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ABSTRACT
Scalable parallel computing is essential for processing large
scale-free (power-law) graphs. The distribution of data across
processes becomes important on distributed-memory com-
puters with thousands of cores. It has been shown that two-
dimensional layouts (edge partitioning) can have significant
advantages over traditional one-dimensional layouts. How-
ever, simple 2D block distribution does not use the struc-
ture of the graph, and more advanced 2D partitioning meth-
ods are too expensive for large graphs. We propose a new
two-dimensional partitioning algorithm that combines graph
partitioning with 2D block distribution. The computational
cost of the algorithm is essentially the same as 1D graph par-
titioning. We study the performance of sparse matrix-vector
multiplication (SpMV) for scale-free graphs from the web
and social networks using several different partitioners and
both 1D and 2D data layouts. We show that SpMV run time
is reduced by exploiting the graph’s structure. Contrary to
popular belief, we observe that current graph and hyper-
graph partitioners often yield relatively good partitions on
scale-free graphs. We demonstrate that our new 2D parti-
tioning method consistently outperforms the other methods
considered, for both SpMV and an eigensolver, on matrices
with up to 1.6 billion nonzeros using up to 16,384 cores.
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1. INTRODUCTION
The need for computations on large data sets has grown

rapidly. We are concerned with data that can be repre-
sented as graphs, where typically vertices represent data
objects and edges represent relationships. Very large data
sets are common in data mining, social network analysis,
and communication networks. The graphs are highly irreg-
ular, and are often scale-free with a power-law degree distri-
bution. These properties make them significantly different
from graphs in scientific computing, which come mostly from
meshes and discretizations such as finite elements.

Computations on scale-free graphs fall mainly into two
categories: graph algorithms and linear algebra analysis.
Both are important tools to analyze large graphs and net-
works, but we focus on the latter. A well-known algorithm
for web graphs is PageRank [26], which in its simplest form is
the power method applied to a matrix derived from the web-
link adjacency matrix. A more computationally challenging
area is spectral graph analysis. Eigenvalues and eigenvec-
tors of various forms of the graph Laplacian are commonly
used in clustering, partitioning, community detection, and
anomaly detection. However, computing eigenvalues is com-
putationally intensive. For large problems, iterative meth-
ods are needed, which rely heavily on the sparse matrix-
vector product (SpMV). SpMV time can dominate solve
time in an eigenvalue computation. For example, for a rep-
resentative social network graph (com-orkut) with a com-
monly used row-wise block layout on 64 processes, SpMV
took 95% of the eigensolver time. Any reduction in SpMV
time, then, can significantly reduce eigensolve time. We
show later that by improving the data layout for this prob-
lem, we can reduce SpMV time by 69% and overall solve
time by 64%. Therefore, we focus on parallel SpMV per-
formance. Although the eigenvalue problem is our primary
target, our work applies immediately to iterative methods
for linear and nonlinear systems of equations as well.

Parallel computing on scale-free graphs is very challeng-
ing. Such graphs have little locality, so partitioning them for
distributed-memory computers is hard. Often the structure
of the graph is ignored in the partitioning (as in [34]), as
traditional graph partitioners are thought to not work well.
We show that in many cases, there is enough structure that
it can be exploited.

Our main contributions are:

• A new algorithm for 2D (edge) partitioning,
• An empirical comparison of several 1D and 2D distri-

butions for scale-free graphs and the effect on SpMV,



Figure 1: 2D SpMV: Expand phase (left) and fold
phase (right). Arrows represent communication.

• Evidence that current graph and hypergraph partition-
ers are useful for scale-free graphs, and
• A demonstration of the impact of data distribution in

a parallel eigensolver for scale-free graphs.

2. BACKGROUND
Partitioning (load balancing) is the problem of assigning

data and computation to processes. Its goal is to balance the
load (data, computation) while also reducing interprocess
communication. For SpMV, both the matrix and vectors
must be distributed and considered in the data layout. Since
we focus on numerical algorithms using SpMV, we mainly
use matrix terminology in our discussion below. However,
since an undirected graph corresponds to a symmetric sparse
matrix, we present both graph and matrix views.

2.1 Parallel SpMV
Suppose both the matrix A and the vectors x, y have

been distributed among processes in some way. The par-
allel SpMV y = Ax generally has four phases:

1. Expand: Send xj to the processes that own a nonzero
aij for some i.

2. Local compute: yloci + = aijxj .

3. Fold: Send yloci to the owner of yi.

4. Sum: Add up local contributions received, y =
∑
yloc.

The matrix partitioning problem [5] is to decide how to
distribute both the matrix and the vectors among processes.
For 1D distributions, only the first two phases are necessary.
For 2D distributions, all phases are required and, notably,
there are two separate communication phases (expand and
fold). This communication is illustrated in Figure 1. We do
not discuss the details of the expand and fold phases, but
note that the communication can be implemented in several
ways [18].

Our focus is on iterative methods, such as eigenvalue solvers
or PageRank. In this case, the vectors x and y should have
the same distribution; otherwise, communication is incurred
to remap one of the vectors in each iteration.

2.2 1D (Vertex) Partitioning
The most common way to partition a sparse matrix is by

rows. Each process owns a set of rows and the nonzeros
within those rows. This row-based approach is known as a
1D partition for matrices, or a vertex partition for graphs.
The vector entries are distributed in the same manner as the
matrix rows.

Figure 2: 1D and 2D block layouts for 6 processes.
Each color represents a process.

The simplest 1D partition evenly distributes the n rows
among p processes in a block fashion, such that each process
owns approximately n/p consecutive rows. This distribution
is the default in many matrix libraries, for example, Epe-
tra [1] in Trilinos [19]. Although this partitioning balances
the rows, it does not balance the nonzeros. For mesh-based
computing, typically the variation in vertex degrees (nonze-
ros per row) is low, so disregarding the nonzeros is not an
issue. Scale-free graphs usually have a power-law degree
distribution, meaning some rows have many more nonze-
ros than others. This disparity can cause some processes to
run out of memory, or to be much slower than other pro-
cesses since the SpMV work is proportional to the number
of nonzeros.

The preferred partitioning method for mesh-based simula-
tions is graph partitioning. Here, the objective is to balance
the load and reduce communication at the same time. Math-
ematically, we wish to minimize the edge cuts in the graph
subject to a balance constraint (rows or nonzeros). Unless
stated otherwise, we will always balance the nonzeros (as
this is most important for SpMV). The graph partitioning
problem has been well studied, and good parallel software
(e.g., ParMetis [22], Scotch [27]) is available.

A drawback of graph partitioning is that it does not accu-
rately model communication cost. Hypergraphs generalize
graphs, and hypergraph partitioning can be used to accu-
rately model communication volume. However, hypergraph
partitioning is more expensive to compute than graph par-
titioning and yields similar results in practice for symmet-
ric problems [28]. Hypergraph partitioning is available in
Zoltan [7], PaToH [11], and hMetis [21].

2.3 2D (Edge) Partitioning
Two-dimensional matrix distributions have long been used

in dense linear algebra [25]. Typically, these distributions
are Cartesian, so each process owns the intersection of a
subset of rows with a subset of the columns. Examples are
the 2D block and cyclic distributions, which are used in the
ScaLAPACK library [6]. These distributions limit the com-
munication and the number of messages. Suppose the pro-
cesses are arranged in a

√
p×√p grid. Then the maximum

number of messages per process is O(
√
p), as compared to

O(p) for 1D distributions.
This approach also applies to sparse matrices [18]. In

sparse 2D (edge) partitioning, the nonzeros of the matrix,
or equivalently, the edges of the graph are assigned to pro-
cesses. The most common 2D partitionings are Cartesian,
but in the most general case, one could assign each nonzero
aij independently to a process. The advantage of nonzero-
based (edge-based) 2D partitions, is that one can exploit



Algorithm 1 2D Graph/Hypergraph Partitioning

Input: Sparse matrix A and vector x of dimension n. pr, #processes in the row dimension and pc, #processes in the column
dimension, of the pr × pc process grid. (p = prpc).

Output: part, Sparse matrix of dimension n, partij is the part assignment for the nonzero aij .
1: Partition the rows and columns of A into p parts using graph or hypergraph partitioning.
2: Let rpart denote the partition of rows and columns. {Comment: rpart also defines the vector distribution.}
3: [procrow, proccol] = NONZERO-PARTITION (rpart, pr, pc)
4: for each nonzero aij do
5: {Comment: Assign aij to process (procrow(i), proccol(j)) in the pr × pc process grid.}
6: partij = procrow(i) + proccol(j) ∗ pr {Comment: using column-major process numbering}
7: end for

the structure of the matrix, but the downside is that the
number of messages is generally higher than for Cartesian
distributions.

In the 2D block distribution both rows and columns are
divided into

√
p parts. However, using the block partition-

ing along both rows and columns creates a subtle difficulty:
there is no good compatible vector distribution over p pro-
cesses. The most natural choice is to align one vector with
the rows and another with the columns, but different distri-
butions of x and y would then be needed in SpMV. Instead,
we desire a matrix distribution in which the diagonal entries
are spread among all p processes. Such a partition can be
obtained by partitioning the rows into p “stripes” as shown
in Figure 2, which corresponds to a block cyclic distribution
along the rows but a block partitioning along columns. For
further details, see [5, Ch.4]. This method was successfully
used in [34] for scale-free graphs.

Several other 2D methods have been proposed for scien-
tific computing. In the fine-grain method [12], a hypergraph
model is employed where each nonzero is a vertex. This
model is optimal in terms of communication volume, but
the number of messages may be high, and such partitions
are expensive to compute. The coarse-grain method [13] is
a Cartesian 2D method that also uses hypergraphs to reduce
communication volume. As such, it is closely related to our
new method, but it requires two partitioning steps, one for
rows and another for columns. The second step requires
multiconstraint hypergraph partitioning, which is currently
available only in the serial PaToH [11] library. The Mondri-
aan method [33] uses hypergraph partitioning to do recursive
bisection on the matrix in different directions (along rows or
columns). The resulting distribution is not Cartesian, so
does not have the O(

√
p) bound on the number of messages

per process. A 2D partitioning method based on vertex
separators and nested dissection was recently proposed [8,
9]. These partitioning methods have different strengths and
weaknesses [14]. Although all these methods reduce commu-
nication (in some metric) compared to the block and random
methods, they can be quite expensive to compute so they
are often not suitable for very large scale-free graphs. There
is no parallel software publicly available for these methods.

2.4 Randomization for Load Balancing
A significant issue when partitioning scale-free graphs is

that it is difficult to load balance both the number of rows
and number of nonzeros at the same time. The basic 1D
and 2D block methods balance the number of rows, but can
have significant load imbalance in the nonzeros. (We have
observed up to 130x imbalance.) The nonzero imbalance
causes load imbalance in the local SpMV computation, and

may cause some processes to run out of memory.
Randomization is a simple but powerful technique. Each

row (and corresponding vector entry) is assigned to a ran-
dom process. Since the expected number of rows and nonze-
ros is uniform for all processes, this method generally achieves
good load balance in both metrics. The drawback of this
method is that communication volume increases if the given
graph/matrix has some locality. Therefore, randomization is
a poor load balancing method for finite elements and mesh-
based computations. Nevertheless, it is a viable approach
for highly irregular graphs such as scale-free graphs.

2.5 Related Work
Yoo et al. [34] considered both SpMV and eigensolvers for

scale-free graphs. They compared 1D-block and 2D-block
partitions, demonstrating the scalability benefits of 2D dis-
tribution for scale-free graphs up to an impressive 5B edges
and 32K processors. Their partitions did not exploit the
structure of the graphs to reduce communication volume.
In addition, the preferential-attachment graphs generated
for their experiments [35] did not require load balancing, as
their graph generator produced an equal number of nonzeros
on each processor. Thus, they showed, for scale-free graphs,
the benefit that can be achieved solely by reducing message
counts via 2D distribution. We present a comparison of
the most common matrix partitioning schemes for scale-free
graphs with graph and hypergraph partitioners that exploit
graph structure. We also present a new 2D partitioning al-
gorithm and show that it almost always outperforms the
existing methods.

Partitioning for web graphs and PageRank was studied in
[10, 15]. They compared several partitioning methods, both
1D and 2D. When additional information is available, such
as the host and domain names for web pages, this informa-
tion can be exploited [15]. The recent GPS graph processing
system [29] has an option to use Metis graph partitioning,
which was shown to reduce run-time for PageRank and some
graph algorithms.

Multilevel partitioning for scale-free graphs has been con-
sidered in [3]. This work indicates that current graph par-
titioners need to be modified to work better on scale-free
graphs. To the best of our knowledge, no such software is
currently publicly available, so we use only general-purpose
partitioners.

3. 2D CARTESIAN GRAPH PARTITIONING
For mesh-based applications, 1D graph partitioning re-

duces communication volume and cost by exploiting the
structure of the graph underlying the mesh to maintain



Figure 3: 2D layout of a matrix, after graph par-
titioning and reordering. The diagonal blocks cor-
respond to the parts from the partitioner, and gen-
erally have more nonzeros than off-diagonal blocks.
The stripes do not necessarily have the same height.

locality of dependencies within processors. The same 1D
graph-partitioning methods are often assumed to be less ef-
fective for highly irregular problems such as scale-free graphs.
For such graphs, the 2D-block and 2D-random distributions
are effective because they limit the number of messages per
process. Remarkably, we show it is possible to combine the
best of these two approaches. First, we use graph (or hy-
pergraph) partitioning to lower the communication volume.
Then we impose a Cartesian 2D structure on the edges
(nonzeros) to limit the number of messages. We call this
new data distribution 2D Cartesian Graph Partitioning, al-
though other partitioning methods (such as hypergraph par-
titioning) may also be used. Note that we use this phrase to
indicate that graph partitioning is used to exploit the struc-
ture of the graph, as opposed to the block approach used in
[34].

Since we are interested in matrix computations based on a
graph, we will adopt below the sparse matrix point of view.
Since the sparsity structure of a matrix corresponds to a
graph (or hypergraph), everything could alternatively have
been phrased in terms of graphs (hypergraphs).

3.1 The 2D Partitioning Algorithm
Algorithm 1 describes our approach at a high level, while

Algorithm 2 formally defines the nonzero mapping in terms
of two functions φ and ψ.

Algorithm 1 can be explained succinctly in matrix terms:
Let P be the permutation matrix associated with the graph
partition of A. Partition the permuted matrix PTAP by
the block 2D method from Section 2.3, where the block sizes
correspond to the part sizes from the graph partition. We
do not explicitly permute the matrix in an implementation;
this permutation is a purely conceptual point of view. Fig-
ure 3 shows the distribution on the permuted matrix, where
the labels on the rows and columns correspond to the part
numbers from the partitioning step. The (φ, ψ) pair in Al-
gorithm 2 maps nonzeros to a process in a logical 2D grid.
There are other possible choices for φ and ψ, in particular,
φ and ψ could be interchanged.

Algorithm 1 is a two-step method where, in graph terms,

Algorithm 2 NONZERO-PARTITION(rpart, pr, pc)

Input: rpart, 1D-part assignment for the rows and
columns; pr, #processes in the row dimension; and pc,
#processes in the column dimension, of the pr × pc pro-
cess grid.

Output: procrow, proccol, vectors of dimension n that give
the mapping to process rows and columns, respectively.

1: for k= 0 to n− 1 do
2: procrow(k) = φ(k) ≡ rpart(k) mod pr
3: {Comment: procrow(k) = i =⇒ row k in the matrix

is assigned to row i of the 2d process grid.}
4: proccol(k) = ψ(k) ≡ brpart(k)/prc
5: {Comment: proccol(k) = j =⇒ column k in the

matrix is assigned to column j of the 2d process grid.}
6: end for

we first partition the vertices and then the edges. For the
first step, any vertex partitioning method can be used. We
recommend standard graph or hypergraph partitioning, with
weights to balance the number of nonzeros. Graph partition-
ers are generally faster than hypergraph partitioners, but hy-
pergraph partitioners usually provide lower communication
volume. After partitioning, all boundary vertices incur com-
munication. However, which process needs to communicate
with which other process is determined by the edge parti-
tioning. Thus, in the second step, we partition the edges to
minimize the number of messages. This is accomplished by a
2D Cartesian approach. Figure 4 shows a graph partitioned
into six parts, represented by colored circles. Each color rep-
resents a part, consisting of both vertices and edges. The
first phase in our algorithm determines the part assignment
(color) for all vertices and edges within a part (circle). For
simplicity, internal vertices and edges are not shown. In the
second step, we assign the inter-cluster (cut) edges to parts.
In Figure 4, we show exactly two edges between each pair of
subgraphs, in reality there could be more or less but they will
all have the same assignment. If the matrix is symmetric, it
corresponds to an undirected graph; otherwise we interpret
it as a directed graph. Typically, in matrix form undirected
edges are stored twice ((i, j) and (j, i)), and these may be
assigned differently. Figure 4 shows the part assignments
(colors) for all possible cut edges. To minimize communi-
cation volume, it is beneficial to assign an edge (i, j) to the
part of either vertex i or vertex j. We see that is the case
for edges that go between vertices in parts that have been
aligned either horizontally or vertically. See, for example,
the edges labeled a and b in Figure 4 between the orange
and blue parts. Some of the edges that go diagonally have
counter-intuitive assignments. For example, edges c and
d between the blue and green parts are orange and light
blue, respectively. The edge assignment is prescribed by the
2D distribution defined in Algorithm 2. This assignment re-
duces the number of messages, but increases communication
volume.

The most expensive step by far is the (hyper)graph parti-
tioning; other operations are simple integer operations that
take insignificant time. Therefore, 2D graph partitioning
takes no more time to compute than the standard 1D graph
partitioning. We also expect the data redistribution (migra-
tion) time to be similar to 1D partitioning. A significant
advantage of our approach is that current software for par-
titioning can be re-used without modifications.



Figure 4: A graph partitioned into six parts. Colors
indicate the assignment of vertices and edges. The
filled circles represent internal vertices and edges in
the parts defined by the partitioner. The part num-
bers correspond to Figure 3. Cut edges are shown
twice (with different directions), as undirected edges
are stored twice in the matrix.

We note that our algorithm does not guarantee balance in
the number of nonzeros even if the 1D partition is balanced.
However, under the (reasonable) assumption that the diago-
nal blocks have more nonzeros than the off-diagonal blocks,
we expect that the 2D distribution also has a fairly good load
balance. This idea is shown in Figure 3, where the framed
diagonal blocks indicate that they are relatively dense com-
pared to the off-diagonal blocks.

One possible improvement is to simply evaluate several 2D
distributions based on the same graph partitioning and pick
the“best”(for example, best load balance). As noted earlier,
the functions φ and ψ in Algorithm 2 can be interchanged,
giving two different distributions to evaluate. The additional
time to do this evaluation would be small relative to the
graph partitioning time.

3.2 Analysis and Comparison
Our 2D graph partitioning has several nice properties.
Number of messages: For a pr × pc process grid, the

number of messages per process is pr +pc−2 = O(
√
p), just

as in the 2D block distribution.
Communication volume: The communication volume

is similar to that of 1D graph partitioning, but may vary
depending on the sparisty pattern.

Load balance: The load balance in the vector is the
same as for the 1D partitioning method (graph or hyper-
graph). Each process swaps some off-diagonal blocks with
other processes. Assuming the distribution of nonzeros is
uniform across all off-diagonal blocks, the load balance in
nonzeros is roughly the same as the 1D method.

Overall, we expect the 2D graph partitioning method to
be very competitive versus other distributions. Compared to
1D graph partitioning, it has similar communication volume
but fewer messages per process. Compared to 2D block or
2D random, it has the same number of messages but lower
communication volume. Load balance may be somewhat
worse than 1D graph partitioning, but for large core counts
the communication time dominates SpMV, so some imbal-
ance is tolerable.

4. IMPLEMENTATION
Our numerical tests use the Trilinos [19, 20] framework.

Trilinos is a collection of inter-operable C++ packages for
scientific computing. Parallel computing is supported via
MPI.

We use Trilinos’ Epetra package [1] for sparse matrix op-
erations. Epetra provides classes for matrices and vectors in
distributed memory parallel environments. Every data ob-
ject has a map that describes its parallel distribution over
MPI ranks. For scalability, maps themselves are distributed
objects. Vectors have a single map, indicating which process
owns each entry. We store the adjacency matrix of a graph
as an Epetra_CrsMatrix. Sparse matrices in Epetra have
four maps: row map, column map, range map, and domain
map. These maps allow Epetra to handle both 1D and 2D
data distributions in a flexible and powerful way, a signifi-
cant advantage over other scientific computing software.

The row and column maps describe which nonzeros in a
sparse matrix may be owned locally by a process. Specifi-
cally, row i is in the row map on a process if that process
owns any nonzero entry aij . Similarly, column j is in the
column map if there is a locally owned aij for some i. The
domain map specifies the distribution of the input vector and
the range map describes the output vector. Altogether, from
these four maps Epetra can determine exactly what commu-
nication is needed in SpMV. In fact, Epetra implements the
four phases as in Section 2.1. The expand communication
corresponds to an import and the fold to an export. Epetra
automatically constructs the Importer and Exporter based
on the sparse matrix and its maps. The communication is
therefore essentially point-to-point, which may not be opti-
mal (see [18]).

In our implementation, we first read the sparse matrix
from a file, and send each nonzero aij to its intended owner
based on the specified distribution scheme. Once each pro-
cess has its nonzero values, we construct the row map with
entries indicated by the process’ nonzeros. We then begin
matrix construction, inserting the nonzeros into the matrix.
We also construct the vector map, using it as both range and
domain map for the matrix. Finally, we call FillComplete()
for the matrix, which sets up the column map, importer and
exporter transparently to the user.

To compute eigenvalues and eigenvectors, we use Trilinos’
Anasazi [4] package. Anasazi is templated on the matrix
and vector, so can be used with a variety of data types; we
use it with Epetra. Anasazi contains a collection of differ-
ent eigensolvers, including Block Krylov-Schur (BKS) and
LOBPCG. Preliminary experiments indicate BKS is effec-
tive for scale-free graphs, so we use it in our experiments.
BKS is a block version of the Krylov-Schur method [32] and
is closely related to the implicitly restarted Arnoldi method.
We use block size one, as we did not observe any advantage
of larger blocks on scale-free graphs.

5. EXPERIMENTS AND RESULTS

5.1 Setup and Data
To demonstrate the effectiveness of the various partition-

ing strategies, we ran experiments to evaluate the perfor-
mance of both SpMV and actual eigensolves on real scale free
graphs from the University of Florida Matrix Collection [17]
and the Stanford Network Analysis Platform (SNAP) [24].
We also used generated data, including a BTER matrix



used in community detection [31] and R-MAT [16] graphs
with parameter settings from the Graph500 benchmark [2].
Three R-MAT sizes were selected to provide some intuition
about the scalability of the parallel distributions. Details of
the matrices are in Table 1. Because we are interested on
eigenanalysis of graph Laplacians, we used symmetric ma-
trices in our experiments; for unsymmetric matrices A, we
constructed the symmetric matrix as A+AT .

Our 64- to 4096-process experiments were run on the cab
cluster at Lawrence Livermore National Laboratory. This
cluster has Intel Xeon processors with 16 cores per node; in
our experiments, we assigned one MPI rank to each core.
The nodes are connected by an Infiniband QDR network.
Our 16K-process experiments were run on NERSC’s Hopper
Cray XE6. Each node has two 12-core AMD Magny-Cours
processors; nodes are connected by a custom mesh network.

For all experiments, we report time only for SpMV or
eigensolves, not including time to read, partition or dis-
tribute matrices. Graph/hypergraph partitioning was done
as a pre-processing step on a stand-alone workstation, using
only 1-64 cores. This pre-processing approach is relevant to
production analysis environments, where partitions might be
reused for several analyses with different goals (clustering,
commute-time, bipartite detection, etc.), and where parallel-
computing resources are reserved for such analyses. For
use-cases requiring very few matrix operations, one must
consider the partitioning cost relative to the SpMV time re-
duction achieved by using a more effective partition.

5.2 Impact of data layout on SpMV
We first assessed the impact of data layout on sparse

matrix-vector multiplication. For each matrix, we distributed
the data according to one of the following algorithms:

• 1D-Block (row-based in n/p-row blocks)
• 1D-Random (row-based with rows randomly (uniformly)

distributed to processes)
• 1D-GP/HP (row-based with graph (GP) or hypergraph

(HP) partitioning)
• 2D-Block (Cartesian in n/p-row blocks [34])
• 2D-Random (Cartesian with rows/columns randomly

(uniformly) distributed to processes)
• 2D-GP/HP (Cartesian with nonzero distribution de-

termined by 1D graph (GP) or hypergraph(HP) parti-
tioning as in Algorithm 2)

We used ParMETIS 4.0.2 (through Zoltan’s interface) for
graph partitioning of the smaller matrices (hollywood-2009,
com-orkut, cit-Patents, com-liveJournal, wb-edu, bter). Thus,
for these matrices, 1D-GP is a traditional graph-partitioning
approach to matrix distribution. For the larger matrices on
which ParMETIS struggled to obtain a partition, we used
Zoltan’s parallel hypergraph partitioner in Trilinos v11.0 for
the 1D-HP and 2D-HP methods. We used the same row-
based graph or hypergraph partition rpart for 1D-GP/HP
and for 2D-GP/HP as described in Algorithm 2.

We then recorded the time to do 100 SpMV per matrix per
distribution, as well as statistics on the load balance, total
communication volume, and maximum number of messages
required for both the expand and fold phases. We exam-
ined strong scaling, varying the number of processes from
64 to 4096. To show how the methods extend to larger core
counts, we ran some experiments with 16,384 cores. Com-
plete timing results are in Table 2. Based on these results,

we make several observations.
First, we note that, in all but one test case, the 2D-GP and

2D-HP methods produced faster SpMV than all other meth-
ods tested. The reduction in SpMV time varied from -5.9%
(the only negative result) obtained on 64 processes with the
uk-2005 matrix to 81.6% on 4096 processes with the rmat 24
matrix. Average and median reductions are 33% and 29%,
respectively. The reported improvements are conservative,
as the comparisons are between 2D-GP/HP and the best
of the remaining methods for a given matrix and processor
configuration. For example, had we instead chosen to com-
pare against 2D-Random (the second best method) for all
instances, we would have removed the one negative result
and shown higher improvements than reported in Table 2.

The profile plot in Figure 6 graphically shows the same
result. This figure shows the fraction of all problems (y-
axis) for which each method requires less SpMV time than
a specified multiple of the best method (x-axis), where the
best method is determined separately for each problem. If
a single method is the best for all the problems, it will be
a line parallel to the y axis at the x value of 1. In other
words, the closer the slope is to the y axis, the better the
method is. Specifically in Figure 6, the (x, y) pair (2, 0.4)
shows for 40% of the problems, 1D-GP/HP results in SpMV
times within 2x of the time of the best method for those
problems. Conversely, for 60% of the problems 1D-GP/HP
results in SpMV times that are worse than 2x of the best
method, which in our case is always 2D-GP/HP. The fig-
ure also shows that for 97.5% of the problems, 2D-GP/HP
is the best method. Thus, we conclude that incorporating
both graph or hypergraph partitioning with a 2D data dis-
tribution can yield significant reductions in SpMV time on
large numbers of processes.

Second, in general, 2D methods provided lower SpMV ex-
ecution times than 1D methods for large process counts.
When we consider a profile plot for runs on 1000 or more
processes (Figure 7), we see the 1D distributions clearly re-
sult in slower SpMV than 2D methods. Reductions in SpMV
time can be attributed to the reduced number of messages
needed in 2D distributions. Indeed, the number of messages
appears to be more important than the total communica-
tion volume in reducing the SpMV execution time. The
details for the com-liveJournal matrix in Table 3 support
this claim. In this table, we show the maximum number
of messages per process per SpMV and the total commu-
nication volume (number of doubles sent) per SpMV. For
all 1D distributions, the maximum number of messages ap-
proaches the number of processes p, while for all 2D layouts,
the number of messages approaches 2

√
p. 2D data layouts

have smaller SpMV times than their 1D counterparts due
to this reduced numbers of messages, even though the total
communication volume is often higher in 2D than 1D.

The strong-scaling plots in Figure 5 further demonstrate
the benefit of 2D data layouts. For the test matrices dis-
played, both 1D and 2D methods scale to 1024 processes.
However, above 1024 processes, 1D’s scaling disappears even
for the large rmat 26 matrix, due to the increased number
of messages needed. Scalability of all 2D methods, however,
is maintained to 4096 processes.

Third, while graph and hypergraph partitioning often have
been thought to be ineffective for scale-free graphs, we found
them almost always to be beneficial, even with 1D distribu-
tions. The results in Table 2 and the profile plot in Figure 6



Matrix Description # rows # nonzeros Max nonzeros/row
hollywood-2009 Hollywood movie actor network 1.1M 114M 12K
com-orkut Orkut social network 3.1M 237M 33K
cit-Patents Citation network among US patents 3.8M 37M 1K
com-liveJournal LiveJournal social network 4.0M 73M 15K
wb-edu Crawl of *.edu web pages 9.8M 102M 26K
uk-2005 Crawl of *.uk domain 39.5M 1.6B 1.8M
bter Block Two-Level Erdös-Rényi 3.9M 63M 790K

(power-law deg dist γ = 1.9) [31]
rmat 22 Graph 500 benchmark 4.2M 38M 60K
rmat 24 (a=0.57, b=c=0.19, d=0.05) [16] 16.8M 151M 147K
rmat 26 67.1M 604M 359K

Table 1: Input matrices used in our experiments
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Figure 5: Strong scaling results for 100 SpMV operations. The labels compare 2D-Random vs 2D-GP/HP.
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Figure 6: Performance profile comparing the time
for 100 SpMV operations when using data layouts
from different algorithms for all instances.

show that 1D-GP is competitive with methods 2D-Block and
2D-Random for moderate process counts. The detailed re-
sults in Table 3 provide an example. In this table, imbalance
is defined to be the maximum number of nonzeros per pro-
cess divided by the average number of nonzeros per process;
thus, an imbalance of 1.0 is perfect balance. Applying graph
partitioning in 1D-GP partitioning lowered the imbalance in
the number of nonzeros per process compared to 1D-Block.
It also reduced the total communication volume and, in some
cases, the maximum number of messages compared to 1D-
Block and 1D-Random. As a result, 1D-GP reduced the
SpMV time. Graph partitioning provided similar benefits
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Figure 7: Performance profile comparing the time
for 100 SpMV operations when using data layouts
from different algorithms for instances with 1024 or
more processes.

in 2D-GP. While all 2D distributions have similar message
counts, 2D-GP reduced communication volume and SpMV
time compared to 2D-Block and 2D-Random.

Finally, we note that simple randomization of the assign-
ment of data to processes can often (but not always) have
benefit to SpMV performance in both 1D and 2D. While
randomization increases total communication volume, the
improvements it yields in load balance often compensate
for increased communication costs. This effect can be seen
in the com-liveJournal results in Table 3. Load imbalance



Matrix Num. SpMV Execution time (seconds) on cab.llnl.gov cluster Reduction in
(GP/HP) Procs 1D-Block 1D-Random 1D-GP/HP 2D-Block 2D-Random 2D-GP/HP SpMV time
hollywood-2009 64 4.96 4.33 2.76 2.76 1.34 1.13 15.7%
(GP) 256 2.67 2.15 1.07 1.20 0.51 0.38 25.5%

1024 1.90 1.46 0.95 0.63 0.23 0.17 26.1%
4096 7.14 13.04 5.81 0.41 0.12 0.10 16.7%

com-orkut 64 13.53 12.30 5.59 6.19 5.27 4.02 23.7%
(GP) 256 7.45 7.53 3.46 2.81 1.88 1.35 28.2%

1024 5.84 2.63 1.80 1.56 1.18 0.73 38.1%
4096 16.35 16.21 11.19 0.61 0.37 0.31 16.2%

cit-Patents 64 4.07 3.67 0.96 2.71 2.26 0.76 20.8%
(GP) 256 1.48 1.12 0.31 1.10 0.79 0.22 29.0%

1024 1.43 1.03 0.24 0.50 0.39 0.11 54.2%
4096 9.28 8.53 0.34 0.33 0.15 0.10 33.3%

com-liveJournal 64 6.36 4.55 2.15 4.75 2.77 1.45 32.6%
(GP) 256 3.41 2.19 0.74 1.94 0.96 0.47 36.5%

1024 2.14 1.52 0.53 0.95 0.43 0.23 46.5%
4096 11.13 11.58 5.01 0.41 0.15 0.14 6.7%

wb-edu 64 1.58 6.77 1.05 1.14 5.01 0.90 14.3%
(GP) 256 0.47 3.59 0.34 0.42 1.46 0.25 26.5%

1024 0.32 1.75 0.16 0.15 0.66 0.08 46.7%
4096 1.80 14.61 0.28 0.10 0.16 0.08 20.0%

uk-2005 64 21.43 – 15.37 22.12 47.68 16.28 -5.9%
(HP) 256 12.11 46.88 9.31 12.65 14.53 4.85 47.9%

1024 9.95 33.96 13.02 6.86 5.40 4.02 25.6%
4096 12.13 24.27 5.46 6.19 2.65 1.71 35.5%

bter 64 12.43 3.31 3.07 8.33 1.94 1.32 32.0%
(GP) 256 10.83 2.74 1.81 5.91 0.90 0.75 16.7%

1024 11.34 2.68 2.65 3.50 0.65 0.47 27.7%
4096 23.29 13.75 13.24 1.97 0.34 0.33 2.9%

rmat 22 64 5.33 5.46 2.71 3.36 3.49 1.35 50.2%
(HP) 256 3.83 3.86 1.23 1.87 1.92 0.63 48.8%

1024 2.81 3.09 0.66 1.23 1.30 0.26 60.6%
4096 17.91 19.76 8.71 0.71 0.60 0.14 76.7%

rmat 24 64 27.54 28.29 7.13 17.97 18.85 5.64 20.9%
(HP) 256 18.48 19.38 4.79 8.90 9.32 2.11 55.9%

1024 25.39 24.52 2.29 5.08 5.16 1.39 39.3%
4096 34.57 39.38 9.07 3.06 2.88 0.53 81.6%

rmat 26 64 147.06 149.73 30.53 103.28 108.54 26.42 13.5%
(HP) 256 83.94 85.24 21.47 51.01 53.80 9.24 57.0%

1024 57.52 60.92 6.83 25.71 26.75 4.16 39.1%
4096 93.64 98.01 9.92 20.09 20.20 1.86 81.3%

SpMV Execution time (seconds) on NERSC Hopper Cray XE6
com-liveJournal 16,384 87.93 47.76 19.41 0.98 0.85 0.76 10.6%
uk-2005 16,384 35.35 – – 5.09 2.14 2.05 4.2%

Table 2: Comparison of the time for 100 SpMV operations. For the 1D-GP/HP and 2D-GP/HP methods,
an indication of whether graph partitioning (GP) or hypergraph partition (HP) was used for the matrix is
included with the matrix name. The reduction in SpMV time using 2D-GP/HP versus the next lowest time
in the row is in the last column. Note that, because the 16K-process runs were done on a different platform
from the 64- to 4096-process runs, the execution times are not directly comparable. The – indicate runs for
which the time to read the matrix from file and assemble it in memory exceeded 15 minutes.

was reduced by randomization in both 1D and 2D, but ran-
domization increased the total communication volume. For
the 4096- and 16K-process experiments, randomization in-
creased the number of messages as well. Still, SpMV time is
reduced in almost all cases compared to 1D-Block and 2D-
Block. For severely imbalanced problems such as this one,
randomization can be a fast and effective tool for quick load
balancing. However, if the original distribution is nearly bal-

anced, the increased communication volume associated with
randomization can cause SpMV execution times to increase.
The wb-edu matrix, for example, exhibits a maximum load
imbalance of 9.1 for 2D-Block on 4096 processes. Random-
ization reduces this load imbalance to 1.1, but increases com-
munication volume from 6M doubles to 87M doubles. As a
result, SpMV time increases from 1.14 seconds to 5.01 sec-
onds. The reduction in imbalance is not sufficient to com-



Num Imbal Max Total SpMV
Proc Method (nz) Msgs CV Time
64 1D-Block 5.5 63 22.6M 6.36

1D-Random 1.0 63 45.4M 4.55
1D-GP 1.1 63 10.9M 2.15
2D-Block 5.6 14 22.3M 4.75
2D-Random 1.0 14 30.7M 2.77
2D-GP 1.4 14 11.2M 1.45

256 1D-Block 9.1 255 29.1M 3.41
1D-Random 1.1 255 59.8M 2.19
1D-GP 1.1 255 14.9M 0.74
2D-Block 9.0 30 32.6M 1.94
2D-Random 1.0 30 47.0M 0.96
2D-GP 1.4 30 16.4M 0.47

1024 1D-Block 12.8 1023 34.5M 2.14
1D-Random 1.3 1023 66.3M 1.52
1D-GP 1.2 1011 18.9M 0.53
2D-Block 11.4 62 43.4M 0.95
2D-Random 1.0 62 64.2M 0.43
2D-GP 1.4 62 22.4M 0.22

4096 1D-Block 16.9 3508 39.1M 11.13
1D-Random 1.9 4093 68.5M 11.58
1D-GP 1.2 2927 23.6M 5.01
2D-Block 10.1 126 53.7M 0.41
2D-Random 1.1 126 79.6M 0.15
2D-GP 1.9 125 30.5M 0.14

16384 1D-Block 29.5 8738 43.2M 87.93*
1D-Random 4.2 11062 69.2M 47.76*
1D-GP 3.3 6205 27.4M 19.41*
2D-Block 19.8 254 63.1M 0.98*
2D-Random 1.3 254 91.5M 0.84*
2D-GP 1.9 250 35.6M 0.76*

Table 3: Metrics including nonzero imbalance, max-
imum number of messages per process per SpMV,
total volume of communication (doubles) per SpMV,
and time for 100 SpMV for the com-liveJournal ma-
trix. *Note: times for 16K processes were obtained
on a different platform than those for 64-4096 pro-
cesses, so they are not directly comparable to lower
process counts. Other metrics are not platform spe-
cific and, thus, can be compared.

pensate for the increased communication.
While most of our experiments focused on strong-scaling,

we ran experiments that approximate weak scaling. The
three R-MAT matrices in Table 1 were generated with 222,
224, and 226 vertices and nearly constant average degree so
that the number of nonzeros increased by roughly a factor
of four for each larger matrix. Note, however, that weak-
scaling in scale-free graphs differs from that in, say, a finite
element simulation. In a finite-element simulation, the struc-
ture of the mesh and the resulting matrix does not change
significantly when the problem size is increased by, say, mesh
refinement. Thus, the number of neighboring processes re-
mains nearly constant and “straight-line” weak scaling is an
achievable goal. For scale-free graphs, however, the proper-
ties of the matrix change more significantly when the prob-
lem size is increased. For example, the maximum number
of nonzeros/row (i.e., the maximum vertex degree) increases
when the problem size is increased. For our R-MAT matri-
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Figure 8: Weak scaling experiments for SpMV op-
erations with the rmat 22, rmat 24 and rmat 26 ma-
trices on 256, 1024, and 4096 processes, respectively.

ces, the maximum number of nonzeros/row increases from
60K for rmat 22 to 359K for rmat 26. This increase can
affect the communication costs, making traditional straight-
line scaling elusive. Still, the results in Figure 8 give a sense
of how our methods perform for problems with similar struc-
ture but varying sizes. We show the times for 100 SpMV for
256 processes with rmat 22, 1024 processes with rmat 24,
and 4096 processes with rmat 26, using the 1D-Block, 1D-
HP, 2D-Block and 2D-HP methods. 2D-HP maintained the
best weak scalability, with execution times increasing from
0.63 seconds on 256 processes to 1.86 seconds on 4096 pro-
cesses. 1D-HP also maintained reasonable weak scalabil-
ity to 4096 processes. The block-based methods, however,
lose scalability due primarily to imbalance in the number of
nonzeros per process. For example, the 2D-Block method
has imbalance of 24.5 on 256 processes, 56.4 on 1024 pro-
cesses, and 130.5 on 4096 processes. 2D-HP maintains load
imbalance between 1.2 and 2.5 for all process configurations,
while increasing communication volume relative to 2D-Block
by no more than 13%.

5.3 Impact of data layout on eigensolvers
In addition to evaluating the performance of SpMV, we

evaluated the performance of our data distributions in ac-
tual eigensolver computations for a subset of the matrices.
For each matrix A (or, for directed graphs, A + AT ), we
used the Block-Krylov Schur (BKS) [32] method with block
size set to one to find the ten largest eigenvalues and as-
sociated eigenvectors of the normalized Laplacian matrix
L̂ = I − D−1/2AD−1/2, where D is the diagonal matrix of
degrees (i.e., dii is the degree of vertex i), and I is the iden-
tity matrix. This computation is motivated, for example, by
the search for bipartite subgraphs of graphs [23]. For each
experiment, we solved the eigenproblem to tolerance 10−3

using randomly generated initial vectors. To reduce the im-
pact of differences in the random vector generation on the
number of iterations required for convergence and, thus, on
the timing comparisons, we repeated each solve ten times
with different initial vectors. For each matrix and distribu-
tion, we reported the average solution time over ten solves.

While SpMV is a key kernel of BKS, other operations
(e.g., orthogonalization) are also significant and have work
proportional to the length of the vectors. Thus, an ideal
partition would balance both the number of matrix nonze-
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Figure 9: Strong scaling results for the eigensolver experiments with hollywood-2009, com-orkut and rmat 26
matrices.

Eigensolve execution time (seconds)
Matrix Num 1D- 1D- 1D- 1D- 2D- 2D- 2D- 2D- Reduction in
(GP/HP) Procs Block Random GP/HP GP-MC Block Random GP/HP GP-MC Solve time
hollywood-2009 64 7.78 6.78 4.57 3.31 4.67 2.69 3.55 2.35 12.6%
(GP) 256 4.42 3.67 3.27 2.13 2.19 0.99 1.86 0.97 2.0%

1024 5.30 2.58 2.64 2.15 1.15 0.62 0.96 0.44 29.0%
4096 13.65 21.38 9.83 10.55 0.95 0.62 0.70 0.48 22.6%

com-orkut 64 29.72 26.83 14.74 13.78 14.46 12.66 11.68 10.64 16.0%
(GP) 256 20.62 15.35 6.83 7.03 7.03 4.06 3.61 3.20 21.2%

1024 13.48 6.23 4.66 4.23 3.74 3.40 2.28 2.02 40.6%
4096 37.39 36.34 19.69 29.49 2.15 1.50 1.29 1.14 24.0%

rmat 26 64 31.55 31.87 34.97 37.78 36.40 30.29 4.0%
(HP) 256 20.54 20.10 13.28 14.33 13.76 11.32 14.8%

1024 13.77 14.37 6.23 5.88 6.26 5.75 2.2%
4096 19.03 21.27 3.18 4.66 4.67 1.75 45.0%

Table 4: Comparison of the average eigensolve time over ten solves (in seconds) using 1D and 2D data
distributions. Methods 1D-GP-MC and 2D-GP-MC use multiple partitioning constraints to balance both
matrix nonzeros and matrix rows. The reduction in eigensolve time using 2D-GP-MC or 2D-HP versus the
next lowest time in the row (excluding 2D-GP) is in the last column.

ros and the number of vector entries in each process. Toward
that end, we used ParMETIS’ multiconstraint graph parti-
tioner [30], setting two weights per row: unit weight for the
row, and the number of nonzeros in the row. The results,
labeled 1D-GP-MC and 2D-GP-MC, are compared with the
other 1D and 2D methods in Table 4. For the rmat 26 ma-
trix, we used hypergraph partitioning for 1D-HP and 2D-HP
due to the matrices’ size; multiconstraint partitioning was
not available with hypergraph partitioning.

In Table 4, the reductions in solve time shown in the last
column compare 2D-GP-MC (or, for rmat 26, 2D-HP) with
the next lowest execution time for the matrix and process
configuration. We exclude 2D-GP from these comparisons,
to more clearly compare with other methods. For all matri-
ces, 2D-HP or 2D-GP-MC reduces overall solve time. The
hollywood-2009 matrix, in particular, benefits greatly from
using 2D-GP-MC to balance the vector entries as well as
the matrix nonzeros. Details are in Table 5. For 2D-Block,
SpMV time dominates the solve time, due to imbalance in
the number of nonzeros per process. For 2D-GP, however,
SpMV time is a small fraction of solve time (down to only
25% of solve time). The remaining time is dominated by

vector-based calculations, which are highly imbalanced. For
2D-Random and 2D-GP-MC, both nonzeros and vector en-
tries are balanced, resulting in lower overall solve time. The
lower communication volume achieved with 2D-GP-MC rel-
ative to 2D-Random further reduces the solve time.

The com-orkut matrix also benefits from multiconstraint
partitioning, but the reductions are less dramatic. This
matrix experiences less severe imbalance in both nonzeros
(maximum imbalance is 6.9) and vector entries (maximum
imbalance is 3.9) than the hollywood-2009 matrix, so mul-
ticonstraint partitioning has less effect.

As with SpMV, overall strong scaling is improved by using
2D data layouts, as shown in Figure 9. This figure is very
similar to Figure 5, in that scalability for 1D methods is lost
above 1024 processes, due to the increased number of mes-
sages needed for scale-free graphs. Scalability is maintained
above 1024 processes for the 2D data layouts.

6. CONCLUSIONS
We have presented a new 2D partitioning method that

uses graph or hypergraph partitioning to exploit the struc-



Num Proc Method Nonzero Imbal Vector Imbal Max Msgs Total CV SpMV Time Total Solve Time
64 2D-Block 5.5 1.0 14 6.4M 4.07 4.68

2D-Random 1.0 1.0 14 12.7M 2.12 2.69
2D-GP 1.4 4.9 14 6.1M 1.87 3.55
2D-GP-MC 1.5 1.1 14 6.2M 1.75 2.36

256 2D-Block 16.5 1.0 30 10.3M 1.80 2.19
2D-Random 1.0 1.0 30 22.4M 0.77 0.99
2D-GP 1.5 14.7 30 10.9M 0.69 1.86
2D-GP-MC 1.7 1.1 30 10.7M 0.59 0.97

1024 2D-Block 26.0 1.0 61 15.7M 0.93 1.15
2D-Random 1.1 1.0 62 35.6M 0.44 0.62
2D-GP 1.6 30.3 62 17.2M 0.33 0.96
2D-GP-MC 1.6 1.1 62 17.5M 0.27 0.44

4096 2D-Block 29.0 1.0 123 23.3M 0.52 0.95
2D-Random 1.3 1.0 126 51.2M 0.19 0.62
2D-GP 1.9 45.6 126 25.7M 0.17 0.70
2D-GP-MC 2.1 1.1 126 27.8M 0.16 0.48

Table 5: Metrics including imbalance in the matrix nonzeros and vector entries, the maximum number of
messages per process, the total communication volume (doubles per SpMv), the amount of solve time spent
in SpMV, and the total eigensolve time are shown for the hollywood-2009 matrix.

ture of scale-free graphs. We have compared our new method
to other existing 1D and 2D partitioning methods on a col-
lection of ten large graphs. Our results show that the new
method reduces the run time for SpMV in almost all (41
out of 42) test cases. The run time is reduced by up to
81% compared to the best other method. We also observed
that graph/hypergraph partitioning can be helpful even with
the traditional 1D data distribution. We conclude that it
is worth exploiting the structure of scale-free graphs, and
even general-purpose partitioning tools can do so. We be-
lieve that better (1D) partitioning algorithms and software
should be developed for scale-free graphs. Our 2D method
can immediately use any such improved algorithm.

We studied the impact of partitioning on an eigensolver.
We observed that scalability improved with 2D partitioning
in general, and with our method in particular. The reduc-
tion in run time was up to 45% compared to the best other
method. These results were for computing ten eigenpairs.
We expect the results for fewer eigenpairs would have been
even better as the SpMV is then a larger fraction of the total
computation. In most of our test cases, the SpMV no longer
dominates run time.

Although our test matrices were structurally symmetric,
our approach extends to nonsymmetric matrices. We plan
to describe and compare nonsymmetric extensions in future
work. It would also be interesting to compare against the
Mondriaan [33] and coarse-grain [13] methods (for problems
that can be partitioned in serial).
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two-dimensional sparse matrix partitioning: Models,
methods, and a recipe. SIAM J. Sci. Comput.,
32(2):656–683, Feb. 2010.

[15] A. Cevahir, C. Aykanat, A. Turk, and B. Cambazoglu.
Site-based partitioning and repartitioning techniques
for parallel pagerank computation. IEEE Trans. on
Parallel and Distributed Systems, 22(5):786–802, 2011.

[16] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In SIAM Data
Mining, 2004.

[17] T. A. Davis and Y. Hu. The University of Florida
sparse matrix collection. ACM Trans. Math. Softw.,
38(1):1:1–1:25, Dec. 2011.

[18] B. Hendrickson, R. Leland, and S. Plimpton. An
efficient parallel algorithm for matrix-vector
multiplication. International Journal of High Speed
Computing, 7:73–88, 1995.

[19] M. Heroux and D. Rouson. Special issue on Trilinos.
Scientific Programming, 20(2–3), 2012.

[20] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R.
Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the
Trilinos project. ACM Trans. Math. Softw.,
31(3):397–423, 2005.

[21] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: application in
VLSI domain. In Proc. 34th Design Automation Conf.,
pages 526 – 529. ACM, 1997.

[22] G. Karypis and V. Kumar. Parmetis: Parallel graph
partitioning and sparse matrix ordering library.
Technical Report 97-060, Dept. Computer Science,
University of Minnesota, 1997.
http://www.cs.umn.edu/~metis.

[23] S. Kirkland and D. Paul. Bipartite subgraphs and the

signless Laplacian matrix. Appl. Anal. Discrete Math.,
5:1–13, 2011.

[24] J. Leskovec. SNAP (Stanford Network Analysis
Platform) network data sets.
http://snap.stanford.edu/data/index.html.

[25] D. P. O’Leary and G. W. Stewart. Data-flow
algorithms for parallel matrix computation. Commun.
ACM, 28(8):840–853, Aug. 1985.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[27] F. Pellegrini and J. Roman. Scotch: A software
package for static mapping by dual recursive
bipartitioning of process and architecture graphs. In
H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot,
editors, High-Performance Computing and
Networking, volume 1067 of Lecture Notes in
Computer Science, pages 493–498. Springer Berlin
Heidelberg, 1996.

[28] S. Rajamanickam and E. G. Boman. Parallel
partitioning with Zoltan: Is hypergraph partitioning
worth it? In D. A. Bader, H. Meyerhenke, P. Sanders,
and D. Wagner, editors, Graph Partitioning and
Graph Clustering, volume 588 of AMS Contemporary
Mathematics, pages 37–52. AMS, 2013.

[29] S. Salihoglu and J. Widom. GPS: A graph processing
system. Technical report, Stanford University, 2012.

[30] K. Schloegel, G. Karypis, and V. Kumar. Parallel
static and dynamic multi-constraint partitioning.
Concurrency and Computation: Practice and
Experience, 14:219–240, 2002.

[31] C. Seshadhri, T. G. Kolda, and A. Pinar. Community
structure and scale-free collections of Erdös-Rényi
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