1.3 to 2.6 times longer, again depending on message 
size. Allgather operations took 1.6 to 3.2 times longer. The Pallas sendrecv test 
showed a 50% decrease (on average) in network bandwidth. These results are not 
particularly insightful since they were run on one socket for the four-core case. 
There is a Portals optimization that does memory copies for messages less then 
512K bytes when the message is destined for a different core on the same physical 
node. For the cases where it is implemented, any SeaStar hardware sharing will be 
eliminated. In all cases, there is lock contention, regardless of whether the data 
passes through the SeaStar or is directly copied in memory. 
 
As part of the analysis, we compared CNW Pallas results with CNL results. They 
are very similar. We had thought that CNL might benefit from the fine grain 
locking that was implemented for Linux and disabled for Catamount. Upon code 
review, we found that the compatibility ioctl is being defined for the Linux build. 
Therefore, the “big kernel lock” is in place, making the fine grain locks only useful 
during interrupt processing. The interesting result is that the fine-grain locking 
does add a measurable overhead to latency. The following graphs show the results 
of all the Pallas tests in graphical form comparing CNW and CNL. Each graph 
reports CNW using 1) one core on four sockets, 2) CNW using fours cores on one 
socket, 3) CNL using one core on four sockets, and 4) CNL using four cores on 
one socket. 
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4.2.4. File I/O - IOR 
IOR is a file I/O benchmark. We ran it specifying 4 MPI ranks using SN mode 
(one core per node), VN2 mode (two cores per node) and VN4 mode (four cores 
per node). We ran file per process (fpp) and single shared file (sf) mode. For each 
test, forty gigabytes total of data was written to a Lustre 2-OSS/4-OST file system 
and then read back out. File stripe count was 4. Transfer size was 8 MB. The 
number of cores used per node did not affect the results.  
 

Aggregate rates for 4 MPI ranks - 10 GB I/O each
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4.3. Unit Testing 
 
We ran a number of Cray’s unit tests on CNW. Where appropriate, we ran them on one 
core, two cores, and four cores. The catmisc suite exercises a variety of scenarios that had 
been problematic in the past for Catamount. They look for such things as OS memory leaks 
and difficult job launch scenarios. The comm tests exercise the network using both MPI and 
the vanilla Portals protocols. The libc tests ensure that nothing in CNW breaks the 
supported libc functions. We ran Cray’s versions of the MPICH2 and shmem test suites. 
Lastly, we ran the yod interface test suite. There are no unresolved issues or regressions 
from CVN. 
 

 
Test Name SN  VN2  VN4  
Catmisc.malloc1  (*) (*) 
Catmisc.badmath1  (*) (*) 
Catmisc.memleak1  (*) (*) 
Catmisc.loadstudy  (*) (*) 
Catmisc.sow611  (*) (*) 
Comm.comtest.cat    
Comm..comtest.cat    
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-loops 
Comm.ptltest.cat    
Comm.ptltest.cat-
loops 

   

Libc.syscall  (*) (*) 
Libc.gen  (*) (*) 
Libc.locale  (*) (*) 
Libc.stdio  (*) (*) 
Libc.std  (*) (*) 
Libc.string  (*) (*) 
Lustre.IOR (2.0.41)    
MPICH2.attr    
MPICH2.basic    
MPICH2.coll    
MPICH2.comm    
MPICH2.datatype    
MPICH2.errhan    
MPICH2.errors    
MPICH2.group    
MPICH2.info    
MPICH2.init    
MPICH2.io    
MPICH2.pt2pt    
MPICH2.rma    
MPICH2.spawn    
MPICH2.topo    
MPICH2.cxx (as 
above) 

   

MPICH2.f77    
MPICH2.f90    
Pallas    
Shmem.mpif01    
Shmem.sma1    
Shmem.sma2    
Shmem.smaf    
Shmem.smaperf1    
Yod.bigexe  (*) (*) 
Yod.checkelf  (*) (*) 
Yod.Checkosversion  (*) (*) 
Yod.cleanup  (*) (*) 
Yod.F  (*) (*) 
Yod.heap  (*) (*) 
Yod.stack  (*) (*) 
Yod.strace  (*) (*) 
Yod.tlimit  (*) (*) 
Yod.YOD_TIME_
LIMIT 

 (*) (*) 

Yod.loadint  (*) (*) 
Yod.prog  (*) (*) 
Yod.progargs  (*) (*) 
Yod.signals.from 
compute 

 (*) (*) 

Yod.signals.from 
service 

 (*) (*) 
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Yod.unixio  (*) (*) 
Yod.validinstall  (*) (*) 

 
 

(*)Not applicable – single process tests 
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5. Accelerated Portals as of March 30, 2008 
 
In this section, we present our test results when using Accelerated Portals, rather than Generic 
Portals. AP is only implemented for compute node to compute node communication. Therefore, it 
was not appropriate to run every test in both GP and AP modes. AP had not yet been integrated into 
CNW when we ran on Jaguar in June, 2007. Therefore, no large scale results are available. 
 
In general, the results contained in this section are disappointing. We had hoped that by offloading 
Portals protocol processing from the host – and primarily CPU 0, it would improve application run 
times significantly. This did not turn out to be the case. We offer the following possibilities for why 
the performance is not more remarkable when compared to the generic, host-based Portals. More 
study would be needed to understand the impact of each of these ideas. 
1. Applications that exchange small messages and are latency sensitive would benefit the most 

from AP. That is a small number of applications. In 2007, Sandia took dedicated time on Red 
Storm to run a version of CVN with AP on 2500 nodes. At this scale, Partisn showed a 10% 
improvement and Pronto showed a 3- 5 percent improvement on 2048 nodes. 

2. Applications that overlap computation and communication would benefit the most from AP. It 
does not help to offload the host processor, if it is idle waiting for a synchronous message from 
another node. 

3. The processor in the SeaStar NIC runs at 500 MHz. In contrast, the host processor used in these 
tests runs at 2.2 GHz. Protocol processing can therefore be done faster on the host than the NIC 
if the host is not busy doing application processing.  

4. Accelerated Portals does not take advantage of any send-to-self shortcuts using memory copies. 
Since protocol data structures are stored in the NIC memory for AP, all messages must traverse 
through the NIC for processing.  

5. The intent of AP is to bypass the OS. However, it is critical to have a trusted user id provided in 
each sent message. To do this, all sends require one trip into the OS to obtain it. 

6. Some shared Portals structures remain in host memory. Whenever a CPU core needs to access 
these structures, it must put a read or write lock on the memory. Like GP, this will force a 
serialization of messages from each core. 

7. AP is relatively new software. It’s possible that with future maintenance and enhancement, its 
performance can be improved. For example, when GP was originally delivered, zero byte MPI 
latency was 29 usec. It is now ~5 usec. 

5.1. Application Testing 

5.1.1. Testing on four Quad-Core Budapest Nodes 
 
We were able to run all of the applications and HPCC with Accelerated Portals. 
For HPCC, the results on 16 cores with VN4 mode were encouraging.  PTRANS 
ran 3.4% faster with accelerated, HPL ran 0.4% faster, FFT ran 14% faster, and 
Random Access ran 43% faster. AP did not make as much of a difference for the 
applications. We were able to compare 9 of the applications in accelerated mode 
on 16 cores (the exception was GTC which exposed a system software problem in 
non-accelerated mode related to Portals send-to-self logic). These showed from a 
0.5% decrease in performance to a 1% improvement in performance. On 4 cores 
(either all in one socket or with 2 or 4 sockets), we see similar results with the 
spread being a little larger with accelerated being from 1% worse to 3.2% better 
performance. 
 

5.2. Micro Benchmark  

5.2.1. Networking - Pallas 
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The Pallas results did not show a significant benefit or loss with Accelerated 
Portals (AP). AP has to suffer a call into the kernel for each message to obtain the 
user id from a trusted source. Additionally, AP cannot use memory copies for 
small messages as the necessary protocol data structures are stored on the NIC 
processor. The following pages show the results of all Pallas tests in graphical 
form comparing the default (Generic) Portals and Accelerated Portals. 
 
There are times when a tabular list is more easily absorbed than a plethora of 
graphs. Selected results are provided after the graphs. The tables provide CNL, 
CNW/GP and CNW/AP results. The table also contains results of 16-rank runs, 
which used all four cores on all four nodes. 
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Selected Tabular Results from Pallas 
 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A B C D E F G H I J K L M N
CNW CNW CNW CNW CNW CNW CNL CNL CNL CNW CNW CNL

Test Msg Size 4 SN sz4 VN2 sz4 VN4 sz4 SN-AP sz4 VN2-AP sz4 VN4-AP n4 N1 n4 N2 n4 N4 sz16 VN4 sz16 VN4-AP sz16 N4

Barrier 12.41 19.20 25.60 16.54 23.20 46.59 20.95 24.65 32.18 78.37 95.21 85.22

PingPong 0 4.82 3.22 3.15 4.27 6.06 6.28 6.91 3.89 3.86 3.25 6.28 3.90
t_avg[usec 1 5.18 3.75 3.66 4.37 6.32 6.60 7.48 6.07 5.91 3.72 6.67 5.84
lower is bet 2 5.17 3.65 3.70 4.38 6.31 6.59 7.43 6.05 6.04 3.74 6.68 5.73

4 5.20 3.77 3.79 4.39 6.40 6.59 7.45 6.03 6.08 3.78 6.60 5.85
8 5.20 3.67 3.75 4.34 6.39 6.58 7.39 6.03 6.01 3.84 6.61 5.81

16 5.26 3.87 3.77 4.43 6.34 6.68 7.44 6.06 5.92 3.85 6.69 6.06
32 8.13 3.78 3.76 6.25 8.44 8.87 10.47 6.21 6.28 3.88 8.88 6.33
64 8.26 3.80 3.86 6.25 8.42 8.86 10.58 6.34 6.12 3.86 8.87 5.99

128 8.15 3.92 3.91 6.22 8.48 8.83 10.57 5.63 5.61 4.00 8.85 5.48
256 8.40 3.97 3.96 6.28 8.43 8.87 10.67 5.64 5.63 4.09 8.89 5.47
512 8.42 4.22 4.34 6.28 8.45 8.87 10.79 5.78 5.75 4.26 8.87 5.73

1024 8.56 4.38 4.41 6.32 8.45 8.87 11.09 6.03 6.01 4.32 8.88 5.97
2048 9.45 5.80 5.75 7.99 9.38 9.91 12.25 7.24 7.32 5.77 10.05 7.34
4096 10.21 5.83 5.88 8.70 9.91 10.04 13.94 8.13 8.27 5.86 10.16 8.26
8192 11.75 6.15 6.41 10.25 10.64 10.79 15.72 9.97 10.05 6.12 11.01 10.10

16384 14.81 7.34 9.64 14.55 14.90 14.87 19.18 13.63 13.70 7.46 15.11 13.76
32768 23.93 17.98 17.88 23.81 23.88 23.88 28.91 21.06 21.03 17.43 24.12 20.63
65536 42.48 28.49 28.97 42.32 41.88 41.89 48.24 33.49 35.89 28.72 42.11 34.33

131072 88.37 26.28 26.31 89.99 89.45 90.23 102.25 74.60 74.34 26.13 90.16 73.13
262144 162.75 45.18 45.58 164.40 161.57 162.31 179.25 111.08 110.25 45.33 162.37 110.07
524288 311.02 146.34 146.68 312.89 305.62 306.55 334.74 230.24 231.84 146.62 306.80 231.43

1048576 608.48 595.90 595.76 610.94 593.99 594.98 653.41 652.85 652.59 595.95 595.40 652.06
2097152 1202.70 1172.55 1172.30 1203.92 1170.13 1171.12 1292.32 1284.47 1282.02 1172.35 1172.24 1287.80
4194304 2392.04 2334.05 2333.65 2393.15 2329.55 2330.74 2583.49 2560.56 2561.15 2333.61 2334.05 2561.10
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ BA BB BC BD BE BF

1
2
3
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

A B C D E F G H I J K L M N
CNW CNW CNW CNW CNW CNW CNL CNL CNL CNW CNW CNL

Test Msg Size 4 SN sz4 VN2 sz4 VN4 sz4 SN-AP sz4 VN2-AP sz4 VN4-AP n4 N1 n4 N2 n4 N4 sz16 VN4 sz16 VN4-AP sz16 N4

Alltoall 0 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
t_avg[usec 1 17.02 30.19 48.12 20.60 36.34 73.54 35.02 45.93 60.19 105.89 98.68 110.13
lower is bet 2 16.95 30.15 48.02 20.61 36.44 73.54 35.01 45.86 60.26 106.88 99.09 110.79

4 16.97 30.17 48.57 20.62 36.46 73.54 35.14 45.81 60.10 131.08 111.09 143.30
8 16.97 30.28 48.40 20.58 36.35 73.55 35.04 45.83 60.39 130.78 111.20 143.31

16 16.93 30.68 48.29 20.74 36.60 74.00 35.12 46.23 60.62 131.35 111.43 144.04
32 25.80 38.57 48.30 25.47 41.45 80.81 45.53 57.71 70.20 132.84 111.92 145.54
64 25.83 38.39 47.99 25.46 41.43 80.84 45.84 58.21 70.60 134.72 111.96 147.65

128 25.80 38.64 48.77 25.48 41.53 80.96 45.42 58.44 71.14 137.50 112.30 152.32
256 25.87 38.74 49.27 25.55 41.66 80.74 46.12 60.89 70.53 162.03 125.92 174.39
512 26.00 39.89 49.58 25.69 41.66 80.77 45.99 61.54 72.56 171.88 131.73 206.45

1024 26.25 40.60 50.03 25.91 42.04 80.79 46.68 63.06 75.37 432.66 471.51 573.03
2048 28.81 47.33 66.77 28.98 47.05 86.52 52.30 71.76 82.63 527.53 537.23 654.48
4096 32.54 50.98 71.17 30.54 50.16 87.74 59.32 78.29 95.72 577.63 576.25 750.13
8192 42.00 55.32 79.41 39.30 58.61 87.26 67.50 88.25 107.74 745.51 661.94 888.48

16384 56.66 72.50 99.18 53.44 94.09 115.01 85.62 115.89 135.95 1135.11 1076.05 1235.53
32768 85.02 115.67 135.24 135.13 175.99 220.03 122.43 188.04 203.24 1950.40 2118.25 1869.81
65536 159.70 287.36 281.80 155.71 313.87 435.90 197.90 335.76 349.64 2965.65 2553.44 3508.41

131072 364.66 666.57 688.24 432.29 693.89 1022.63 381.59 709.10 697.22 7650.95 5937.47 7345.85
262144 728.12 1342.28 2464.10 806.83 1420.98 1911.39 729.18 1389.52 1962.10 15973.89 11276.84 14561.60
524288 1457.72 3293.41 5091.65 1635.72 2870.74 3769.48 1457.85 2901.36 3812.15 32302.24 21818.67 28586.92

1048576 3028.22 6399.33 8522.31 3396.23 6210.85 8553.09 3166.39 5762.09 8266.15 60484.49 42846.60 57817.49
2097152 7665.50 13099.72 16814.51 7964.79 12777.65 16887.18 6478.06 11658.84 16479.82 121312.25 84923.13 114988.62
4194304 15045.75 25872.08 33770.33 16523.37 25103.60 33676.05 12205.62 24408.60 32972.72 244726.48 168511.72 225886.10
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1
2
3
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

A B C D E F G H I J K L M N
CNW CNW CNW CNW CNW CNW CNL CNL CNL CNW CNW CNL

Test Msg Size 4 SN sz4 VN2 sz4 VN4 sz4 SN-AP sz4 VN2-AP sz4 VN4-AP n4 N1 n4 N2 n4 N4 sz16 VN4 sz16 VN4-AP sz16 N4

AllReduce 0 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04
t_avg[usec 4 14.16 21.12 33.86 16.64 24.14 49.66 23.64 29.65 38.28 89.02 98.68 93.27
lower is bet 8 14.18 21.05 34.18 16.74 24.14 49.65 23.67 29.73 39.09 89.46 98.69 93.41

16 14.33 21.01 33.75 16.74 24.22 49.77 23.69 29.77 39.10 89.29 99.36 93.70
32 24.77 26.80 34.32 20.63 28.77 52.61 30.21 35.64 46.70 102.04 106.32 119.09
64 24.66 26.90 34.57 20.73 30.09 51.79 30.36 36.08 46.78 101.98 107.41 120.10

128 24.83 27.31 34.81 21.03 29.02 52.50 30.32 36.44 47.32 102.69 107.24 121.09
256 24.96 27.65 34.87 21.24 30.34 52.65 30.48 38.67 46.75 103.56 107.18 121.78
512 26.49 28.69 35.64 22.04 30.92 51.59 31.22 39.90 48.82 106.65 108.21 123.90

1024 27.66 29.51 36.78 22.84 30.05 52.68 33.23 41.54 50.55 111.12 108.14 128.20
2048 27.75 34.09 51.86 24.94 35.71 59.31 36.22 45.42 57.28 134.52 118.85 143.58
4096 53.97 71.73 88.58 47.15 65.65 110.55 68.62 86.72 111.98 236.53 220.84 265.00
8192 57.73 77.75 110.75 52.86 73.05 118.58 78.60 97.03 134.17 260.27 228.49 289.17

16384 69.34 94.86 133.01 61.87 84.34 124.70 92.88 114.15 143.72 297.13 239.23 326.75
32768 92.77 130.87 175.42 82.89 117.03 151.87 117.31 146.06 184.27 366.78 278.22 401.49
65536 148.65 202.80 269.09 135.36 211.43 260.50 168.07 210.62 276.94 488.83 409.19 540.72

131072 389.79 369.11 475.19 237.64 380.01 495.07 336.49 394.85 504.35 767.93 722.42 874.22
262144 645.86 748.79 961.45 668.59 806.87 1060.59 551.73 768.96 938.33 1483.15 1492.60 1495.31
524288 1255.59 1497.84 2267.13 1210.61 1586.96 2423.50 1276.38 1608.19 1969.21 3213.83 3283.07 3037.97

1048576 2621.08 3729.02 5712.22 2368.18 3789.08 5314.94 2457.55 3189.41 4624.68 7327.34 6841.67 6506.37
2097152 6232.49 7950.88 12270.92 5776.60 7676.74 11129.46 5369.40 7335.40 11700.22 15363.00 14204.48 15814.23
4194304 12564.5 16030.23 24014.87 12006.00 15704.45 22148.12 9088.03 15466.05 25810.15 31056.37 28685.43 33872.36
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1
2
3
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

A B C D E F G H I J K L M N
CNW CNW CNW CNW CNW CNW CNL CNL CNL CNW CNW CNL

Test Msg Size 4 SN sz4 VN2 sz4 VN4 sz4 SN-AP sz4 VN2-AP sz4 VN4-AP n4 N1 n4 N2 n4 N4 sz16 VN4 sz16 VN4-AP sz16 N4

Allgather 0 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
t_avg[usec 1 14.02 21.13 33.80 16.67 24.10 49.61 23.59 29.71 39.58 88.10 98.77 93.63
lower is bet 2 14.00 21.14 34.04 16.51 24.11 49.60 23.58 29.82 39.69 88.74 98.92 93.99

4 14.00 21.17 34.01 16.51 24.10 49.63 23.43 29.83 39.74 96.22 95.08 105.10
8 14.09 21.22 34.13 16.60 24.14 49.75 23.50 29.76 39.61 102.11 101.15 115.52

16 19.58 26.37 33.95 18.85 25.71 48.68 27.06 35.92 43.99 102.04 105.02 119.73
32 24.99 26.51 34.07 20.99 28.87 51.20 30.41 35.67 47.05 102.62 108.85 120.94
64 24.02 26.48 34.05 20.94 30.72 52.82 30.26 35.79 47.26 104.58 108.96 122.63

128 24.29 26.64 34.61 20.98 29.03 52.43 30.43 37.28 47.36 106.39 109.08 125.04
256 24.64 26.98 34.84 21.35 29.20 51.29 30.66 39.04 47.52 111.94 111.61 134.81
512 25.26 27.55 35.71 21.43 29.35 51.69 30.91 40.40 48.78 120.61 114.87 143.80

1024 23.84 30.04 43.73 22.48 31.63 55.55 33.44 43.71 55.17 140.62 123.12 167.61
2048 25.16 34.41 52.23 23.10 33.54 59.24 37.12 47.66 61.36 172.17 145.50 210.95
4096 28.29 39.35 58.66 25.35 33.88 60.82 42.43 55.71 71.57 234.58 217.67 295.83
8192 35.52 50.22 71.36 30.95 48.23 70.35 51.33 69.94 88.52 370.25 420.10 483.69

16384 51.13 75.06 97.25 46.32 86.33 111.20 69.80 98.51 123.16 934.13 903.85 956.54
32768 83.52 138.12 155.82 79.39 171.93 219.67 107.31 166.36 196.46 1355.02 1468.71 1384.54
65536 177.20 271.87 355.22 206.22 448.34 480.76 196.65 343.99 360.50 2665.89 2958.28 2908.83

131072 405.89 616.12 986.64 411.10 889.44 1006.32 367.49 790.01 852.19 6274.41 6421.94 5956.98
262144 773.58 1179.52 2116.10 773.53 1765.98 1873.08 662.95 1512.14 1661.00 11811.53 12166.62 11439.73
524288 1551.70 2837.27 4503.75 1553.02 3547.72 3611.75 1279.84 2815.40 3560.94 22600.97 23753.84 22504.40

1048576 3058.06 6742.32 7884.14 3056.92 5131.97 7869.61 2974.81 7003.66 7801.13 47204.72 48068.81 50644.39
2097152 7134.52 13533.41 15939.90 7207.92 12353.85 15535.90 6415.25 13905.04 15572.35 93609.82 94947.87 100390.57
4194304 14728.80 24585.13 31836.16 14743.15 21220.97 31617.50 12381.45 27300.24 30713.98 187570.17 192495.24 200687.34
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1
2
3

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

A B C D E F G H I J K L M N
CNW CNW CNW CNW CNW CNW CNL CNL CNL CNW CNW CNL

Test Msg Size 4 SN sz4 VN2 sz4 VN4 sz4 SN-AP sz4 VN2-AP sz4 VN4-AP n4 N1 n4 N2 n4 N4 sz16 VN4 sz16 VN4-AP sz16 N4

Sendrecv 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MB/s 1 0.28 0.19 0.11 0.24 0.16 0.08 0.17 0.16 0.09 0.10 0.08 0.09
higher is be 2 0.55 0.37 0.22 0.49 0.32 0.16 0.33 0.32 0.18 0.20 0.15 0.17

4 1.10 0.75 0.45 0.98 0.63 0.31 0.66 0.63 0.36 0.41 0.31 0.34
8 2.19 1.50 0.89 1.95 1.26 0.62 1.32 1.26 0.73 0.81 0.62 0.69

16 4.32 2.99 1.78 3.85 2.52 1.23 2.64 2.51 1.46 1.62 1.22 1.34
32 5.12 4.59 3.56 5.90 3.99 2.35 4.18 4.07 2.42 2.98 2.26 2.31
64 10.32 9.21 7.12 11.85 8.07 4.70 8.22 8.08 4.73 5.93 4.55 4.59

128 20.51 18.31 14.16 23.27 15.91 9.88 16.68 16.13 9.59 11.77 8.99 9.03
256 41.21 36.24 28.34 46.27 31.65 19.85 32.76 32.03 19.58 23.42 18.05 17.89
512 75.10 70.94 55.96 93.99 62.07 39.37 65.11 62.29 39.51 46.20 35.89 35.35

1024 152.43 138.25 111.28 182.47 122.85 76.91 128.88 121.22 75.74 90.00 71.40 68.24
2048 317.24 250.35 163.59 353.61 219.35 138.49 237.47 216.87 137.09 141.42 130.12 129.86
4096 617.00 480.24 315.74 530.60 421.66 277.50 411.81 383.23 232.98 268.42 255.40 228.72
8192 1101.74 864.26 577.31 929.94 801.09 555.73 725.26 684.71 520.32 494.76 475.40 385.60

16384 1728.13 1051.30 1012.70 1357.75 924.66 836.68 1183.05 975.34 871.78 837.96 632.25 613.23
32768 2291.99 1806.72 1579.99 1790.01 1094.95 852.38 1686.91 1549.53 1131.51 1188.87 638.69 861.27
65536 2726.56 2196.47 1742.04 1948.94 1443.57 860.64 2115.78 1957.81 1298.66 1414.05 656.58 932.83

131072 2347.61 1401.27 1907.72 1944.43 879.31 743.89 2180.43 962.89 999.06 1163.30 601.82 754.78
262144 2089.21 1379.19 2211.97 2074.04 911.19 801.37 2500.39 1019.60 1036.48 1378.70 643.97 800.36
524288 3111.62 1315.75 1474.54 2145.29 1072.45 833.71 2674.96 1055.69 1143.64 1086.39 618.08 830.45

1048576 2700.23 1569.86 848.88 2182.44 1051.95 850.43 2050.44 813.59 801.20 635.86 641.77 583.40
2097152 2207.27 1532.83 858.99 2203.25 924.64 859.19 2047.14 840.42 809.37 623.25 655.90 594.72
4194304 2218.65 1633.09 862.22 2075.17 895.75 862.11 2052.86 832.91 811.77 663.53 628.49 616.50
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5.3. Unit Testing 
 
Only a subset of the unit tests applied to AP. They are no regressions to report. 
 

Test Name SN 
Accelerated 

VN2 
Accelerated 

VN4 
Accelerated 

Comm.comtest.cat    
Comm..comtest.cat
-loops 

   

Comm.ptltest.cat    
Comm.ptltest.cat-
loops 

   

MPICH2.attr    
MPICH2.basic    
MPICH2.coll    
MPICH2.comm    
MPICH2.datatype    
MPICH2.errhan    
MPICH2.errors    
MPICH2.group    
MPICH2.info    
MPICH2.init    
MPICH2.io    
MPICH2.pt2pt    
MPICH2.rma    
MPICH2.spawn    
MPICH2.topo    
MPICH2.cxx (as 
above) 

   

MPICH2.f77    
MPICH2.f90    
Pallas    
Shmem.mpif01    
Shmem.sma1    
Shmem.sma2    
Shmem.smaf    
Shmem.smaperf1    
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6. Results of Running on Jaguar June 9-10, 2008 
 
This section was introduced with version 2.0 of the document. It describes the testing done on the Jaguar 
XT4 system located at ORNL. Jaguar’s 7832 compute nodes are populated with 2.1 GHz revision B2 quad-
core Opterons. A 24-hour test period was generously provided. After approximately 17 hours of testing, a 
severe thunderstorm caused a complete loss of power to the computer facility that houses Jaguar. Once the 
machine was restored to service, we completed the last 7 hours of testing.  
 
We were very pleased with the machine performance and also delighted with the CNW stability. Prior to 
this test, CNW had only run on five quad-core Opterons. There were no CNW issues during the booting 
process. We experienced no load failures or unexpected hangs during the entire test time. Ten nodes faulted 
during testing. One was a machine check in bank 4 (uncorrectable memory error). We assume this was a 
hardware problem. The second failed node gave an error message from the function cpu_wait_for_quiet. 
We have seen this error on Red Storm, even with Cray’s dual-core Catamount Virtual Node OS. The cause 
is unknown. While this may be a hardware problem, we suspect this is an OS software issue. Three nodes 
failed due to an operator procedure that was unrelated to CNW. The last five faults occurred when running 
the POP application. The node running rank 0 of five POP jobs ran out of portals heap space. This is a 
known issue and had already been increased in CNL, possibly to accommodate this application. We elected 
to rebuild CNW with a larger QK heap space and reboot. The POP runs were completed with the larger 
heap size. The only other failure was caused by the power outage. This stability over a 24-hour test is an 
excellent result for CNW’s first introduction to a capability-sized quad-core machine. 

6.1. Application Testing – CNL and CNW Results 
 
ORNL provided four applications and associated test problems. We ran them using CNL during 
normal Jaguar production time. We could not control job placement for the CNL runs, nor can we 
estimate that effect on the CNL results. The CNW jobs were placed on contiguous nodes during 
the dedicated test time. For the small-sized jobs, there were multiple jobs running at the same 
time. Both the CNW and CNL versions of the application binaries were built using PGI 7.1.6. The 
same make files were used.  
 
We provide both tabular and graphical versions of the results. All times are converted to seconds, 
with lower times being better. The “VN” column identifies whether 1, 2, 3, or 4 virtual nodes were 
specified on the yod command line. The last column shows the percent improvement of CNW 
over CNL. Note that one POP run used 3 cores per node, while all the other test cases used 4 cores 
per node. The 3-core test is not included in the graphical results, since it represents a dissimilar 
test setup. The 3-core test is intriguing as it shows a significant advantage with CNL over CNW. 
We speculate this may be due to Linux running on the unused core. Catamount always runs the 
OS and the first application process on CPU 0. Cougar, the predecessor to Catamount, provided 
the feature to run the application on a different core than the OS. This feature, like thread support 
(e.g. OpenMP) was removed at Cray’s request, when porting Cougar to Catamount for the original 
single-core Opterons. 
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App sockets cores VN CNL CNW
(CNL/CNW-1) 
*100%

GTC 16 64 4 323.795 317.072 2.12
32 128 4 344.157 316.332 8.80
64 256 4 368.684 318.569 15.73

128 512 4 324.463 319.737 1.48
256 1024 4 326.828 319.711 2.23
512 2048 4 324.788 319.425 1.68

1024 4096 4 329.805 323.757 1.87
968 3872 4 490.037 487.813 0.46

1936 7744 4 496.787 486.999 2.01
3872 15488 4 529.083 512.593 3.22
7744 30976 4 498.85 496.777 0.42

VH1 25 100 4 11.5218 13.2072 -12.76
100 400 4 12.3865 13.6505 -9.26
400 1600 4 12.5986 12.2138 3.15
625 2500 4 13.6805 14.3882 -4.92

1225 4900 4 13.6648 13.1650 3.80
1600 6400 4 15.5032 15.0973 2.69
1806 7225 4 14.3358 13.4823 6.33
2500 10000 4 16.6929 15.4581 7.99
4096 16384 4 17.1961 16.2242 5.99
5625 22500 4 19.7081 14.2151 38.64
6400 25600 4 21.6054 15.4634 39.72
7225 28900 4 23.5664 16.3595 44.05

POP 900 3600 4 1537.76 1690.96 -9.06
1600 6400 4 880.39 1026.65 -14.25
2500 10000 4 779.13 849.30 -8.26
3600 14400 4 628.43 709.24 -11.39
4800 19200 4 661.07 695.61 -4.97
5000 20000 4 729.74 695.44 4.93
6000 18000 3 546.04 598.68 -8.79
7200 28800 4 638.18 619.87 2.95

AORSA 1024 4096 4 4247.76 3914.70 8.51
2048 8192 4 4414.98 4119.48 7.17
4096 16384 4 2395.5 2412.36 -0.70
5625 22500 4 5791.8 5599.08 3.44
7056 28224 4 4883.58 4747.32 2.87

AVERAGE 3.83  
 
 
GTC came with two different test cases. We do not have an explanation for the unusually large 
difference in the CNL and CNW results for the low core count test cases. It may have been poor 
job placement when running CNL. That is speculation as we could not determine where node 
placement information is archived by a system running CNL. 
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GTC Test 1 Results
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GTC Test 2 Results
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The VH1 test cases ran very quickly. They show the largest disparity with increased node counts.  
 

VH1 Results
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The POP runs show an interesting pattern with CNL outperforming CNW at most core counts. But 
the advantage reduces as the core count increases. These results are in marked contrast to the 
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results presented in Section 4.1.1 of this document. Previously on dual cores, CNW significantly 
outperformed CNL. There have been quite a few changes to POP, CNL, and system libraries since 
the dual-core test on Jaguar in June, 2007. We conjecture that the recent MPI library change for 
CNL was an important factor in POP’s improved performance on CNL. SGI’s MPI library 
replaced the MPICH2 V1.0.2 that is still provided with Catamount. SGI’s library utilizes shared 
memory features that likely play a key role in collective operations. POP would benefit from an 
intra-node optimization of MPI_Allreduce(). The benefit would decrease with core count, which is 
consistent with the trend in the POP results in the following graph. CNL outperforms CNW by 
14% at small node counts. By 28,800 cores, CNW outperforms CNL by 3%.  
 
Sandia has introduced shared memory support to CNW. The feature is not yet integrated into 
system libraries, such as MPI.  
 

POP Results
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The last application tested was AORSA. We had no previous experience with this application and 
the tests ran for much longer than the other applications.  
 

AORSA Results
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The CNW tests were rerun using Accelerated portals. Accelerated portals is enabled with a run-
time environment variable, so special binaries are not required. The results were quite similar to 
the small scale results reported in Section 5.1.1. POP was the only application that consistently 
benefitted from Accelerated portals. As suggested earlier, this new feature would benefit from 
additional tuning and optimization.  
 

App sockets cores VN CNL CNW CNWacc
(CNL/CNW-1) 
*100%

CNL/CNWacc 
-1)*100%

(CNW/CNWacc-
1) *100%

GTC 16 64 4 323.795 317.072 318.126 2.12 1.78 -0.33
32 128 4 344.157 316.332 317.562 8.80 8.37 -0.39
64 256 4 368.684 318.569 317.704 15.73 16.05 0.27

128 512 4 324.463 319.737 318.600 1.48 1.84 0.36
256 1024 4 326.828 319.711 319.592 2.23 2.26 0.04
512 2048 4 324.788 319.425 319.636 1.68 1.61 -0.07

1024 4096 4 329.805 323.757 320.341 1.87 2.95 1.07
968 3872 4 490.037 487.813 481.751 0.46 1.72 1.26

1936 7744 4 496.787 486.999 487.006 2.01 2.01 0.00
3872 15488 4 529.083 512.593 514.718 3.22 2.79 -0.41
7744 30976 4 498.85 496.777 487.752 0.42 2.28 1.85

VH1 25 100 4 11.5218 13.2072 13.1627 -12.76 -12.47 0.34
100 400 4 12.3865 13.6505 13.5551 -9.26 -8.62 0.70
400 1600 4 12.5986 12.2138 10.9291 3.15 15.28 11.75
625 2500 4 13.6805 14.3882 13.3367 -4.92 2.58 7.88

1225 4900 4 13.6648 13.1650 11.8051 3.80 15.75 11.52
1600 6400 4 15.5032 15.0973 14.4210 2.69 7.50 4.69
1806 7225 4 14.3358 13.4823 13.5205 6.33 6.03 -0.28
2500 10000 4 16.6929 15.4581 13.9612 7.99 19.57 10.72
4096 16384 4 17.1961 16.2242 15.6414 5.99 9.94 3.73
5625 22500 4 19.7081 14.2151 21.5760 38.64 -8.66 -34.12
6400 25600 4 21.6054 15.4634 22.5660 39.72 -4.26 -31.47
7225 28900 4 23.5664 16.3595 24.3143 44.05 -3.08 -32.72

POP 900 3600 4 1537.76 1690.96 1617.23 -9.06 -4.91 4.56
1600 6400 4 880.39 1026.65 963.36 -14.25 -8.61 6.57
2500 10000 4 779.13 849.30 772.67 -8.26 0.84 9.92
3600 14400 4 628.43 709.24 647.16 -11.39 -2.89 9.59
4800 19200 4 661.07 695.61 616.15 -4.97 7.29 12.90
5000 20000 4 729.74 695.44 618.59 4.93 17.97 12.42
6000 18000 3 546.04 598.68 530.12 -8.79 3.00 12.93
7200 28800 4 638.18 619.87 558.65 2.95 14.24 10.96

AORSA 1024 4096 4 4247.76 3914.70 3918.54 8.51 8.40 -0.10
2048 8192 4 4414.98 4119.48 4039.68 7.17 9.29 1.98
4096 16384 4 2395.5 2412.36 2303.04 -0.70 4.01 4.75
5625 22500 4 5791.8 5599.08 3.44
7056 28224 4 4883.58 4747.32 2.87

AVERAGE 3.83 3.88 1.26
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6.2. CTH Scaling Study with CNW 
 
The CTH scaling study provided useful data to study the effective utilization of the additional 
cores. We began by running the same problem (shaped charge 2000 x 4800 x 2000) 
three times on 7800 CPU cores. The first time, only one core was used on 7800 sockets (SN 
mode). The second time, two cores were used on 3900 sockets (VN2 mode). Finally, four cores 
were used on 1950 sockets (VN4 mode). If there were no resource contention, the timing results 
should have been the same. Since memory and the SeaStar interface are shared resource, the time 
per timestep are different: 
 

SN (secs) VN2 (secs) VN4 (secs) 
23.258 25.371 31.340 

 
Using just this one set of data points and the calculation described in Section 4.1.3, we obtain an 
effective utilization of 2.96 cores. This 7800-core result is very close to the CTH result reported in 
Section 4.1.3 on 4 cores. We were not able to run this test at large scale on other applications.  
 
We did do two full scaling studies using CTH. The first graph depicts the results of assigning the 
same amount of work to each socket. The top red line uses only one core per socket to do the 
work. The middle green line uses two cores to do the same amount of work. Ideally, it would take 
half the time. The bottom blue line uses four cores to do the work. Again with no contention, the 
results should be halved. The drop between the 1-core and 2-core results is very nice and most 
likely shows the advantage of the improved memory subsystem on this Opteron over the previous 
generation of dual-core Opterons. The 4-core result is not ideal, but is consistent with the previous 
single data point on effective core utilization. The values range from 2-3 cores effectively utilized. 
 

CTH - shaped charge (90 x 216 x 90 per socket)
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The second scaling study shows similar results. It compares the same problem on the same 
number of cores. This time, the number of cores remains constant, but the number of sockets 
changes. Again, we see a nice, smooth, and relatively flat scaling curve. Two-core utilization is 
very good and satisfactory on four cores.  
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CTH - Shaped Charge (90 x 216 x 90) per core
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6.3. HPL and HPCC Results 
 
We ran HPL on 16,384 cores (4096 sockets) with the N value set to 800,000. This run takes about 
one hour. CNW showed a 1% improvement, probably due to the use of large (2MB) pages. 
 

 Run time (sec) GFLOPS 
CNL 3817.75  89410 
CNW 3777.03 90370 

 
 
Lastly, we ran HPCC without the HPL portion of the benchmark. This was an optimized (in 
contrast to baseline) HPCC run. We used Steve Plimpton’s optimized random access algorithm 
and Mark Sears’ optimized FFT algorithm. (These algorithms have been described in published 
proceedings and are available from the authors upon request.) 
 
PTRANS produced 1839.22 GB/sec, which is about what we would expect given the number of 
NICs. STREAMS was 86888.6 GB/sec, which is 11.14 per socket which shows the faster DDR2 
memory. Random access produced  22.805 giga-updates/sec. This is an expected result given the 
number of NICs. Lastly FFT reported 3747.38 GLOPs/sec on 31104 cores – a little less than 
expected but probably reasonable given the contention on the sockets. 
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7. Future Plans 
 
This project has satisfied the project goal of providing CNW, a viable light weight operating system for 
quad-core Opterons on Cray XT4 systems. However, ORNL plans to use Compute Node Linux on its 
Jaguar system and CNW would be archived. 
 
Due to a fortuitous sequence of events in December, 2007, Sandia was able to negotiate an upgrade to the 
Red Storm system. Sixty five of its 135 compute cabinets will be upgraded from dual-core to quad-core 
Opterons during the summer of 2008. Sandia chooses to remain with the Catamount Light Weight Kernel 
and CNW is now running on Red Storm. In fact, unless CNL is modified to support a mixture of dual and 
quad-core nodes, CNW is required on Red Storm. Thus, CNW will continue to move forward, based on the 
work done for this project.   
 
Sandia plans to continue the analysis of CNL performance versus CNW on applications of interest to 
Sandia. In April, Sandia compared CNL and CNW on Red Storm using 12,960 dual-core Opterons for the 
CTH and Partisn applications. The difference was more marked than the applications run on Jaguar in June.  
For example, CTH showed an average 6.7% improvement when using CNW, with the difference being 
greater at higher core counts.  
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