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Abstract—Historically, scientific computing applications
have been statically linked before running on massively
parallel High Performance Computing (HPC) platforms.
In recent years, demand for supporting dynamically linked
applications at large scale has increased. When programs
running at large scale dynamically load shared objects,
they often request the same file from shared storage.
These independent requests tax the shared storage and the
network, causing a significant delay in computation time.
In this paper, we propose to leverage a proven file sharing
technique, BitTorrent, abstracted by an on-node FUSE
interface to create a system-level distribution method for
these files. We detail our proposed methodology, related
work, and our current progress.

I. INTRODUCTION

High Performance Computing (HPC) applications are
increasingly using demand-loaded dynamic shared li-
braries (DSLs) at very large scales. This is a relatively
new requirement for HPC system software; in the past,
HPC programs were generally statically compiled, re-
moving the need to load DSLs from remote filesystems
over the network. DSLs are attractive in HPC systems,
however, because they can be used to support high-level
programming and scripting languages, as well as for
functionality such as loading solver modules on-demand
based on application need. They also can substantially
reduce the memory footprint of scientific applications,
which are reaching 1GB in size when statically linked.

Supporting demand-loading of shared libraries in
large-scale systems is challenging. Standard file system
techniques that work well on a single node and small
scale platforms work poorly at very large scale; 50,000
simultaneous requests for the same file is very difficult
to handle quickly even on the most scalable HPC file
systems. Specialized techniques for supporting dynamic
libraries in HPC systems also have scaling problems,

with recent work documenting sub-optimal initial load
times. Two reports, one using the Kull application, and
the other its benchmark standin, Pynamic [1], report
load times on the order of twenty minutes for 16,000
processes. Data from one report came from an IBM Blue
Gene/P system [2], the other from a Cray XE system [3].

In this paper, we propose to use modern peer-to-
peer data distribution techniques based on the BitTorrent
protocol [4] to support large-scale loading of DSLs. In
this approach, users specify the set of libraries they
would like to have available at runtime, these files
are assembled into a BitTorrent archive, and a torrent
description and relevant meta-data is distributed to nodes
at job launch. The BitTorrent protocol is then used to
scalably move files to compute nodes at runtime based
on application demand for the files.

The remainder of this paper is organized as follows.
Section II describes the problem in more detail, and Sec-
tion III then describes our approach and the architecture
of our proposed system. Section IV details our current
progress towards evaluating our approach, and Section V
describes optimizations to the approach that we plan
to explore. Finally, Section VI discusses previous work
done in the area and Section VII concludes.

II. BACKGROUND

While developed to increase resource efficiency for
multi-user timeshared desktop and enterprise level plat-
forms, the demand for shared library support on clusters
and large scale High Performance Computing (HPC)
platforms has greatly increased. Many of the design
choices made, while appropriate for the target design
space, are obstacles to scalability, especially on large
clusters and HPC platforms. Other features, like multiple
executables sharing a single dynamically loaded object,
are of no benefit in a space-shared environment.



When an object is statically linked, all references are
resolved at compile time and all executable code is
contained in the resulting binary. This binary can be
efficiently distributed to tens of thousands of nodes in
several minutes, which is attractive for HPC systems.
While distributing a single object at launch has its ad-
vantages, the increasing use of large solver libraries often
results in huge executables. Since code paths are decided
based on the specific problem or input, large portions
of unused code must be statically built into executables
which can bloat executables with unnecessary code.

Dynamically linked binaries defer most of the link-
ing process until run-time. When a binary is executed
the dynamic linker attempts to resolve all unresolved
references. This process causes a large number of file
stat operations. This large volume of file operations
is the first key challenge of this problem. While on
a single time-shared system these operations can be
efficiently accomplished, on a large HPC platform they
scale with the number of concurrent processes. This
can be tens of thousands of simultaneous file operations
for the same set of shared libraries on a single shared
filesystem to resolve references. These operations are
latency-sensitive and handling them quickly is essential.
Even small delays can cause timeouts which result in
duplicate requests, further increasing load on the file
server. Once all references are resolved, the program can
begin execution.

Once the program is executing, if any of the shared
object code resolved during the initial run-time linking
process is required, the dynamic loader is employed to
service the request. Typically, this is done using the
OS file-system interface. Requested objects which were
memory mapped during the linking phase are demand
paged. Again, this process is efficient for single time-
shared systems. On HPC systems, bulk synchronous
executions make requests roughly at the same time.
Because of this, the scenario of tens of thousands of
nodes making simultaneous requests to a shared object
becomes plausible. All of the processes will request this
page (or pages) of the shared object at roughly the same
time from the single shared library on the same shared
file-system. The bandwidth and meta-data coordination
of this data distribution poses the second key challenge.

Possible solutions to these key challenges are unfortu-
nately quite disparate. Parallel file-systems are typically
optimized for delivering large amounts of bandwidth.
While this seems encouraging on the surface, parallel
file-system performance for shared files (N to 1) is
typically much worse than can be achieved in an N to

N organization. File operations like directory searches,
file stats and opens often expose bottlenecks in parallel
file-system meta-data services.

As a result, modern HPC systems, for example the
Cray XT/XE/XK line of supercomputers, generally use
a hierarchy of file caches for system shared libraries.
The recent Alliance for Computing at Extreme Scale
(ACES)1 capability platform, Cielo, uses the same strat-
egy for user-provided shared libraries. This approach is
more efficient than any other available file system on
Cielo [5]. However, even when using this more efficient
hierarchy of caches, the application runtime can still
increase substantially when compared with a statically
linked binary [3].

III. APPROACH AND ARCHITECTURE

There are three main features our system must provide
based on how demand-shared libraries are used in HPC
systems:

1) Data distribution to nodes that can handle moving
large shared libraries to tens or hundreds of thou-
sands of nodes without bottlenecking a single or
small number of file system nodes

2) Meta-data management that can handle re-
peated directory queries for searching the file
system for appropriate shared libraries (e.g.
LD_LIBRARY_PATH searches)

3) Straightforward integration with the compute-node
operating systems so that the resulting system
can be deployed to and maintained for production
systems with minimal extra effort

In the remainder of this section, we describe the overall
architecture of the system on which we are working and
our approach to addressing the challenges above.

A. Overall Architecture

As mentioned above, our general approach to sup-
porting demand-shared libraries for large-scale super-
computers is to leverage peer-to-peer data distribution
techniques, in particular BitTorrent. Techniques like Bit-
Torrent are particularly appropriate for supporting shared
library-oriented file systems because they are built for
read-only data.

In the general approach, shown in Figure 1 user
actions take place when specifying a job to run, when
the job is launched, and when requests are made at
runtime for the requested files. When constructing a job

1ACES is a collaboration between Sandia National Laboratories
and Los Alamos Laboratory to design and field capability class
platforms for the DOE NNSA Tri-lab community
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Figure 1. Steps in System Operation

to submit, users will declare a set of files, for example a
directory of shared object files, to make available to the
application. Our system will create a small description
file that contains information needed about the files to
make available.

When a job is launched, the description file will be
distributed to each compute node as part of the launch
process; this file will specify what local directory on the
compute node the files should be mounted in, as well as
all of the information necessary to handle file lookups
at runtime, to begin the transfer of data to compute
nodes when data is requested, and to serve, in a peer-
to-peer fashion, requests from other compute nodes. In
addition, bootstrap daemons on system service or I/O
node will also process the description file so that they
can handle requests from compute nodes to bootstrap
data movement onto the compute nodes for peer-to-peer
distribution.

As the job runs, metadata and data requests (e.g.
resulting from a call to dlopen library function) will
be handled by communicating with other compute node
and, when necessary, with bootstrap daemons on service
nodes. We describe the details of our approach to han-
dling such requests in the remainder of this section.

B. Data Movement

We propose to use a peer-to-peer data distribution
protocol based on the BitTorrent protocol to handle the
growth of data distribution requirements with increasing
system scale. BitTorrent allows nodes that have previ-
ously requested data to provide data to their peers. This
will allow compute nodes that have previously accessed
a shared library to provide data to other compute nodes.
This will remove the dependance on shared storage and
allow the distribution to scale.

We have identified two different ways to transfer the
data between the nodes. The first is at a file granularity.
BitTorrent allows for priorities to be set for individual
files. When a request to open a file is given, we download
the entire file to RAMDISK. The other option is to use
a block granularity. BitTorrent separates all of the data
into arbitrarily sized blocks, these can be requested from
the other nodes. Using this, our system requests a block
when it is read from. To do this, the read must be mapped
from disk blocks to BitTorrent blocks to determine which
data to download.

In the first approach, the cost is encountered when a
file is opened. However, reading the file becomes less
expensive because the data is already stored locally. In
the second approach, the cost is encountered when a read
accesses new data. By only downloading the requested
block, we can avoid downloading unnecessary data. We
plan to implement and evaluate both options.

The use of a simple peer-to-peer protocol will allow
this protocol to scale up to extremely large node counts.
Some features of BitTorrent, particularly those related to
free-loader prevention, will be disabled because they are
not needed in the cooperative context of a single HPC
application. Open source BitTorrent libraries will be used
to facilitate implementation of this portion of the system.

C. Meta-data Management

We identified two options to handle metadata. First is
to create a file that contains relevant information and to
have compute nodes download this from the BitTorrent
swarm. The other option is to use the information stored
in the description file to generate metadata on the node.
This second option may also allow us to cache more
metadata in the description file, allowing us to add
metadata that is not already there. Since a BitTorrent de-
scription file stores some information, such as directory



structure and filesize, we will identify what metadata can
be reconstructed from the description file and determine
what metadata we need to transfer to the node. We
must ensure that security-sensitive (e.g. ownership and
permission) metadata information is obtained from a
trusted source.

D. Bootstraping

Our system must complete a bootstraping process be-
fore a target application can access it. The bootstrapping
process requires two bootstrapping daemons to initialize
our system:

1) A BitTorrent tracker must be running on a I/O
node. The tracker registers torrents, maintains a
list of peers and serves as an entry point into the
BitTorrent swarm. The tracker must be running
before the description file can be registered.

2) Initial seeders are responsible for fetching the data
and serving the initial requests from the compute
nodes. These run on an I/O node. They must fetch
and store the data before initializing the BitTor-
rent library. When BitTorrent is initialized, it will
recognize and verify the files. Upon completion it
will register with the tracker as a seeder.

E. OS Integration

Because we want to make our system transparent to
the application programmer, integration with the OS is
necessary. To integrate into the operating system we are
using a filesystem framework called FUSE (Filesystem
in Userspace). FUSE provides an interface by which
developers can override filesystem functions to provide
different types of functionality. By implementing a FUSE
module, we can implement our system, remaining trans-
parent to the application programmers.

To illustrate our FUSE integration, we can follow the
data path given a file granularity. Initially the application
makes a request for a file, such as in a dlopen call.
This request is routed through the kernel to the FUSE
module. The FUSE module, upon receiving a request
to open a file, will request the file from the BitTorrent
library. The BitTorrent library will change the priority
of these files from undesired to normal or high. The
BitTorrent library will then start actively looking for the
file from the BitTorrent swarm, saving the file into a
RAMDISK. After the file is downloaded, FUSE will
provide an interface for the application to access the file
on the RAMDISK.

IV. CURRENT STATUS

We have begun work on constructing the system
described in the previous section. Our initial goals are
to implement a proof of concept and use it to collect
initial performance data to demonstrate the viability of
the approach and drive later optimization decisions. In
the remainder of this section, we describe our progress
on implementing the described approach, the next steps
in this developing a prototype version of this approach,
and our plans for testing and evaluating the system.

A. Required FS Operations

As a first step, we examined the FUSE functions called
when using a DSL, both implicitly by the system loader
on program launch and explicitly through dlopen. We
did this by running Pynamic [1], a DSL benchmarking
tool, on a FUSE module that logged each request that it
received [6]. In addition, we added the FUSE directory to
the LD_LIBRARY_PATH to examine dynamic library-
related file system calls on program launch.

On program launch, the system dynamic linker re-
solves shared libraries referenced by the program ex-
ecutable. To do this, it makes a stat() system call
on each directory in the given path and, assuming the
directory exists, on the name of each shared library for
which it is searching in that directory. This results in
a get attributes request to FUSE. dlopen() similarly
uses stat() to find if the file it is searching for exists
as opposed to searching the containing directory for the
appropriate name directly. Overall, this generates a large
volume stat() system calls which we will have to
focus on optimizing in our work.

After locating the appropriate library, the dynamic
linker attaches it to a running program using system calls
that result in FUSE open, flush, and release operations.
These operations are requested once per dynamically
linked library accessed. get attributes is requested more
often, by about 1.6 times. As the program uses functions
in the loaded object, the read operation is invoked for
each accessed page. The number of invocations to read
and the rate at which it is called depends on the behavior
of the program using the shared object.

B. Implementation Progress

We are now focusing on prototyping BitTorrent-based
data movement in a FUSE-based file system imple-
mentation for compute nodes. The first challenge we
have faced in this process has been to find a BitTorrent
library that is appropriate for use in HPC systems.
In particular, we need a library that supports modern



BitTorrent features (such as trackerless torrents based
on distributed hash tables) for future optimization work,
and is simple and open-source so that we can use it
for production compute nodes with minimal footprint or
dependencies. After evaluating a selection of BitTorrent
libraries, we found that libTorrent [7] best fit our needs.

Our initital work on combining libTorrent with FUSE
is using a simple local RAMDISK approach to trans-
fering data that transfers and caches entire files lo-
cally. Specifically, when FUSE opens a particular shared
library file, our current implementation will transfer
the entire file into a local RAMDISK so that later
read requests can be immediately satisfied locally. As
mentioned in Section III-B, this approach makes appli-
cation launch and dlopen() an expensive operation
and increases the memory footprint of our prototype.
On the other hand, this dramatically reduces the cost of
later requests to read from the file as, for example, the
application begins executing in the shared library.

In addition, our initial implementation will satisfy at-
tribute requests (e.g. directory lookups) file stat requests
by transferring i-node data for each file referenced by a
directory when the directory itself is opened. This will
allow us to handle both directory name search requests
that read the directory itself and stat() operations on
the files, with minimal network traffic. We will examine
additional optimizations as necessary, for example em-
bedding file attributes in the description file distributed
at launch time as decribed later Section V,

C. Next Steps

After getting basic BitTorrent/FUSE data movement
working, our next step will focus on constructing the
infrastructure to allow this approach to be used on HPC
systems. In particular, we will focus on setting up the
bootstrap tracker and seeder daemons needed to start data
transfer in the system, as well as the tools for construct-
ing and distributing torrent files at application build and
launch. Our initial work will focus on launching these
bootstrap daemons on a per-application basis, probably
using compute node rank 0 to host these processes. We
expect that this will overburden rank 0 at large scales,
as well as increase the noise that the application code
running on rank 0 experiences, so we will later work
on constructing system-wide tracker and seeder daemons
that can be run on I/O nodes.

D. Testing Strategy

To evaluate our system, we will use both the Pynamic
benchmark [1] to examine dynamic loading of large

numbers of shared libraries at runtime, and dynamically
linked version of a variety of HPC benchmarks and
applications, including the HPC Challenge [8] and NAS
Parallel [9] benchmarks. We will begin running these
applications on small development clusters to better un-
derstand the impact of the design choices in our approach
on their runtime. After initial development, optimization,
and performance tuning at small to moderate scales, we
plan to also evaluate the viability of this approach on
larger scale production HPC systems with thousands or
tens of thousands of nodes.

V. FUTURE OPTIMIZATIONS

There are a number of optimization and performance
tradeoffs we plan to study as part of this work. First,
BitTorrent has recently moved to a trackerless system
for managing the location of data in the system, where
a distributed hash table is used to track this informa-
tion. Removing the need for a tracker daemon that all
processes need to contact to locate data to transfer is
a potentially important optimization in our system. As a
result, exploring the performance benefits of a trackerless
BitTorrent implementation is an optimization we plan to
examine as soon as possible.

In addition, we also plan to study the performance
tradeoffs between block-by-block transfer of data versus
whole-file caching of files. Block-by-block transfer of
data reduces the time taken to initially opening a shared
object, potentially reducing application startup time. It
also reduces the memory footprint of the shared library
file system dramatically. However, deferring transfer of
data potentially increases variance in application execu-
tion time because shared library contents will be need
to transferred at a later time as these pages are touched.
This potentially increases system noise, which can also
dramatically impact application runtime [10]. As a result,
we also plan to examining the tradeoffs of different
caching strategies and granularities at varying system
scales.

Finally, attribute lookups are another potential area
that may need to be optimized in our system. As men-
tioned in Section III-C, we may embed metadata for the
complete file system into the description file to reduce
metadata access times if this becomes a bottleneck in the
system. As the most aggressive shared library systems
(e.g. the pynamic benchmark mentioned in Section IV-D
only uses a few thousand files at most, the amount
of metadata about these files that would need to be
embedded in the description file is quite modest.



VI. RELATED WORK

Research related to this effort comes primarily from
two areas; HPC, the target of this research, and dis-
tributed systems. Sandia National Laboratories con-
ducted some earlier experiments specifically directed
towards supporting DSLs on HPC platforms that utilized
light-weight kernels and custom run-time systems. While
this experiment was generally successful, it required
extensive changes to the standard loader and run-time
and was not portable to other commodity software stacks.
This effort, and a more general survey of other poten-
tial approaches, was documented in a Sandia technical
report [11]. One of the alternative approaches posited
in [11], again for use in a custom environment, was a
proxy file-system approach.

To address scalable IO, the IO forwarding approach
is used on Blue Gene P (Blue Gene L supported only
statically compiled binaries) [12]. In [12], the authors
focus on IO performance and bottlenecks and do not
specifically address DSLs. Cray Inc. has also imple-
mented DSL support using their file-system proxy, Data
Virtualization Service (DVS) [13]. Coverage of Cray’s
approach and an optimization that extended the scalabil-
ity of this approach (a DVS optimization) can be found
in [5]. Other researchers have investigated optimizing
IO on HPC platforms using proxy methods and data
compression ([14], [15], and [16]). These techniques
can improve the scalability of using DSLs but have not
focused on this issue.

Magic Ermine [17], a tool developed to aid in binary
portability, was also investigated in [11] as a possible
hybrid method of combining both the executable and the
required DSLs into a single package which could then
be efficiently distributed on the target HPC platform.
While interesting, this approach would generate very
large combined executables along with other limitations
outlined in [11].

In the distributed systems area there are a number
of related research efforts. Chord [18], CAN [19], Pas-
try [20] and Tapestry [21]. These original four peer-to-
peer Distributed Hash Table proposals were all intro-
duced in 2001. All, primarily academic and research
focused, share the same fundamental idea but have
significantly different approaches. The original protocol
for Bittorrent was also designed in 2001 but specifically
targeted peer-to-peer file sharing over the Internet. We
hope to benefit from some of the inherent characteristics
of Bittorrent while ignoring some of the less applicable
features.

Current efforts in file system R&D is important to
monitor when addressing the problem of scalable ac-
cess to dynamic shared libraries. File system choices
for storing these shared libraries are limited for HPC
systems. Current high performance file system software,
such as Lustre, GPFS, PVFS, or Panasas, use parallel
techniques to achieve good performance in aggregate.
These packages are tuned for high volume, bursty I/O,
such as writing checkpoint or reading restart files. The
serial I/O to a single file on these parallel systems is not
much better than a single disk file system. In fact, most
shared libraries are stored on cluster-local disk or on
network attached storage (NAS) and accessed via NFS.
As mentioned previously, I/O forwarding techniques
from NFS servers have been developed with some, but
insufficient success. Newer efforts, targeting the Exascale
timeframe, may alleviate some of the access issues. For
example the Sirocco [22] effort is a peer to peer file
system that may provide advantages similiar to what we
are proposing using Bittorrent.

VII. CONCLUSIONS

In this paper, we described a new peer-to-peer ap-
proach to supporting dynamic shared libraries in HPC
systems that we are pursuing. We believe this approach
has substantial potential for improving the support for
applications that rely on dynamic linking and loading
in HPC systems, and such application are increasingly
imporatant in HPC systems. We have begun implement-
ing this approach using existing open source tools as the
basis for our work, and are currently working towards
an initial experimental evaluation of the potential of this
approach.
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